
Inference on Trending Panel Data

Peter M Robinson∗ and Carlos Velasco

London School of Economics and Universidad Carlos III de Madrid

November 14, 2016

Abstract

Semiparametric panel data modelling and statistical inference with frac-
tional stochastic trends, nonparametrically time-trending individual effects, and
general cross-sectional correlation and heteroscedasticity in innovations are de-
veloped. The fractional stochastic trends allow for a wide range of nonsta-
tionarity, indexed by a memory parameter, nesting the familiar I(1) case and
allowing for parametric short-memory. The individual effects can nonparamet-
rically vary simultaneously across time and across units. The cross-sectional
covariance matrix is also nonparametric. The main focus is on estimation of
the time series parameters. Two methods are considered, both of which entail
an only approximate differencing out of the individual effects, leaving an error
which has to be taken account of in our theory. In both cases we obtain stan-
dard asymptotics, with a central limit theorem, over a wide range of possible
parameter values, unlike the nonstandard asymptotics for autoregressive para-
meter estimates at a unit root. For statistical inference, consistent estimation
of the limiting covariance matrix of the parameter estimates requires consistent
estimation of a functional of the cross-sectional covariance matrix. We exam-
ine effi ciency loss due to cross-sectional correlation in a spatial model example.
A Monte Carlo study of finite-sample performance is included.
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1. Introduction

A considerable literature has developed around the theme of nonstationary panel data
with individual and temporal effects. The nonstationarity can have both stochastic
and deterministic origins. Unit roots and local-to-unit roots, in an autoregressive
setting have been the main representation of stochastic trends, while individual and
temporal effects are often modelled in a separable, additive way, so that temporal ef-
fects are common over the cross-section and individual ones stay constant over time,
and explanatory variables, including linear and other deterministic trends, can also
feature. See for exmple Anderson and Hsiao (1981), Hahn and Kuersteiner (2002)
and Alvarez and Arellano (2003) for estimation of autoregressive panels when both
N and T are large, and Arellano and Hahn (2006) and Moon, Perron and Phillips
(2015) for surveys on associated inference issues; see also Hsiao (2014, Chapter 10).
Autoregressive models are also commonly adopted in the nonstationary time series
and cointegration literature. However, the latter has also developed fractional time
series modelling, which can nest I(1) behaviour in a continuum of nonstationary pos-
sibilities, with the degree of nonstationarity characterized by a memory parameter,
which can be estimated from the data. This approach has the advantages of flexi-
bility and of yielding standard asymptotics, and possible local effi ciency of inference,
unlike the nonstandard theory which usually emerges from an autoregressive setting.
Likewise, the fixed-design nonparametric regression literature suggests a modelling of
deterministic trends which is less prone to specification error than parametric func-
tions. Robinson and Velasco (2015) employed fractional models with individual effects
in a panel data setting, but with no provision for other time-trending features such
as deterministic trends. Another aspect of their work was the assumption of cross-
sectional independence and homoscedasticity, conditional on individual effects, which
is increasingly seen as restrictive, and sometimes replaced by factor modelling, or
spatial modelling.

The present paper considers semiparametric modelling of panel data, such that
dynamic parametric fractional stochastic trends are complemented by stochastic or
deterministic nonparametrically time trending individual effects and allowance for
cross-sectional correlation and heteroscedasticity of a nonparametric form, entailing
greater generality than factor or spatial models. The number of time series observa-
tions, T, is large, and the number of cross-sectional ones, N, can be large (increasing
with T ) or small (fixed as T increases). The latter setting is also considered by Robin-
son and Velasco (2015), but our introduction of nonparametric temporal variation of
individual effects and relaxation of cross-sectional independence and homoscedastic-
ity strengthens the need for an asymptotic theory based on increasing T. Large-T
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panel data are increasingly available, for example very long time series of prices of
several stocks, monthly or quarterly macroeconometric series for several countries,
and repeated micro-economic surveys.

We consider an observable array {yit} , i = 1, . . . , N, t = 0, 1, . . . , T. The vectors of
N cross-sectional observations yt = (y1t, . . . , yNt)

′ , the prime denoting transposition,
are assumed to be generated by the semiparametric model

λt (L; θ0) (yt − αt) = εt, t = 0, 1, . . . , T. (1)

The parametric aspect of (1) is due to the (p+ 1)×1 parameter vector θ0, which is
known only to lie in a given compact subset Θ of Rp+1. In (1) L is the lag operator,
and for any θ ∈ Θ and each t ≥ 0, λt (L; θ) is a scalar function given by

λt (L; θ) =
t∑

j=0

λj (θ)Lj, (2)

where the λj (θ) are given functions to be defined subsequently. The unobservable
vectors εt have elements with zero mean and are uncorrelated and homoscedastic
across t. Thus, (1) is an autoregressive representation for the yt − αt with initial
condition at t = 0, where the number of terms in (2) increases with t. The assump-
tions on λt (L; θ) that we will impose are aimed at covering fractionally integrated
autoregressive moving average (FARIMA) sequences yt − αt, with unknown memory
parameter that can lie in either the stationary or nonstationary regions.

Other aspects of (1) are nonparametric. We do not require uncorrelatedness or
homoscedasticity across the elements of εt, allowing it to have covariance matrix that
is unrestricted apart from remaining positive definite with increasing N , thereby to
reflect possible cross-sectional correlation and heteroscedasticity of a nonparametric
nature, though it can also be assumed to be diagonal, to reflect a lack of cross-sectional
correlation but the possibility of nonparametric heteroscedasticity. The vectors αt
consist of stochastic or deterministic unobservable individual effects that can time-
trend in a nonparametric way, and in a manner that can vary across elements of the
vector, where with N increasing the familiar incidental parameters problem arises.
Our allowance for temporally varying individual effects and cross-sectional correlation
and heteroscedasticity of innovations, and our relaxation of temporal independence
of innovations to martingale difference structure, extend the scope of the model of
Robinson and Velasco (2015) to a practically significant degree, but as a consequence
reduces the range of memory parameter values covered and limits the degree to which
N can increase relative to T. These limitations arise from the need to control bias
due to the trending of αt that our first differencing approach is unable to eliminate
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completely. Note that our detailed specification of αt implies that its elements depend
also on T , while to cover some possible specifications of εt (which allow for cross-
sectional dependence) we allow its elements to depend also on N, and thence on T ;

thus the yit depend also on T, though as is common we suppress reference to this fact
in our notation.

The main goal of the paper is to justify statistical inference on the unknown pa-
rameter vector θ0. Detailed regularity conditions, later employed in establishing the
properties of consistency and asymptotic normality, are described in the following
section. In Section 3 an estimate of θ0, based on initial first-differencing of (1), is
shown to be consistent and asymptotically normal, and feasible statistical inference
is justified. In Section 4 a more refined estimate, with some advantages, is similarly
analysed. Section 5 employs a spatial model to illustrate relative effi ciency. A Monte
Carlo study of finite-sample performance is reported in Section 6. Section 7 contains
some final comments. The proofs of theorems are included in an appendix.

2. Theoretical setting

The present section presents detailed regularity conditions on the model introduced
in the previous section, which will be assumed to hold in our theoretical results.

The function λt (L; θ) defined in (2) is regarded as truncating the expansion

λ (L; θ) =
∞∑
j=0

λj (θ)Lj,

which has the structure
λ (L; θ) = ∆δψ (L; ξ) ,

where δ is a scalar, ξ is a p × 1 vector, θ = (δ, ξ′)
′and the functions ∆δ and ψ (L; ξ)

are described as follows. Defining the difference operator ∆ = 1 − L, ∆δ has the
expansion

∆δ =
∞∑
j=0

πj (δ)Lj, πj (δ) =
Γ(j − δ)

Γ(−δ)Γ(j + 1)
,

for non-integer δ > 0, while for integer δ = 0, 1, . . . ,

πj (δ) = 1(j = 0, 1, . . . , δ) (−1)j δ (δ − 1) · · · (δ − j + 1) /j!, taking 0/0 = 1 and 1 (.)

to be the indicator function;ψ (L; ξ) is a known function of its arguments such that
for complex-valued x, |ψ (x; ξ)| 6= 0, |x| ≤ 1 and is continuously differentiable in ξ,
and in the expansion

ψ (L; ξ) =

∞∑
j=0

ψj (ξ)Lj,
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the coeffi cients ψj (ξ) satisfy

ψ0 (ξ) = 1,
∣∣ψj (ξ)

∣∣+
∥∥∥ψ̇j (ξ)

∥∥∥ = O (exp (−c (ξ) j)) , (3)

where ψ̇j (ξ) = (∂/∂ξ)ψ (ξ) and c (ξ) is a positive-valued function of ψj. Note that

λj (θ) =

j∑
k=0

πj−k (δ)ψk (ξ) , j ≥ 0. (4)

It is assumed that (3) holds for all ξ ∈ Ξ with c (ψ) satisfying

inf
Ξ
c (ξ) = c∗ > 0. (5)

We impose the identifiability condition that, for all ξ 6= ξ0, |ψ (x; ξ)| 6= |ψ (x; ξ0)| on
a subset of {x : |x| = 1} of positive Lebesgue measure. Define

φ (L; ξ) = ψ−1 (L; ξ) =
∞∑
j=0

φj (ξ)Lj

and

χ (L; ξ) =
∂

∂θ
log λ (L; θ) = (log ∆, (∂/∂ξ′) logψ (L; ξ))

′
=
∞∑
j=0

χj (ξ)Lj,

where the prime denotes transposition and

χj (ξ) =
(
χ1j (ξ) , χ′2j (ξ)

)′
, χ1j (ξ) = −j−1, χ2j (ξ) =

j∑
k=1

φk (ξ) ψ̇j−k (ξ) .

Then define the (p+ 1)× (p+ 1) matrix

B (ξ) =
∞∑
j=1

χj (ξ)χ′j (ξ) =

[
π2/6 −

∑∞
j=1 χ

′
2j (ξ) /j

−
∑∞

j=1 χ2j (ξ) /j
∑∞

j=1 χ2j (ξ)χ′2j (ξ)

]
,

and assume B (ξ0) is non-singular. The conditions on ψ (L; ξ) are satisfied by the
coeffi cients in stationary and invertible autoregressive moving average sequences, and
the conditions on λ (L; θ) are satisfied by the coeffi cients in FARIMA sequences. The
above setting is identical to that of Robinson and Velasco (2015), but we extend their
model in the following three respects.

First, we relax their assumption of independence and identity of distribution of
the unobservable elements εit of the vectors εt = (ε1t, . . . , εNt)

′ across t to martingale
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difference structure for levels and squares/products: in particular, almost surely, for
constants σij0 (not depnding on t),

E (εit |εj,t−s, 1 ≤ s ≤ t, 1 ≤ j ≤ N ) = 0, 1 ≤ i ≤ N, 0 ≤ t ≤ T, (6)

E (εitεjt − σij0 |εk,t−s, εl,t−s, 1 ≤ s ≤ t, 1 ≤ k, l ≤ N ) = 0, 1 ≤ i, j ≤ N, 0 ≤ t ≤ T (7)

where (6) implies E (εit) = 0. Recall from Section 1 that the εit can be regarded as
depending also on N , and thence T, and thus this is true of the σij0 (which we stress
are constant over t.) We impose also the moment condition

sup
i,t
Eε4

it <∞, (8)

and the fourth cumulant condition

sup
t

N∑
i,j,k,l=1

|cum (εit, εjt, εkt, εlt)| = O (N) , (9)

both of which are automatically satisfied if εit is Gaussian.

Secondly, we relax the assumption in Robinson and Velasco (2015) of homoscedas-
ticity and lack of correlation across elements of the vectors εt, in allowing Eεtε′t =

Σ0N , t = 0, 1, . . . , T, for an N × N matrix Σ0N = (σij0) which is assumed to stay
positive definite and have bounded elements with increasing N but is otherwise un-
known, to reflect possible cross-sectional correlation and heteroscedasticity, or else is
restricted to be diagonal, to reflect an assumed lack of cross-sectional correlation, but
the possibility of heteroscedasticity. Since N is allowed to increase, Σ0N can in either
case be regarded as nonparametric. Specifically, we assume that, if N is regarded as
increasing

lim
N→∞

(‖Σ0N‖+
∥∥Σ−1

0N

∥∥) <∞, (10)

(where ‖.‖ denotes spectral norm), and existence of

σ2
0 = lim

N→∞

1

N
tr (Σ0N) , (11)

and of
κ0 = lim

N→∞

1

N
tr
(
Σ2

0N

)
, (12)

while if N is regarded as fixed:

‖Σ0N‖+
∥∥Σ−1

0N

∥∥ <∞, σ2
0 =

1

N
tr (Σ0N) , κ0 =

1

N
tr
(
Σ2

0N

)
.

Of course N−1tr (Σ0N) ≤ ‖Σ0N‖ while also, from the inequality tr (ABB′A′) ≤
‖A‖2 tr (BB′) (see e.g. Horn and Johnson (1988, p. 313)),
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we have N−1tr (Σ2
0N) ≤ ‖Σ0N‖N−1tr (Σ0N) , so the first component of (10) implies

σ2
0 + κ0 <∞, while the second implies σ2

0 > 0. Condition (10) effectively upper- and
lower-bounds variances and mildly limits the extent of cross-sectional dependence.
Under cross-sectional uncorrelatedness, assumption (10) reduces to

lim
N→∞

sup

i

(
σii0 + σ−1

ii0

)
<∞.

Our final extension allows the αt = (α1t, . . . , αNt)
′ in (1) to vary with t, being

vectors of unobserved nonparametric (possibly stochastic, and cross-sectionally de-
pendent) trending individual effects, such that

αit = αi (t/T ) ,

for functions αi (u) which satisfy the (possibly stochastic) Lipschitz condition

sup
N≥1

sup
1≤i≤N,(u,u+v)∈(0,1]

|αi (u)− αi (u+ v)| = Op (|v|) as v → 0. (13)

Here there is no exogeneity requirement on αi (u) , with no restriction on possible
dependence with the εit. However we find that if a strong exogeneity condition is
imposed, and a related condition to (13) is added, we can slightly increase the range of
values of δ0 covered and relax the restrictions on increase of N with T. In particular,
almost surely,

E (εit |AN ) = 0, 1 ≤ i ≤ N, 0 ≤ t ≤ T, N ≥ 1, T ≥ 1,

E (εitεjt − σij0 |AN ) = 0, 1 ≤ i ≤ N, 0 ≤ t ≤ T, N ≥ 1, T ≥ 1, (14)

where
AN = {αi (u)− αi (u+ v) , u, u+ v ∈ (0, 1], 1 ≤ i ≤ N} ,

and also

sup
N≥1

sup
1≤i≤N,(u,u+v)∈(0,1]

E (αi (u)− αi (u+ v))2 = O
(
v2
)
as v → 0. (15)

Note that (14) is weaker than assuming the εit are independent of AN , and weaker also
than the corresponding moment restriction that conditions on {αi (u) , u ∈ (0, 1], 1 ≤ i ≤ N} .
Note also that neither (13) nor (15) implies the other, though they are closely related.

To illustrate these various conditions, suppose αi (u) has the formal separable
infinite series representation

αi (u) = βi +
∞∑
j=1

βijgij (u) , i ≥ 1, (16)
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where βi is completely unrestricted (as it can be fully differenced out), the functions
gij (u) are nonstochastic, and the βij can be random variables. Then since

|αi (u)− αi (u+ v)| ≤
(
∞∑
j=1

β2
ij

∞∑
j=1

(gij (u)− gij (u+ v))2

)1/2

a suffi cient condition for (13) is

sup
N≥1

sup
1≤i≤N

∞∑
j=1

β2
ij = Op (1) , sup

N≥1
sup

1≤i≤N,(u,u+v)∈(0,1]

∞∑
j=1

(gij (u)− gij (u+ v))2 = O
(
v2
)
, as v → 0,

while the latter and the requirements that, for allN, T ≥ 1, supN≥1 sup1≤i≤N E

(
∞∑
j=1

β2
ij

)
<

∞, and
{
βij, 1 ≤ i ≤ N, j ≥ 1

}
is independent of {εit, 1 ≤ i ≤ N, 0 ≤ t ≤ T} , N ≥

1, T ≥ 1, are collectively suffi cient for (14) and (15). An example of (16) are poly-
nomials in t, with degree and (possibly stochastic) coeffi cients allowed to vary with
i. In any case the trending individual effects are nonparametric, as in fixed-design
nonparametric regression (see eg Cai (2007)), though here they can be stochastic,
and also the fact that there are N of them, where N (like T ) will be regarded as
increasing in our asymptotic theory, lends a further nonparametric aspect.

We can compare our approach with the familiar one (see e.g. Hsiao (2014)) in
which our αit is replaced by the addition of a separable individual effect and time
effect, namely βi + γt. Then first differencing, which is employed in the current
paper, eliminates the individual effect βi completely, but not the time effect γt. With
unrestricted γt this structure is not covered by our assumptions on αit and would entail
significant complications to the methods in the paper, and strengthened conditions
in order to achieve asymptotic distributional results, see also remarks in Section 7
below. If, however we take γt = γ(t/T ), for a Lipschitz continuous function γ(u),

we obtain γt − γt−1 = Op (T−1) , which becomes small as T diverges. We obtain the
same error bound by differencing our αit given condition (13), but clearly they afford
more generality than the additive βi + γ(t/T ), since our time trends can vary over
individuals. It is thus possible that differenced estimation of θ0 that ignores the αit is
more or less robust to their presence, and the extent of this will be examined below.
The more specialised structure βi + γ(t/T ) was also employed by Robinson (2012),
but there the focus was on estimating the nonparametric function γ(u). Note that
the dependence on T of αt, and also of εit (as noted above) in (1) implies that the
yt form a triangular array but our notation suppresses reference to this fact.
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3. First difference estimates

We consider in the current section one of the estimates of θ0 proposed by Robinson
and Velasco (2015) in their more specialised model, with our goal being to achieve the
same property of consistency as if αt were absent from (1) or constant over t and the
elements of εt were cross-sectionally uncorrelated and homoscedastic, and asymptotic
normality with the same convergence rate as before but with a generally different
asymptotic variance matrix, and also to justify feasible large sample inference.

From (1) and (13) or (15) it follows that

∆yt = ∆vt + ∆αt (17)

= ∆vt +Op(T
−1), as T →∞, (18)

where the final term on the right of (18) in fact represents a vector with elements
that are Op(T

−1) uniformly in i and t, and

vt = λ−1
t (L; θ0) ∆αt, t = 0, . . . , T. (19)

For any θ ∈ Θ, we attempt to fully whiten the data by forming the N × T matrix

Z (θ) = (z1 (θ) . . . ., zT (θ)) ,

where
zt (θ) = λt

(
L; θ(−1)

)
(∆yt) , t = 1, . . . , T, (20)

with θ(−1) = (δ − 1, ξ′)
′
. From (27) of Robinson and Velasco (2015) and (17)

zt (θ) = λt (L; θ) vt − τ t (θ) ε0 + λt

(
L; θ(−1)

)
∆αt (21)

where τ t (θ) = λt (1; θ) . We have λt (L; θ0) vt = εt but our estimates will be based on
(20) as if the two error terms in (21) were absent, though our theoretical justification
will take account of them.

Define the set Θ = D×Ξ, where Ξ is a compact subset of Rp and D = [δ, δ], where
δ > max

(
0, δ0 − 1

2

)
, δ <∞, and we assume that δ0 ∈ D. The feasible bias-corrected

difference estimate of Robinson and Velasco (2015) is

θ̂
D

T = arg min
θ∈Θ

LDT (θ)− T−1bDT

(
arg min

θ∈Θ
LDT (θ)

)
,

where
LDT (θ) =

1

NT
tr
(
Z (θ)Z (θ)′

)
, (22)

bDT (θ) = −B−1 (ξ) (Sτ τ̇T (θ)− SτχT (θ)) ,
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Sτ τ̇T (θ) =

T∑
t=1

τ t (θ) τ̇ t(θ), SτχT (θ) =
T∑
t=1

τ t (θ)χt (ξ) ,

where π̇t (δ) = (∂/∂δ)πt (δ) and

τ̇ t(θ) =
∂

∂θ
τ t (θ) =

[ ∑t
k=0 π̇k (δ)

∑t−k
j=0 ψj (ξ)

∑t
k=0 πk (δ)

∑t−k
j=0 ψ̇

′
j (ξ)

]′
, (23)

The basic objective function (22) is of conditional sum of squares type, but corrupted
by the second and third components on the right hand side of (21), whose presence will
be accounted for in the theoretical development, in particular by the term T−1bDT in

the definition of θ̂
D

T , which corrects for the bias induced by the second term of (21)
depending on the initial condition ε0.

Finally define
µ0 = κ0/σ

4
0.

Theorem 3.1 Under (1) and (2), and the conditions of Section 2 apart from (14)

and (15), as T →∞,
θ̂
D

T →p θ0. (24)

If also 1
2
< δ0 ≤ 1 and NT 1−2δ0 log2 T → 0, or if δ0 > 1 and NT−1 → 0, or if (14)

and (15) are imposed with 1
4
< δ0 ≤ 1

2
and NT 1−4δ0 log4 T → 0, as T →∞,

(NT )
1
2

(
θ̂
D

T − θ0

)
→d N

(
0, µ0B

−1 (ξ0)
)
. (25)

The consistency (24) requires no further restriction on δ0, beyond δ0 ∈ D, and no
restriction on the rate of increase of N with T. However, comparing with Robinson
and Velasco’s (2015) Theorem 5.2 for their much more special model, we restrict
δ0 and N in order to achieve asymptotic normality (25), in particular requiring N
= o (T ) and δ0 to take nonstationary values when the αt are not exogenous; this is due
to bias produced by temporal variation in individual effects. Of course the results
hold if N stays fixed as T → ∞. Note that without imposing (14) and (15) we can
cover only the nonstationary region δ0 >

1
2
, while if we do impose (14) and (15) we

can cover also the stationary values 1
4
< δ0 <

1
2
as well as the boundary point δ0 = 1

2
.

In order to base statistical inference on Theorem 3.1 we estimate B (ξ0) by B
(
ξ̂
D

T

)
,

with ξ̂
D

T denoting the final p elements of θ̂
D

T , and estimate µ0 by

µ̂DT = Ntr
(

Σ̃2
N

(
θ̂
D

T

))
/tr2

(
Σ̃N

(
θ̂
D

T

))
, (26)

where
Σ̃N (θ) =

1

T
Z (θ)Z (θ)′ . (27)
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An analogous unrestricted estimate of the cross-sectional covariance matrix was con-
sidered by Robinson (2012) in the context of a panel model with no autocorrelation.
If instead we maintain cross-sectional uncorrelatedness we take

Σ̃N (θ) =
1

T
diag

(
Z (θ)Z (θ)′

)
. (28)

Theorem 3.2 Under the conditions of Theorem 3.1, as T →∞,

B
(
ξ̂
D

T

)
→ p B (ξ0) , (29)

µ̂DT → p µ0, (30)

with µ̂DT given by (26) where Σ̃N

(
θ̂
D

T

)
is defined either by (27) or, if σij0 = 0 for all

i 6= j, (28), (NT )
1
2

(
B
(
ξ̂
D

T

)
/µ̂DT

)1/2 (
θ̂
D

T − θ0

)
converges in distribution to a vector

of independent standard normal random variables.

4. Pseudo maximum likelihood estimate based on
first differences

Our next estimate is the difference pseudo maximum likelihood estimate (PMLE)
of Robinson and Velasco (2015). Define the T × T matrix, ΩT (θ) = (ωst (θ)) ,

ωst (θ) = 1 (s = t)+τ s (θ) τ t (θ) , so that ΩT (θ0) is proportional to the exact covariance
matrix of the vector (εi1 − τ t (θ0) εi0, . . . , εiT − τT (θ0) εi0)′ , cf (21). Unlike in the
difference estimate of the previous section we thus allow for the initial value effect in
our estimation, though as there we attempt to incorporate cross-sectional correlation
or heteroscedasticity only in studentization, not in the point estimation of θ0, and we
have to contend in the theory with the Op (T−1) error of differencing the αit in (21).

We estimate θ0 by
θ̂
P

T = arg min
θ∈Θ

LPT (θ) ,

where Θ is as defined in the previous section and

LPT (θ) = |ΩT (θ) | 1T σ̂2
T (θ) , (31)

in which
σ̂2
T (θ) =

1

NT
tr
(
Z (θ) Ω−1

T (θ)Z (θ)′
)
.

.

Theorem 4.1 Under (1) and (2), and the conditions of Section 2 apart from (14)
and (15), as T →∞,

θ̂
P

T →p θ0. (32)
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If also 1
2
<δ0 ≤ 1 and NT 1−2δ0 log2 T → 0, or if δ0 > 1 and NT−1 → 0, or if (14)

and (15) are imposed with 3
8
< δ0 ≤ 1

2
and NT 3−8δ0 log4 T → 0 + NT−1 log2 T → 0,

as T →∞,
(NT )

1
2

(
θ̂
P

T − θ0

)
→d N

(
0, µ0B

−1 (ξ0)
)
. (33)

The cost of allowing temporal variation in individual effects is thus somewhat
greater than with the difference estimates, the higher lower bound of 3

8
for δ0 (com-

pared to 1
4
in Theorem 3.1, which is implicitly required for Theorem 4.4 of Robinson

and Velasco (2015)) under (14) and (15) resulting from the need to handle addi-
tional terms, due to (∂/∂θ) σ̂2

T (θ) , which are not involved in (∂/∂θ)LDT (θ0) (see the
derivations near the end of the proof of Theorem 4.1).

Now define
µ̂PT = Ntr

(
Σ̃2
N

(
θ̂
P

T

))
/tr2

(
Σ̃N

(
θ̂
P

T

))
(34)

and denote by ξ̂
P

T the final p elements of θ̂
P

T .

Theorem 4.2 Under the conditions of Theorem 4.1, as T →∞,

B
(
ξ̂
P

T

)
→ p B (ξ0) ,

µ̂PT → p µ0,

with µ̂DT given by (34) where Σ̃N

(
θ̂
P

T

)
is defined either using (27) or, if σij0 = 0

for all i 6= j, (28), (NT )
1
2

(
B
(
ξ̂
P

T

)
/µ̂PT

)1/2 (
θ̂
P

T − θ0

)
converges in distribution to a

vector of independent standard normal random variables.

5. Ineffi ciency of estimation

In the limiting covariance matrix µ0B
−1 (ξ0) in Theorems 3.1 and 4.1, the factor

µ0 = 1 when the εit are homoscedastic and uncorrelated across i, but in general
µ0 ≥ 1 so heteroscedasticity and/or cross-sectional correlation inflates the variance
matrix in the limiting distribution by a scalar factor, relative to the outcome of
Robinson and Velasco (2015). Note also that µ̂DT ≥ 1 whether it is based on either
of the estimates (27) or (28) of Σ0N .

The potential ineffi ciency of our estimates, or equivalently the degree of invalidity
of the inference rules which assume homoscedasticity and lack of correlation across i,
can be examined by considering a specific model for εt. The spatial moving average
model is defined by

εt = (IN + ρW ) ηt, (35)
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where IN is the N ×N identity matrix, W is an N ×N user-chosen ’spatial weight’
matrix with zero diagonal elements, taken here to be symmetric and normalised such
that ‖W‖ = 1, and correspondingly the scalar ρ satisfies |ρ| < 1, while the elements
of ηt are mutually uncorrelated with common variance ς

2 . In general all elements
of W can depend on N, to allow for possible normalizations, such as on row and/or
column sums, motivating our allowance for all elements of εt to depend on N. Thus

tr (Σ0N) = ς2tr
(
(I + ρW )2) = ς2

(
N + ρ2tr

(
W 2
))
,

tr
(
Σ2

0N

)
= ς4tr

(
(I + ρW )4) = ς4

(
N + 6ρ2tr

(
W 2
)

+ 4ρ3tr
(
W 3
)

+ ρ4tr
(
W 4
))
,

and so

Ntr (Σ2
0N)

(tr (Σ0N))2 =
N (N + 6ρ2tr (W 2) + 4ρ3tr (W 3) + ρ4tr (W 4))

(N + ρ2tr (W 2))2

= 1 +
4ρ2Ntr (W 2) + 4ρ3Ntr (W 3) + ρ4

(
Ntr (W 4)− tr (W 2)

2
)

(N + ρ2tr (W 2))2

≥ 1 +
4ρ2N (tr (W 2) + ρtr (W 3))

(N + ρ2tr (W 2))2 . (36)

This lower bound is 1 when there is no spatial correlation, ρ = 0, but in general (36)
exceeds 1, noting that tr (W 2) + ρtr (W 3) > 0 even when −1 < ρ < 0 since ‖W‖ ≤ 1

implies tr (W 3) ≤ tr (W 2) , and (36) increases in ρ2. A simple W, proposed by Case
(1991), is

W = Ir ⊗Bs, Bs = (s− 1)−1 (1s1
′
s − Is) , (37)

where rs = N and 1s is the s×1 vector of 1’s, representing r districts each containing
s farms, so farms are neighbours if and only if they lie in the same district and
neighbours are equally weighted. Since

B2
s = (s− 1)−2 ((s− 2) 1s1

′
s + Is) , B

3
s = (s− 1)−3 ((s2 − 3s+ 3

)
1s1
′
s − Is

)
,

we have

tr
(
W 2
)

= r (s− 1)−2 (s (s− 2) + s) = N (s− 1)−1 ,

tr
(
W 3
)

= r (s− 1)−3 (s (s2 − 3s+ 3
)
− s
)

= N (s− 2) (s− 1)−2 ,

and the lower bound (36) becomes

1 +
4ρ2
(
(s− 1)−1 + ρ (s− 2) (s− 1)−2)(

1 + ρ2 (s− 1)−1)2 = 1 +
4ρ2 (s− 1 + ρ (s− 2))

(s− 1 + ρ2)2 . (38)

A lower bound for µ0 is obtained by letting N → ∞, and if s → ∞ this tends to 1,

but if s stays fixed the bound exceeds 1, and again increases with ρ2.
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6. Monte Carlo simulations

In this section we report the results of a simulation study of the properties of our
estimates in finite samples in the presence of cross-sectional dependence and trends.
We extend a similar set-up of Robinson and Velasco (2015), where only constant
fixed effects and independent and identically distributed εit, across both i and t, were
employed.

We generate the εt as the spatial moving average (35), where ηt is N (0, IN) and
ρ = 0.5 or 0.9, while W is generated as in (37), setting r = 4 (when N = 8) or
r = 5 (N > 8). We consider both a pure fractional model, so p = 1, θ = δ and
ψ (L; ξ) ≡ 1, and a model with FARIMA(1,δ, 0) dynamics, so p = 2 and θ = (δ, ξ)′

with ψ (L; ξ) = 1− ξL.

We consider different choices of N , T and θ0. In particular we employ three basic
values of NT, namely 100, 200, 400 with two combinations of N and T for each, to
account for relatively short (T = 10, 22) and moderate time series (T = 12, 25, 50),
and also NT = 96 for T = 12. The range of values of N thus varies from 8 through 20

from the smallest to the largest sample size. The values of δ0 include a stationary one
(δ0 = 0.3), which our theorems predict will be the most problematic from the point
of view of bias, a moderately non-stationary one (δ0 = 0.6), a value close to the unit
root (δ0 = 0.9), and a more nonstationary one (δ0 = 1.2). For FARIMA models we
consider two autoregressive parameter values, ξ = 0.5, 0.8. Optimizations were carried
out using the Matlab function fmincon with D = [0.1, 1.5] and Ξ = [−0.95, 0.95] , and
the results are based on 10,000 independent replications.

For all combinations of sample sizes and parameter values we report (scaled) em-

pirical bias of both the feasibly bias-corrected difference estimate θ̂
D

T and the PMLE

θ̂
P

T , root-mean square error (MSE) and empirical size of the corresponding t or Wald
test based on estimates of µ and B for the asymptotic variance as studied in Theo-
rems 3.2 and 4.2 ("corrected" tests) to account for cross sectional dependence, while
we also report the empirical size for tests based on a pooled estimate of the vari-
ance of innovations, which would be only valid in case of uncorrelated homoscedastic
innovations ("uncorrected" tests).

The results in Tables 1-8 concern the pure fractional case, θ = δ.We first consider
the case without trends, where constant fixed effects are exactly removed by first
differencing. Table 1 provides a bias comparison of the estimates of δ0. In general bias
is not affected by cross-sectional correlation compared with the results in Robinson
and Velasco (2015), who did not allow for such, and typically reduces with increase

14



of δ0 and T as expected. Bias of the difference estimate δ̂
D

T for δ0 = 0.3 can be of an
order of magnitude larger than in the other cases for the smallest T for a given NT ,
despite bias-correction having a large beneficial effect (results without bias correction

are not reported here). The PMLE δ̂
P

T does much better in this diffi cult setup, but the
difference for larger δ0 is much smaller. MSE results in Table 2 confirm the consistency
of estimates, no clear superiority of any of the two estimates apart from the bias effect,
and increase in the variance of estimates with cross-sectional correlation (that is, with
increasing ρ). The empirical size of the properly studentized t-test is sensitive to the
parameter and sample size values, though they converge with increasing NT to the
nominal value. In general, performance tends to deteriorate with the larger ρ and
smaller δ0, and PMLE-based tests do better than difference ones. Tests not using
consistent estimates of µ0 under cross-sectional correlation are systematically very
oversized in all cases, cf. Table 4.

We repeat the experiment in Tables 5-8 for ρ = 0.8 but with a linear trend specified
as αi (u) = βiu (cf (16)), where the βi are generated independently from the N (0, γ2)

distribution with γ = 1, 3 (and our estimates are of course invariant to fixing a
temporally constant component of the individual effects at zero). The larger value of
γ can generate relatively large trends that can dominate the behaviour of the time
series as shown by the bias and MSE results in Tables 5 and 6, respectively. However,
for the smaller γ, first differencing seems to account properly for the heterogenous
deterministic component, though bias is substantially increased, as is MSE, for the
small values of NT and T. In this case PMLE-based t-tests perform in a similar way
as in the absence of trend for not too small T and NT and δ0 ≥ 0.6.

In Tables 9-14 we consider the results for the FARIMA model, again for only one
value of ρ, 0.9. The estimation of δ0 is substantially affected by the autoregressive
short run dynamic component, and the bias in Table 9 can change sign with the
value of δ0 and of T, for ξ0 = 0.5, the results improving in most cases with increasing
δ0, while bias is always positive for the largest ξ0, 0.8, so persistence is incorporated
in the estimation of δ0 in finite samples. In general, the PMLE dominates bias-
corrected difference estimates again. There is an overall increase in variability in
Table 10 compared to Table 2, since both parameter estimates are highly correlated.
Estimation results for ξ0 in Tables 11-12 are parallel to the ones for δ0: large bias
for small NT and δ0, negative bias in all cases for ξ0 = 0.8, but no clear pattern for
ξ0 = 0.5, and MSE decreasing with NT, T and δ0. The feasible asymptotic inference
results reported in Tables 12 and 14 confirm previous ideas on the need for consistent
estimation of µ0 to account for cross-sectional correlation, though now oversizing is
more severe for the larger values of T across the whole range of values of δ0 and ξ0.
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7. Final Comments

In a semiparametric panel data model with fractional dynamics we have established
desirable and useful asymptotic properties of estimates of time series parameters that
are robust to nonparametric, time-varying individual effects and to cross-sectional
correlation and heteroscedasticity, at the cost of restrictions on the range of possible
values of the memory parameter and the rate of increase of N with T . Some related
issues studied in the literature and others that might be considered are as follows.

1. The incidental trend problem has been considered in integrated and nearly
integrated (with an autoregressive local-to-unit root) panel models by Moon and
Phillips (1999, 2000, 2004) and Phillips and Sul (2007), where the availability of an
increasing number of cross-sections may allow consistent estimation of the local to
unity parameter after bias correction. Moon, Perron and Phillips (2007) established
optimal tests of an autoregressive panel unit root in this context, where the rate
of convergence to the null hypothesis depends on the particular specification of the
incidental parameters.

2. To follow up on remarks in the penultimate paragraph of Section 1 and just
after (23), bias correction in panel autoregressions has also been pursued to achieve
a centered asymptotic distribution with (NT )1/2 convergence rate, mainly for fixed
effects maximum likelihood estimation in the presence of lagged endogenous variables,
see e.g. Hahn and Kuersteiner (2002, 2011) and references in the survey of Arellano
and Hahn (2006). The source of bias in our first difference based method differs from
theirs. With our fractional stochastic trend, bias is basically driven by the truncated
infinite autoregressive representation of our fractional filter, rather than by their
finite autoregression, so it can be described as an initial condition problem instead
of regressor endogeneity induced after fixed effects estimation. Our bias correction,
though, is similar in spirit to that of Han and Kuersteiner (2002), since bias depends
only on the true value of parameters (and of T ), and it can be (iteratively) estimated,
but does not require a specific N/T limit and covers trends beyond linear ones.

3. As an alternative to our nonparametric estimation of the factor µ0 that inflates
the limiting covariance matrix we could invest in a parametric model for the covariance
matrix of εt, such as a factor model (see eg Ergemen and Velasco (2015)) or a spatial
model (cf. the discussion in Section 5). With a correct specification improved finite-
sample properties are likely to result, though a misspecified parameterization would
lead to inconsistent estimation of µ0 and thus invalidate inferences based on Theorems
3.2 and 4.2.
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4. Point estimates of θ0 that use either our nonparametric estimates of Σ0N ,
or parametric ones such as just described, to correct for cross-sectional correla-
tion/heteroscedasticity to the extent of being asymptotically effi cient in a Gaussian
context, can be constructed. Their investigation would be worthwhile but likely en-
tail a considerable amount of further work and possibly some further restrictions on
δ0 and T.

5. Our imposition of the same dynamics over the cross-section affords parameter
estimation with rate (NT )

1
2 , but it is possible to allow for variation over the cross

section. In particular, Hassler, Demetrescu and Tarcolea (2011) developed tests in
a panel with such fractional structure, units, but without allowing for individual
effects and keeping N fixed as T → ∞. In our context where N can increase it
would be possible to keep the number of time series parameters fixed by assuming
they are constant within finitely-many known cross-sectional subsets, over which the
parameters can vary.

6. Though the nonstochastic conditional covariance matrix of innovations assumed
in (7) is common in the time series literature, the implications of allowing for condi-
tional heteroscedasticity could be explored.

7. Observable explanatory variables might be allowed to enter, in either a para-
metric or nonparametric way. In the former case, if they are linearly involved our
differencing will leave only their first differences and initial value, but with nonlinear
or nonparametric modelling we will get a difference of the functions, which struc-
ture, in the nonparametric case, needs to be exploited via additive nonparametric
regression methodology in order to minimize a curse of dimensionality.
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Appendix

Proof of Theorem 3.1

To prove (24) we first prove consistency of arg minθ∈Θ L
D
T (θ) . The proof of this
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extends that of Theorem 3.3 of Robinson and Velasco (2015) (hereafter RV) which
uses their Lemma 2, which clearly still holds in our setting, and their Proposition 1,
which needs extending because we have relaxed their iid assumption on εit. First
consider RV’s AT (θ) , and their U (θ) , which is defined as there but with σ2

0 defined
in (11). AT (θ)− AT (θ0)− U (θ) is

1

NT

N∑
i=1

T∑
j=1

ν2
j(θ)

T−j∑
t=0

(
ε2
it − σii0

)
+

2

NT

N∑
i=1

T∑
t=1

t∑
j=1

j−1∑
k=0

νj(θ)νk(θ)εi,t−jεi,t−k

+

(
1

N
tr (Σ0N)− σ2

0

)
1

T

T∑
j=1

(T − j + 1)ν2
j(θ)

−σ
2
0

T

T∑
j=1

(j − 1) ν2
j(θ)− σ2

0

∞∑
j=T+1

ν2
j(θ) (39)

(there is a typo in the last term on p.449 of RV). As in RV

sup
Θ

∣∣∣∣∣
N∑
i=1

T∑
j=1

ν2
j(θ)

T−j∑
t=0

(
ε2
it − σii0

)∣∣∣∣∣ ≤
N∑
i=1

sup
Θ

∣∣∣∣∣
T∑
j=1

ν2
j(θ)

T−j∑
t=0

(
ε2
it − σii0

)∣∣∣∣∣ ,
which is uniformly op(NT ) much as in RV using also the proof of Theorem 1 of
Hualde and Robinson (2011) (6) and (8). The second term in (39) is uniformly op(1)

in much the same way, and the remaining terms are uniformly o(1) from (11) and (52)

of RV. Since from (21) LDT (θ) =
T∑
t=1

∥∥∥λt (L; θ) vt − τ t (θ) ε0 + λt−1

(
L; θ(−1)

)
∆αt

∥∥∥2

it

remains to show that the term in ∆αt contributes negligibly. First,

sup
Θ

T∑
t=1

∥∥∥λt−1

(
L; θ(−1)

)
∆αt

∥∥∥2

≤ sup
t
‖∆αt‖2

T∑
t=1

(
sup

Θ

t−1∑
j=0

∣∣∣λj (θ(−1)
)∣∣∣)2

= Op

(
NT−2

T∑
t=1

(
t1−δ + 1

)2

)
= Op

(
N
(
T 1−2δ + T−1

))
= op (NT ) (40)

as T →∞ for δ > 0. Next using the Cauchy inequality,

sup
Θ

∣∣∣∣∣
T∑
t=1

(
λt−1

(
L; θ(−1)

)
∆αt

)′
λt (L; θ) vt

∣∣∣∣∣
≤

(
sup

Θ

T∑
t=1

‖λt (L; θ) vt‖2

)1/2(
sup

Θ

T∑
t=1

∥∥∥λt−1

(
L; θ(−1)

)
∆αt

∥∥∥2
)1/2

= Op

(
(NT )1/2

)
op

(
(NT )1/2

)
= op (NT ) , (41)
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since the first term converges uniformly to a bounded function after standardization
by (NT )−1, while proceeding in a similar way,

sup
Θ

∣∣∣∣∣
T∑
t=1

(
λt−1

(
L; θ(−1)

)
∆αt

)′
τ t (θ) ε0

∣∣∣∣∣
≤

(
sup

Θ

T∑
t=1

‖τ t (θ) εi0‖2

)1/2(
sup

Θ

T∑
t=1

∥∥∥λt−1

(
L; θ(−1)

)
∆αt

∥∥∥2
)1/2

= op

(
(NT )1/2

)
op

(
(NT )1/2

)
= op (NT ) . (42)

Thus consistency of arg minθ∈Θ L
D
T (θ) is established, and thence straightforwardly

(24), using smoothness properties of bDT .

The latter are also used, along with (24), in proving (25), as in RV’s Theo-
rem 5.2, which incidentally required weaker conditions on δ0 and N than ours,
so we do not repeat the details. But we have to extend RV’s Theorem 4.3 on
arg minθ∈Θ L

D
T (θ) − bDT (θ0) to our setting, and this requires first extending the CLT

for scores in Proposition 2 of RV. We can write their wT as

wT =
1

2 (NT )
1
2

N∑
i=1

∂

∂θ
AiT (θ0) =

1

(NT )
1
2

T∑
t=1

t−1∑
j=0

χt−j (θ0) ε′jεt.

Thus

EwTw
′
T =

1

NT

T∑
t=1

t−1∑
j=0

T∑
s=1

s−1∑
k=0

χt−j (θ0) ε′jεtε
′
sεkχ

′
s−k (θ0)

=
1

NT

T∑
t=1

t−1∑
j=0

s−1∑
k=0

χt−j (θ0) ε′jΣ0Nεkχ
′
t−k (θ0)

=
tr (Σ2

0N)

NT

T∑
t=1

t−1∑
j=0

χt−j (θ0)χ′t−j (θ0) .

Then given (12) and much as in RV,

wT →d N (0, κ0B (ξ0)) .

Apart from the extra terms discussed below the score and Hessian are handled much
as in RV, where the latter has probability limit 2σ2

0B (ξ0) , with σ2
0 is as in (11).

We consider first the extra terms in the score when (14) and (15) are not imposed.
We have

(NT )
1
2
∂

∂θ
LDT (θ0) =

2

(NT )
1
2

T∑
t=1

((
ft − ε0τ̇

0
t

)′
+ λ̇

0

t−1 (L) ∆α′t

) ((
εt − τ 0

t ε0

)
+ ∆αtλ

0
t−1 (L)

)
,
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where

τ 0
t = τ 0

t (θ0), τ̇ 0
t = τ̇ t(θ0), τ̇ t(θ) =

∂τ t(θ)

∂θ′
,

λ0
t−1 (L) = λt−1

(
L; θ

(−1)
0

)
, λ̇

0

t−1 (L) = λ̇t−1

(
L; θ

(−1)
0

)
,

λ̇t−1

(
L; θ(−1)

)
=

∂λt−1

(
L; θ(−1)

)
∂θ′

, ft =

t−1∑
j=0

εtχ
′
t−j (θ0) .

The additional terms contributing to the asymptotic bias of (NT )
1
2 ∂
∂θ
LDT (θ0) that

are not covered in RV are thus

2

(NT )
1
2

T∑
t=1

(
∆αtλ̇

0

t−1 (L)
)′ (

εt − τ 0
t ε0

)′
+

2

(NT )
1
2

T∑
t=1

(
ft − ε0τ̇

0
t

)′ (
∆αtλ

0
t−1 (L)

)
+

2

(NT )
1
2

T∑
t=1

(
∆αtλ̇

0

t−1 (L)
)′ (

∆αtλ
0
t−1 (L)

)
. (43)

Denoting λ0
j = λj

(
θ

(−1)
0

)
, we have λ̇

0

j = ∂
∂θ′λj

(
θ

(−1)
0

)
= O

(∣∣λ0
j

∣∣ log j
)

= O
(
j−δ0 log t

)
,

and thus ∥∥∥∥∥ 2

(NT )
1
2

T∑
t=1

(
∆αtλ̇

0

t−1 (L)
)′ (

εt − τ 0
t ε0

)∥∥∥∥∥
≤ sup

i,t
|∆αit|

2N
1
2

(NT )
1
2

T∑
t=1

(
t−1∑
j=0

∥∥∥λ̇0

j

∥∥∥)∥∥εt − τ 0
t ε0

∥∥
= Op

(
NT−1 (NT )−

1
2

T∑
t=1

(
t1−δ0 + 1

)
log t

)
= Op

(
T−

3
2N

1
2

(
T 2−δ0 + T

)
log T

)
= Op

(
N

1
2

(
T

1
2
−δ0 + T−

1
2

)
log T

)
which is op (1) as NT 1−2δ0 log2 T +NT−1 log2 T → 0, with δ0 >

1
2
. The second term

in (43) can be bounded similarly, given E
∥∥ft − ε0τ̇

0
t

∥∥ = O
(
N1/2

)
. The third is

Op

(
NT−2 (NT )−

1
2

T∑
t=1

(
t1−δ0 + 1

)2
log t

)
= Op

(
N

1
2T−

5
2

(
T 3−2δ0 + T

)
log T

)
= Op

(
N

1
2

(
T

1
2
−2δ0 + T−3/2

)
log T

)
,

which is op (1) since NT 1−4δ0 log2 T +NT−1 → 0 with δ0 >
1
2
.

Now impose (14) and (15) and allow δ0 >
1
4
. LetK denote a generic finite constant.
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From (14) the first term in (43) has zero mean and, using (10), variance bounded by

K

T 3
‖Σ0N‖

T∑
t=1

(
t1−δ0 + log t

)2
log2 t

+
K

T 3
‖Σ0N‖

(
T∑
t=1

(
t1−δ0 + log t

)
t−δ0 log t

)2

= O
(
T−3

(
T 3−2δ0 + T log T

)
log2 T

)
+O

(
T−3

(
T 2(1−δ0) + log T

)2
log2 T

)
= O

((
T−2δ0 + T 1−4δ0

)
log3 T

)
= o (1)

since δ0 >
1
4
, so is negligible, because∥∥∥E [(λ̇0

t−1 (L) ∆αit

)(
λ̇

0

t′−1 (L) ∆αit′
)]∥∥∥ ≤ E

∥∥∥λ̇0

t−1 (L) ∆αit

∥∥∥2

= O

E |∆αit|2( t−1∑
j=0

j−δ0 log j

)2


= O
(
T−2

(
t1−δ0 + 1

)2
log2 t

)
.

The second term in (43) can be bounded similarly, and the last term is

Op

(
T−2 (NT )−

1
2

N∑
i=1

T∑
t=1

(
t1−δ0 + log t

)2
log t

)
= Op

(
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which is op (1) since NT 1−4δ0 log2 T +NT−1 → 0 with δ0 >
1
4
�

Proof of Theorem 3.2

Given Theorem 3.1 and continuity of B (ξ) it suffi ces to prove (30). We give the
proof only for (27) because that for (28) is simpler. From (11), µ̂DT − µ0 differs by
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so the result follows on showing that
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where
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Thus from Theorem 3.1 and with T large enough and any ε > 0∥∥∥∥∥∂zt
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from (12) and (9). Thus tr
(
(AT − Σ0N)2) = op(N). From the proof of (44) it is

readily seen that tr (R2
T ) = op(N), to complete the proof of (45). �

Proof of Theorem 4.1

The proof of (32) extends that of RV’s Theorem 4.4, inspection of which indicates
that it suffi ces to consider the additional term in LDT (θ)− σ̂2 (θ) beyond ones of the
type considered in the proof of Theorem 3.1, namely∣∣∣∑T

t=1 τ t (θ)λt−1

(
L; θ(−1)

)
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proof of (32) then follows straightforwardly from those of RV’s Theorem 3.4 and our
Theorem 3.1.

To prove (33) we consider first the case where (14) and (15) are not imposed. We
have first to bound the extra terms in σ̂2

T (θ0) depending on ∆αit in the normalized
score based on LDT , namely
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so its contribution to σ̂2
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and those in żiT (θ0) = [żit (θ0)]T1 depending on λ̇
0

t−1 (L) ∆αit,

2

NT

N∑
i=1

[
λ0
t−1 (L) ∆αit

]T ′
1

Ω−1
T (θ0) żiT (θ0)+
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which is op (1) under NT 1−2δ0 log2 T + NT−1 → 0 and δ0 >
1
2
. The extra terms due
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. This completes the proof

when (14) and (15) are not imposed.

Now imposing (14) and (15) and allowing δ > 3
8
, we have first to reanalyze two

terms in σ̂2
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)
t−δ0

)2


= O
(
NT−2

(
T 3−2δ0 + T

))
,

so it isOp

(
N1/2

(
T

1
2
−δ0 + T−

1
2

))
, and its contribution to σ̂2

T (θ0) isOp

(
N−1/2

(
T−

1
2
−δ0 + T−

3
2

))
.

Next,
2

S0
ττT

N∑
i=1

τ 0
t

(
εit − τ 0

t εi0
)
λ0
t−1 (L) ∆αit

has zero mean and variance bounded by

KN

T 2S02
ττT

T∑
t=1

(
t1−δ0 + 1

)2
+

KN

T 2S20
ττT

(
T∑
t=1

(
t1−δ0 + 1

)
t−δ0

)2

= O
(
NT−2

(
T 3−2δ0 log T + T 1+2δ01{δ0<1/2} + T 2

)
log2 T

)
= O

(
N
(
T 1−2δ0 log T + 1

)
log2 T

)
,

so its contribution to σ̂2
T (θ0) is Op

((
T−2δ0 log T + T−1

)
log2 T

)
. Overall, the con-

tribution of the extra terms in σ̂2
T (θ0) to (NT )1/2 (∂/∂θ)LPT (θ0) is

Op

((
NT 1−4δ0

)1/2
)

+Op

(
T−δ0 + T−1

)
+Op

((
N
(
T 3−8δ0 + T−2 log2 T + T 1−4δ0 log4 T

))1/2
)

+Op

((
N
(
T 1−4δ0 log2 T + T−1

)
log2 T

)1/2
)
,

which is op (1) , since NT 1−4δ0 log4 T + NT−1 log2 T → 0 and δ0 >
1
4
, and they do

not contribute to the asymptotic bias. Regarding the contribution of ∂
∂θj
σ̂2
T (θ) to

(∂/∂θ)LPT (θ0) , we need to reconsider the term in (49)

2

NT

N∑
i=1

[
λ0
t−1 (L) ∆αit

]T ′
1

Ω−1
T (θ0) Ωj

T (θ0) Ω−1
T (θ0)

[
εit − τ 0

t εi0
]T

1
,

which has zero mean and variance

O

N−1T−4S02
τ̇ τT

(∑
t

(
t1−δ0 + 1

)
t−δ0

)2


= O
(
N−1T−4

(
T 1−2δ0 + log T

)2 (
T 2(1−δ0) + log T

)2
log2 T

)
= O

(
N−1

(
T 2−8δ0 log T + T−4δ0 log4 T + T−4 log6 T

))
,
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so this term is Op

(
N−1/2

(
T 2−8δ0 log T + T−4δ0 log4 T + T−4 log6 T

)1/2
)
. Then the

joint contribution of all terms depending on the differenced trend to (NT )1/2 (∂/∂θ)LPT (θ0)

is thus

Op

(
N1/2

(
T 3−8δ0 log4 T + T−5 log8 T

)1/2
)

+Op

((
T 3−8δ0 log T + T 1−4δ0 log4 T + T−3 log6 T

)1/2
)
,

which is op (1) since NT 3−8δ0 log4 T +NT−1 log2 T → 0 and δ0 >
3
8
. Now consider the

term in (51) under (14) and (15):

2

NT

N∑
i=1

(
T∑
t=1

(
fit − τ̇ 0

t εi0
) (
λ0
t−1 (L) ∆αit

))

has zero mean and variance

O

N−1T−4

 T∑
t=1

(
t1−δ0 + 1

)2
log T +

(
T∑
t=1

(
t1−δ0 + 1

)
t−δ0 log T

)2


= O
(
N−1T−4

((
T 3−2δ0 + T

)
log T +

((
T 2−2δ0 + log T

)
log T

)2
))

= O
(
N−1

((
T−1−2δ0 + T−3

)
log T +

((
T−2δ0 + T−2 log T

)
log T

)2
))

,

and a similar result holds for the term depending on (εit − τ 0
t εi0)

(
λ̇

0

t−1 (L) ∆αit

)
, so

the contribution to the standardized score of this first term is

Op

((
N
(
T 1−4δ0 + T−2

)
log2 T

)1/2
)

+Op

(((
T−2δ0 + T−2

)
log2 T

)1/2
)

+O
(((

T 1−4δ0 + T−3 log2 T
)

log2 T
)1/2
)
,

which is op (1) since NT 1−4δ0 log4 T + NT−1 log2 T → 0 for δ0 >
3
8
, while the second

term is shown op (1) as before. �

Proof of Theorem 4.2

This straightforwardly extends the proofs of Theorem 3.2 and Theorem 4.1, and
is thus omitted. �
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Table 1. Empirical bias ×100. I(δ0)

ρ = 0.5 ρ = 0.9

δ̂
D

T δ̂
P

T δ̂
D

T δ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 3.73 -1.97 -2.14 -1.68 -0.33 -2.31 -1.87 -1.53 1.76 -3.12 -2.75 -2.13 -0.15 -2.86 -2.35 -1.93
12 96 1.98 -2.39 -2.20 -1.77 -0.51 -2.22 -1.96 -1.68 -0.46 -3.76 -2.92 -2.31 -0.34 -2.73 -2.50 -2.15

10 200 7.53 0.10 -1.00 -0.82 -0.52 -1.02 -0.89 -0.75 6.34 -0.58 -1.40 -1.14 -0.56 -1.56 -1.29 -1.06
25 200 1.11 -1.22 -1.02 -0.90 -0.75 -1.05 -0.93 -0.84 -0.55 -1.74 -1.28 -1.12 -0.83 -1.28 -1.15 -1.04

20 400 5.09 0.03 -0.42 -0.37 -0.33 -0.40 -0.37 -0.34 4.19 -0.31 -0.59 -0.52 -0.49 -0.62 -0.54 -0.49
50 400 0.57 -0.56 -0.48 -0.45 -0.39 -0.46 -0.45 -0.43 -0.46 -0.76 -0.59 -0.56 -0.48 -0.57 -0.55 -0.53

Table 2. Empirical Root-MSE ×100. I(δ0)

ρ = 0.5 ρ = 0.9

δ̂
D

T δ̂
P

T δ̂
D

T δ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 22.18 16.38 13.08 11.98 14.92 15.25 12.62 11.67 26.08 19.67 15.26 13.73 15.99 17.15 14.44 13.26
12 96 22.97 16.80 13.21 12.10 14.42 14.86 12.77 11.84 27.78 20.57 15.51 13.91 15.44 16.66 14.68 13.52

10 200 14.90 9.90 8.19 7.67 10.82 9.67 7.96 7.40 17.05 12.19 10.02 9.33 12.76 12.04 9.88 9.13
25 200 16.01 9.81 7.98 7.68 9.43 8.78 7.85 7.59 19.58 11.45 9.06 8.69 10.30 9.86 8.84 8.54

20 400 10.52 6.23 5.23 5.06 6.67 5.86 5.13 4.95 12.11 7.69 6.43 6.22 8.22 7.27 6.34 6.13
50 400 11.59 6.18 5.32 5.24 6.11 5.66 5.27 5.20 13.88 6.98 5.94 5.85 6.76 6.30 5.87 5.79
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Table 3. Empirical Size (%) Corrected 5% t-test. I(δ0)

ρ = 0.5 ρ = 0.9

δ̂
D

T δ̂
P

T δ̂
D

T δ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 22.85 11.28 5.88 3.80 5.81 9.43 5.03 3.62 25.00 13.48 7.68 5.38 6.43 11.14 6.35 4.75
12 96 25.96 12.76 7.13 5.38 5.53 10.19 6.55 4.88 27.91 15.01 9.05 6.62 5.81 11.45 7.89 6.11

10 200 16.68 4.40 1.74 0.93 2.93 3.63 1.55 0.87 18.48 7.02 3.03 2.02 4.35 6.75 3.08 1.65
25 200 30.93 11.22 5.88 5.14 9.29 8.51 5.36 5.03 32.72 12.51 6.99 6.06 9.94 9.29 6.40 5.86

20 400 25.83 5.42 2.46 1.93 4.72 4.04 2.22 1.71 26.10 7.62 3.75 3.01 7.27 6.05 3.40 2.75
50 400 35.70 9.06 5.12 4.91 8.01 6.89 5.07 4.91 36.60 9.72 5.84 5.47 8.46 7.34 5.49 5.27

Table 4. Empirical Size (%) Uncorrected 5% t-test. I(δ0)

ρ = 0.5 ρ = 0.9

δ̂
D

T δ̂
P

T δ̂
D

T δ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 39.50 25.87 19.06 16.33 21.00 24.70 17.67 15.01 35.65 23.60 17.01 14.33 12.65 21.66 15.47 12.65
12 96 38.71 24.89 17.96 15.38 18.09 22.18 17.23 14.72 35.27 22.42 16.50 13.83 11.20 19.14 15.05 13.03

10 200 45.81 23.50 16.74 15.00 26.62 22.97 15.77 13.12 46.86 29.47 22.40 19.46 33.19 29.07 21.70 18.70
25 200 40.11 19.83 13.48 12.00 17.85 16.40 12.90 11.68 36.46 17.42 11.39 10.21 13.83 13.68 10.72 9.61

20 400 46.06 19.75 12.68 11.75 19.24 17.09 12.22 10.99 48.18 25.49 17.94 16.73 25.90 22.97 17.78 16.34
50 400 43.01 15.94 10.88 10.29 13.79 13.06 10.52 10.24 39.15 12.96 8.63 8.04 10.57 10.17 8.32 7.91
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Table 5. Empirical bias ×100. I(δ0), ρ = 0.9, linear trend βi (t/T ) , βi ∼ IIN (0, γ2).
γ = 1 γ = 3

δ̂
D

T δ̂
P

T δ̂
D

T δ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 10.29 1.70 -1.06 -1.71 5.54 1.05 -0.82 -1.53 36.90 19.83 7.70 1.45 32.95 18.71 7.58 1.54
12 96 7.90 0.45 -1.56 -1.90 4.66 0.25 -1.33 -1.74 33.28 16.59 5.49 0.36 29.26 15.52 5.41 0.45

10 200 15.21 4.58 0.52 -0.53 7.95 3.33 0.58 -0.45 43.83 25.12 10.98 3.32 40.85 24.26 10.91 3.39
25 200 5.20 0.16 -0.87 -1.03 2.71 0.14 -0.77 -0.98 23.75 8.96 1.57 -0.55 19.69 8.17 1.58 -0.50

20 400 10.67 2.43 0.10 -0.34 5.27 1.79 0.14 -0.30 32.32 14.80 4.32 0.64 28.36 13.83 4.28 0.67
50 400 3.40 0.00 -0.54 -0.60 2.02 0.06 -0.49 -0.56 17.64 4.85 0.29 -0.50 14.12 4.38 0.32 -0.46

Table 6. Empirical Root-MSE ×100. I(δ0), ρ = 0.9, linear trend βi (t/T ) , βi ∼ IIN (0, γ2).
γ = 1 γ = 3

δ̂
D

T δ̂
P

T δ̂
D

T δ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 23.42 16.87 14.11 13.33 17.32 15.73 13.50 12.90 39.40 23.42 14.22 12.28 36.23 22.65 13.91 11.98
12 96 23.77 17.29 14.45 13.55 16.60 15.74 13.92 13.19 36.38 21.08 13.51 12.57 33.10 20.41 13.27 12.29

10 200 19.99 11.73 9.40 9.06 14.99 11.51 9.37 8.92 44.75 26.49 13.69 9.05 42.06 25.73 13.56 8.94
25 200 16.60 10.52 8.95 8.75 10.53 9.57 8.71 8.58 26.01 12.47 8.43 8.55 22.14 11.85 8.31 8.40

20 400 14.22 7.46 6.24 6.13 9.30 7.08 6.17 6.05 33.00 15.91 7.15 5.99 29.26 15.06 7.10 5.92
50 400 12.14 6.83 6.00 5.93 6.89 6.24 5.92 5.86 19.43 7.77 5.81 5.89 15.77 7.35 5.75 5.83
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Table 7. Empirical Size (%) Corrected 5% t-test. I(δ0), ρ = 0.9, linear trend βi (t/T ) , βi ∼ IIN (0, γ2).
γ = 1 γ = 3

δ̂
D

T δ̂
P

T δ̂
D

T δ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 26.91 10.15 6.39 5.38 11.19 8.77 5.26 4.77 80.92 32.27 6.06 3.70 70.92 29.63 5.43 3.30
12 96 28.41 12.21 7.64 6.16 10.70 10.45 6.92 5.58 76.01 26.93 6.20 4.70 65.34 24.57 5.60 4.38

10 200 32.34 5.74 2.11 1.81 14.31 5.26 2.20 1.58 98.61 66.85 9.80 1.56 95.46 63.01 9.24 1.46
25 200 32.77 10.30 6.76 6.14 11.43 8.18 6.17 5.69 79.06 20.40 5.07 5.71 65.99 17.75 4.85 5.32

20 400 41.13 6.84 3.10 2.72 13.69 5.51 2.82 2.48 99.31 60.23 5.57 2.55 97.10 53.79 5.40 2.34
50 400 37.46 9.52 6.25 5.84 9.85 7.10 5.93 5.51 81.63 15.31 5.27 5.67 68.14 12.80 5.15 5.46

Table 8. Empirical Size (%) Uncorrected 5% t-test. I(δ0), ρ = 0.9, linear trend βi (t/T ) , βi ∼ IIN (0, γ2).
γ = 1 γ = 3

δ̂
D

T δ̂
P

T δ̂
D

T δ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 37.04 19.42 14.24 13.21 17.84 18.30 12.98 11.90 83.26 44.92 14.67 10.55 73.67 42.46 13.96 9.58
12 96 34.93 19.47 14.48 13.32 15.25 18.07 13.77 12.16 76.47 35.04 12.63 10.90 65.64 32.93 12.15 10.30

10 200 61.65 30.31 19.79 18.28 39.19 29.42 19.56 17.63 99.75 90.91 43.13 17.74 98.78 89.03 42.91 17.19
25 200 36.18 15.08 10.94 10.28 14.70 12.46 10.17 9.61 78.77 26.09 9.08 9.60 65.35 23.35 8.51 8.93

20 400 61.28 24.91 17.23 16.24 32.95 22.25 16.76 15.90 99.80 83.99 23.58 15.18 98.96 79.55 23.52 14.95
50 400 39.53 12.57 8.92 8.67 11.96 10.08 8.47 8.32 81.53 19.22 7.95 8.57 67.40 16.27 7.72 8.21

36



Table 9. Empirical bias δ̂ ×100. FARIMA(ξ0, δ0), ρ = 0.9.

ξ0 = 0.5 ξ0 = 0.8

δ̂
D

T δ̂
P

T δ̂
D

T δ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 5.00 -3.24 -4.18 -5.64 4.93 -3.15 -3.94 -5.46 6.70 4.47 3.75 0.91 5.84 2.39 2.23 0.35
12 96 1.42 -5.08 -5.68 -6.93 4.38 -4.40 -5.32 -6.75 6.48 4.39 3.72 1.22 6.07 2.53 2.45 0.67

10 200 8.78 -2.63 -3.99 -4.58 3.64 -3.40 -4.06 -4.78 5.88 4.08 3.52 1.50 5.07 3.01 2.97 1.52
25 200 -3.61 -7.81 -7.54 -7.63 0.57 -6.78 -7.09 -7.31 4.04 3.32 3.05 1.69 3.97 2.27 2.17 1.32

20 400 4.58 -4.96 -5.80 -5.64 -0.24 -5.63 -5.49 -5.53 3.91 3.55 3.41 2.28 3.86 3.06 3.05 2.33
50 400 -4.22 -6.48 -6.31 -6.25 -1.62 -6.18 -6.06 -6.01 2.93 2.54 2.44 1.85 2.88 2.15 2.08 1.67

Table 10. Empirical Root-MSE δ̂ ×100. FARIMA(ξ0, δ0), ρ = 0.9.

ξ0 = 0.5 ξ0 = 0.8

δ̂
D

T δ̂
P

T δ̂
D

T δ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 35.05 30.66 29.43 26.75 26.61 29.05 28.73 26.62 24.83 26.69 26.22 23.14 23.66 25.80 25.64 22.54
12 96 37.05 31.58 29.86 27.35 25.91 29.14 29.09 27.22 24.52 26.14 25.87 22.87 23.56 25.60 25.51 22.54

10 200 27.61 24.82 24.56 23.27 23.80 25.25 24.46 23.41 22.45 23.80 23.65 21.08 21.78 23.18 23.12 20.62
25 200 33.73 26.29 24.97 24.33 20.11 24.53 24.50 24.08 19.83 21.13 21.01 19.20 19.62 20.66 20.56 18.96

20 400 22.21 20.74 20.76 20.41 18.29 21.18 20.43 20.23 18.31 18.87 18.87 17.29 18.20 18.53 18.51 17.07
50 400 29.78 21.02 20.18 19.97 16.05 20.20 19.79 19.65 16.84 16.92 16.88 15.92 16.56 16.69 16.65 15.79
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Table 11. Empirical bias ξ̂ ×100. ARFI(ξ0, δ0), ρ = 0.9.

ξ0 = 0.5 ξ0 = 0.8

ξ̂
D

T ξ̂δPT ξ̂
D

T ξ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 -8.90 -2.76 -1.46 0.31 -7.30 -1.74 -1.12 0.61 -9.91 -8.37 -7.60 -5.04 -8.26 -5.91 -5.73 -3.96
12 96 -6.00 -1.27 -0.22 1.36 -7.04 -0.71 -0.08 1.53 -9.97 -8.56 -7.80 -5.49 -8.67 -6.36 -6.27 -4.57

10 200 -9.81 -0.89 0.47 1.16 -5.06 0.22 0.84 1.65 -7.67 -6.51 -5.97 -4.14 -6.56 -5.27 -5.21 -3.78
25 200 0.85 3.98 4.03 4.22 -2.74 3.48 3.82 4.10 -6.27 -6.02 -5.75 -4.42 -5.72 -4.87 -4.78 -3.92

20 400 -4.94 2.90 3.80 3.66 -1.07 3.64 3.62 3.69 -5.14 -5.05 -4.93 -3.85 -4.88 -4.50 -4.51 -3.76
50 400 2.85 4.43 4.44 4.40 0.14 4.28 4.27 4.25 -4.43 -4.20 -4.10 -3.51 -4.08 -3.77 -3.72 -3.29

Table 12. Empirical Root-MSE ξ̂ ×100. FARIMA(ξ0, δ0), ρ = 0.9.

ξ0 = 0.5 ξ0 = 0.8

ξ̂
D

T ξ̂
P

T ξ̂
D

T ξ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 31.22 29.39 29.58 26.96 28.27 29.33 29.31 26.82 24.49 24.22 23.32 19.49 22.28 21.26 20.97 18.33
12 96 31.96 29.52 29.61 27.33 27.95 29.21 29.31 27.21 24.43 24.14 23.20 19.60 22.60 21.33 21.08 18.48

10 200 26.25 25.00 25.23 24.10 24.07 25.34 25.21 24.17 21.25 20.86 20.17 17.12 19.71 19.42 19.28 16.80
25 200 29.66 24.83 24.70 24.25 21.24 24.2 24.42 24.01 18.42 18.76 18.45 16.14 17.73 17.53 17.40 15.68

20 400 21.23 20.77 21.11 20.89 18.38 21.13 20.84 20.70 16.51 16.52 16.35 14.37 16.10 15.92 15.88 14.28
50 400 27.08 20.44 20.27 20.15 16.81 20.09 19.95 19.85 15.10 14.87 14.72 13.46 14.51 14.36 14.27 13.25
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Table 13. Empirical Size (%) Corrected 5% Wald-test. FARIMA(ξ0, δ0), ρ = 0.9.

ξ0 = 0.5 ξ0 = 0.8

θ̂
D

T θ̂
P

T θ̂
D

T θ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 14.95 10.36 7.90 3.71 11.25 9.03 6.93 3.25 6.58 5.10 4.47 3.35 5.13 3.61 3.38 2.96
12 96 15.26 12.10 9.91 5.88 12.11 10.51 8.85 5.20 11.32 12.68 12.35 11.15 9.44 11.41 10.94 10.12

10 200 10.72 5.61 4.30 2.58 9.03 5.60 4.15 2.37 5.76 7.71 7.53 6.61 5.37 7.19 6.85 6.25
25 200 23.65 11.95 13.12 11.4 11.72 12.14 12.14 10.47 12.41 14.53 14.40 12.66 11.34 14.06 13.94 12.57

20 400 14.61 8.73 10.20 9.68 9.77 9.54 9.55 9.28 10.45 11.13 11.08 8.64 9.70 10.74 10.65 8.35
50 400 25.70 14.93 14.15 13.84 10.27 14.36 13.41 13.16 14.38 13.80 13.75 10.86 12.94 13.50 13.58 10.71

Table 14. Empirical Size (%) Uncorrected 5% Wald-test. FARIMA(ξ0, δ0), ρ = 0.9.

ξ0 = 0.5 ξ0 = 0.8

θ̂
D

T θ̂
P

T θ̂
D

T θ̂
P

T

δ0 : 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2 0.3 0.6 0.9 1.2
T NT

10 100 28.50 22.78 19.24 12.26 23.75 21.15 17.41 11.14 19.58 23.25 21.50 18.29 17.35 21.13 19.90 17.19
12 96 25.83 21.98 19.25 13.34 21.68 20.18 17.67 12.33 20.08 23.85 22.76 20.33 17.83 22.66 21.38 19.03

10 200 40.61 31.25 28.56 25.70 36.92 31.52 27.32 25.17 29.18 32.17 30.98 25.44 27.86 30.98 29.51 23.74
25 200 30.70 18.38 19.32 17.78 17.30 18.17 18.19 16.95 18.73 20.14 19.53 16.50 17.03 19.53 18.92 16.35

20 400 41.77 30.40 29.00 28.31 33.46 31.49 28.10 27.41 31.66 30.84 30.46 24.70 31.17 30.32 29.68 23.79
50 400 30.06 19.08 17.86 17.44 14.36 18.30 17.13 16.66 18.47 17.97 17.62 13.92 16.70 17.28 17.13 13.72
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