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Abstract

Will arbitrage capital flow into a market experiencing a liquidity shock, mitigating

the adverse effect of the shock on liquidity? Using a stochastic dynamic model of

equilibrium pricing with privately informed capital-constrained arbitrageurs, we

show that arbitrage capital may actually flow out of the illiquid market. When

some arbitrage capital flows out, the remaining capital in the market becomes

trapped because it becomes too illiquid for arbitrageurs to want to close out their

positions. This mechanism creates endogenous liquidity regimes under which tem-

porary shocks can trigger flight-to-liquidity resulting in “liquidity hysteresis” which

is a persistent shift in market liquidity.
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1 Introduction

Traditional finance theory derives rational prices for assets based on the arbitrage mech-

anism. Arbitrage (including trading on private information) pushes market prices to-

wards fundamental value.This pricing mechanism may break down when arbitrageurs

are capital-constrained for various reasons. An extensive literature studies the limits to

arbitrage and hence, how prices may diverge from fundamental value due to constrained

arbitrage capital (e.g., Allen and Gale (1994), Shleifer and Vishny (1997), Gromb and

Vayanos (2002), and Brunnermeier and Pedersen (2009)). In principle, any surplus cap-

ital should flow to exploit those arbitrage opportunities, but it sometimes happens too

slowly (e.g., Duffie (2010)). In other words, mispricing may still persist even with plenty

of capital around because capital does not flow to the right markets. But what stops

capital from flowing to correct mispricing? It seems paradoxical that capital does not

quickly flow to correct prices. So endogenizing the rate of flow of arbitrage capital is a

priority for research. This paper seeks to address this need.

First, we distinguish between informed and uninformed capital (much of the existing

literature studies models with full information). We assume that uninformed capital is

plentiful but informed capital is limited. Even so, isn’t there enough informed capital

in the economy to flow to where it is needed?

We find that the resolution of this paradox lies in the difference between stock and

flow of arbitrage capital; a stock of arbitrage capital does not necessarily translate into

a capital flow to arbitrage opportunities. For a capital-constrained trader to invest in a

new position, he or she must close out some existing positions. Unless the new position

is more profitable, the trader would stick to the existing positions until those asset prices

revert closer to fundamental value because of public information or because of trades by

subsequent privately informed traders. This means that arbitrage capital plays a dual

role; the wedge of mispricing not only decides the profitability of new investment but

also decides the speed at which engaged arbitrage capital is released (thus deciding the

availability of arbitrage capital).

The dual role of arbitrage capital has several important implications. First, markets

may be inefficient because arbitrage capital is “trapped” and efficiency may change over

time as trapped capital is released. Second, there can be “liquidity hysteresis” in the

form of a long-lasting shift in efficiency as a response to temporary changes in market

liquidity. Arbitrage capital indeed does not immediately flow to seemingly profitable

arbitrage opportunities, but only do that slowly with a delay. Third, flight-to-liquidity
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arises when a market suffers liquidity hysteresis. Arbitrage capital will flow to more

liquid investment opportunities as illiquidity reinforces itself.

To formalize these ideas, we study a dynamic model of arbitrage with two mar-

kets where arbitrageurs freely move between the two, but are capital-constrained. One

market is populated with short maturity assets (henceforth “liquidity market”), and

the other market is populated with long maturity assets (henceforth, “illiquid market”).

Arbitrageurs collect private information on assets, and then trade those assets for specu-

lative gains. In equilibrium, the two markets should offer the same expected speculative

profits – otherwise arbitrageurs will move across to the one with higher profits. This

means that the illiquid market should have a higher mispricing wedge than that of the

liquid market (to compensate for the opportunity cost of longer maturity of investment);

price efficiency of the illiquid market should be lower than that of the liquid market.

Lower price efficiency in the illiquid market in turn implies that more capital is trapped

because it becomes too illiquid for arbitrageurs to want to close out their positions.

The overall efficiency of the markets is determined by how much arbitrage capital is

active as opposed to trapped. In other words, efficiency depends on the pool of active

capital as a state variable. This matters because while the total stock of arbitrage capital

may be large, the stock of active capital may be much smaller. The efficiency of a market

may change over time as trapped capital is released from other markets. Furthermore,

there is a delayed response in efficiency to changes such as shocks to liquidity trading.

The active (as opposed to trapped) capital, being the state variable of the economy,

creates a feedback channel between liquidity and active capital. As more active arbitrage

capital flow to the illiquid market, those who are trapped in the market become active

again more quickly, and this in turn creates a larger capital flow to the illiquid market by

increasing the overall size of active capital in the economy. This virtuous cycle leads to a

high information steady state where arbitrage capital is redeployed at a faster rate (thus

giving rise to higher liquidity). On the other hand, a vicious cycle may arise, thereby

leading to a low information steady state in which arbitrage capital flows to the liquid

market leaving locked-in investment in the illiquid market being trapped for a long time.

The feedback channel between active capital and liquidity leads to multiple steady

state equilibria in our model; there is a threshold of active capital that separates domains

of attraction for liquidity. In addition to comparing properties of these equilibria and

impulse responses to unanticipated liquidity shocks, we illustrate our model’s implica-

tions for liquidity and capital flow dynamics by studying shock responses to a Markov
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stationary system where (either good or bad) liquidity shocks randomly hit the illiquid

market. With a small adverse shock to the illiquid market, market liquidity recovers on

its own thanks to a virtuous cycle of liquidity. As more trapped arbitrageurs become

active again, they quickly replenish market liquidity. On the other hand, a large adverse

shock can trigger a vicious cycle of illiquidity with flight-to-liquidity where arbitrage

capital flows to the liquid market; more and more arbitrageurs choose to invest in the

liquid market over time because they expect further deterioration of low future liquidity

in the illiquid market. This leads to an illiquidity regime where there is a persistent

overall lack of liquidity in the market. We call this “liquidity hysteresis” because a shock

to the system moves the equilibrium to a different path even after the shock is removed.

We illustrate how the market can move in and out of this illiquidity regime with

numerical simulations of the stochastic equilibrium of the model. A sequence of tempo-

rary bad shocks to the illiquid market can trigger a flight-to-liquidity resulting in the

illiquidity regime, from which the market can recover only after a sequence of shocks

in the opposite direction. Thus, the market features persistent (endogenous) liquidity

regimes even when (exogenous) liquidity trading is at its normal level most of the time.

These results provide a theoretical explanation of slow-moving capital regarding why

capital moves slowly, how fast (or slowly) it moves, and to which directions it moves.

They further provide interesting policy implications.

The paper is organized as follows. In Section 2, we discuss related literature. In

Section 3, we describe the basic model. In Section 4, we solve equilibrium of the model.

In Section 5, we discuss empirical and regulatory implications of our model. In Section 6,

we conclude.

2 Literature Review

There is a growing literature which explains fluctuations in market liquidity using on

the idea of slow-moving capital. Those papers extend the limits-to-arbitrage argument

suggesting that slow-moving capital could be the source of prolonged illiquidity even

when there is enough capital in the economy. For example, Mitchell, Pedersen, and

Pulvino (2007) show convertible bonds traded at prices well below the arbitrage price

(relative to the stock and a straight bond) during an extended period when the con-

vertible bond hedge funds (that normally arbitrage these assets) were short of capital,

and multi-strategy hedge funds (that opportunistically redeploy capital to wherever re-
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turns are high) were slow to enter the market. Duffie (2010) suggest that institutional

impediments such as search frictions, taxes, regulations, and market segmentation can

slow down capital flow. Our paper contributes to the discussion of slow-moving capital

by combining the argument of limits to arbitrage with a dynamic mechanism of capital

flow.

Traditional literature in limits to arbitrage shows that the level of arbitrage capital

is the state variable that determines market liquidity: cash-in-the-market-pricing (e.g.,

Allen and Gale (1994)), investors’ fund flow (e.g., Shleifer and Vishny (1997)), leverage

constraint (e.g., Gromb and Vayanos (2002)), margin constraint (e.g., Brunnermeier

and Pedersen (2009)). In these papers, the capital available for arbitrage in the asset

market is limited. This is due to frictions, but the frictions that limit the availability of

capital in the market are often not explicitly modeled. One of our objectives is to model

those frictions. But, in real life, capital is often engaged in other investment activities.

So, even though they may not be constrained ex-ante, they are effectively (or ex-post)

constrained due to existing investment. Our paper differs from the existing models in

that we endogenize such engagement in a dynamic setting. So, we extend the existing

argument on limits to arbitrage by showing that the pool of active arbitrage capital

(rather than the pool of arbitrage capital itself) is the key state variable determining

price efficiency and liquidity.

Our paper is closely related to papers studying the dynamics of arbitrage or interme-

diary capital movement across multiple markets (or multiple arbitrage opportunities).

In most of models in this line of literature, (marginal) expected returns of new in-

vestment should be equalized across markets in equilibrium. Consequently, mispricing

wedge for long duration assets becomes higher than that of short duration assets as

discussed in Shleifer and Vishny (1990). Furthermore, a shock in one market tends to

create a spillover effect across other markets where shocks are transferred to other mar-

kets through the channel of wealth effects (e.g., Kyle and Xiong (2001)) or collateral

constraints (e.g., Gromb and Vayanos (2017) and Gromb and Vayanos (Forthcoming)).

The literature also studies the adjustment process of capital after the arrival of a shock.

Duffie, Garleanu, and Pedersen (2005) and Duffie, Garleanu, and Pedersen (2007) find a

gradual process of recovery after a shock to investors’ preference in search-based models.

In Duffie and Strulovici (2012) where financial intermediaries trade off the cost against

the benefit of intermediation, the speed of capital flow is governed by the imbalance of

capital as well as the level of intermediation competition across markets. In Gromb and
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Vayanos (Forthcoming), there is a phase with an immediate increase in the spread where

arbitrageurs decrease their positions (thus, causing contagion effect), and then it is fol-

lowed by a recovery phase. Our paper has several important differences from this line

of literature. In this line of literature, unlike our paper, there is full information. Prices

diverge from fundamentals because of exogenous demand shocks. Price is determined

by supply and demand (unlike our model where price is equal to expected value condi-

tional on public information), but the amount of arbitrage capital in the economy is too

small to make prices equal fundamentals. By contrast in our paper arbitrage capital is

the capital belonging to informed traders; if their information becomes public, the price

incorporates it. Because informed capital is often already engaged in investment, the

level of active informed capital becomes the state variable which governs market liquid-

ity.1 We find a temporary shock can leave a long-lasting (or even permanent) impact to

market liquidity if active informed capital is impaired to the point under which it can-

not recover on its own. We contribute to this line of literature by providing alternative

explanations of flight-to-liquidity and slow-moving capital in light of liquidity hysteresis.

3 Setup

We consider an infinite horizon discrete time economy with a continuum of long-lived

agents. All agents have risk neutral preferences with a discount factor of β. There exists

a risk-free asset in the economy whose return is equal to rf = 1/β − 1.

There is a continuum of financial securities which are claims to a single random

liquidation value. There are two classes of securities that differ in their maturity: (i)

“liquid assets” which are short-lived, and (ii) “illiquid assets” which are long-lived. At

this point in the paper, calling the assets “liquid” and “illiquid” is just convenient

terminology, since liquidity is an equilibrium property of an asset and we have not yet

characterized the equilibrium. We will show later that this terminology is justified and

the “liquid” assets are indeed more liquid.

Illiquid assets are traded in market I, and liquid assets are traded in market L. It

is important to note that they are not segmented markets because capital can freely

1Our model also differs from most of noisy rational expectations equilibrium models in that we study
capital movement across multiple markets in a dynamic setup. For example, Dow and Gorton (1994)
study a multiperiod model of limits to arbitrage where the cost of carry combined with arbitrageurs’
short horizon break down the chain of arbitrage in a single asset market. Dow and Han (Forthcoming)
study a static noisy rational expectations model with endogenous adverse selection in asset supply where
the presence of informed capital facilitates movement of uninformed capital.
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move between two markets without any friction. An asset in market L has a one period

maturity; it pays its liquidation value in the subsequent period after issuance.2 On the

other hand, an asset in market I has a random maturity; it pays its liquidation value

in every period with probability q > 0. At maturity, any asset i in market h ∈ {L, I}
pays V i which is either high (V i = V h

H) or low (V i = V h
L ) with equal probabilities.3 We

further assume that the present value of assets in both markets are identical.4 Asset

payoffs are independent across assets and time.

The assets are called “unrevealed” if their prices do not reflect true fundamental value

(because payoffs are unknown), and “fully-revealed” if prices reflect true fundamental

value (because payoffs are known). Payoffs can become known if the liquidation value

is fully revealed by the trading process and asset prices. For simplicity, we assume that

the mass of unrevealed assets is fixed to one unit in each market at any point of time.

That is, new assets are issued to replace those which either realized payoffs, or become

fully-revealed.5

There is a unit mass of capital-constrained “arbitrageurs” who trade to generate

speculative profits. Each arbitrageur can produce private information about the payoff

of one asset in each period. All arbitrageurs who investigate an asset can perfectly

observe the value of its liquidation value. For mathematical tractability, we assume a

simple form of capital constraint under which each arbitrageur can hold at most one

unit of unrevealed assets at any point of time. That is, they can acquire new unrevealed

positions upon liquidating their existing unrevealed positions.

There is a continuum of competitive risk-neutral market makers who set prices to

clear the market as in the Kyle (1985) model. There are also noise traders who trade

for exogenous reasons such as liquidity needs. In each period, arbitrageurs and noise

2For simplicity, we assume that one of the class of assets pays every period (liquid assets). It would
be possible, but considerably more complex, to analyze the case with a payoff probability less than one
for all assets.

3The assumption that payoffs are high or low with equal probabilities simplifies the analysis by
making profits from long and short positions symmetric.

4This is simply for mathematical convenience. Under this assumption, we have

βq

1− β(1− q)
(V I

H − V I
L ) = β(V L

H − V L
L ),

where the left- and right- hand side is the present value of difference in high and low payoff in market
I and L, respectively.

5One can consider that there exists a unit mass of firms which issue new securities to invest in new
projects whenever their existing projects pay liquidation value or become fully-revealed. If we assume,
instead, that unrevealed assets that become fully-revealed are not immediately replaced, the model
would require an additional state variable and would be considerably more complex to analyze.
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traders submit market orders to the market makers. In period t, for each asset i in

market h ∈ {L, I}, noise traders submit an aggregate order flow of zit which follows

an independent uniform distribution on [−z̄ht , z̄ht ]. The magnitude of z̄ht captures the

intensity of noise trading in market h in period t. We assume that z̄Lt is equal to a

constant z̄L for any period t whereas z̄It follows a Markov process with N states and

corresponding values Z1 < Z2 < ... < ZN . The transition matrix between states is given

by

Ω =


ω11 . . . ω1N

...
. . .

...

ωN1 . . . ωNN


We further assume that there are enough noise trading activities in the market to prevent

the price for every asset from being fully-revealing; the support of aggregate noise trading

is strictly greater than that of arbitrageurs’ aggregate order flow: z̄It + z̄Lt > 1 for all

t. Finally, we assume that the process of noise trading intensity and the realizations of

asset payoffs are mutually independent.

The timing of events in each period is as follows. At the beginning of the period,

asset payoffs realize and they are distributed among claim holders. Next, new assets are

issued. After these events, arbitrageurs collect private information on unrevealed assets,

then submit orders to market makers. At the end of the period, market makers post

asset prices and trades are finalized.

4 Equilibrium

4.1 Laws of Motion

In each period t, each arbitrageur is in one of two situations: “active” or “locked-in”.

An active arbitrageur does not have any existing position in unrevealed assets, thus,

has available capital for new investment whereas a locked-in arbitrageur has already

an existing position in unrevealed assets, thus, does not have available capital for new

investment unless the existing position is liquidated.6 We denote ξt to be the the mass

of active arbitrageurs, and πt to be the mass of locked-in arbitrageurs where ξt +πt = 1.

Each active arbitrageur chooses to hold a new position in either market I or L. δt

denotes the portion of those choosing to trade assets in market I in period t (thus, 1−δt
6Notice that those who hold assets with fully-revealing prices are active.
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denotes the portion of those choosing to trade assets in market L).

We focus on a class of market-wise symmetric equilibria in which price efficiency is

symmetric across all assets in the same market. In other words, the mass of informed

trading is equally distributed across all assets in the same market. In that class of

equilibria, the mass of informed traders who acquire information on each asset should

be given by the total mass of investors who acquire information on market h assets

divided by the total mass of market h assets. Then, we can show the following result

for price efficiency in each market:

Lemma 1 The probability of information revelation in market I is given by

λIt =
δtξt
z̄It

. (1)

Likewise, the probability of information revelation in market L is given by

λLt =
(1− δt)ξt

z̄Lt
. (2)

Proof. See Appendix.

Then, the laws of motion of the mass of each group of arbitrageurs are given by

ξt+1 = (1− δt)ξt + (δtξt + πt)(q + (1− q)λIt ); (3)

πt+1 = (δtξt + πt)(1− q)(1− λIt ). (4)

The first equation describes the evolution of active capital ξt. The right hand side

of Eq. (3) is the sum of two terms. The first term is the mass of arbitrageurs invested

in market L at time t; this mass becomes entirely active in t + 1 as the L assets are

short-lived. The second term is the mass of arbitrageurs invested in market I at time

t (i.e., δtξt new arbitrageurs from the current period and πt arbitrageurs locked-in from

the previous period) that become available for new investment in t + 1. This happens

either if the asset pays off or if the market price fully reveals the asset value (in which

case the position becomes risk-free, thus relaxing the portfolio constraint). Overall, a

fraction q+ (1− q)λIt of the arbitrageurs invested in the I market at time t becomes free

for new investment in t+ 1. Finally, we remark that equation Eq. (4) for the evolution

of locked-in capital π is redundant given the fact that ξt + πt = 1 for all t.
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4.2 Arbitrageurs’ Investment Decisions

We denote the vector of state variables θt = (ξt, z̄
I
t ), and Et[y] = E[y|θt] to be the

expectation of any random variable y conditional on θt. Given state θt, we denote

JI(θt), JL(θt) to be the value function of an arbitrageur who invests in a new position in

market I and market L, respectively. Also, we denote Jl(θt) to be the value function of

a locked-in arbitrageur in an asset in market I given θt. Because any active arbitrageur

can choose between the two markets, the value function of an active arbitrageur given

θt equals

Jf (θt) = max (JI(θt), JL(θt)) . (5)

Due to Lemma 1, asset prices are either fully-revealing or non-revealing. We denote

P h
L and P h

H to be the fully-revealing price of an asset in market h whose value is revealed

low and high, respectively. We also denote P h
0 to be the non-revealing price of an asset

in market h. Using the symmetry of trading profits between long and short positions,

we can obtain the following value functions given θt:

JI(θt) = −(λItP
I
H + (1− λIt )P I

0 ) + β
[
qV I

H + (1− q)λItP I
H + (1− (1− λIt )(1− q))Et[Jf (θt+1)]

+ (1− λIt )(1− q)Et[Jl(θt+1)]
]
,

JL(θt) = −(λLt P
L
H + (1− λLt )PL

0 ) + β
[
V L
H + Et[Jf (θt+1)]

]
.

Likewise, the value function of a locked-in arbitrageur given θt equals

Jl(θt) = max (JE(θt), JS(θt)) ,

where JE(θt) is the value function from liquidating the position right away and JS(θt) is

the value function from holding on the position one more period:

JE(θt) = λItP
I
H + (1− λIt )P I

0 + βEt[Jf (θt+1)],

JS(θt) = β
[
qV I

H + (1− q)λItP I
H + (q + (1− q)λIt )Et[Jf (θt+1)] + (1− λIt )(1− q)Et[Jl(θt+1)]

]
.

4.3 Equilibrium Liquidity Dynamics

Equilibrium is defined in a standard manner:
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Definition 1 A stationary equilibrium is a collection of processes for asset prices {P i
t },

the mass of active arbitrageurs {ξt}, and arbitrageurs’ portfolio choice {xjt} such that:

1. Each active arbitrageur j optimally chooses to acquire private information and hold

a position xjt ∈ [−1, 1] in a unrevealed asset to maximizes the present value of his

trading profits.

2. Asset prices equal expected discounted liquidation values conditional on order flow

information:

P i,
t = Et

[
βτiV i

∣∣X i
t

]
for all asset i (6)

where τi is the the maturity of asset i and X i
t =

∫
xjtdj + zit is the aggregate order

flow for asset i.

3. The law of motion of {ξt} satisfies Eq. (3).

An equilibrium is said to be interior in period t if JI(θt) = JL(θt), so that active

arbitrageurs are indifferent between investing in the L and I markets. In case of an

interior equilibrium, we can show the following result:

Lemma 2 In an interior equilibrium at t, locked-in arbitrageurs do not have incentives

to liquidate early, Jl(θt) = JS(θt).

Proof. See Appendix.

Intuitively, by liquidating early, an arbitrageur incurs the risk of losing the capital

gain (or liquidating dividend) he could obtain for sure by holding on to the position.

Hence, an arbitrageur whose capital is engaged finds it optimal not to close out the

position (and therefore be inactive) until either the price fully reveals the asset value or

the asset pays off.

An interior equilibrium has the following implications for cross sectional and dynamic

properties of price informativeness and liquidity.

Lemma 3 Whenever the equilibrium is interior in t and t+ 1, equilibrium price infor-

mativeness satisfies

λLt − λIt = β (1− q)
(
1− λIt

) (
1− Et[λIt+1]

)
; (7)
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Proof. See Appendix.

The left-hand side of Eq. (7) is the difference in probabilities of trading at fully-

revealing price in market L over market I at time t. Equivalently, this difference measures

how more likely an arbitrageur is to make a speculative profit when trading in market

I compared to trading in market L at time t.

The right-hand side of Eq. (7) is the current probability (1− q)(1−λIt ) of remaining

locked in a trade in market I, weighted by the discount factor β, and multiplied by

expected future illiquidity in market I, captured by the term 1− Et[λIt+1].

The indifference condition Eq. (7) requires λLt > λIt . This is intuitive: by trading

in market I, a speculator gives up the certainty of being able to re-trade in the next

period; for arbitrageurs to be indifferent between the two markets the I market must

compensate this opportunity cost with a higher probability of trading at non-revealing

price in the current period. Therefore, a shock to expected future illiquidity in market

I requires active arbitrageurs to flow out of market L in the current period for λLt − λIt
to increase so (see Eqs. (1)-(2)).

If equilibrium is interior for all t, recursively substituting Eq. (7) into itself yields

λLt − λIt = Et

[
∞∑
τ=1

βτ (1− q)τ
τ−1∏
j=0

(
1− λIt+j

) (
1− λLt+τ

)]
. (8)

Notice that (1− q)τ
(
1− λIt

)
...
(
1− λIt+τ−1

)
is the probability that by investing in

market I in the current period, an arbitrageur’s capital is not available for a new trade

in period t+ τ . Because
(
1− λLt+τ

)
is the probability of realizing a speculative profit in

t + τ in market L, the right hand side of Eq. (8) measures the expected loss in future

speculative profits arising from capital being trapped in future periods. This is the

opportunity cost of trading in market I.

4.4 Steady State Equilibrium

In this subsection, we derive steady state equilibrium under the assumption that noise

trading intensity is fixed at a constant level, i.e., z̄It = z̄I for all t for some constant z̄I .

We denote ξ and π to be the steady-state-level mass of active and locked-in arbitrageurs,

respectively, and also denote λL and λI to be the steady-state-level price informativeness

in market L and I, respectively.
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In steady state, the indifference condition in Eq. (7) can be expressed in terms of λL

and λI as follows:

λL − λI = β(1− q)(1− λI)2. (9)

Eq. (9) reveals that price informativeness (or efficiency) plays a dual role. On the

one hand, price informativeness determines the profitability of investment opportunities:

higher λI (and also λL) decreases the probability of acquiring a new position at non-

revealing prices. We term this the “first lambda” effect of price efficiency on speculative

profits. On the other hand, price informativeness determines the maturity of investment

opportunities in longed lived assets: higher λI increases the likelihood of closing out a

position with profits earlier. We term this the “second lambda” effect of price efficiency

on speculative profits.

Substituting Eqs. (1) and (2) into Eq. (9) yields the following steady state relationship

between δ and ξ implied by arbitrageurs’ indifference condition:

z̄L − (1− δ)ξ
z̄L

=

(
z̄I − δξ
z̄I

)[
1− β(1− q)

(
z̄I − δξ
z̄I

)]
. (IC)

For a fixed δ, a decrease in active arbitrage capital ξ decreases price efficiency in

both markets. This has a (positive) first lambda effect on speculative profits in both

markets but a (negative) second lambda effect in market I, which becomes relatively less

attractive. Hence, δ must decrease to restore arbitrageurs’ indifference condition across

markets.7 As arbitrage capital becomes scarce, more capital leaves the illiquid market

to join the liquid market, thereby making the illiquid market even more illiquid.

We summarize these findings in the following lemma:

Lemma 4 When z̄I

z̄L
+ 1 ≥ 2β(1− q), the IC curve implicitly defines δ as an increasing

function of ξ.

Proof. See Appendix.

An interior steady state equilibrium is found at the intersection of the (IC) curve

and the following capital movement (CM) curve obtained from the law of motion for

7Lemma 4 provides the sufficient condition for the net benefit of trading in market I to decrease as
δ increases, for a fixed value of ξ.
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active arbitrage capital in Eq. (3) together with Eq. (1) for λI :

ξ = (1− δ)ξ + (δξ + 1− ξ)
(
q + (1− q)δξ

z̄I

)
. (CM)

Notice that an increase in the fraction of active arbitrageurs that invest in market

I has two opposing effects. On the one hand, as δ increases, more arbitrageurs remain

trapped in market I. This tends to reduce steady state value for active capital ξ. On

the other hand, an increase in δ improves price efficiency in market I, which increases

the rate at which arbitrage capital is released form this market. This feedback effect

tends to increase ξ. Which effect dominates depends on the model parameters. The

first effect dominates in the right hand panel of Figure 1 for δ is small, while the second

effect dominates for δ large. Intuitively, increasing the rate at which trapped capital is

released has a bigger effect when the mass of arbitrageurs that are invested in market I

is larger.

We can show existence of the steady state equilibrium:

Proposition 1 A steady state equilibrium exists, and there is either one or two stable

(saddle point) equilibria. Equilibrium is always interior (δ ∈ (0, 1)) if β (1− q) z̄L < 1,

whereas δ = 0 is also an equilibrium if β (1− q) z̄L ≥ 1.

Proof. See Appendix.

Figure 1 illustrates the steady state equilibrium values for ξ and δ determined by

the intersection of the IC and CM curves. Equilibrium is unique in panel (a), whereas

there are three equilibria in panel (b), of which two are stable and one (for intermediate

values of ξ and δ) is unstable. Figure 2 illustrates the region of noise trading intensity

in the illiquid market where there is uniqueness or multiplicity.

4.5 Shock Response in Steady State Equilibrium

Now, we turn to analysis of the response of the system to an unanticipated temporary

shock to noise trading intensity in market I, whereby z̄I deviates from its normal level

to a higher value only in one period.

To shed light on the response to this temporary liquidity shock, we rearrange the
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Figure 1: Steady State Equilibrium. Parameter values for the unique steady state
equilibrium in panel (a): q = .05, z̄I = 1.5, z̄L = .3, β = .95. Parameter values for the
multiple steady state equilibria in panel (b): q = .01, z̄I = .65, z̄L = .475, β = .95
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Figure 2: Steady State Equilibria With Respect to Various Values of z̄I. Pa-
rameter values: q = .01, z̄L = .475, β = .95

indifference condition in Eq. (7) as follows:

1− λL0 =
(
1− λI0

) (
1− β (1− q)

(
1− E0[λI1]

))
(10)

Consider the effect of the shock to both sides of Eq. (10) in case δ0 does not react to

the shock. By Eq. (2), the left hand side of Eq. (10) is unaffected, while the right hand
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side is affected via two channels. First, λI0 would drop (see Eq. (1)), making investment

in market L more attractive (first lambda effect). But, lower λI0 implies that ξ1 would

also drop because current locked-in capital is released at a lower rate (see Eq. (3)). This

decreases λI1 and implies that market I is more illiquid in t = 1 (second lambda effect).

Arbitrageurs that consider investing in market I at t = 0 must trade off the larger

probability of trading at a non-revealing price in the current period with the longer

expected duration of the investment and therefore the larger opportunity cost of being

inactive in future periods. When this second effect is sufficiently strong, a larger fraction

of active arbitrageurs flows into market L and away from market I.
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Figure 3: Transitional Dynamics for a Temporary Shock under a Unique
Steady State Equilibrium. Parameter values: q = .05, z̄I = 1.5, z̄L = .3, β = .95, a
shock of z̄I = 1.7 (solid line) and z̄I = 2.2 (dotted line) is given at t = 0

Figures 3 shows the impulse response to shocks to z̄I when the parameters of the
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model are as in panel (a) of Figure 1. Arbitrageurs react to the shock by flowing out of

market I as they anticipate lower liquidity and larger opportunity cost of being locked

in this market going forward. The resulting reduction in δt continues up to the point

where the large probability of realizing a speculative gain in market I compensates for

the larger opportunity cost of remaining locked in. The initial shock at t = 0 leads

to a drop in price informativeness in market I and therefore a decrease in ξt from its

steady state value starting from t = 1. Meanwhile, price informativeness increases in

market L as arbitrageurs flow into this market, exacerbating the differential in price

informativeness across markets. Then the shock is absorbed and the economy converges

to its (unique) steady state. A larger value for the initial shock (dashed line) increases

the magnitude of the response but not its qualitative features.

Figure 4 shows the impulse response to shocks to z̄I when the parameters of the

model are as in panel (b) of Figure 1 and the economy is in the high liquidity steady

state (ξ = 0.73, δ = 0.52). The response to a small shock is qualitatively the same as in

Figure 3.8 By contrast, the response to a larger shock has different dynamics. Instead of

reverting back to the initial steady state value, the outflow of arbitrageurs persists as the

economy transitions to the stable interior equilibrium shown in Figure 1 that features

low values for δ and ξ (ξ = 0.46, δ = 0.11). This temporary shock has permanent effects

on price informativeness in both markets.

Figure 5 illustrates the dynamics of the mass of active arbitrageurs after an initial

shock that pushes ξ away from its steady state value. ξ converges back to its initial

steady state value after small shocks. However, there exists a threshold level of ξ such

that the economy transitions to a different steady state equilibrium when ξ crosses this

threshold. This is the value of ξ corresponding to the the unstable equilibrium in panel

(b) of Figure 1 (the middle intersection between the IC and CM curves).

4.6 Stochastic Equilibrium

Here we consider shock response in the stochastic model. In contrast to the analysis in

the previous subsection, arbitrageurs anticipate the possibility that a change in noise

trading in market I might occur on the equilibrium path. Figures 6 and 7 are obtained

from the numerical solution of the stochastic model assuming that z̄It is a Markov process

as outlined in Section 3.

8The only qualitative difference is that λI decreases after the shock; this is because the reduction in
active capital ξ more than offsets the flow of active arbitrageurs in market L.
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Figure 4: Transitional Dynamics for a Temporary Shock under a Multiple
Steady State Equilibrium. Parameter values: q = .01, z̄I = .65, z̄L = .475, β = .95,
a shock of z̄I = 1.1 (solid line) and z̄I = 1.4 (dotted line) is given at t = 0

Figure 6 reproduces the qualitative features of Figure 4 while arbitrageurs anticipate

shocks to occur on the equilibrium path. Here we assume that z̄It can take two states: a

normal and persistent state, and a higher and transitory “shock” state. Figure 6 shows

responses to different shock sizes when the shock lasts only one period. Liquidity has

convergent dynamics after a small shock, whereas a larger shock has persistent effects:

the shock triggers a flight-to-liquidity and the system transitions to a different regime.

In this regime, liquidity in market I remains low and a large fraction of capital remains

locked in, reducing active capital on a permanent basis.

In equilibrium, the market can move in and out the illiquidity regime. We illustrate

this in Figure 7, which shows a simulation of the stochastic model when there is a
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Figure 5: Evolutionary Paths of the Mass of Free Arbitrageurs under Various
Initial Values of ξ. parameter values in the initial equilibrium: q = .01, z̄I = .65, z̄L =
.475, β = .95

“normal” and persistent level for noise trading intensity in market I but with small

probability noise trading intensity can jump up or down from its normal level, and

these shocks are not persistent. The occurrence of temporary shocks does not have

persistent effects in the first portion of the simulation. It is only when bad shocks occur

for several consecutive periods (around t = 220 in the figure) that there is a sustained

flight-to-liquidity and the economy enters a different regime. In the figure, the initial

high liquidity regime for market I (white area) is followed by a low liquidity regime for

market I (shaded area) after the occurrence of a sequence of bad shocks in this market.

The economy is therefore trapped in this regime for many periods even though noise

trading is in its normal state most of the time during these periods. It takes a sequence

of good shocks in market I for the economy to exit this illiquidity regime revert back to

the high liquidity regime for market I. Along the transition, capital flows to market I

and improves liquidity in this market; as a result locked in capital is released at a faster

rate, further increasing liquidity and price informativeness.
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Figure 6: Transitional Dynamics for a Temporary (Stochastic) Shock un-
der a Multiple Steady State Equilibrium. Parameter values: q = .01, z̄I =
.65 (normal level), z̄L = .475, β = .95, a shock of z̄I = 1.1 (solid line) and z̄I = 1.4
(dotted line) is given at t = 0, the transition probability is given by ω11 = .95, ω12 =
.05, ω21 = .95, ω22 = .05 where state 1 is the state with a normal level of z̄I , and state 2
is the state with a high level of z̄I

5 Discussion

In this section, we discuss empirical implications of our model.

5.1 First Lambda vs. Second Lambda Effects

In our model, price efficiency (lambda) plays a dual role in long-lived assets. It deter-

mines mispricing wedge which determines the profitability of investment opportunities
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Figure 7: Simulation. Parameter values: q = .01, z̄I = .65 (normal level), z̄L =
.475, β = .95, there are three possible values of z̄I ∈ {.55, .65, .9}. Transition proba-
bilities are given by ω11 = .03, ω12 = .97, ω12 = 0, ω21 = .04, ω22 = .92, ω23 = .04, ω31 =
0, ω32 = .92, ω33 = .08 where states 1,2 and 3 correspond to low, normal and high level
of z̄I , respectively.

but also determines the maturity of new investment which determines its liquidity. Upon

the arrival of a liquidity shock, two opposing effects arise together. We call the effect of

increased profitability the first lambda effect, and the effect of decreased liquidity the

second lambda effect. The first lambda effect is closer to the traditional interpretation

of Kyle’s lambda. In that context, lambda measures price impact of trade and is often

interpreted as a measure of illiquidity from the point of view of uninformed traders. On

the other hand, the second lambda determines the speed at which arbitrageurs can close

out their positions at a profit because subsequent trades make prices efficient. Hence,
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second lambda is a measure of liquidity from the point of view of informed arbitrageurs

in our model.

Our model implies that the mass of active capital is the key state variable that

determines the market liquidity. However, active capital is difficult to observe. On the

other hand, price efficiency is often measured using various empirical measures. Our

theory predicts that those empirical measures of price efficiency can be used as a proxy

for the actual state variable–the mass of active capital. In the following subsections, we

discuss how this idea can be applied to some empirical implications.

5.2 Liquidity Crises

There are several well-known episodes of liquidity crisis such as the 1987 stock market

crash, the 1998 Long-Term Capital Management crisis, and the subprime mortgage crisis

of 2007-2009. These episodes are often characterized by a delayed recovery of liquidity in

the aftermath (e.g., Mitchell, Pedersen, and Pulvino (2007); Coval and Stafford (2007)).

Existing literature often explains those liquidity crises as a result of shock amplifications

which impair capital itself.9 In our model, a liquidity crisis can happen even in the

absence of any reduction in arbitrage capital itself – what matters is a reduction in

active arbitrage capital.

Our simulations illustrate that all it takes to create a full-blown liquidity crisis is

merely a transient shock which causes engaged capital to get redeployed more slowly.

While market liquidity recovers rather quickly after a small shock, a sizable shock (or a

sequence of small shocks) can trigger a change in regime and have long-lasting impact.

At the core of this argument lies the multiplicity of steady state equilibria; a sufficiently

large shock can disturb the system enough to put the state variable (active capital) in

another path.10 This mechanism allows us to give a distinct prediction that equilibrium

may be shifted toward low liquidity as a result of shocks. In the case of stochastic shocks,

it takes a long time to have a series of enough good shocks to push the state variable in

the upward trajectory. This prediction matches empirical observations of long periods

of illiquidity in the market.

9For example, capital becomes increasingly less available through the channel of tightened collateral
(e.g., Gromb and Vayanos (2002)) or margin constraints (e.g., Brunnermeier and Pedersen (2009)).

10Even in cases where the system has only one regime (or one steady state), a shock that initially
reduces liquidity may lead to further drops in liquidity and long delays before liquidity is re-established.
But, it can take arbitrarily long time to recover in case of multiple regimes.
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5.3 Flight-to-Liquidity

Using our model, we show that active arbitrageurs may optimally choose to invest in

the liquid market upon the arrival of liquidity shocks. There is indeed ample evidence

about flight-to-liquidity in various markets: investors tend to prefer liquid assets during

bad times. For example, Beber, Brandt, and Kavajecz (2007) find that capital flow in

case of the Euro-area government bonds is mostly determined by liquidity rather than

credit quality. Acharya, Amihud, and Bharath (2013) also document that there are

two liquidity regimes for corporate bonds. In one regime, liquidity shocks have mostly

insignificant effects on bond prices whereas in another regime, liquidity shocks produce

significant effects. In particular, they find empirical evidence of flight-to-liquidity: prices

of investment-grade bonds rise while prices of speculative-grade bonds fall. Ben-Rephael

(2017) also find that mutual funds reduce their holdings of illiquid stocks during bad

times.

In our model, capital tends to flow out of a market if this market’s future liquidity

is expected to deteriorate. Because lower future liquidity means longer maturity of new

investment, mispricing wedge should become larger to compensate arbitrageurs with

lower price efficiency in return for longer maturity. Furthermore, we also show the

conditions under which capital flows in or out of a market hit by a liquidity shock.

One of the key observations in our model is well summarized by Eq. (8). It states

that the cross-sectional difference in liquidity across markets predict future illiquidity.

That is, when there is a larger cross-sectional difference in liquidity, we expect a period

of low liquidity in the subsequent periods. This prediction is consistent with flight-to-

liquidity episodes in which there is a divergence of liquidity across markets, and this

is followed by a period of overall low liquidity. There is some empirical support on

this hypothesis. Cao, Chen, Liang, and Lo (2013) find that hedge fund managers can

time market liquidity based on their forecasts of future market liquidity conditions.

Furthermore, Cao, Liang, Lo, and Petrasek (2017) find that hedge funds contribute to

price efficiency by investing in relatively more mispriced stocks, but those stocks tend

to experience large decline in price efficiency during liquidity crises.

5.4 Reaching-for-Yield

As an opposite situation to flight-to-liquidity, traders sometimes seek more risk by in-

vesting in illiquid assets. That is, traders tend to reach for yield during good times
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ample with liquidity (e.g., Becker and Ivashina (2015)). Our model can also contribute

to the discussion by suggesting an alternative mechanism of reaching for yield. Our

theory suggests that as the market starts having more capital, there would a reinforce-

ment effect in which more locked-in capital is further released. This will raise price

efficiency and shorten maturities of investment in illiquid assets. Consequently, capi-

tal starts flowing into more illiquid asset classes as active capital expands. This can

reduce mispricing wedge greatly by transferring to high liquidity equilibrium. While

lower mispricing wedge is good for price efficiency, it puts pressure on financial institu-

tions to reach for higher yields. We interpret this situation as reaching-for-yield because

arbitrageurs invest more in riskier assets in that situation.

6 Conclusion

We study a dynamic stationary model of informed trading with two markets. The

model features endogenous liquidity regimes where temporary shocks to noise trading

can trigger a shift of the regime. We show that upon the arrival of a shock arbitrage

capital may actually flow out of the illiquid market and only come back later. With

some arbitrage capital flowing out, the remaining capital in the market becomes trapped

because it is too illiquid for arbitrageurs to want to close out their positions. This in

turn deepens illiquidity in a self-reinforcing manner, thereby creating liquidity hysteresis

where illiquidity persists even when the initial cause is removed.

In our model, arbitrage capital plays a dual role; the wedge of mispricing not only

decide the profitability of new investment but also decides the speed at which engaged

arbitrage capital is released (thus deciding the availability of arbitrage capital). The dual

role of arbitrage capital implies that efficiency depends on the pool of active capital as

a state variable. Furthermore, it creates a feedback channel between active capital and

liquidity which leads to multiple steady state equilibria where there is a threshold of ac-

tive capital that separates domains of attraction for liquidity. Therefore, a large adverse

shock can trigger a vicious cycle of illiquidity with flight-to-liquidity where arbitrage

capital flows to the market with short-lived assets.

In case of a stochastic model with anticipated shocks, the market can move in and

out of endogenous regimes. We show that it may take quite a long time to come back

to a normal liquidity regime from an illiquidity regime because it requires a sequence

of good shocks strong enough to push the mass of active capital toward the path of a
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normal liquidity regime. Our results shed light on why capital moves slowly, how fast (or

slowly) it moves, and to which directions it moves. The results further provide interesting

implications on liquidity crises, flight-to-liquidity, and cross-section of liquidity.
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Appendix

Proof of Lemma 1: Let X i
a,t be the aggregate order flow of arbitrageurs for asset i.

Suppose that there are µit mass of arbitrageurs investing in asset i. Because arbitrageurs

are risk-neutral and informed, their aggregate order flow is given by X i
a,t = µit if V i =

VH , and X i
a,t = −µit otherwise. The market makers observe the aggregate order flow

X i
t = X i

a,t + zt. Bayes’ theorem implies that the posterior belief of the market makers is

given by

p̂it(X
i
t) =

pf iX(X i
t |V H)

pf iX(X i
t |V H) + (1− p)f iX(X i

t |V L)
, (11)

where p = 1
2

is the prior belief and f iX(·|V H) and f iX(·|V L) are the distribution of X i
t

given V H and V L, respectively.

Recall that zit follows a uniform distribution on the interval [−z̄i, z̄i] in each period

t where z̄i = z̄I if asset i is an illiquid asset, and z̄i = z̄L if asset i is a liquid asset.

Therefore, X i
t follows a uniform distribution on the interval [µit− z̄i, µit + z̄i] if V i = VH ,

and u[−µit − z̄i,−µit + z̄i] otherwise. Therefore, Eq. (11) implies

p̂it(X
i
t) ∈


0 if X i

t < −z̄i

p if −z̄i ≤ X i
t ≤ z̄i

1 if X i
t > z̄i

Therefore, the probability of revealing the true value of V i is given by

λit =
∑

V i∈{V H ,V L}

1

2
[Pr(X i

t < −z̄i|V i) + Pr(X i
t > −z̄i|V i)] =

µit
2z̄i

+
µit
2z̄i

=
µit
z̄i
.

In a symmetric equilibrium, the future lambdas are equalized across assets in each

market. In that case, arbitrageurs will want to invest in an asset with the lowest λit, thus,

λit should be equalized across assets in each market in equilibrium. That is, µit = δtξt for

market I, and µit = (1− δt)ξt for market L.

Proof of Lemma 2: First, we show that, in an interior equilibrium, an arbitrageur

who holds an existing position do not have incentives to liquidate it until the capital

gain realizes. We can write JS(θt) as

JS(θt) = JI(θt) + λItP
I
H + (1− λIt )P I

0 .
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In an interior equilibrium at t, JI(θt) = JL(θt) and therefore

JS(θt) = JL(θt) + λItP
I
H + (1− λIt )P I

0 = βV L
H + Et[Jf (θt+1)].

Hence,

JE(θt) = −[βV L
H − (λLt PH + (1− λLt )P0)] + JS(θt) < JS(θt).

Proof of Lemma 3: We start rewriting JI(θt) as

JI(θt)
(i)
=
(
P I
H − P I

0

)
(1− λIt ) + β[(1− λIt )(1− q)

(
Et[Jl(θt+1)]− P I

H − Et[Jf (θt+1)]
)
]

+βEt[Jf (θt+1)];

JI(θt)
(ii)
=
(
P I
H − P I

0

)
(1− λIt ) + β[(1− λIt )(1− q)Et[JI(θt+1)−

(
P I
H − P I

0

) (
1− λIt+1

)
− Jf (θt+1)]

+βEt[Jf (θt+1)];

JI(θt)
(iii)
=
(
P I
H − P I

0

)
(1− λIt )[1− β(1− q)

(
1− Et

[
λIt+1

])
] + βEt[Jf (θt+1)],

where (i) uses qV I
H = P I

H (Rf − (1− q)) and (ii) uses Lemma 2 and therefore Jl(θt+1) =

JI(θt+1) + λIt+1P
I
H +

(
1− λIt+1

)
P I

0 and (iii) assumes interior equilibrium at t + 1 and

therefore Jf (θt+1) = JI(θt+1). Similarly, we can use βV L
H = PL

H to write

JL(θt) =
(
PL
H − PL

0

)
(1− λLt ) + βEt[Jf (θt+1)]

Then, if the equilibrium is interior at t,

JL(θt) = JI(θt)(
PL
H − PL

0

)
(1− λLt ) =

(
P I
H − P I

0

)
(1− λIt )[1− β(1− q)

(
1− Et

[
λIt+1

])
]

Because
(
PL
H − PL

0

)
=
(
P I
H − P I

0

)
, rearranging the above equation gives Eq. (7). �

Proof of Lemma 4: Write the IC curve as F (δ, ξ) = 0, where

F (δ, ξ) =
z̄L − (1− δ)ξ

z̄L
−
(
z̄I − δξ
z̄I

)[
1− β(1− q)

(
z̄I − δξ
z̄I

)]
.

We wish to show that ∂F (δ,ξ)
∂δ

> 0 and ∂F (δ,ξ)
∂ξ

< 0. We have:

∂F (δ, ξ)

∂ξ
=

(1− δ)
z̄L

+
δ

z̄I
−2

δ

z̄I
β(1−q)

(
z̄I − δξ
z̄I

)
=

1

ξ

(
λI − λL − 2λIβ(1− q)

(
1− λI

))
.
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Because F (δ, ξ) = 0 requires λI < λL, then ∂F (δ,ξ)
∂ξ

< 0. Furthermore,

∂F (δ, ξ)

∂δ
=

ξ

z̄L
+

ξ

z̄I
− 2

ξ

z̄I
β(1− q)

(
z̄I − δξ
z̄I

)
=

ξ

z̄I

(
z̄I

z̄L
+ 1− 2β(1− q)

(
1− λI

))
.

Clearly, ∂F (δ,ξ)
∂δ

> 0 if z̄I

z̄L
+ 1− 2β(1− q) ≥ 0. �

Proof of Proposition 1: Suppose that Eq. (IC) is not satisfied. Then, it is one of

the two cases: either everyone chooses market I or everyone chooses market L. In the

former case, δ = 1 and therefore λL = 0 and λI ∈ (0, 1]. However, we can show that

there is no such equilibrium that satisfies Eq. (IC) because, for all λI ∈ (0, 1]

1 >
(
1− λI

) (
1− β

(
1− λI

)
(1− q)

)
,

which implies JL(ξ) > JI(ξ). In the latter case, we have δ = 0 and therefore ξ = 1, λI = 0

and λL = min{1, 1
z̄L
}. Hence, δ = 0 is an equilibrium if JL(1)|λL=min{1, 1

z̄L
} ≥ JI(1)|λI=0

which is equivalent to

1−min{1, 1

z̄L
} ≥ 1− β (1− q)⇔ β (1− q) z̄L ≥ 1. (12)

Next, we let β (1− q) z̄L < 1, for which there is no corner equilibrium, and proceed to

show that there exist either one or three interior equilibria. We define ξ̂t = δtξt as the

net mass of arbitrageurs who are investing in the illiquid market at time t. Likewise,

we define δ̂t = δtξt + πt as the total mass of investors who are investing in the illiquid

market at time t. Instead of the original problem stated in terms of of δt and ξt, we can

solve an equivalent problem in terms of δ̂t and ξ̂t. Using the definition of ξ̂ and δ̂, we

find

ξ = ξ̂ + 1− δ̂, δ =
ξ̂

ξ̂ + 1− δ̂
, λI =

ξ̂

z̄I
, λL =

1− δ̂
z̄L

. (13)

Using Eq. (13), the CM equation in the text can be expressed as

δ̂ =
ξ̂

q + (1− q) ξ̂
z̄I

. (14)

Using Eq. (13) and Eq. (14), the IC equation in Eq. (IC) can be expressed as

Q(ξ̂) = 0,
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where Q is a third degree polynomial:

Q (x) = a0 + a1x+ a2x
2 + a3x

3,

with coefficients

a0 = q
(
z̄I
)3 (

1− (1− q) z̄Lβ
)

a1 = −
(
z̄I
)2

(z̄I + qz̄L − (1− q)
(
1 + (3q − 1)z̄Lβ

)
)

a2 = −z̄I z̄L(1− q)(1 + (3q − 2)β)

a3 = −(1− q)2z̄Lβ

Notice that β (1− q) z̄L < 1 implies a0 > 0 and therefore Q (0) > 0. Furthermore, it

is tedious but straightforward to verify that for z̄I + z̄L > 1 we have Q (1) < 0, which

implies that Q has either one or three real roots in the (0, 1) interval. Each of these

roots is an interior steady state equilibrium in which δ, ξ ∈ (0, 1).

Next, we look for interior equilibria when β (1− q) z̄L ≥ 1 and therefore Q (0) ≤ 0.

It is straightforward to verify that in this case we have Q (1) < 0. Because a3 < 0,

then Q has either two real roots or none in the (0, 1) interval. Each of these roots

corresponds to an interior steady state equilibrium. Because δ = 0 is an equilibrium for

β (1− q) z̄L ≥ 1, then there are either one (corner) or three (one corner and two interior)

equilibria for when β (1− q) z̄L ≥ 1.

For z̄I + z̄L ≤ 1, it is immediate to verify that there exists a continuum of interior

fully revealing equilibria in which ξ̂ = z̄I and λI = λL = 1.

Now, we give a sketch of the proof of stability.

Lemma 5 Consider the following dynamic system of x and y:

xt+1 = f(xt, yt) (15)

yt+1 = g(xt, yt) (16)

where f and g are continuous and twice-differentiable. If there are three steady-state

equilibria and two extreme steady state equilibria are stable, the middle steady state

equilibrium is either a source (unstable) or a sink.
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Proof. The steady state solution (x̄, ȳ) solves

x = f(x, y) (17)

y = g(x, y), (18)

and it also has to satisfy

dx = fx(x̄, ȳ)dx+ fy(x̄, ȳ)dy (19)

dy = gx(x̄, ȳ)dx+ gy(x̄, ȳ)dy (20)

This implies

0 = [fx(x̄, ȳ)− 1]dx+ fy(x̄, ȳ)dy (21)

0 = gx(x̄, ȳ)dx+ [gy(x̄, ȳ)− 1]dy (22)

Or equivalently,

dy

dx

∣∣∣
x=f(x,y)

= −fx(x̄, ȳ)− 1

fy(x̄, ȳ)
(23)

dy

dx

∣∣∣
y=g(x,y)

= − gx(x̄, ȳ)

gy(x̄, ȳ)− 1
(24)

Now, suppose that there are three steady state equilibria. Because f and g are con-

tinuous, it has to be the case that the middle equilibrium has an opposite inequality on

the slopes from the extreme ones. That is, if dy
dx

∣∣∣
x=f(x,y)

> dy
dx

∣∣∣
y=g(x,y)

for the extreme

equilibria, the middle one should have dy
dx

∣∣∣
x=f(x,y)

< dy
dx

∣∣∣
y=g(x,y)

, and vice versa. Equiva-

lently, if |D + 1| < |T | for the extreme ones, |D + 1| > |T | for the middle one, and vice

versa where

T = fx(x̄, ȳ) + gy(x̄, ȳ) (25)

D = fx(x̄, ȳ)gy(x̄, ȳ)− gx(x̄, ȳ)fy(x̄, ȳ). (26)
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The linearized system of the original dynamic system around (x̄, ȳ) is

dxt+1 = fx(x̄, ȳ)dxt + fy(x̄, ȳ)dyt (27)

dyt+1 = gx(x̄, ȳ)dxt + gy(x̄, ȳ)dyt (28)

But, it happens that the stability condition for the linearized system is given by |D+1| <
|T |. Suppose the extreme equilibria are stable (i.e., |D + 1| < |T |). Then it has to be

the case that |D + 1| > |T | for the middle steady state. Then, the middle steady state

is either sink if |D| < 1, or source if |D| > 1.�

Notice that we can express CM and IC curves as

δ̂ =
ξ̂

q + (1− q) ξ̂
z̄I

(29)

1− δ̂
z̄L
− ξ̂

z̄I
= β(1− q)

(
1− ξ̂

z̄I

)2

, (30)

or equivalently,

h(ξ̂) =
ξ̂

q + (1− q) ξ̂
z̄I

(31)

l(ξ̂) = 1− z̄L ξ̂
z̄I
− z̄Lβ(1− q)

(
1− ξ̂

z̄I

)2

. (32)

Consider the case 1
z̄L

> β(1 − q), for which equilibrium is interior. Notice that

l(0) = 1
z̄L
−β(1− q) > h(0) = 0. Thus, it has to be the case that h′(ξ̄) > l′(ξ̄) at the low

information steady state ξ̄. Then, Lemma 5 implies that ξ̄ is a saddle point (because

|D + 1| < |T |) and also that the middle equilibrium is not a saddle point but the high

information equilibrium is a saddle point. �
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