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This paper studies a threshold regression model, where the threshold is determined by an

unknown relation between two variables. The novel features of this model are in that the

threshold is determined by two variables and their relation is nonparametric. Further-

more, we allow the observations to be cross-sectionally dependent and hence the model

can be applied to study thresholds over a random field. Empirical relevance is illustrated

by estimating an economic border induced by the housing price difference between Queens

and Brooklyn in New York City. Such economic border deviates substantially from the

administrative one.
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1 Introduction

This paper studies a threshold regression model, where the threshold is determined by an

unknown relation between two variables. More precisely, we consider a model given by

 = 00 + 00 · 1 [ ≤ 0 ()] + 

for  = 1 2 · · ·  , in which the marginal effect of  to  can be different depending on

 ≤ 0 () or not. The threshold function 0(·) is unknown and the main parameters of
interest are 0, 0, and 0(·). The novel features of this model are in that the threshold is
determined by two scalar variables ( ) and their relation is nonparametric. Furthermore,

we allow that the observations can be cross-sectionally dependent (i.e., they can be strong-

mixing random fields as Bolthausen, 1982), and hence the model can be applied to study

thresholds over a space.

This paper contributes to the literature as follows. First, we formulate the threshold

by some unknown interaction between two variables: 1 [ ≤ 0 ()]. Unlike the standard

threshold models presuming that the threshold is determined by the level of one variable (e.g.,

Hansen, 2000), we consider that multiple variables can determine the threshold. Furthermore,

the threshold function can be fully nonparametric (but smooth) and hence it can cover many

interesting cases that have not been studied. For example, we can consider a model with

heterogeneous thresholds if we see 0 () as heterogeneous thresholds over ; this specification

can cover the case that the threshold is determined by the sign of a conditional moment.

Apparently, when 0() = 0 or 0() = 0 for some parameter 0 and  6= 0, it becomes

the standard threshold regression model (where the threshold is determined by the ratio 

for the latter case).

Second, this paper allows that the variables are cross-sectionally dependent, which has

not been considered in the threshold model literature. This generalization allows us to study

threshold models over a random field (i.e., space): If we let ( ) correspond to the latitude

and the longitude on the map, then 0(·) can be understood as the unknown border that splits
the area into two. Examples include identifying the boundary of some airborne pollution (or

toxic waste) or some tipping point over an area that segregates population.

The main results of this paper can be summarized in four-folds: First, we apply a two-step

estimation for this semiparametric model and derive asymptotic properties of the estimators,

where the unknown function 0(·) is estimated using a kernel method. Provided 0 = 0
−

for some 0 6= 0 and  ∈ (0 12), it is shown that the nonparametric estimator b(·) is
uniformly consistent and (bb) satisfies the −12-consistency using asymptotic results of
random fields by Bolthausen (1982) and Jenish and Prucha (2009). Limiting distributions

of these semiparametric estimators are also derived. Second, we develop a pointwise test of
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0 : 0() = ∗() for given ; simulation studies show its good finite sample performance.

Third, as an illustration, we apply this new model to study an unknown spatial threshold. In

particular, we estimate an unknown economic border that splits the Queens and the Brooklyn

boroughs in New York City, where each region has a different level of elasticity to the house

price. Finally, we extend this threshold line model to identify a threshold contour or circle,

and we estimate it by rotating the coordinate.

The rest of the paper is organized as follows. Section 2 summarizes the model and our

estimation procedure. Section 3 derives limiting properties of the estimators and develops

a likelihood ratio test of the threshold function. Section 4 studies small sample properties

of the proposes statistics by Monte Carlo simulations. Section 5 applies the results to the

housing price data to identify unknown economic border. Section 6 concludes the paper with

describing how to extend this idea to estimate a threshold contour. All the mathematical

proofs are in the Appendix.

2 Nonparametric Threshold Regression

We consider a threshold regression model given by

 = 00 + 00 · 1 [ ≤ 0 ()] +  (1)

for  = 1 2 · · ·  , where (   ) ∈ R1++1+1 and 0 (·) is an unknown function. The
threshold function 0(·) is unknown and the main parameters of interest are 0, 0, and 0(·).
In this model, the threshold is determined by two scalar variables ( ) and their relation

is nonparametric. If we see this model as a spatial threshold model over a space, then ( )

can be understood as the location index (i.e., latitude and longitude) and hence the threshold

1 [ ≤ 0 ()] describes two-dimensional sample splitting.
1

We estimate the unknown parameters in two steps. More precisely, for given , we fix

0 () = , where  can depends on , and we first obtain b (; ) and b (; ) by local least
squares conditional on :

(b (; ) b (; )) = argmin


 (  ; ) , (2)

1The results of this paper can be generalized for vectors  and  using multivariate kernel estimation.
However, we focus on the scalar case to make the presentation simple. Note that the model (1) is different

from Seo and Linton (2007), which specifies linear index form between ( ) but assumes a nonparametric
smooth transition function instead of 1 [·].
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where

 (  ; ) =
X
=1



µ
 − 



¶¡
 − 0 − 01 [ ≤ ]

¢2
(3)

for some kernel function  (·) and a bandwidth parameter . Then, for a compact Γ ⊂ R,
0(·) is estimated by b () = argmin

∈Γ
 (; )

for given , where  (; ) is the concentrated sum of squares defined as

 (; ) = 

³b (; ) b (; )  ; ´ . (4)

Finally, the estimators of 0 and 0 are obtained from

(bb) = argmin


X
=1

¡
 − 0 − 0

¢2
, (5)

where  = 1 [ ≤ b ()].
We allow for cross-sectional dependence in (0   )

0
in this study. For this purpose,

similarly as Jenish and Prucha (2009), we consider the samples over a random expanding

lattice  ⊂ R2 endowed with a metric  ( ) = max1≤≤2 | − | and the corresponding
norm max1≤≤2 ||, where  denotes the -th component of . We write || for the number
of elements in  and we simply let the cardinality of  as  (i.e., || = ); the summation

in (4) hence can be rewritten as
X

∈
. Following Bolthausen (1982) and Jenish and Prucha

(2009), we also define a mixing coefficient:

() = sup {| ( ∩)−  () ()| :  ∈ F and  ∈ F with  ( ) ≥ } , (6)

where F is the -algebra generated by (0   )0.
We first assume the following conditions. We let  ( ) be the joint density function of

( ), and define

 ( ) = 
£


0
| ( ) = ( )

¤
, (7)

 ( ) = 
£


0

2
 | ( ) = ( )

¤
. (8)

We also denote S as the support of  and S as a bounded subset in the interior of S. In
what follows, we only consider  ∈ S.
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Assumption A

(i) The lattice  ⊂ R2 is infinite countable; all the elements in  are located at dis-

tances at least 0  1 from each other, i.e., for any   ∈  :  ( ) ≥ 0; and

lim→∞ ||  = 0.

(ii) (0   )
0
is stationary and -mixing with bounded (2+)th moments for some   0

and with the mixing coefficient () defined in (6) that satisfies
P∞

=1()  ∞
and

P∞
=1

2()(2+) ∞.

(iii) 0 = 0
− for some 0 6= 0 and  ∈ (0 12); ¡00 00¢ ∈ Θ0 some compact subset of

R2.

(iv)  [| ] = 0 and 0  
£
2 |  

¤
∞ almost surely.

(v) 0 : S 7→ Γ is twice continuously differentiable and 0   ( ≤ 0())  1, where Γ is

a compact subset of the support of .

(vi) Uniformly in ( ), there exists some constant 0   ∞ such that [||||8+ |( ) =
( )]   and [||||8+ |( ) = ( )]   for some   0.

(vii)  ( ),  ( ), and  ( ) are bounded, continuous in , and twice continuously

differentiable in  ∈ S with bounded derivatives.

(viii) 00 (0() ) 0  0, 00 (0() ) 0  0, and  (0() )  0 for all  ∈ S.

(ix)  [
0
| = ] is positive definite and bounded for any  ∈ S.

(x) As →∞,  → 0 and 1−2 →∞.

(xi)  (·) is uniformly bounded, continuous, and symmetric around zero with satisfyingR
 ()  = 0,

R
2 ()   0, 2 =

R
()2  ∞, lim→∞ ||() = 0, and

lim→∞ ||()2 = 0.

Most of these conditions are similar to Assumption 1 of Hansen (2000). Note that 0 in

Assumption A-(i) can be any strictly positive value, but we can impose 0  1 without loss

of generality. The conditions in Assumption A-(ii) are required to establish CLT for spatially

dependent random field by Bolthausen (1982). The condition on the mixing coefficient is

slightly stronger than that of Bolthausen (1982), which is because we need to control for

the dependence within the bandwidth in kernel estimation. Note that when () decays at

an exponential rate, these conditions are readily satisfied. On the other hand, when ()

decays at a polynomial rate (i.e., () ≤ 
− for some   0), we need some restrictions

on  and  to satisfy these conditions, such as   3(2 + ). Assumption A-(x) and (xi)
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are standard in the kernel estimation literature (e.g., Li and Racine, 2007), except that the

magnitude of the bandwidth  depends on .

Given 0(·), the parameters 0 and 0 are well identified provided that 0   ( ≤
0())  1 and hence  [

0
| = ] is positive definite under Assumption A-(ix), where

 = [0 
0
1 [ ≤ 0()]]

0. Assumption A-(v) restricts that the threshold 0() lies in the

interior of the support of . The unknown border 0(·) is also well identified because for any
 6= 0,


h¡
 − 00 − 001 [ ≤ ()]

¢2 ¯̄̄
 = 

i
−

h¡
 − 00 − 001 [ ≤ 0()]

¢2 ¯̄̄
 = 

i
= 00

h


0
 (1 [ ≤ ()]− 1 [ ≤ 0()])

2
¯̄̄
 = 

i
0

= −200
£


0
1 [min{() 0()}   ≤ max{() 0()}]

¯̄
 = 

¤
0

 0

under Assumptions A-(iii), (v), and (ix), where the condition 0   ( ≤ 0())  1 ensures

that there exist  such that 1 [min{() 0()}   ≤ max{() 0()}] = 1.

3 Asymptotic Results

We first obtain the asymptotic properties of the nonparametric estimator b (). The first
theorem shows that b () is consistent and derives the limiting distribution of b (). Similar
to Hansen (2000), we let  (·) be a two-sided Brownian motion.

Theorem 1 Under Assumption A, b ()→ 0 () as →∞ for any fixed  ∈ S. Further-
more, if 1−23 → 0,

1−2 (b ()− 0 ())→  () argmax
∈

µ
 ()− ||

2

¶

as →∞, where
 () =

2
0
0 (0 ()  ) 0

(00 (0 ()  ) 0)
2  (0 ()  )

and 2 =
R
()2.

Note that the distribution of argmax∈ ( ()− || 2) is known (e.g., Bhattacharya and
Brockwell, 1976), which is also described in Hansen (2000, p.581). The constant term  ()
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determines the scale of the distribution at given , which increases in the conditional variance


£
2 |  

¤
; but decreases in the size of the threshold constant |0| and the density of

( ) near the threshold.

Theorem 1 also shows that the pointwise rate of convergence of b () is 1−2, which
depend on two parameters,  and . It is decreasing in  like the parametric case. As noted in

Hansen (2000), a larger  reduces the threshold effect 0 = 0
− and hence decreases effective

sampling information on the threshold. Since we estimate (·) using the kernel estimation
method, the rate of convergence depends on the bandwidth size  as well. Like the standard

kernel estimator cases, smaller bandwidth decreases effective local sample size, which reduces

the precision of estimators of (·). Therefore, in order to have a sufficient level of rate of
convergence, we need to choose  large enough when the threshold effect 0 is expected to

be small (i.e., when  seems to be large and close to 12). For instance, by balancing the

square of conventional (2) bias and the ((1−2)−1) precision from Theorem 1, the

optimal bandwidth satisfies ∗ = ∗−(1−2)5 for some constant 0  ∗  ∞.2 However, it
does not mean that we can always choose  as large as possible, as well documented in the

standard kernel estimation. The choice needs to be such that 1−23 → 0, which is required

to control for the (2) bias term in the kernel estimator and hence the limiting distribution

of 1−2 (b ()− 0 ()) has mean zero.

From Theorem 1, we can consider a pointwise likelihood ratio test statistic for

0 : 0 () = ∗ () for some  ∈ S, (9)

which is given as

() =

Ã
X
=1



µ
 − 



¶!
×  (∗ ()  )− (b ()  )

 (b ()  ) . (10)

The following theorem obtains the null limiting distribution of this test statistic.

Theorem 2 Under the same condition in Theorem 1, for any fixed  ∈ S, the test statistic
in (10) under the hull hypothesis (9) satisfies

()→  ()max
∈

(2 ()− ||)
2 It is the standard problem in the kernel estimation studies that the optimal bandwidth parameter selection

based on this expression is not feasible in practice since the constant term ∗ is unknown. In our case,

unfortunately, it is even more infeasible because the choice of the bansdwidth parameter depends on the

nuisance parameter  as well, which is not even estimable. We can use the cross-validation approach in

practice, though its statistical properties need to be studied further.
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as →∞, where
 () =

2
0
0 (0 ()  ) 0

2()00 (0 ()  ) 0

with 2() = 
£
2 | = 

¤
and 2 =

R
()2.

When 
£
2 |   = 

¤
= 2(), which is the case of local conditional homoskedasticity, the

scale parameter  () is simplified as 2, and hence the limiting null distribution of ()

becomes free of nuisance parameters as well as common for all  ∈ S. Though this limiting
distribution is still nonstandard, the critical values in this case can be obtained using the

same method as Hansen (2000, p.582) with a scale-adjusted by 2. More precisely, since the

distribution function of  = max∈ (2 ()− ||) is given as  ( ≤ ) = (1−−2)21 [ ≥ 0]
(e.g., Hansen, 2000), the distribution of ∗ = 2 (which is the limiting random variable of

() under the local conditional homoskedasticity) is  (
∗ ≤ ) = (1− −22)21 [ ≥ 0].

By inverting it, we can obtain the asymptotic critical values for a choice of(·). For instance,
the asymptotic critical values for the Gaussian kernel is reported in Table I, where 2 =

(2
√
)−1 ' 02821 in this case.

Table I: Asymptotic Critical Values (Gaussian Kernel)

 (∗  ) 0.800 0.850 0.900 0.925 0.950 0.975 0.990

 1.268 1.439 1.675 1.842 2.074 2.469 2.988

For the general cases,  () can be estimated as

b () = 2b0 b (b ()  )bb2()b0 b (b ()  )b
where b2() = P

=1 1()b2 , and b (b ()  ) and b (b ()  ) are the standard Nadaraya-
Watson estimators. Recall that

b (b ()  ) = X
=1

2()
0
 and

b (b ()  ) = X
=1

2()
0
b2

with b =  − 0b − 0b from (5) and

1() =
 (( − ))P
=1 (( − ))

and 2() =
K (( − b ())0 ( − )00)P
=1K (( − b ())0 ( − )00)
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for some bivariate kernel function K(· ·) and bandwidth parameters 0, 00. Note that we
can also form an asymptotic confidence interval for b () using the likelihood test inversion
method advocated by Hansen (2000).

Finally, once we construct the estimator b () for all  ∈ S, we can plug it in (5) to
obtain the

√
-consistency of b and b, which is simply regressing  on  and 1 (b ()).

For this purpose, we obtain the uniform rate of convergence of b () as follows, which requires
more conditions on the bandwidth . More precisely, similarly as Carbon et al. (2007), we

suppose that either

1−2(log)3 →∞ and 3 log→ 0 (11)

if the mixing coefficient () decays at an exponential rate; or

1−2 log→∞ and 1−2(+4)(−4) (log)(−2)(−4) →∞ (12)

for some   4, if the mixing coefficient () decays at a polynomial rate (i.e., () ≤


− for some   0).

Theorem 3 Under the same condition in Theorem 1 and if either (11) or (12) hold,

sup
∈S

|b ()− 0 ()| = 

µ
log

1−2
+ 2

¶
.

Using this uniform convergence of b (), the following theorem formalizes the √-consistency
as well as the joint limiting distribution of b and b.
Theorem 4 Let b = (b0b)0 and 0 = (00 0)0. Suppose the same condition in Theorem 1

holds. Then, under 1−22 →∞ and either (11) or (12),

√

³b − 0

´
→ N

¡
0∗−1 ∗∗−1¢ as →∞,

where ∗ =  [
0
] and  ∗ = lim→∞  [−12

X

=1
] with  = [

0
 

0
1 (0 ())]

0
.

Note that we need a smaller bandwidth parameter  (i.e., 
1−22 →∞) in order to achieve

the
√
-consistency of b in Theorem 4. This additional condition is required to satisfy the

asymptotic orthogonality condition between b and b (e.g., Assumption N(c) in Andrews
(1994)), that is, replacing b by 0 in (5) has an effect at most (

−12). Given that we
recover the −12 rate by using all the observations (except those with  ∈ S), the asymptotic
variance now involves cross-sectional dependence as indicated by the long-run variance form
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 ∗. This can be consistently estimated by the spatial HAC estimator proposed by Conley
(1999) and Conley and Molinari (2007) using b =  − 0b − 0b and b(·), with a slightly
stronger condition on the mixing coefficient ().

4 Monte Carlo Experiments

In order to study small sample performance of the likelihood test, we conduct Monte Carlo

simulations as follows. We consider the threshold regression in (1) with

 = 01 + 02 + (01 + 02) · 1 [ ≤ 0 ()] + ,

where 01 = 02 = 0, 0 () = sin()2, and  takes different values. For the dependence

structure in (   )
0, we consider the following data generating process:

⎧⎪⎨⎪⎩
( )

0 ∼ N (0 2) ;

| ( ) ∼ N ¡
0 (1 + 

¡
2 + 2

¢
)−1
¢
;

u|{(  )}=1 ∼ N (0Ω) ,

where u = (1 · · ·  )0. The ( )th element of Ω is Ω = bc1 (  ), where  =

(( − )
2+( − )

2)12 is the 2-distance between the  and  observation and bc denotes
the largest integer smaller than . The diagonal elements of Ω are normalized as Ω = 1.

This -dependent setup follows from the Monte Carlo experiment in Conley and Molinari

(2007) in the sense that there are roughly at most 22 observations that are correlated with

each observation. Within  distance, the dependence also decays in a polynomial rate as

indicated by bc. The single parameter  describes the cross-sectional dependence in the
way that a larger  leads to stronger dependence relative to the unit standard deviation. In

particular, we consider  = 0 (which is for i.i.d. observations), 05 and 1.

Tables II to V report the small sample rejection probabilities of the LR test (10) at 5%

nominal level over three locations  = 0, 05, and 1. In general, the test for 0 performs better

when (i) the sample size is larger; (ii) the coefficient change at the threshold is larger; and

(iii) the cross-sectional dependence is weaker. In particular, we follow Conley and Molinari

(2007) to use  = 3 in the first three tables, while in Table V we examine the effect of

slower dependence decay by setting  = 10. For each location, we consider 9 cases with

 = 100 200 500 and 10 = 20 = 0 = 1 2 3 (cf. Hansen (2000)). For the bandwidth

parameter, we simply normalize  and  to have mean zero and unit standard deviation and

choose  = −25 in the main regression. To estimate  and  , we use the rule-of-thumb

bandwidths 0 = −15 and 00 = −16. Note that each combination of ( 0) determines 
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for a fixed 0 as  = (log 0 − log 0) log. All the results are based on 2,000 simulations.

Table II: Rej. Prob. with i.i.d. data

( = 0  = 3)

 = 00  = 05  = 10

 \ 0 1 2 3 1 2 3 1 2 3

100 0.08 0.06 0.05 0.09 0.06 0.05 0.10 0.06 0.05

200 0.07 0.05 0.04 0.07 0.05 0.04 0.07 0.04 0.03

500 0.06 0.04 0.03 0.05 0.03 0.03 0.07 0.03 0.03

Table III: Rej. Prob. with spatially correlated data

( = 05  = 3)

 = 00  = 05  = 10

 \ 0 1 2 3 1 2 3 1 2 3

100 0.08 0.06 0.06 0.09 0.06 0.05 0.10 0.08 0.05

200 0.06 0.05 0.05 0.07 0.04 0.04 0.07 0.06 0.03

500 0.05 0.04 0.04 0.08 0.04 0.04 0.07 0.03 0.02

Table IV: Rej. Prob. with spatially correlated data

( = 1  = 3)

 = 00  = 05  = 10

 \ 0 1 2 3 1 2 3 1 2 3

100 0.09 0.07 0.06 0.09 0.07 0.06 0.10 0.08 0.05

200 0.08 0.06 0.05 0.08 0.05 0.03 0.08 0.06 0.03

500 0.06 0.04 0.04 0.07 0.03 0.03 0.06 0.03 0.02

Table V: Rej. Prob. with spatially correlated data

( = 1  = 10)

 = 00  = 05  = 10

 \ 0 1 2 3 1 2 3 1 2 3

100 0.13 0.07 0.07 0.10 0.09 0.06 0.11 0.09 0.06

200 0.09 0.05 0.06 0.08 0.06 0.04 0.08 0.06 0.05

500 0.05 0.04 0.04 0.06 0.04 0.03 0.08 0.04 0.02
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Lastly, Table VI depicts the finite sample coverage properties of the 95% confidence in-

tervals for the parametric components 02 and 02 (i.e., the pre-break value and the change

size associate with , respectively). We use the same DGP as above with  = 05 and

 = 3. Regarding the lag number required for the HAC estimator, we follow Conley and

Molinari (2007) and use the spatial lag order of 5. Results with other choices are similar and

available upon request. The numbers in different columns suggest that the asymptotic nor-

mality is better approximated with lower dependence and larger change size, while comparing

rows indicates that the sample size has to be large enough for the asymptotics to perform

satisfactorily.

In addition, some unreported results suggest that if we increase 01 (i.e., the change size

associated with the constant), the coverage for 02 and 02 can be improved. This is because

the larger 01 provides more information on the threshold (·) estimation that in turn results
in better estimation of other parameters.

Table VI-a: Coverage Prob. of 02

( = 05  = 3)

 = 00  = 05  = 10

 \ 0 1 2 3 1 2 3 1 2 3

100 0.85 0.90 0.92 0.86 0.90 0.91 0.84 0.90 0.92

200 0.88 0.92 0.93 0.88 0.91 0.93 0.86 0.91 0.92

500 0.89 0.93 0.93 0.89 0.92 0.92 0.88 0.93 0.93

Table VI-b: Coverage Prob. of 02

100 0.82 0.88 0.90 0.82 0.87 0.90 0.82 0.89 0.90

200 0.83 0.89 0.90 0.82 0.89 0.90 0.82 0.88 0.89

500 0.85 0.89 0.89 0.82 0.89 0.90 0.82 0.90 0.89

5 Empirical illustration

As an illustration, we study the housing price of the Queens and the Brooklyn boroughs

in New York City, using the single family house sales data in the year 2017. The data

set (Rolling Sales Data) is available at http://www1.nyc.gov/site/finance/taxes/property-

rolling-sales-data.page. In the threshold regression model (1), we consider the following
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Figure 1: Threshold Function Estimate

variables:3

   

log house price ($) constant latitude longitude

log of Gross Square Footage (ft2)

dummy for built before 1945 (WWII)

In this exercise, since the pair ( ) corresponds to the latitude and the longitude on the map,

“above the threshold” means the region on the northern side of the economic border, whereas

“below the threshold” means the region on the southern side of the economic border. We

focus on single family houses under property tax class 1, accounting for 57.9% of the original

sample, and drop duplicate observations. The sample size is  = 8121 (5962 observations in

Queens; 2159 observations in Brooklyn).

Figure 1 depicts the nonparametric threshold function estimates b, which is the “un-
known” economic border that splits the Queens and the Brooklyn boroughs in New York

City. The estimated border (black dash line) is found to be substantively different from the

administrative border between these two boroughs (blue solid line). Somewhat surprisingly,

3“Gross Square Footage” is the total area of all the floors of a building as measured from the exterior sur-

faces of the outside walls of the building, including the land area and space within any building or structure on

the property. (Source: http://www1.nyc.gov/assets/finance/downloads/pdf/07pdf/glossary_rsf071607.pdf)
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the estimated border in Queens approximately coincides with the Long Island Rail Road

(LIRR) route.

The bandwidth  in the regression (4) is chosen by the cross validation. In partic-

ular, we choose the constant  in −25 that minimizes the sum of ( − b)2 1 [ ∈ S],
where S includes the observations between 15th and 85th percentiles of {}, b = 0b− +
0b−1 £ ≤ b− ()¤, and (b−b− b− (·))0 are obtained without the -th observation (i.e.,
leave-one-out estimators). Table VII summarizes the coefficient estimates for the parametric

components, b and b. The standard errors reported in the parentheses are computed by the
Conley (1999)’s HAC estimator with 5 spatial lags.

Table VII: Estimation Result

b b
constant 9.91 -1.08

(0.01)∗∗∗ (0.01)∗∗∗

log of Gross Square Footage 0.40 -0.01

(0.05)∗∗∗ (0.04)

dummy for built before 1945 -0.07 -0.06

(0.01)∗∗∗ (0.01)∗∗∗

Note: ∗∗∗ indicates significant at 1%.

The average housing price on the southern side of the threshold (or economic border) is

lower than that on north. The elasticity of the Gross Square Footage remains similar across

the economic border but the negative effect of the house age is larger on the southern side.

6 Extension and Concluding Remarks

The threshold model (1) can be generalized to allow for the following unknown contour

threshold model:

 = 00 + 00 · 1 [ ( ) ≤ 0] + , (13)

where the unknown function  of  and  determines the contour on a random field. An

interesting example includes identifying an unknown closed boundary over the map, such as

a city boundary relative to some city center and an area of a disease outbreak, or identify-

ing a group or a region in which the agents share common demographic/political/economic

characteristics.
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Figure 2: Illustration of Rotation

To relate this generalized form to the original threshold model (1), we suppose there

exists a known center at (∗  
∗
 ) such that  (

∗
  

∗
 )  0. Without loss of generality, we can

normalize (∗  
∗
 ) to be (0 0) and the re-center all other observations { }=1 accordingly.

In addition, we define the radius distance  and angle 
◦
 of the th observation relative to

the origin as

 =
q
2 + 2 ,

◦ = ̄◦ I + (180
◦ − ̄◦ ) II + (180

◦ + ̄◦ ) III + (360
◦ − ̄◦ ) IV,

where ̄◦ = arctan (||), and (I II III IV) respectively denotes the indicator function

that the th observation locates in the first, second, third, or forth quadrant. We suppose

that there is only one breakpoint at any angle.4 For each fixed ◦ ∈ [0◦ 360◦), we then can
rotate the original coordinate counterclockwise and implement the least squares estimator

(4) with the observations in the first two quadrants after rotation.

In particular, the angle relative to the origin is ◦ −◦ after rotating the coordinate by ◦
degrees counterclockwise, and the new location (after the rotation) is given as ( (

◦)   (◦)),
where

 (
◦) =  cos (

◦) +  sin (
◦) ,

 (
◦) =  cos (

◦)−  sin (
◦) .

4 If we further suppose there exists a continuous function  : [0◦ 360◦) →  such that 1 [ ( ) ≤ 0] =
1 [ −  (◦ ) ≤ 0], then the function  (·) describes a two-dimensional contour (e.g., a circle), which induces
a coefficient change if the subject steps from the inside to the outside. As we suppose there is only one

breakpoint at any angle ◦, it reduces to our baseline model (1).
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After this rotation, we estimate the following threshold model:

 = 00 + 00 · 1 [ (◦) ≤  ( (
◦))] +  (14)

using only the observations satisfying  (
◦) ≥ 0, where  (·) serves as the unknown threshold

line as in the model (1) in the rotated coordinate. Such reparameterization guarantees that

 (·) is always positive and we are estimating its value pointwisely at 0. Figure 2 illustrates
the idea of such rotation and pointwise estimation with a bounded the kernel function so that

only the red points are included for estimation at different angles. Thus, the estimation and

inference procedure developed before is directly applicable.

In this paper, we propose a two-dimensional sample splitting model which captures the

fact that two variables jointly determine the separation boundary. We illustrate the empirical

relevance in a simple spatial context where the housing price is different across an unknown

economic border between Brooklyn and Queens. Potentially more interesting applications are

being explored, including investigating how congressional district is determined and drawing

the economic boundary between two regions by Satellite data.
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A Appendix

Throughout the proof, we denote  () =  (( − )) and 1 () = 1 [ ≤ ].  ∈ (0∞)
stands for a generic constant term that may vary, which can depend on the location .

Lemma A.1 For given  ∈ S, let

 (; ) =
1



X
=1


0
1 () () ,

 (; ) =
1√


X
=1

1 () () .

Under Assumption A,

sup
∈Γ

| (; )− (; )|→ 0,

sup
∈Γ

¯̄̄
−12−12  (; )

¯̄̄
→ 0

as →∞, where
 (; ) =

Z 

−∞
( ) ( ) 

and
 (; )⇒  (; )

a mean-zero Gaussian process indexed by .

Proof of Lemma A.1 For expositional simplicity, we only present the case of scalar .

We first prove the pointwise convergence of  (; ). By stationarity, Assumption A-(vii)

and Taylor expansion, we have

 [ (; )] =
1



ZZ
[2 | ]1[ ≤ ]

µ
 − 



¶
 ( )  (A.1)

=

ZZ
( + )1[ ≤ ] ()  ( + ) 

=

Z 

−∞
( ) ( )  +

¡
2
¢
,

where ( ) is defined in (7). For the variance, we have

  [ (; )] =
1

22


⎡⎣Ã X
=1

©
21 () ()−

£
21 () ()

¤ª!2⎤⎦
=

1

2

h©
21 () ()−

£
21 () ()

¤ª2i
+

2

22

X



£
21 () ()  

2
1 () ()

¤
= 

µ
1



¶
+

µ
1


+ 2

¶
→ 0,

16



where the order of the first term is from the standard kernel estimation result; and for the

second term we use Assumption A-(vi), (vii), and Lemma 1 of Bolthausen (1982) to obtain

that ¯̄̄̄
¯̄ 1

X



£
21 () ()  

2
1 () ()

¤¯̄̄̄¯̄ (A.2)

≤ 1



X


¯̄̄̄


∙
21 ()

µ
 − 



¶
 21 ()

µ
 − 



¶¸¯̄̄̄

=
2


X


¯̄


£
21 () ()  

2
1 () ()

¤
+

¡
2
¢¯̄

≤ 2

∞X
=1

 ()(2+)
³

h

4+2
 1 () ()

2+
i´2(2+)

+
¡
4

¢
= 

¡
2 + 4

¢
for some finite   0, where  () is the mixing coefficient defined in (6) and the first

equality is by the change of variables ( = ( − )) in the covariance operator. Hence,

the pointwise convergence is established. For given , the uniform tightness of  (; ) in 

follows from a similar argument as in Lemma 4.6 of Zhu and Lahiri (2007) and the uniform

convergence follows from standard argument. For  (; ), since  [| ] = 0, the proof
for sup∈Γ |−12−12  ( ) | → 0 is identical as  (; ) and hence omitted.

Next, we derive the weak convergence of  (; ). For any fixed  and , Theorem of

Bolthausen (1982) implies that  (; ) ⇒  (; ) under Assumption A-(ii). Because  is

in the indicator function, such pointwise convergence in  can be generalized into any finite

collection of  to yield the finite dimensional convergence in distribution. By theorem 15.5 of

Billingsley (1968), it remains to show that, for each positive () and () at given , there

exist ∆  0 such that if  is large enough,



Ã
sup

∈[+∆]
| (; )−  (; )|  ()

!
≤ ()∆

for any . To this end, we consider a fine enough grid over [ +∆] such that  = 0  1 

2  · · ·  −1  
= +∆, where ∆2 ≤  ≤ ∆ andmax1≤≤

¡
 − −1

¢ ≤
∆. We define () =  ()1

£
−1   ≤ 

¤
and () = −1−1

X

=1
|()|

for 1 ≤  ≤ . Then for any  ∈
£
−1 

¤
,¯̄

 (; )− 
¡
; 

¢¯̄ ≤ p
()

≤
p
 |()− [()]|+

p
 [()]
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and hence

sup
∈[+∆]

| (; )−  (; )|

≤ max
1≤≤

¯̄

¡
; 

¢−  (; )
¯̄

+ max
1≤≤

p
 |()− [()]|+ max

1≤≤

p
 [()]

≡ Ψ1() +Ψ2() +Ψ3().

In what follows, we simply denote () =  ()1
£
   ≤ 

¤
for any given 1 ≤  

 ≤  and for fixed . First, for Ψ1(), we have


h¯̄

¡
; 

¢−  (; )
¯̄4i

=
1

22

X
=1


£
4 ()

¤
+

1

22

X
6=


£
2 ()

2
 ()

¤
+

1

22

X
6=


£
3 ()()

¤
+

1

22

X
6= 6= 6=

 [()()()()] +
1

22

X
 6= 6=


£
2 ()()()

¤
≡ Ψ11() +Ψ12() +Ψ13() +Ψ14() +Ψ15(),

where each term’s bound is obtained as follows. For Ψ11(), a straightforward calculation and

Assumption A-(vi) yield Ψ11() ≤ 1()
−1−1 + () = (−1−1 ) for some constant

0  1() ∞. For Ψ12(), similarly as (A.2),

Ψ12() ≤ 2

22

X


¡

£
2 ()

¤

£
2 ()

¤
+
¯̄


£
2 () 

2
()

¤¯̄¢
(A.3)

≤ 2
³

he2 i´2 + 2

2

(
2

∞X
=1

 ()(2+)
³

he4+2

i´2(2+)
+

¡
4

¢)

for some   0 that depends on , where we let e =  ()1
£
   ≤ 

¤
from the

change of variables ( = ( − )). Then, by the stationarity, Cauchy-Schwarz inequality,

and Lemma 1 of Bolthausen (1982), we have

Ψ12() ≤  0
¡
 − 

¢2
+(−1) +(2)

for some constant 0  0 ∞. Using the same argument as the second component in (A.3),
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we can also show that Ψ13() = (−1) +(2). For Ψ14(), by stationarity,

Ψ14() ≤ 4!

22

X
1

| [1()()()()]|

≤ 4!

2

X
=1

X
≤

| [1() +1()++1()+++1()]|

+
4!

2

X
=1

X
≤

| [1()+1() ++1()+++1()]| (A.4)

+
4!

2

X
=1

X
≤

| [1() +1()++1() +++1()]|

similarly as Billingsley (1968, p.173). By Assumption A-(vi), (vii), and Lemma 1 of Bolthausen

(1982),

| [1() +1()++1()+++1()]|
≤  ()(2+)

× ¡ £1()2+¤¢1(2+) ³ h(+1()++1()+++1())2+i´1(2+)
=  ()(2+)

×
³


n

he2+1

i
+

¡
2
¢o´1(2+)µ

3

½


∙³e+1e++1e+++1´2+¸+
¡
2
¢¾¶1(2+)

= 4(2+)  ()(2+)

×
(³


he2+1

i´1(2+)µ


∙³e+1e++1e+++1´2+¸¶1(2+) +
¡
2
¢)
,

where the first equality is by the change of variables ( = ( − )) and by Assumption

A-(xi). It follows that the first term in (A.4) satisfies

4!

2

X
=1

X
≤

| [1() +1()++1()+++1()]|

≤ 4!


2−(4(2+))


∞X
=1

2 ()(2+)

×
(³


he2+1

i´1(2+)µ


∙³e+1e++1e+++1´2+¸¶1(2+) +
¡
2
¢)

= 

Ã
1


2(2+)


!
+

Ã

4(2+)




!
(A.5)

by Assumption A-(ii). However, if we select  small enough such that

2

2 + 
≤ 1

1− 2 , (A.6)
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then 
2(2+)
 = (1−2(2(2+))(1−2) )1(1−2) → ∞ by Assumption A-(x), which yields

(A.5) becomes (1). Using the same argument, we can also verify that the rest of terms in

(A.4) are all (1) and hence Ψ14() = (1). For Ψ15(), we can similarly show that it is (1)

as well because

Ψ15() ≤ 3!

2

X
=1

X
≤

¯̄


£
21() +1()++1()

¤¯̄
+
3!

2

X
=1

X
≤

¯̄


£
21()+1() ++1()

¤¯̄
.

By combining these results for Ψ11() to Ψ15(), we thus have


h¯̄

¡
; 

¢−  (; )
¯̄4i ≤ 1()

¡
 − 

¢2
for some constant 0  1() ∞ given , and Theorem 12.2 of Billingsley (1968) yields



µ
max

1≤≤

¯̄

¡
; 

¢−  (; )
¯̄
 ()

¶
≤ 1()∆

2

4()
, (A.7)

which bounds Ψ1().

To boundΨ2(), the standard result (e.g., Li and Racine, 2007, Ch.1) yields that
£
2
¤ ≤

2() for some constant 0  2() ∞ given . Then by Lemma 1 of Bolthausen (1982),

we have



∙³p
 |()− [()]|

´2¸
=

1


 

"
X
=1

|()|
#

≤ 1



£
2()

¤
+

2



X


| (|()|  |()|)|

≤ 2()∆

and hence by Markov’s inequality,



µ
max

1≤≤

p
 |()− [()]|  ()

¶
≤ 2()∆

2()
. (A.8)

Finally, to bound Ψ3(), note thatp
 [()] = 1212 3()∆ ≤ 23()−12−12 (A.9)

for some constant 0  3()  ∞ given , where ∆ ≤ 2. So tightness is proved by
combining (A.7), (A.8), and (A.9), and hence the weak convergence follows from Theorem

15.5 of Billingsley (1968). ¥

Lemma A.2 Under Assumption A, for given  ∈ S, b()→ 0() as →∞.

Proof of Lemma A.2 For given  ∈ S, let e() = ()
12, e() = ()

12, e() =
()

12, and e(; ) = ()
121 (); we denote e(), e(), e(), e(; ) as their
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corresponding matrices of -stacks. Then b(; ) = (b(; )0b(; )0)0 in (2) is given asb(; ) = ( e(; )0 e(; ))−1 e(; )0e(), (A.10)

where e(; ) = [ e() e(; )]. Therefore, since e() = e()0 + e(0(); )0 + e() ande() lies in the space spanned by e(; ), we have
 (; )− e()0e() = e()0 ¡ − (; )¢ e()− e()0e()

= −e()0 (; )e() + 200 e(0(); )0 ¡ − (; )¢ e()
+00 e(0(); )0 ¡ −  (; )¢ e(0(); )0

where  (; ) = e(; )( e(; )0 e(; ))−1 e(; )0 and  is the identity matrix of rank

. Note that (; ) is the same as the projection onto [ e() − e(; ) e(; )], wheree(; )0( e()− e(; )) = 0. Furthermore, for  ≥ 0(), e(0(); )0( e()− e(; )) = 0
and e(0(); )0 e(; ) = e(0(); )0 e(0(); ). Since

(; ) =
1



X
=1

e(; )e(; )0 and (; ) =
1√


X
=1

e(; )e(),
Lemma A.1 hence yields that

e(; )0e() = [ e()0e() e(; )0e()] = 

³
1212

´
e(; )0 e(0(); ) = [ e()0 e(0(); ) e(; )0 e(0(); )]

= [ e()0 e(0(); ) e(0(); )0 e(0(); )] =  ()

for given . It follows that

1

1−2

¡
 (; )− e()0e()¢ (A.11)

= 

µ
1

1−2

¶
+

µr
1

1−2

¶
+

1


00 e(0(); )0 ¡ −  (; )¢ e(0(); )0

=
1


00 e(0(); )0 ¡ −  (; )¢ e(0(); )0 + (1)

for 1−2 → 0 as →∞. Hence, similarly as Lemma A.1, it can be verified that

 [ (0(); )] =
1



ZZ
[2 | ]1[ ≤ 0()]

µ
 − 



¶
 ( )  (A.12)

=  [ (0; )] +

Z ÃZ 0(+)

0()
( + )( + )

!
()

=  [ (0; )] +

Z ÃZ 0(+)

0()
( )( )

!¡
1 + 1

2

2
¢
()

=  [ (0; )] +

Z ¡
21+ 22

2

2
¢ ¡
1 + 1

2

2
¢
()

=  [ (0; )] +
¡
2
¢
,
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for some 1 21 22  ∞, where the fourth equality is by the Leibniz integral rule under
Assumption A-(v). It follows that, uniformly over  ∈ Γ ∩ [0()∞),

1


00 e(0(); )0 ¡ −  (; )¢ e(0(); )0 (A.13)

→ 
0
0(0; )0 − 00(0; )

0(; )−1(0; )0 ∞,
from Lemma A.1 and Assumptions A-(viii) and (ix), as 

¡
2
¢
= (1). Note that (; ) =

[
0
1()| = ]() is positive definite from Assumptions A-(viii) and (ix), where ()

is the marginal density of . The pointwise consistency follows using the same argument as

the proof of Lemma A.5 of Hansen (2000). ¥

Lemma A.3 Define  = 1−2, where  is given in Assumption A-(iii). For given  ∈ S,
let  () = 0 () +  with some || ∞, and

∗ ( ) =
X
=1

¡
00

¢2
(1 ( ())− 1 (0 ())) () ,

∗ ( ) =
X
=1

00 (1 ( ())− 1 (0 ())) () .

Then,
∗ ( )→ || 00 (0 ()  ) 0 (0 ()  )

and

∗ ( )⇒ ()
q
00 (0 ()  ) 0 (0 ()  )2

as →∞ under Assumption A, where 2 =
R
()2.

 () =
00 (0 ()  ) 02

(00 (0 ()  ) 0)
2  (0 ()  )

.

Proof of Lemma A.3 First consider   0. By change of variables and Taylor expansion,

Assumption A-(vii) and (viii) imply that

 [∗ ( )] =




X
=1


h¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

i
= 

ZZ 0()+

0()

h¡
00

¢2 | + 
i
 ()  ( + ) 

= 00 (0 ()  ) 0 (0 ()  ) +  (1) .
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Next, given that (1 (0 () + )− 1 (0 ()))2 = 1 (0 () + )− 1 (0 ()) for   0,
we have

  [∗ ( )] =
2
22

 

"
X
=1

¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

#

=
2
2

 
h¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

i
+
22
22

X



h¡
00

¢2
(1 (0 () + )− 1 (0 ())) () 

¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

i
≡ Ψ1( ) +Ψ2( ).

Taylor expansion and Assumption A-(vii) and (viii) lead to that

Ψ1( ) =
2
2


h¡
00

¢4
(1 (0 () + )− 1 (0 ()))2

 ()
i

− 2
2

³

h¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

i´2
= 

¡
−2

¢→ 0.

Furthermore, by change of variables ( = (−)) in the covariance operator and Lemma
1 of Bolthausen (1982), for some   0

Ψ2( )

≤ 22
2

X



h¡
00

¢2
(1 (0 () + )− 1 (0 ())) () 

¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

i
≤ 22



∞X
=1

 ()2(2+)
µ


∙¯̄̄¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

¯̄̄2+¸¶2(2+)
= 

¡
−1

¢→ 0.

Hence, the pointwise convergence of ∗ ( ) is obtained. Since 00 (0 ()  ) 0 (0 ()  )
is strictly increasing and continuous in , the convergence holds uniformly on any compact

set. The same argument holds for negative , which completes the proof for ∗ ( ).
For ∗ ( ), Assumption A-(iv) leads to  [∗ ( )] = 0. Then, similarly as for ∗ ( ),

for any  6= , we have


£
00 (1 (0 + )− 1 (0)) ()  (A.14)

00 (1 (0 + )− 1 (0)) ()
¤ ≤ 2

−1


for some positive constant  ∞, by the change of variables in the covariance operator and
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Lemma 1 of Bolthausen (1982). It follows that

 [∗ ( )] =



 

£
00 |1 (0 + )− 1 (0)| ()

¤
+ ()

= 00 (0 ()  ) 0 (0() )2 +  (1) ,

where 2 =
R
()2. Then by the CLT for stationary and mixing random field (e.g.

Bolthausen (1982); Jenish and Prucha (2009)), we have

∗ ( )⇒ ()
q
00 (0 ()  ) 0 (0 ()  )2

as →∞. This pointwise convergence in  can be extended to any finite-dimensional conver-
gence in  by the fact that for any 1  2,  [

∗
 (1 )  

∗
 (2 )] =   [∗ (1 )]+ (1)

since (1 (0 + 2)− 1 (0 + 1))1 (0 + 1) = 0 and (A.14). The tightness fol-

lows from a similar argument as (; ) in Lemma A.1 and the desired result follows by

Theorem 15.5 in Billingsley (1968). ¥

Lemma A.4 Let b (b ()) = (b (b ())0 b (b ())0)0, b (0 ()) = (b (0 ())0 b (0 ())0)0, and
0 = (

0
0 

0
0)
0 for given  ∈ S. Then, under Assumption A,p



³b (0 ())− 0

´
= (1) and

p


³b (b ())− b (0 ())´ = (1).

Proof of Lemma A.4 For the first result, from (A.10), we havep


³b (0 ())− 0

´
=

µ
1


e(0; )0 e(0; )¶−1µ 1√


e(0; )0e()¶

=

Ã
1



X

=1


0
 () (0; )

(0; ) (0; )

!−1Ã
1√


X

=1
0 ()

(0; )

!
= (1)

from Lemma A.1, where ()
−1X

=1


0
 () → ()  ∞ for some positive definite

() and ()
−12X

=1
0 () = (1).

For the second result, we let b() = [0 
0
1 (b ())]0, () = [0 

0
1 (0 ())]

0
, and
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 = [
0
 

0
1 (0 ())]

0
. Then,  = 00 + . Using a similar expression as above, we havep



³b (b ())− b (0 ())´ (A.15)

=
p


³b (b ())− 0

´
−
p


³b (0 ())− 0

´
=

µ
 + 

µ
1



¶¶−1 1√


X
=1

©b() ¡ − b()00¢− ()
¡
 − ()

00
¢ª

 ()

=

µ
 + 

µ
1



¶¶−1( 1√


X
=1

(b()− ) ()

− 1√


X
=1

b() (b()− )
0 0 ()− 1√



X
=1

() ( − ())
0 0 ()

)
for some 0   ∞. However, since b()−  = [0 

0
 (1 (b ())− 1 (0 ()))]0,

1√


X
=1

(b()− ) ()

=

"
0

1√


X
=1

 (1 (b ())− 1 (0 ())) ()

#0

=

"
0

1√
1−2

X
=1

− (1 (b ())− 1 (0 ())) ()

#0
= ((

1−2)−12)→ 0

by Lemma A.3 and Assumption A-(x). Similarly, we also have

1√


X
=1

b() (b()− )
0 0 ()

=

"
(1−2)−12

P
=1 

−00 (1 (b ())− 1 (0 ())) ()

(1−2)−12
P

=1 
−00 (1 (b ())− 1 (min{b ()  0 ()})) ()

#
= ((

1−2)−12)→ 0

since (b()− )
0 0 = 00 (1 (b ())− 1 (0 ())). The last component in (A.15) can be

shown to be ((
1−2)−12) as well using the same argument, which completes the proof.

¥

Lemma A.5 Define  = 1−2, where  is given in Assumption A-(iii). For any fixed
 ∈ S, b ()− 0 () = (

−1
 )

under Assumption A.
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Proof of Lemma A.5 For given  ∈ S, we let
∗((); ) = (b (b ()) b (b ())  (); ) (A.16)

=
X
=1



µ
 − 



¶³
 − 0b (b ())− 0b (b ())1 [ ≤ ()]

´2
for any (·), where (  ; ) is the sum of squared errors function in (3). We consider

() such that | ()− 0 ()| ∈ [() ()] for some 0  () ()  ∞. Then, given
Lemma A.3, it can be verified that  (∗((); )−∗(0(); )  0)→ 1 as →∞ using the

standard results in kernel regression (e.g., Li and Racine, 2007, Ch.2) and following Lemma

A.9 in Hansen (2000). The detailed proof is similar to the proof of Theorem 3 below and

hence omitted. Therefore, with probability approaching to one (w.p.a.1, hereafter), it should

hold that |b () − 0 () | ≤ () since 
∗
(b(); ) − ∗(0(); ) ≤ 0 for any  ∈ S by

construction. ¥

Proof of Theorem 1 The pointwise consistency is proved in Lemma A.2 above. To derive

the limiting distribution, from Lemma A.5, we define a random variable ∗() such that

∗() = (b ()− 0 ()) = argmax

½
∗(0(); )−∗

µ
0() +

()


; 

¶¾
,

where ∗((); ) is defined in (A.16). We let ∆(; ) = 1 (0 () + ())−1 (0 ()). We
then have

∗(0(); )−∗

µ
0() +

()


; 

¶
(A.17)

= −
X
=1

³b (b ())0 ´2∆(; ) ()

+2
X
=1

³
 − b (b ())0  − b (b ())0 1 (0 ())´³b (b ())0 ´∆(; ) ()

≡ −(; ) + 2(; ).

For (; ), Lemmas A.3 and A.4 yield

(; ) =
X
=1

µ³
0 + −12−12  + (

−12−12 )
´0


¶2
∆(; ) () (A.18)

= ∗ ( ) +
1
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¡
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0


¡
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¢
∆(; ) () +  (1)

= ∗ ( ) +

¡
(1−2

¢−1
) +  (1)

= ∗ ( ) + (1)

for some   ∞, since 1−2 → ∞ and
X

=1
−2 0

0
∆(; ) () = (1)

from Lemma A.3. Note that b (b ()) − 0 = (b (b ()) − b (0 ())) + (b (0 ()) − 0) =

(
−12−12 ) from Lemma A.4. Similarly, for (; ), since  = 00+

0
01 (0())+,
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we have for some  ∞
(; ) (A.19)

=
X
=1

µ
 + 00 {1 (0 ())− 1 (0 ())}−

³b (b ())− 0

´0


−
³b (b ())− 0

´0
1 (0 ())

¶b (0 ())0 ∆(; ) ()

=
X
=1

³
 + 00 {1 (0 ())− 1 (0 ())}− −12−12  0 − −12−12  01 (0())

´
×
³
0 + −12−12 

´0
∆(; ) () + (1)

= ∗ ( ) +
1√

1−2

X
=1


¡
−

¢
∆(; ) ()

+
X
=1

00
0
0 (∆(; ) {1 (0 ())− 1 (0 ())}) () (A.20)

+
1√

1−2

X
=1

00
0


¡
−

¢
(∆(; ) {1 (0 ())− 1 (0 ())}) ()

+
1√

1−2

0X
=1

00
0


¡
−

¢
∆(; ) ()

+
1

1−2

X
=1

¡
−

¢0


0


¡
−

¢
∆(; ) ()

+
1√

1−2

0X
=1

00
0


¡
−

¢ {∆(; )1 (0())} ()

+
1

1−2

X
=1

¡
−

¢0


0


¡
−

¢ {∆(; )1 (0())} () + (1)

= ∗ ( ) +

¡
(1−2

¢−12
) +(

1−23) +

¡
(1−2

¢−12
) + (1)

= ∗ ( ) + (1)

from Lemma A.3, since we assume 1−2 → ∞ and 1−23 → 0. Note that the term on

(A.20), denoting 3(; ), is 

¡
1−23

¢
, and hence we need 1−23 → 0 to make this

term negligible. To see this, similarly as  [ (; )] in the proof of Lemma A.1, we have

 [3(; )] =


2−1

ZZ
00( + )0 {1[ ≤ 0 () + ()]− 1[ ≤ 0 ()]}
×{1[ ≤ 0 (+ )]− 1[ ≤ 0 ()]} ()  ( + ) .
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However, since5

{1[ ≤ 0 () + ()]− 1[ ≤ 0 ()]} {1[ ≤ 0 (+ )]− 1[ ≤ 0 ()]}
= 1 [0 ()   ≤ min {0 (+ )  0 () + ()}]

+1 [max {0 (+ )  0 () + ()}   ≤ 0 ()]

≤ 1 [0 ()   ≤ 0 (+ )] + 1 [0 (+ )   ≤ 0 ()] ,

we have

 [3(; )] ≤ 

2−1

ZZ 0(+)

0()
00( + )0 ()  ( + ) 

+


2−1

ZZ 0()

0(+)
00( + )0 ()  ( + ) 

= 
¡
1−23

¢
,

which is because ZZ 0(+)

0()
00( + )0 ()  ( + ) 

=

Z ÃZ 0(+)

0()
00( )0 ( ) 

!¡
1 + 1

2

2
¢
()

=

Z ¡
21+ 22

2

2
¢ ¡
1 + 1

2

2
¢
()

= 
¡
2
¢

for some 1 21 22 ∞, similarly as (A.12). The other term can be verified symmetrically.
It hence follows that

∗(0; )−∗

µ
0 +




; 

¶
= −∗ ( ) + 2∗ ( ) + (1)

and the desired result follows from Lemma A.3 using the same argument of the proof of

Theorem 1 in Hansen (2000). ¥

Proof of Theorem 2 From (A.11) and (A.13), we have

1


 (b ()  ) = 1



X
=1

2 () + (1)→ 
£
2 | = 

¤
 () ,

5Note that

1 [1   ≤ min {2 3}] + 1 [max {2 3}   ≤ 1]

=


1 [1   ≤ 2] + 1 [3   ≤ 1] if 2 ≤ 3
1 [1   ≤ 3] + 1 [2   ≤ 1] if 2  3


≤


1 [1   ≤ 2] + 1 [2   ≤ 1] if 2 ≤ 3
1 [1   ≤ 2] + 1 [2   ≤ 1] if 2  3


= 1 [1   ≤ 2] + 1 [2   ≤ 1] .
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where  () is the marginal density of . In addition, from Theorem 1 and the proof of

Lemma A.4, we have

 (0 ()  )− (b ()  ) = ∗ (0 ()  )−∗ (b ()  ) + (1)

since b (b ()) − b (0 ()) = (()
−12). Following the proof of Theorem 2 of Hansen

(2002), the rest of the proof follows from the change of variables and the continuous mapping

theorem because ()
−1X

=1
 () →  () by the standard result of kernel density

estimation. ¥

Lemma A.6 Define  = 1−2 and  = (log)+ 2, where  is given in Assumption
A-(iii). For given  ∈ S, let

 (; ) =
1



X
=1

¡
00

¢2
(1 ( ())− 1 (0 ())) () ,

 (; ) =
1√


X
=1

00 (1 ( ())− 1 (0 ())) () .

Then, for any   0 and   0, there exist constants 0    ∞ such that



Ã
inf

sup∈S |()−0()|
sup∈S  (; )

sup∈S | ()− 0 ()|
 

!
 ,



Ã
sup

sup∈S |()−0()|

sup∈S | (; )|√
 sup∈S | ()− 0 ()|

 

!
≤ 

under the same condition in Theorem 1, provided that either (11) or (12) hold.

Proof of Lemma A.6 We consider the case  () ∈ £0 () + () 0 () + ()
¤
for

some 0  () () ∞, where  = sup∈S () ∞ and  = sup∈S () ∞; the other
direction can be shown symmetrically. For the first result, from (A.1) we have

 [ (; )] = 00 ( ((); )− (0(); )) 0 + ()2

for some 0  ()  ∞, where  (; ) =
R 
−∞( ) ( ) . However, for given  ∈ S,

since  [ (; )] () = 00(() )0 (() ) is continuous in () and

00(0() )0 (0() )  0 from Assumptions A-(vii) and (viii), there exists ()  ∞
such that

1() = inf
|()−0()|()

00(() )0 (() )  0 and 1 = inf
∈S

1()  0.

Hence, for  [ (0; )] = 0, Taylor expansion yields

sup
∈S

 [ (; )] ≥ 1 sup
∈S

( ()− 0 ()) + 2  1 sup
∈S

( ()− 0 ()) , (A.21)
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where we use the fact that  = sup∈S () ∈ (0∞) from the standard result.6 Furthermore,
by Theorem 2.2 in Carbon et al. (2007), we can similarly show that



µ
sup
∈S

| (; )− [ (; )]|
¶2
≤ sup

∈S
( ()− 0 ())2

log


(A.22)

for some 2 ∈ (0∞) under Assumptions A-(vii) and (viii) and the conditions on  in either
(11) or (12). Then following Lemma A.7 in Hansen (2000), set  for  = 1 2  + 1

such that for any  ∈ S,  () = 0 () + 2
−1() where  is the integer such that


()−0 () = 2−1() ≤  and +1 ()−0 () = 2()  . Then Markov’s

inequality and (A.21), (A.22) yield that for any fixed   0,



Ã
sup

1≤≤

¯̄̄̄
¯ sup∈S 

¡
; 

¢
sup∈S 

£

¡
; 

¢¤ − 1¯̄̄̄¯  

!
(A.23)

≤ 

Ã
sup

1≤≤

¯̄̄̄
¯sup∈S 

¡
; 

¢− sup∈S  £ ¡; ¢¤
sup∈S 

£

¡
; 

¢¤ ¯̄̄̄
¯  

!

≤ 

Ã
sup

1≤≤

¯̄̄̄
¯sup∈S

¯̄

¡
; 

¢−
£

¡
; 

¢¤¯̄
sup∈S 

£

¡
; 

¢¤ ¯̄̄̄
¯  

!

≤ 1

2

X
=1


h¡
sup∈S

¯̄

¡
; 

¢−
£

¡
; 

¢¤¯̄¢2i¯̄
sup∈S 

£

¡
; 

¢¤¯̄2
≤ 1

2

X
=1

2 sup∈S
¡
 ()− 0 ()

¢
((log))¯̄

1 sup∈S
¡
 ()− 0 ()

¢¯̄2
≤ 2

221

∞X
=1

1

2−1
× 1

2 + (3 log)

≤ 

for any . Note that 2+(3 log)→∞ as →∞, which does not require any conditions
on 3 log. Then following eq. (33) of Hansen (2000), for any  (·) in the set { (·) :
 ≤ sup∈S ( ()− 0 ()) ≤ }, there exist  such that  ()− 0 ()   ()− 0 () 

+1 ()− 0 () and

sup∈S  (; )
sup∈S | ()− 0 ()|

≥ sup∈S 
¡
; 

¢
sup∈S 

£

¡
; 

¢¤ × sup∈S 
£

¡
; 

¢¤
sup∈S

¯̄
+1 ()− 0 ()

¯̄
≥ (1−  (1))

¡
1 +

¡
2
¢¢
.

6From the standard nonparametric estimation result,

() =
1

2


2()

 ()

−∞


̈( ) ( ) +( )̈ ( )


 +


2

,

which satisfies sup∈S () ∈ (0∞) from Assumptions A-(vii) and (viii).
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This inequality yields that for any  and 



Ã
inf

sup∈S |()−0()|
sup∈S  (; )

sup∈S | ()− 0 ()|
 

!
 .

For the second result, Theorem 2.2 in Carbon et al. (2007) yields that, for a large enough

,



µ
sup
∈S

| (; )|
¶2
≤ sup

∈S
( ()− 0 ())3 log

for some 2 ∈ (0∞) similarly as above, since [ (; )] = 0. Following Lemma A.8 in

Hansen (2000), for  = 1 2 , set  such that for any  ∈ S,  () − 0 () = 2
−1().

Then using a similar approach as (A.23), Assumption A-(iii) yield, for any fixed   0,



Ã
sup
0

sup∈S
¯̄


¡
; 

¢¯̄
√
 sup∈S

¡
 ()− 0 ()

¢  

!
(A.24)

≤ 1

2

∞X
=1


h¡
sup∈S 

¡
 

¢¢2i

¯̄
sup∈S

¡
 ()− 0 ()

¢¯̄2
=

1

2

∞X
=1

sup∈S
¡
 ()− 0 ()

¢
3 log


¯̄
sup∈S

¡
 ()− 0 ()

¢¯̄2
≤ 3

2

∞X
=1

1

2−1
× 1

1 + (1−23) log
.

The above probability is arbitrarily close to 0 if  is large enough since (1−23) log→ 0

under the assumption. Also define Γ to be the collection of functions { (·) : ()2−1 

 ()− 0 ()  ()2}. By a similar argument as above



Ã
sup
0

sup
∈Γ

sup∈S
¯̄


¡
; 

¢¯̄
√
 sup∈S

¡
 ()− 0 ()

¢  

!
≤ 

2
(A.25)

for some constant  ∞. Combining (A.24) and (A.25), we thus have



Ã
sup

sup∈S |()−0()|

sup∈S
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¡
; 

¢¯̄
√
 sup∈S ( ()− 0 ())

 

!

≤ 2

Ã
sup
0

sup∈S
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¡
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¢¯̄
√
 sup∈S

¡
 ()− 0 ()

¢  

!

+2

Ã
sup
0

sup
∈Γ

sup∈S
¯̄


¡
; 

¢¯̄
√
 sup∈S

¡
 ()− 0 ()

¢  

!
≤ 

for any  if  is sufficiently large. ¥
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Proof of Theorem 3 Let  = 1−2. Since sup∈S (∗(b(); )−∗(0(); )) ≤ 0

by construction, where ∗((); ) is defined in (A.16), it suffices to show that as  → ∞,
 (sup∈S (∗((); )−∗(0(); ))  0)→ 1 for any  () such that sup∈S | ()− 0 ()| ≮
((log)) + 2) for some 0    ∞. To this end, for given  ∈ S, consider  () ∈£
0 () + ()((log)) + 2) 0 () + ()

¤
for some 0  () ()  ∞, where  =

sup∈S () ∞ and  = sup∈S () ∞. Then, using a similar decomposition in (A.17),
(A.18), and (A.19), since  ()  0 (),

∗((); )−∗(0(); )

=
X
=1

³b (b ())0 ´2∆() ()

−2
X
=1

³
 − b (b ())0  − b (b ())0 1 (0 ())´³b (b ())0 ´∆() ()

≡  (; )− 2√ (; ) + (1),

where ∆() = 1 ( ()) − 1 (0 ()), and  (; ) and  (; ) are defined in Lemma A.6.

However, Lemma A.6 yields that, for any   0 and   0,



Ã
sup

((log))+2)sup∈S |()−0()|
sup
∈S

(∗((); )−∗(0(); ))  

!
≥ 1− .

We can similarly show that if  () ∈ £0 ()− () 0 ()− ()((log)) + 2)
¤
then

 (sup∈S (∗((); )−∗(0(); ))  0)→ 1 as well, which completes the proof. ¥

Proof of Theorem 4 Let b = [0 
0
1 (b ())]0,  = [0 

0
1 (0 ())]

0
, and b∆ () =

1 (b ())− 1 (0 ()). Then,
√

³b − 0

´
=

Ã
1



X
=1

bb0
!−1Ã

1√


X
=1

b ¡ − (b − )
0 0
¢!

=

Ã
1



X
=1

bb0
!−1Ã

1√


X
=1

©
 + ( − b) + b (b − )

0 0
ª!

and it suffices to establish

1



X
=1

bb0 → 
∗ (A.26)

1√


X
=1

 → N (0  ∗) (A.27)
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and

1√


X
=1

b (b − )
0 0 =  (1) (A.28)

1√


X
=1

( − b) =  (1) . (A.29)

First, by Assumptions A-(vi), (x), and Theorem 1, (A.26) can be readily verified since

−1
X

=1


0
1 (b ()) = −1

X

=1


0
1 (0 ()) + −1

X

=1


0

b∆ () and


h


0

b∆ ()

i
≤

Z ¯̄̄̄
¯
Z ()
0()

 ( )  ( ) 

¯̄̄̄
¯  (A.30)

=

Z ½
| (0 ()  )  (0 ()  )|

µ
1

1−2

¶¾


= 

µ
1

1−2

¶
→ 0

similarly as (A.12). Using a similar argument, asymptotic normality in (A.27) follows by

Theorem of Bolthausen (1982) under Assumption A-(ii).

Second, to show (A.28) and (A.29), we consider the case of scalar  for expositional

simplicity. Given Theorem 3, it suffices to consider b in a neighborhood of 0 uniformly with
distance at most  for some large enough , where  = log + 2 and  = 1−2.
Define e () = 0 () +  and

e∆ () = 1 (e ()) − 1 (0 ()). We first observe that, by
Assumptions A-(vi), (x), and (A.30), on the event that {sup∈S |b ()− 0 ()| ≤ },



⎡⎣Ã 1√


X
=1

2 0
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2 0
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h
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+ 21−220

³

h
2
b∆ ()

i´2
+2−220
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 ()(2+)
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¡
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¢
+

µ
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1−22

¶
+

³
−2−2(2+)

´
=  (1) , (A.31)

provided 1−22 → ∞, because [|2 e∆ () |2+] = () as (A.30). We can also verify
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that
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¯
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µ
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¶
similarly as (A.30) and hence on the event that {sup∈S |b ()− 0 ()| ≤ }
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³
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since [ b∆ ()] = 0 and [| e∆ () |2+] = (). Therefore, from (A.31), (A.32),

and the fact that  (sup∈S |b ()− 0 ()| ≤ )→ 1 as →∞ for some  ∞,

1√


X
=1

b (b − )
0 0 =

⎡⎣ −12
X

=1


0
0
b∆ ()

−12
X

=1


0
0
b∆ ()1 (b ())
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1√
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( − b) =

⎡⎣ −12
X

=1
 b∆ ()

−12
X

=1
∆ ()1 (b ())

⎤⎦
are both (1), which completes the proof. ¥
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