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1. INTRODUCTION

The objective of this paper is to analyze the impact of participation constraints in a mech-

anism design problem. Our study revolves around sequencing problems with a finite set of

agents. Each agent has one job to process using a facility that can only serve one agent’s re-

quirement at a time. It is further assumed that no job can be interrupted once it starts pro-

cessing. A job is characterized by its processing time and an agent’s waiting cost. The latter

represents the dis-utility of waiting (per unit of time) and agents are assumed to have quasi-

linear preferences. There is a well established literature in this direction.1 A special case of

sequencing problems where the processing times of the agents are identical is called queueing

problems. Queueing problems have also been analyzed extensively from both normative and

strategic viewpoints.2

A well-known and well studied concept is the outcome efficient sequencing rule that mini-

mizes the aggregate job completion cost of the agents. As pointed out by Smith [32], outcome

efficiency requires that the jobs of the agents should be processed in the non-increasing order of

their urgency index. The urgency index of any agent is the ratio of his waiting cost and his pro-

cessing time. Given, we want to implement outcome efficient sequencing rule when waiting

cost of the agents are private information, we have a mechanism design set up under incom-

plete information. It is also well-known that, as long as preferences are ‘smoothly connected’

(see Holmström [21]), outcome efficient rules can be implemented in dominant strategies (or

equivalently we can achieve outcome efficiency and strategyproofness) if and only if the mech-

anism is a Vickrey-Clarke-Groves (VCG) mechanism (see Clarke [4], Groves [17] and Vickrey

[35]). For the sequencing problem, such mechanism design set up under incomplete informa-

tion was analyzed by Dolan [15], Mitra [25] and Suijs [34].

In this paper we assume that the processing time of all agents are publicly known while

the waiting costs are private information and we want mechanisms to implement the outcome

efficient rule in dominant strategies with the added restriction of participation constraints. In

our first result, we identify the “interval property” (which is an agent specific restriction in

1See De [11], [12], De and Mitra [13], [14], Dolan [15], Duives, Heydenreich, Mishra, Muller and Uetz [16], Hain and
Mitra [19], Mitra [25], Moulin [28] and Suijs [34].
2See Chun [2], [3], Chun, Mitra and Mutuswami [5], [6], [7], [8], Hashimoto and Saitoh [20], Kayi and Ramaekars
[22], Maniquet [23], Mitra [24], [26], Mitra and Mutuswami [27] and Mukherjee [31].
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terms of processing times of all agents) that is both necessary and sufficient to find mecha-

nisms satisfying outcome efficiency, strategyproofness and participation constraints. Clearly,

given the interval property and given Holmström’s [21] result on VCG mechanisms, any mech-

anism that satisfies outcome efficiency, strategyproofness and participation constraints must be

a VCG mechanism satisfying participation constraints. Given interval property, our second re-

sult identifies the complete set of VCG mechanisms satisfying participation constraints.

We then apply these two general results in two different frameworks. The first framework is

sequencing problems with initial order where there is a preexisting order on the agents (may

be based on their order of arrivals or based on some factors beyond the control of the mecha-

nism designer). From the cooperative game perspective, this type of sequencing problem with

initial order was analyzed for sequencing games by Curiel, Pederzoli, Tijs [10] and, from the

mechanism design perspective, for the queueing problems this problem was addressed by by

Chun, Mitra and Mutuswami [7] and by Gershkov and Schweinzer [18]. The second frame-

work is sequencing problems without initial orders where there is no preexisting order on the

agents. To the best of our knowledge such a problem is new in the sequencing problem but has

been analyzed by Chun and Yengin [9], Kayi and Ramaekers [22] and Mitra [26] in the queue-

ing context. For sequencing problems with and without initial order, we also try to identify

mechanisms that in addition satisfy either feasibility or its stronger version called budget bal-

ance. It is well-known that feasibility of a mechanism requires that the sum of transfers across

all agents is non-positive and budget balancedness requires that the sum of transfers across all

agents is zero.

For sequencing problems with a given initial order, it is natural to conceive participation

constraint of any agent as the agent’s total cost under the given initial order. Then achieving

outcome efficiency and eliciting private information boils down to reordering this existing ini-

tial order to the outcome efficient order by using VCG transfers. In this context it is easy to

show that any sequencing problems with a given initial order satisfies the agent specific re-

striction in terms of processing times of the agents and hence, given our general results, we

can easily identify the complete set of all VCG mechanims satisfying participation constraints.

More importantly, we can also show that there is no feasible (and hence no budget balanced)
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mechanism in this class. For the queueing problem this issue was addressed by Chun, Mitra

and Mutuswami [7] and our result generalizes it to the sequencing problems.

For sequencing problems with no initial order, participation constraint of an agent is a ‘rea-

sonable’ upper bound on the cost that can be guaranteed to each agent if the agent participates

in the mechanism. In this set up we apply two notions of participation constraints-the identical

costs lower bound (ICLB) and the expected cost lower bound (ECLB). ICLB is a well-known no-

tion of fairness used in many context.3 ICLB requires that each agent receives at least the utility

he could expect under the egalitarian solution if all agents were like him in a reference econ-

omy. The reference economy for any agent i requires that all other agents have the same waiting

cost and processing time as agent i. Since agents are identical in this sense, each of them has

an equal right to the resource and hence must be treated equally and as a consequence agent

i faces all possible orders of serving the agents with equal chance. For queueing problems,

the notion of ICLB was analyzed by Chun and Yengin [9], Kayi and Ramaekers [22] and Mitra

[26]. Following the notion of another type of participation constraint suggested by Gershkov

and Schweinzer [18] for queueing problems, we define the ECLB for sequencing problems for

which we consider the actual economy where each order is equally likely, that is, the partici-

pation constraint of any agent i is the expected cost in the actual economy when all possible

orders of serving the agents is equally likely. Unlike ICLB, agents retain their differences in

terms of processing time under ECLB.

For sequencing problems with no initial order, with our set of results we can identify a qual-

itative difference between ICLB and ECLB. Specifically, we show that for ECLB the agent spe-

cific restrictions in terms of processing times of the agents that are both necessary and suf-

ficient to find mechanisms satisfying outcome efficiency, strategyproofness and participation

constraints holds for all sequencing problems, with ICLB it holds only for a strict subset of

sequencing problems. However, for the queueing problems, the notions of ICLB and ECLB

coincide. Chun and Yengin [9] in the queueing context provided a necessary condition and

a sufficient condition for obtaining mechanisms satisfying outcome efficiency, strategyproof-

ness and ICLB (ECLB). Using our results we can generalize Chun and Yengin’s [9] result by

eliminating the gap between their necessary and sufficient conditions.

3See Bevia [1], Moulin [29], [30], Steinhaus [33] and Yengin [36].
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2. THE FRAMEWORK

Consider a finite set of agents N = {1, 2, . . . , n} who want to process their jobs using a

facility that can be used sequentially. The job processing time can be different for different

agents. Specifically, for each agent i ∈ N, the job processing time is given by si > 0. Let θiSi

measure the cost of job completion for agent i ∈ N where Si ∈ R++ is the job completion time

for this agent and θi ∈ Θ := R++ denotes his constant per-period waiting cost with R++ is the

positive orthant of the real line R. Due to the sequential nature of providing the service, the

job completion time for agent i depends not only on his own processing time si, but also on the

processing time of the agents who precede him in the order of service. By means of an order

σ = (σ1, . . . ,σn) on N, one can describe the position of each agent in the order. Specifically,

σi = k indicates that agent i has the k-th position in the order. Let Σ be the set of n! possible

orders on N. For any order σ ∈ Σ, we define its complement order as σ c, that is, σ c is such that

σ c
i = n+ 1−σi for all i ∈ N. We define Pi(σ) = { j ∈ N \ {i} | σ j < σi} to be the predecessor set

of i in the orderσ . Similarly, Fi(σ) = { j ∈ N \ {i} | σ j > σi} denotes the follower (or successor)

set of i in the orderσ . Note that for anyσ ∈ Σ and any i ∈ N, Pi(σ) = Fi(σ
c) and Fi(σ) = Pi(σ

c).

Given a vector s = (s1, . . . , sn) ∈ Rn
++ and an order σ ∈ Σ, the cost of job completion for

agent i ∈ N is θiSi(σ), where the job completion time is Si(σ) = ∑ j∈Pi(σ) s j + si. In general,

we use the following convention on the summation operator: for any set Y = {X1, . . . , XK}

and any M ⊆ Y, ∑ j∈M X j = 0 if M = ∅. The agents have quasi-linear utility of the form

ui(σ , τi;θi) = −θiSi(σ) + τi where σ is the order, τi ∈ R is the transfer that he receives and

the parameter of the model θi is the waiting cost. Given any processing time vector s ∈ Rn
++,

with slight abuse of notation, we denote a sequencing problem by Ω and we denote the set of all

sequencing problems with the set of agents N by S(N). A sequencing problem Ω ∈ S(N) is

called a queueing problem if s = (s1, . . . , sn) is such that s1 = . . . = sn. We denotes the set of all

queueing problems with the set of agents N by Q(N). Clearly, Q(N) ⊂ S(N) for any given N

(such that N is a finite set and n ≥ 2).

A typical profile of waiting costs is denoted by θ = (θ1, . . . ,θn) ∈ Θn. For any i ∈ N, let

θ−i, denote the profile (θ1 . . .θi−1,θi+1, . . .θn) ∈ Θn−1 which is obtained from the profile θ by

eliminating i’s waiting cost. A mechanism is µ = (σ , τ) that constitutes of a sequencing rule σ
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and a transfer rule τ . A sequencing rule is a function σ : Θn → Σ that specifies for each profile

θ ∈ Θn a unique orderσ(θ) = (σ1(θ), . . . ,σn(θ)) ∈ Σ. Because the sequencing rule is a function

(and not a correspondence) we will require a tie-breaking rule to reduce a correspondence to

a function which, unless explicitly discussed, is assumed to be fixed. We use the following

tie-breaking rule. We take the linear order 1 � 2 � . . . � n on the set of agents N. For any

sequencing rule σ and any profile θ ∈ Θn with a tie situation between agents i, j ∈ N, we

pick the order σ(θ) with σi(θ) < σ j(θ) if and only if i � j. A transfer rule is a function τ :

Θn → Rn that specifies for each profile θ ∈ Θn a transfer vector τ(θ) = (τ1(θ), . . . , τn(θ)) ∈ Rn.

Specifically, given any mechanism µ = (σ , τ), if (θ′i ,θ−i) is the announced profile when the true

waiting cost of i isθi, then utility of i is ui(µi(θ
′
i ,θ−i);θi) = −θiSi(σ(θ

′
i ,θ−i)) + τi(θ

′
i ,θ−i) where

µi(θ
′
i ,θ−i) := (σ(θ′i ,θ−i), τi(θ

′
i ,θ−i)). Given any Ω ∈ S(N), any θ ∈ Θn and any order σ ∈ Σ,

define the aggregate cost as C(σ ;θ), that is, C(σ ;θ) := ∑ j∈N θ jS j(σ).

Definition 1. A sequencing rule σ∗ is outcome efficient if for any profile θ ∈ Θn, σ∗(θ) ∈

argminσ∈ΣC(σ ;θ).

The ratio of the waiting cost and processing time of any agent i, that is, θi/si is known as

the urgency index. From Smith [32] it follows that σ∗ is outcome efficient if and only if the

following holds: (OE) For any θ ∈ Θn, the selected order σ∗(θ) satisfies the following: For any

i, j ∈ N, θi/si > θ j/s j ⇔ σ∗i (θ) < σ∗j (θ). We say that a mechanism µ = (σ , τ) satisfies outcome

efficiency if σ = σ∗.

Definition 2. For a sequencing rule σ , a mechanism µ = (σ , τ) is strategyproof if the transfer

rule τ : Θn → Rn is such that for any i ∈ N, any θi,θ′i ∈ Θ and any θ−i ∈ Θn−1,

(1) ui(µi(θ);θi) ≥ ui(µi(θ
′
i ,θ−i);θi).

For a given sequencing ruleσ , strategyproofness of a mechanism µ = (σ , τ) requires that the

transfer rule τ is such that truthful reporting for any agent weakly dominates false reporting

no matter what others’ report.

Definition 3. A mechanism µ satisfies feasibility if for any θ ∈ Θn, ∑ j∈N τi(θ) ≤ 0.

Definition 4. A mechanism µ satisfies budget balance if for any θ ∈ Θn, ∑ j∈N τi(θ) = 0.



PARTICIPATION CONSTRAINTS AND INCENTIVES 7

Clearly, for a sequencing rule σ , if the associated mechanism µ = (σ , τ) is budget balanced,

then it also feasible but the converse is not true.

2.1. Participation constraints. Given any sequencing problem Ω ∈ S(N), let −θiOi(s) be the

participation constraint of agent i with type θi. Let O(N; s) := (O1(s), . . . , On(s)) ∈ Rn denote

the participation constraint vector. We represent a typical sequencing problem with participa-

tion constraints by Γ = (Ω, O(N; s)) where Ω ∈ S(N) and the associated O(N; s) ∈ Rn is the

participation constraints vector.

Definition 5. For Γ , a mechanism µ = (σ , τ) satisfies participation constraints if the transfer rule

τ : Θn → Rn is such that for any i ∈ N, any θi ∈ Θ and any θ−i ∈ Θn−1,

(2) ui(µi(θi,θ−i);θi) ≥ −θiOi(s).

3. PARTICIPATION CONSTRAINTS AND STRATEGYPROOFNESS

Given any sequencing problem with participation constraints Γ we first try to identify the

set of all mechanisms that satisfy outcome efficiency, strategyproofness and participation con-

straints.

Definition 6. Any sequencing problem with participation constraints Γ = (Ω, O(N; s)) satisfies

the interval property if O(N; s) = (O1(s), . . . , On(s)) is such that

(3) Oi(s) ∈ [si, A(s)] ∀ i ∈ N where A(s) := ∑
j∈N

s j.

Let G(N) be the set of all Γ satisfying the interval property given by (3).

Theorem 1. The following statements are equivalent:

(SPC1) For a Γ = (Ω, O(N; s)) we can find a mechanism that satisfies outcome efficiency, strat-

egyproofness and participation constraints

(SPC2) Γ satisfies the interval property, that is, Γ ∈ G(N).

Proof: (SPC1)⇒ (SPC2) It is well-known that for an outcome efficient sequencing rule a

mechanisms is strategyproof if and only if the associated transfer is a VCG transfer (see Holm-

ström [21]). The standard way of specifying the VCG transfers for any sequencing problem
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Ω is that for all θ ∈ Θn and for all i ∈ N, τi(θ) = −C(σ∗(θ)),θ) + Si(σ
∗(θ))θi + gi(θ−i),

where for each i ∈ N the function gi : Θ|N\{i}| → R is arbitrary.4 If in addition we re-

quire participation constraints to be met, then it is necessary that for any profile θ ∈ ΘN

and any agent i ∈ N, Ui(σ
∗(θ), τi(θ);θi) = −C(σ∗(θ);θ) + gi(θ−i) ≥ −θiOi(s) implying that

gi(θ−i) ≥ C(σ∗(θ);θ)−θiOi(s). Since the function gi(θ−i) is independent of agent i’s waiting

cost θi, we have the following:

(4) gi(θ−i) ≥ ḡi(θ−i) := max
xi∈Θ

[Ti(xi;θ−i)] , Ti(xi;θ−i) := [C(σ∗(xi,θ−i); xi,θ−i)− xiOi(s)] .

Observe that Ti(xi;θ−i) = [Si(σ
∗(xi,θ−i))−Oi(s)]xi + ∑ j∈N\{i}θ jS j(σ

∗(xi,θ−i)).

Consider any profile θ∗ ∈ Θn and any i ∈ N such that θ∗j /s j = a > 0 for all j ∈ N \ {i}.

Consider any x′i , x′′i ∈ Θ such that x′i/si ≥ a ≥ x′′i /si and x′i > x′′i . We consider two cases-(a)

si > Oi(s) and (b) A(s) < Oi(s). If Oi(s) < si, then we have

(5) Ti(x′i ;θ
∗
−i)− Ti(x′′i ;θ∗−i) = (x′i − x′′i )[si −Oi(s)] + ∑

j 6=i
sis j

[
θ∗j
s j
− x′′i

si

]
> 0.

Moreover, for any xi > sia, Ti(xi;θ∗i ) = xi[si − Oi(s)] + ∑ j∈N\{i}θ
∗
j S j(σ

∗(xi,θ∗−i)) is increasing

in xi. Therefore, the x∗i that maximizes Ti(xi;θ−i) is then x∗i = ∞ implying that we do not have

an interior maxima. Therefore, for the maximum to exist it is necessary that (a) Oi(s) ≥ si.

Moreover, if Oi(s) > A(s) = ∑ j∈N s j, then we have

(6) Ti(x′i ;θ
∗
−i)− Ti(x′′i ;θ∗−i) = (x′i − x′′i )[A(s)−Oi(s)] + ∑

j 6=i
sis j

[
θ∗j
s j
− x′i

si

]
< 0.

Similarly, for any xi < sia, Ti(xi;θ∗i ) = xi[A(s)−Oi(s)] + ∑ j∈N\{i}θ
∗
j S j(σ

∗(xi,θ∗−i)) is decreas-

ing in xi. Therefore, we cannot find an x∗i > 0 that maximizes Ti(xi;θ−i). Hence, we also require

that (b) Oi(s) ≤ A(s). Combining (a) and (b) we get that Oi(s) ∈ [si, A(s)]. Since the selection

of i was arbitrary, the result follows.

(SPC2)⇒ (SPC1) Consider any Γ that satisfies the interval property, that is, consider Γ ∈

G(N). We first argue how, using the interval property, the solution x∗i to the maximization

exercise of the function Ti(xi;θ−i) can be made independent of the exact waiting cost of agent i.

4See Mitra [25] and Suijs [34].
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Using this independence we then define a VCG mechanism for which participartion constraints

can be satisfied.

For any profile θ ∈ Θn and any i ∈ N, consider the type x∗i ∈ Θ such that the function

Ti(xi,θ−i) (defined in condition (4)) takes the maximum value, that is, Ti(x∗i ,θ−i) ≥ Ti(xi,θ−i)

for all xi ∈ Θn.

Step 1: For any i ∈ N and any θ−i ∈ Θ|N\{i}|, there exists k ∈ N\{i} such that Ti(x∗i ;θ−i) =

Ti(si(θk/sk);θ−i).

Proof of Step 1: Consider any i ∈ N and any θ−i ∈ Θ|N\{i}| and let R̃(θ−i) = ((R̃ j(θ−i) =

θ j/s j)) j 6=i) be the vector of agent specific waiting cost to processing time ratio of agents in

N \ {i} and R(θ−i) = (R1(θ−i) = θ(1)/s(1), . . . , Rn−1(θ−i) = θ(n−1)/s(n−1)) be the permutation

of R̃(θ−i) such that R1(θ−i) ≥ . . . ≥ Rn−1(θ−i).

We first show that there exists x∗i ∈ [siRn−1(θ−i), siR1(θ−i)] that maximizes Ti(xi,θ−i). Ob-

serve that for any xi ∈ Θ, Ti(xi;θ−i) = [Si(σ
∗(xi,θ−i))−Oi(s)]xi + ∑ j∈N\{i}θ jS j(σ

∗(xi,θ−i)). If

xi > siR1(θ−i), then Si(σ
∗(xi,θ−i)) = si and hence it follows that Ti(xi;θ−i) = [si −Oi(s)]xi +

∑ j∈N\{i}θ jS j(σ
∗(xi,θ−i)) which is non-increasing in xi since by interval property si ≤ Oi(s)

implying that the coefficient of xi in Ti(xi;θ−i) is non-positive. Hence, (a) if a maxima ex-

ists then we can always find a waiting cost x∗i ≤ siR1(θ−i) that achieves it. Similarly, if

yi < siRn−1(θ−i), then Si(σ
∗(yi,θ−i)) = A(s) and hence it follows that Ti(yi;θ−i) = [A(s)−

Oi(s)]yi + ∑ j∈N\{i}θ jSi(σ
∗(yi,θ−i)) which is non-decreasing in yi since by interval property

A(s) ≥ Oi(s) implying that the coefficient of xi in Ti(xi;θ−i) is non-negative. Hence, (b) if a

maxima exists, then we can always find a waiting cost x∗i ≥ siRn−1(θ−i) that achieves it.

The function Ti(xi;θ−i) is continuous and concave in xi on the interval [siRn−1(θ−i), siR1(θ−i)]

and the interval [siRn−1(θ−i), siR1(θ−i)] is compact.5 Hence, the function Ti(xi;θ−i) has a max-

ima in [siRn−1(θ−i), siR1(θ−i)] . Given x∗i ∈ [siRn−1(θ−i), siR1(θ−i)] and given continuity of

Ti(xi;θ−i), for two agents the proof is complete since x∗i = siR1(θ j) = si(θ j/s j) and it fol-

lows that Ti(θi(θ j),θ j) = [si − Oi(s)]si(θ j/s j) +θ j(si + s j). Therefore, consider the more than

5From the functional form of Ti(xi ,θ−i) and given outcome efficiency it is obvious that given any θ−i, the function
Ti(xi ,θ−i) is continuous in xi on any open interval (siRk+1(θ−i), siRk(θ−i)) for all k ∈ {1, . . . , n− 2} and by using
appropriate limit argument one can also show continuity at any point siRk(θ−i) for k ∈ {1, . . . , n− 1}. For concavity
note that for anyθ−i ∈ Θ−i, for every xi ∈ (siRk+1(θi), siRk(θi)) for all k ∈ {0, . . . , n}, where Rn+1 = 0 and R0 = ∞,
Ti(xi ,θ−i) = [Si(σ

∗(xi ,θi))−Oi(s)] xi + ∑ j∈N\{i} θ js j(σ
∗(xi ,θi)) is a straight line. Moreover, Si(σ

∗(xi ,θi)) is non-
increasing in xi ∈ R++. Hence the intercept Si(σ

∗(xi ,θi))−Oi(s) is also non-increasing for xi ∈ R++. As a result
the piece-wise linear continuous function Ti(xi ,θ−i) is concave for xi ∈ R++.
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two agents case. If there exists k ∈ N\{i} such that x∗i = si(θ(k)/s(k)) (so that Ti(x∗i ;θ−i) =

Ti(si(θk/sk);θ−i) ≥ Ti(xi;θ−i) holds for all xi ∈ Θ), then the proof is complete. If not then

suppose there exists k ∈ {1, . . . , n− 2} such that x∗i ∈ (siRk+1(θ−i), siRk(θ−i)), that is,

Ti(x∗i ;θ−i) =

[
k

∑
r=1

s(r) + si −Oi(s)

]
x∗i + ∑

j∈N\{i}
θ jS j(σ

∗(x∗i ,θ−i)).

If ∑
k
r=1 s(r) + si − Oi(s) > 0, then for any xi ∈ (x∗i , siRk(θ−i)], σ∗(xi,θ−i) = σ∗(x∗i ,θ−i) and

Ti(xi;θ−i) > Ti(x∗i ;θ−i) since Ti(xi;θ−i)− Ti(x∗i ;θ−i) =
[
∑

k
r=1 s(r) + si −Oi(s)

]
(xi − x∗i ) > 0.

Therefore we have a contradiction to our assumption that at x∗i the function Ti(xi;θ−i) is max-

imized. If ∑
k
r=1 s(r) + si −Oi(s) < 0, then for any x′i ∈ [siRk(θ−i), x∗i ), σ

∗(x′i ,θ−i) = σ∗(x∗i ,θ−i)

and Ti(x′i ;θ−i) > Ti(x∗i ;θ−i) since Ti(x′i ;θ−i)− Ti(x∗i ;θ−i) =
[
∑

k
r=1 s(r) + si −Oi(s)

]
(x′i − x∗i ) >

0. Again we have a contradiction to our assumption that at x∗i the function Ti(xi;θ−i) is max-

imized. Therefore, the only possibility left is ∑
k
r=1 s(r) + si − Oi(s) = 0. However, in that case

Ti(x∗i ;θ−i) = ∑ j∈N\{i}θ jSi(σ
∗(x∗i ,θ−i)) and for every xi ∈ [siRk+1(θ−i), siRk(θ−i)] the func-

tion Ti(xi,θ−i) attains its maximum value implying that Ti(x∗i ;θ−i) = Ti(siRk+1(θ−i);θ−i) =

Ti(siRk(θ−i);θ−i) and Step 1 continues to be valid.

Given Step 1, let us define x∗i := θi(θ−i) so that Ti(x∗i ;θ−i) = Ti(θi(θ−i);θ−i) and there exists

k ∈ N\{i} such that θi(θ−i) = si(θk/sk). To complete the proof, consider the VCG mechanism

µ∗ = (σ∗, τ∗) with VCG transfers having the following property: For all θ ∈ Θn and for all

i ∈ N, τ∗i (θ) = −C(σ∗(θ)),θ) + Si(σ
∗(θ))θi + ḡi(θ−i) with ḡi(θ−i) := Ti(θi(θ−i);θ−i). Then

for any given θ ∈ Θn and any agent i ∈ N, we have ui(µ
∗
i (θ),θi) + θiOi(s) = −[Si(σ

∗(θ) −

Oi(s)]θi + ḡi(θ−i) = Ti(θi(θ−i),θ−i)− Ti(θi,θ−i) ≥ 0. The last inequality follows from the fact

that Ti(θi,θ−i) ≤ Ti(θi(θ−i),θ−i) for all θi ∈ Θ. Hence, ui(µ
∗
i (θ),θi) ≥ −θiOi(s) implying

that that the VCG mechanism µ∗ satisfies the participation constraint for any agent i. Thus,

using the interval property we have identified a VCG mechanism that satisfies participation

constraints. �

Given any Γ ∈ G(N) what is the set of all mechanisms that satisfy outcome efficiency, strat-

egyproofness and participation constraints? The next result answers this question. For any

profile θ ∈ Θn, and any i ∈ N, define Xi(θ−i) = {(siθ j/s j) j∈N\{i}} as the set with each element

as the product of urgency index an agent other than i and the processing time of agent i.
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Proposition 1. For any Γ ∈ G(N), an outcome efficient mechanism µp = (σ∗, τ p) satisfies strat-

egyproofness and participation constraints if and only if τ p satisfies the following property:

For any profile θ ∈ Θn and any agent i ∈ N,

(7) τ
p
i (θ) = [Si(σ

∗(θi(θ−i),θ−i))−Oi(s)]θi(θ−i) + ∑
j∈N\{i}

θ jδ ji(θ) + hi(θ−i),

where

(8) θi(θ−i) ∈ arg max
xi∈Xi(θ−i)

Ti(xi;θ−i) := [Si(σ
∗(xi,θ−i))−Oi(s)]xi + ∑

j∈N\{i}
θ jS j(σ

∗(xi,θ−i)),

(9) ∑
j∈N\{i}

θ jδ ji(θ) =


− ∑

j∈Pi(σ∗(θi(θ−i),θ−i)\Pi(σ∗(θ))
θ jsi if Pi(σ

∗(θ)) ⊂ Pi(σ
∗(θi(θ−i),θ−i),

0 if Pi(σ
∗(θi(θ−i),θ−i) = Pi(σ

∗(θ)),

∑
j∈Pi(σ∗(θ))\Pi(σ∗(θi(θ−i),θ−i)

θ jsi if Pi(σ
∗(θi(θ−i),θ−i) ⊂ Pi(σ

∗(θ)).

and hi : Θ|N\{i}| → R+.

Proof: For outcome efficiency and strategyproof it is necessary that the mechanism µ = (σ∗, τ)

must be VCG with transfers satisfying the following property: For any profile θ ∈ Θn and any

agent i ∈ N, τi(θ) = −C(σ∗(θ);θ) + gi(θ−i) where gi : Θ|N\{i}| → R is arbitrary. For par-

ticipation constraint, in addition, it is necessary that (I) gi(θ−i) ≥ ḡi(θ−i) = Ti(θi(θ−i);θ−i) ∈

maxxi∈Θ Ti(xi;θ−i) and Ti(xi;θ−i) = [Si(σ
∗(xi,θ−i))−Oi(s)]xi + ∑ j∈N\{i}θ jS j(σ

∗(xi,θ−i)) (see

condition (4) in the proof of Theorem 1). Hence, using (I) we can replace gi(θ−i) = hi(θ−i) +

Ti(θi(θ−i);θ−i) where hi : Θ|N\{i}| → R and hi(θ−i) ≥ 0. By substituting gi(θ−i) = hi(θ−i) +

Ti(θi(θ−i);θ−i) in the transfer τi(θ) and then simplifying it we get

(10) τi(θ) = [Si(σ
∗(θi(θ−i),θ−i))−Oi(s)]θi(θ−i) + ∑

j∈N\{i}
θ jδ ji(θ) + hi(θ−i),

where δ ji(θ) :=
(

∑k∈Pj(σ∗(θi(θ−i),θ−i)) sk − ∑k∈Pj(σ∗(θ)) sk

)
. Observe the following:

(a) If Pj(σ
∗(θ)) = Pj(σ

∗(θi(θ−i),θ−i)), then δ ji(θ) = 0.

(b) If Pj(σ
∗(θ)) ⊂ Pj(σ

∗(θi(θ−i),θ−i)), then Pj(σ
∗(θi(θ−i),θ−i)) \ Pj(σ

∗(θi(θ−i),θ−i)) = {i}

and δ ji(θ) = si.
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(c) If Pj(σ
∗(θi(θ−i),θ−i)) ⊂ Pj(σ

∗(θ)), then Pj(σ
∗(θ)) \ Pj(σ

∗(θi(θ−i),θ−i)) = {i} and

δ ji(θ) = −si.

By substituting the values of δ ji(θ) for possibilities (a), (b) and (c) in the sum ∑ j∈N\{i}θ jδ ji(θ)

we get (9).6 From (I) condition (10) and the expansion of the sum ∑ j∈N\{i}θ jδ ji(θ) given by (9)

we get τ = τ p.

To prove the converse, observe that since any µp is a particular type of VCG transfers, µp is

sufficient to ensure outcome efficency and strategyproofness. To complete the proof we need

to check the sufficiency of participation constraints with µp. Consider any µp. For any θ ∈ Θn

and any i ∈ N,

ui(µ
p
i (θ),θi) +θiOi(s)

= −θi[Si(σ
∗(θ))−Oi(s)] + [Si(σ

∗(θi(θ−i),θ−i))−Oi(s)]θi(θ−i) + ∑ j∈N\{i}θ jδ ji(θ) + hi(θ−i)

= Ti(θi(θ−i),θ−i) − Ti(θ) + hi(θ−i) ≥ 0. Therefore, ui(µ
p
i (θ),θi) + θiOi(s) ≥ 0 implying

ui(µ
p
i (θ),θi) ≥ −θiOi(s). Hence, µp satisfies participation constraints. �

4. APPLICATION 1: SEQUENCING PROBLEMS WITH INITIAL ORDER

For a sequencing problem Ω ∈ S(N) with initial order, there is a preexisting order in which

the agents have arrived to use the facility. Suppose that initial order of arrival is σ0 ∈ Σ. In

this case, the participation constraints vector is Oσ0(N, s) = (Oσ0
1 (s), . . . , Oσ0

n (s)) ∈ Rn
++ where

for each i ∈ N, Oσ0
i (s) = si + ∑ j∈Pi(σ0) s j and hence for any profile θ ∈ Θn, ∑ j∈N θ jO

σ0
j (s) =

C(σ0,θ). Let I(N) = {(Ω, Oσ0(N, s)) | Ω ∈ S(N),σ0 ∈ Σ} denote the set of all sequencing

problems with initial order and let Γ 0 represent a typical sequencing problem with initial order

in I(N). Every Γ 0 ∈ I(N) satisfies the interval property. For any Γ 0 ∈ I(N) with initial order

σ0, the participation constraints vector Oσ0(N, s) = (Oσ0
1 (s), . . . , Oσ0

n (s)) ∈ Rn
++ is such that for

each i ∈ N, Oσ0
i (s) = si + ∑ j∈Pi(σ0) s j. Observe that for each i ∈ N, Oσ0

i (s) = si + ∑ j∈Pi(σ0) s j ∈

[si, A(s)] implying that the interval property condition (3) holds for every agent i ∈ N.

Proposition 2. For any Γ 0 = (Ω, Oσ0(N, s)) ∈ I(N), an outcome efficient mechanism µ I =

(σ∗, τ I) satisfies strategyproofness and participation constraints if and only if τ I satisfies the

6The sign(x) function is defined as follows: sign(x) = 1 if x > 0, sign(x) = 0 if x = 0 and sign(x) = −1 if x < 0.
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following property: For any profile θ ∈ Θn and any agent i ∈ N,

(11) τ I
i (θ) =

 ∑
j∈Pi(σ∗(θi(θ−i),θ−i))

s j − ∑
j∈Pi(σ0)

s j

θi(θ−i) + ∑
j∈N\{i}

θ jδ ji(θ) + hI
i (θ−i),

where δ ji(θ) = sign
(
|Pj(σ

∗(θi(θ−i),θ−i))| − |Pj(σ
∗(θ))|

)
si for all j ∈ N \ {i}, hI

i : Θ|N\{i}| →

R+, θi(θ−i) ∈ arg maxxi∈Xi(θ−i) T I
i (xi;θ−i) and

(12) T I
i (xi;θ−i) =

 ∑
j∈Pi(σ∗(xi ,θ−i))

s j − ∑
j∈Pi(σ0)

s j

 xi + ∑
j∈N\{i}

θ jS j(σ
∗(xi,θ−i)).

Proof: Given Proposition 1, we only need derive the explicit form of [Si(σ
∗(xi,θ−i))−Oi(s)]xi +

∑ j∈N\{i}θ jS j(σ
∗(xi,θ−i)) in this context. Note that given Oσ0

i (s) = Si(σ
0) = si + ∑ j∈Pi(σ0) s j,

Si(σ
∗(xi,θ−i)) − Oσ0

i (s) = {si + ∑ j∈Pi(σ∗(xi ,θ−i) s j} − {si + ∑ j∈Pi(σ0) s j} = ∑ j∈Pi(σ∗(xi ,θ−i)) s j −

∑ j∈Pi(σ0) s j. By substituting the expression in the coefficient of xi in Ti(xi;θ−i) we get T I
i (xi;θ−i)

given by (12) and we also get the coefficient of the first term θi(θ−i) in (11) by substituting

xi = θi(θ−i). �

Remark 1. Consider any Γ 0 = (Ω, Oσ0(N, s)) ∈ I(N). We provide certain observations about

the mechanisms µ I = (σ∗, τ I) given by conditions (11) and (12).

(I1) Let k ∈ N be that agent having last queueing position under that initial order σ0, that

is, Si(σ
0) = A(s) = ∑ j∈N s j. Then for any θ ∈ Θn, θk(θ−k) = sk.{min{θ j/s j} j∈N\{k}}

and Pk(σ
∗(θk(θ−k),θ−k)) = Pi(σ

0) = N \ {k}. The reason being that for any xk ∈

Xk(θ−k) \ {θk(θ−k)}, Pk(σ
∗(xk,θ−k)) ⊂ N \ {n} and hence T I

k (xk;θ−k)) is decreasing

in xk since [∑ j∈Pk(σ∗(xk ,θ−k)) s j − ∑ j∈Pk(σ0) s j] = ∑ j∈Pk(σ∗(xk ,θ−k))⊂N\{k} s j − ∑ j∈N\{k} s j is

negative. Given θk(θ−k) = sk.{min{θ j/s j} j∈N\{k}}, it is quite easy to verify that (b1)

[∑ j∈Pk(σ∗(θk(θ−k),θ−k)) s j−∑ j∈Pk(σ0) s j]θk(θ−k) = 0 and (b2) δ jk(θ) = −1 for all j ∈ Fk(σ
∗(θ))

and δ jk(θ) = 0 for all other j ∈ Pk(σ
∗(θ)). Therefore, using (b1) and (b2) in (11) we get

τ I
k (θ) = −sk ∑

j∈Fk(σ∗(θ))

θ j + hI
k(θ−k).

(I2) Let i ∈ N be that agent having first queueing position under that initial order σ0,

that is, Si(σ
0) = si. Then for any profile θ ∈ Θn, θi(θ−i) = si.{max{θ j/s j} j∈N\{i}}

and Pi(σ
∗(θi(θ−i),θ−i)) = Pi(σ

0) = ∅. The reason being that for any xi ∈ Xi(θ−i) \
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{θi(θ−i)}, Pi(σ
∗(xi,θ−i)) 6= ∅ and hence T I

i (xi;θ−i)) is increasing in xi since the coeffi-

cient of xi, that is [∑ j∈Pi(σ∗(xi ,θ−i)) s j − ∑ j∈Pi(σ0) s j] = ∑ j∈Pi(σ∗(x1 ,θ−1)) s j is positive. Given

θi(θ−i) = si.{max{θ j/s j} j∈N\{i}}, (a1) [∑ j∈Pi(σ∗(θi(θ−i),θ−i)) s j − ∑ j∈Pi(σ0) s j]θi(θ−i) = 0

and (a2) δ ji(θ) = 1 for all j ∈ Pi(σ
∗(θ)) and δ ji(θ) = 0 for all other j ∈ Fi(σ

∗(θ)).

Therefore, using (a1) and (a2) in (11) we get

τ I
i (θ) = si ∑

j∈Pi(σ∗(θ))

θ j + hI
i (θ−i).

(I3) For any profileθ ∈ Θn such thatσ∗(θ) = σ0, it is easy to verify that Pi(σ
∗(θi(θ−i),θ−i)) =

Pi(σ
∗(θ)) = Pi(σ

0) for all i ∈ N. Hence, using (11) it follows that τ I
i (θ) = hI

i (θ−i) ≥ 0

for all i ∈ N.

(I4) Consider the mechanism µ̄ I = (σ∗, τ̄ I) satisfying (11) and (12) and for this mechanism

h̄I
i (θ−i) = 0 for all θ−i ∈ Θn−1 and for all i ∈ N. Observe that for any other mechanism

µ I = (σ∗, τ I) satisfying conditions (11) and (12) we have the following property: For

any θ ∈ Θn, ∑ j∈N τ I
j (θ) − ∑ j∈N τ̄ I

j (θ) = ∑ j∈N hI
j(θ− j) ≥ 0. Hence, if a mechanism

µ I = (σ∗, τ I) is feasible, then the mechanism µ̄ I = (σ∗, τ̄ I) is also feasible. Hence to

analyze feasibility, we only use the mechanism µ̄ I in the next result.

Proposition 3. For any Γ 0 = (Ω, Oσ0(N, s)) ∈ I(N), there is no mechanism that satisfies out-

come efficiency, strategyproofness, participation constraints and feasibility.

Proof: Consider any Γ 0 = (Ω, Oσ0(N, s)) ∈ I(N) and, without loss of generality, assume σ0

such that σ0
i = i for all i ∈ N. Consider any θ ∈ Θn such that θn/sn > θ1/s1 > . . . > θn−1/sn−1

so that P1(σ
∗(θ)) = {n}, Pj(σ

∗(θ)) = {1, . . . , j− 1}∪ {n} for all j ∈ N \ {1, n} and Pn(σ∗(θ)) =

∅. Fix, the mechanism µ̄ I = (σ∗, τ̄ I) (defined in condition (I4) of Remark 1). It is easy to verify

the following:

(i) Given Pn(σ0) = N \ {n}, from condition (I1) of Remark 1 we getθn(θ−n) = snθn−1/sn−1

and Pn(σ∗(θn(θ−n),θ−n)) = Pn(σ0) = N \ {n}. Moreover, we also have Pj(σ
∗(θ)) \

Pj(σ
∗(θn(θ−n),θ−n)) = {n} for all j ∈ N \ {n}. Hence, the transfer of n is τ̄ I

n(θ) =

∑ j∈N\{n}θ jδ jn(θ) = −∑ j∈N\{n}θ jsn. Therefore, the transfer of agent n does not involve

the waiting cost θn.
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(ii) Given P1(σ
0) = ∅, from condition (I2) of Remark 1 we have θ1(θ−1) = s1θn/sn and

P1(σ
∗(θ1(θ−1),θ−1)) = P1(σ

0) = ∅. Further, Pn(σ∗(θ1(θ−1),θ−1)) \ Pn(σ∗(θ)) = {1}

and Pj(σ
∗(θ1(θ−1),θ−1)) = Pj(σ

∗(θ)) for all j ∈ N \ {1, n}. Thus, τ̄ I
1(θ) = θnδn1(θ) =

θns1.

(iii) Finally, consider any k ∈ N \ {1, n}. Observe that if xk = skθn/sn, then T I
k (xk;θ−k))

is decreasing in xk since the coefficient of xk, that is [∑ j∈Pk(σ∗(xk ,θ−k)) s j − ∑ j∈Pk(σ0) s j] =

−∑
k−1
j=1 s j is negative. Therefore, θk(θ−k) 6= skθn/sn. Moreover, one can easily verify

that δnk(θ) = 0 since Pn(σ∗(θk(θ−k),θ−k)) = Pn(σ∗(θ)) = ∅. Therefore, the transfer

of any agent k does not involve the waiting cost θn and hence is of the form τ̄ I
k (θ) =

θk(θ−k)[∑ j∈Pk(σ∗(xk ,θ−k)) s j − ∑ j∈Pk(σ0) sk] + ∑ j∈N\{k,n}θ jδ jk(θ).

From (i), (ii) and (iii) it follows that ∑ j∈N τ̄ I
j (θ) = θns1 + ∑ j∈N\{1} τ̄

I
j (θ). From (i) and (iii) above

it also follows that the sum ∑ j∈N\{1} τ̄
I
j (θ) does not involve the waiting cost θn and hence by

defining T (σ∗(θ);θ−n) := ∑ j∈N\{1} τ̄
I
j (θ) we get

(13) ∑
j∈N

τ̄ I
j (θ) = θns1 + T (σ∗(θ);θ−n).

If ∑ j∈N τ̄ I
j (θ) > 0, then we have a violation of feasibility and the proof is complete. Therefore,

assume ∑ j∈N τ̄ I
j (θ) = θns1 + T (σ∗(θ);θ−n) ≤ 0. Given that T (σ∗(θ);θ−n) is independent of

θn, if we increase the waiting cost of agent n to any yn(> θn) by keeping θ−n fixed, then the

outcome efficient order remains unchanged (that is, σ∗(yn,θ−n) = σ∗(θ) for all yn > θn) and

the transfers of all but agent 1 continues to remain unchanged due to this independent, that is,

T (σ∗(yn,θ−n);θ−n) = T (σ∗(θ);θ−n) for all yn > θn. Hence, we have

(14) ∑
j∈N

τ̄ I
j (yn,θ−n) = yns1 + T (σ∗(θ);θ−n) ∀ yn > θn.

Since the first term in the right hand side of condition (14) is increasing in yn and the sec-

ond term is a constant, for yn sufficiently large (say y∗n) we have ∑ j∈N τ̄ I
j (y∗n,θ−n) = y∗ns1 +

T (σ∗(θ);θ−n) > 0 leading to a violation of feasibility. �
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5. APPLICATION 2: SEQUENCING PROBLEMS WITHOUT INITIAL ORDER

For a sequencing problem Ω ∈ S(N) without initial order, there is no preexisting order in

which the agents have arrived to use the facility. Therefore, what is a reasonable notion of

participation constraints in this scenario?

5.1. Identical costs lower bound. Identical costs lower bound (ICLB) requires that each agent

receives at least the utility he could expect under the egalitarian solution if all agents were like

him in a reference economy. In the sequencing context, given an agent i, if all other agents are

identical to agent i, then agent i has an equal chance of facing each order from Σ. This means

that all agents are identical to agent i in the sense that every agent has the same waiting cost

and processing time in the reference economy. Thus, ICLB requires that for any agent i ∈ N

and any profile θ ∈ Θn, ui(σ(θ), τi(θ);θi) ≥ −θi((n + 1)si/2) where θi((n + 1)si/2) represents

the expected cost of agent i with waiting cost θi and processing time si when all agents have

the same processing time si and agent i gets each of the queue positions 1 to n with probability

1/n.

For a sequencing problem Ω ∈ S(N) with participation constraints given the identical costs

lower bounds, the participation constraints vector is Os(N, s) = (Os1
1 (s), . . . , Osn

n (s)) ∈ Rn
++

where for each i ∈ N, Osi
i (s) = (n + 1)si/2. Let C(N) = {(Ω, Os(N, s)) | Ω ∈ S(N)} denote

the set of all sequencing problems with ICLB and let Γ s represent a typical sequencing problem

with ICLB in C(N). It is easy to verify that a sequencing problem Γ s ∈ C(N) satisfies the

interval property if and only if (C) for any i ∈ N, A(s) ≥ (n + 1)si/2. Let C(N)(⊂ C(N))

denote the set of all problems Γ s ∈ C(N) that also satisfies condition (C).

Proposition 4. For any Γ s ∈ C(N), an outcome efficient mechanism µC = (σ∗, τC) satisfies

strategyproofness and participation constraints if and only if τC satisfies the following prop-

erty: For any profile θ ∈ Θn and any agent i ∈ N,

(15) τC
i (θ) =

[
∑

j∈Pi(σ∗(θi(θ−i),θ−i))

s j −
(n− 1)si

2

]
θi(θ−i) + ∑

j∈N\{i}
θ jδ ji(θ) + hC

i (θ−i),
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where θi(θ−i) ∈ arg maxxi∈Θ TC
i (xi;θ−i), the sum ∑ j∈N\{i}θ jδ ji(θ) is given by condition (9),

hC
i : Θ|N\{i}| → R, hC

i (θ−i) ≥ 0 and

(16) TC
i (xi;θ−i) =

[
∑

j∈Pi(σ∗(xi ,θ−i))

s j −
(n− 1)si

2

]
xi + ∑

j∈N\{i}
θ jSi(σ

∗(xi,θ−i)).

Proof: Given Proposition 1, we only need derive the explicit form of the term [Si(σ
∗(xi,θ−i))−

Oi(s)] in this context. Given Os
i (s) = (n+ 1)s j/2, it easily follows that Si(σ

∗(xi,θ−i))−Osi
i (s) =

{si + ∑ j∈Pi(σ∗(xi ,θ−i) s j} − {(n + 1)si/2} = ∑ j∈Pi(σ∗(xi ,θ−i)) s j − (n + 1)si/2. By substituting the

expression in the coefficient of xi in Ti(xi;θ−i) we get TC
i (xi;θ−i) given by (16) and we also get

the coefficient of the first term θi(θ−i) in (15) by substituting xi = θi(θ−i). �

Clearly, we can find Γ s ∈ C(N) such that condition (C) is violated implying that outcome ef-

ficiency, strategyproofness and participation constraints are incompatible. As an example, con-

sider any Ω ∈ S(N) and its associated Γ s = (Ω, Os(N, s)) such that there exists i ∈ N such that

si/2 > s j for all j ∈ N \ {i}. In this case, Oi(s) = (n + 1)si/2 = si + ∑ j 6=i(si/2) > si + ∑ j 6=i s j =

A(s). Therefore, we have a violation of interval property that requires that Oi(s) ≤ A(s).

Given this incompatibility, in the next subsection, we consider another notion of participation

constraints for such sequencing problems without initial order that can completely eliminate

these instances of incompatibility.

5.2. Expected cost lower bounds. In the queueing context, Gershkov and Schweinzer [18] de-

fined another type of participation constraints which we call the “expected cost lower bound”

(ECLB). ECLB considers the actual economy where each order is equally likely and, unlike the

notion of ICLB, agents retain their difference in terms of processing time. Then, to meet the

condition associated with ECLB, we need the following property: For any agent i ∈ N and

any profile θ ∈ Θn, ui(σ(θ), τi(θ);θi) ≥ −θi

(
∑σ∈Σ

Si(σ)
n!

)
. Define S̄i := si + ∑ j∈N\{i}(s j/2) for

each i ∈ N. It is quite easy to verify that for each agent i ∈ N, ∑σ∈Σ
Si(σ)

n! = S̄i.7 Therefore, an

7The equality ∑σ∈Σ
Si(σ)

n! = S̄i states that the average completion time of each agent i equals S̄i. The sum in S̄i
has two components-own processing time si and half of the total processing time of all other agents j 6= i. In any
possible orderingσ ∈ Σ, an agent will always incur his own processing time and hence si enters S̄i with probability
one. Moreover, observe that any other agent j 6= i precedes agent i in any ordering σ if and only if he does not
precede agent i in the complement ordering σ c. Therefore, when we consider all possible orderings to calculate
agent i’s average completion time, s j for j 6= i will occur in exactly half of the cases as a part of the completion time
of agent i.
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equivalent representation of the ECLB requirement is that for any agent i ∈ N and any profile

θ ∈ Θn, ui(σ(θ), τi(θ);θi) ≥ −θi S̄i.

For a sequencing problem Ω ∈ S(N) with participation constraints given the ECLB con-

ditions, the participation constraints vector is OS̄(N, s) = (OS̄1
1 (s), . . . , OS̄n

n (s)) ∈ Rn
++ where

for each i ∈ N, OS̄i
i (s) = S̄i. Let E(N) = {(Ω, OS̄(N, s)) | Ω ∈ S(N)} denote the set of all

sequencing problems with ECLB and let Γ S̄ represent a typical sequencing problem with ECLB

in E(N).

Remark 2. For any queueing problem Ω ∈ Q(N) with s1 = . . . = sn = a > 0, S̄i = (n + 1)a/2

for all i ∈ N implying that the notions of ICLB and ECLB are equivalent. Clearly, the bounds as-

sociated with ICLB and ECLB are different for any sequencing problem which is not a queueing

problem, that is for any Ω ∈ S(N) \ Q(N). Specifically, ECLB allows for agents to be treated

as identical only in terms of waiting costs but, unlike ICLB, not in terms of processing time.

This makes sense since in our context processing time of the agents are common knowledge.

Unlike ICLB, all sequencing problem with ECLB as its participation constraints satisfy the in-

terval property, that is for every Γ S̄ ∈ E(N) the interval property condition (3). Observe that

for any Γ S̄ ∈ E(N) and any i ∈ N, Oi(s) = S̄i = si + ∑ j∈N\{i}(s j/2) ∈ (si, A(s)) implying that

the interval property given by condition (3) holds.

Proposition 5. For any Γ S̄ ∈ E(N), an outcome efficient mechanism µE = (σ∗, τE) satisfies

strategyproofness and participation constraints if and only if τE satisfies the following prop-

erty: For any profile θ ∈ Θn and any agent i ∈ N,

(17) τE
i (θ) =

[
∑

k∈Pi(σ∗(θi(θ−i),θ−i))

sk

2
− ∑

k∈Fi(σ∗(θi(θ−i),θ−i))

sk

2

]
θi(θ−i) + ∑

j∈N\{i}
θ jδ ji(θ) + hE

i (θ−i),

where θi(θ−i) ∈ arg maxxi∈Θ TE
i (xi;θ−i), the sum ∑ j∈N\{i}θ jδ ji(θ) is given by condition (9),

hE
i : Θ|N\{i}| → R, hE

i (θ−i) ≥ 0 and

(18) TE
i (xi;θ−i) =

[
∑

k∈Pi(σ∗(xi ,θ−i))

sk

2
− ∑

k∈Fi(σ∗(xi ,θ−i))

sk

2

]
xi + ∑

j∈N\{i}
θ jSi(σ

∗(xi,θ−i)).

Proof: Given Proposition 1, we only need derive the explicit form of [Si(σ
∗(xi,θ−i))−Oi(s)] in

this context. Note that given OS̄i
i (s) = S̄i = si +∑ j∈N\{i}(s j/2), Si(σ

∗(xi,θ−i))−OS̄i
i (s) = {si +
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∑ j∈Pi(σ∗(xi ,θ−i) s j}− {si +∑ j∈N\{i}(s j/2)) = ∑ j∈Pi(σ∗(xi ,θ−i))(s j/2)−∑ j∈Fi(σ∗(xi ,θ−i))(s j/2). By sub-

stituting the expression in the coefficient of xi in Ti(xi;θ−i) we get TE
i (xi;θ−i) given by (18) and

we also get the coefficient of the first term θi(θ−i) in (17) by substituting xi = θi(θ−i). �

5.3. Implications in terms of queueing problems. Throughout this subsection we assume

without loss of generality that s1 = . . . = sn = 1. First consider the function TC
i (xi;θ−i) given

in condition (16) of Proposition 4. For the queueing problem, for any θ−i ∈ Θn, for any i ∈ N

and for any xi ∈ Θ we have

(19) TC
i (xi;θ−i) = [|Pi(σ

∗(xi,θ−i))| − (n− 1)/2]xi + ∑
j∈N\{i}

σ∗j (xi,θ−i)θ j.

Similarly, consider the function TE
i (xi;θ−i) given in condition (18) of Proposition 5. For the

queueing problem, for anyθ−i ∈ Θn, for any i ∈ N and for any xi ∈ Θ we have (A) TE
i (xi;θ−i) =

[|Pi(σ
∗(xi,θ−i))|/2− |Fi(σ

∗(xi,θ−i))|/2]xi + ∑ j∈N\{i}σ
∗
j (xi,θ−i)θ j. Using |Fi(σ

∗(xi,θ−i))|/2 =

(n− 1− |Pi(σ
∗(xi,θ−i))|)/2 and then simplifying (A) we get the following: For the queueing

problem, for any θ−i ∈ Θn, for any i ∈ N and for any xi ∈ Θ we have

(20) TE
i (xi;θ−i) = [|Pi(σ

∗(xi,θ−i))| − (n− 1)/2]xi + ∑
j∈N\{i}

σ∗j (xi,θ−i)θ j = TC
i (xi;θ−i).

Hence, from (19) and (20) it follows that for the queueing problem, for any θ−i ∈ Θn, for any

i ∈ N and for any xi ∈ Θ, TE
i (xi;θ−i) = TC

i (xi;θ−i).

Definition 7. For σ∗ and for any positive integer K ≤ |N|, a mechanism µk = (σ∗, τ (K)) is a

K-pivotal mechanism if for any θ ∈ Θn and any i ∈ N,

(21) τ
(K)
i (θ) =



− ∑
j:σ∗i (θ)<σ∗j (θ)≤K

θ j if σ∗i (θ) < K,

0 if σ∗i (θ) = K,

∑
j:K≤σ∗j (θ)<σ∗i (θ)

θ j if σ∗i (θ) > K.

See Mitra and Mutuswami [27] who introduce and characterize the K-pivotal mechanisms

for the queueing problems. Chun and Yengin [9] also provide another characterization of these
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mechanism. We define a new set of mechanisms which are obtained by appropriately mixing

different K-pivotal mechanisms.

Definition 8. For any queueing problem, a mechanism µ̄a = (σ∗, τ̄ a) is a centered K-pivotal

mechanism with non-negative intercepts if for all θ ∈ Θn and all i ∈ N,

(22) τ̄ a
i (θ) = Hi(θ−i) +

 τ
( n+1

2 )
i (θ) if n is odd,

1
2τ

( n
2 )

i (θ) + 1
2τ

( n
2 +1)

i (θ) if n is even,

where for each i ∈ N, the function Hi : Θ|N\{i}| → R is such that Hi(θ−i) ≥ 0 for all θ−i ∈

Θ|N\{i}|.

Corollary 1. For any queueing problem Ω ∈ Q(N), a mechanisms satisfies outcome efficiency

strategyproofness and ICLB (ECLB) if and only if it is a centered K-pivotal mechanism with

non-negative intercepts.

Proof: For any profile θ ∈ Θn and any i ∈ N, consider the type θi(θ−i) ∈ Θ such that the func-

tion Ti(xi,θ−i) (defined in condition (20)) takes the maximum value, that is, Ti(θi(θ−i),θ−i) ≥

Ti(xi,θ−i) for all xi ∈ Θn. Let r̄(θ−i) = ((r̄ j(θ−i) = θ j)) j 6=i) be the vector of agent specific

waiting cost agents in N \ {i} and r(θ−i) = (r1(θ−i) = θ(1), . . . , rn−1(θ−i) = θ(n−1)) be the

permutation of r̄(θ−i) such that r1(θ−i) ≥ . . . ≥ rn−1(θ−i). One can verify that if n is odd, then

θi(θ−i) = r (n−1)
2

(θ−i) so that |Pi(σ
∗(xi,θ−i))| = (n− 1)/2. Then using condition (16) (condition

18) of Proposition 4 (Proposition 5) we get

(23) τi(θ) = ∑
j∈N\{i}

θ jδ ji(θ) + Hi(θ−i),

where Hi(θ−i) ≥ 0 and ∑ j∈N\{i}θ jδ ji(θ) is given by condition (9) of Proposition 1. A simplifi-

cation of ∑ j∈N\{i}θ jδ ji(θ) using condition (9) gives the following:

(24) ∑
j∈N\{i}

θ jδ ji(θ) = τ
( n+1

2 )
i (θ) =



− ∑

j:σ∗i (θ)<σ∗j (θ)≤
n+1

2

θ j if σ∗i (θ) <
n+1

2 ,

0 if σ∗i (θ) =
n+1

2 ,

∑

j: n+1
2 ≤σ∗j (θ)<σ∗i (θ)

θ j if σ∗i (θ) >
n+1

2 .



PARTICIPATION CONSTRAINTS AND INCENTIVES 21

From (25) and (24), the result follows for the case when n is odd.

If n is even, then θi(θ−i) ∈ {r n
2−1(θ−i), r n

2 (θ−i)}. Using condition (9) one can verify that

whether we select θi(θ−i) = r n
2−1(θ−i) or we select θi(θ−i) = r n

2
(θ−i) does not really matter

since the transfer that we get under both cases are identical and is given by

(25) τi(θ) =
1
2
τ
( n

2 )
i (θ) +

1
2
τ
( n

2 +1)
i (θ) + Hi(θ−i),

where Hi(θ−i) ≥ 0. Hence, we get the result for n even. �

Remark 3. Chun and Yengin [9] in the queueing context provided a necessary and a sufficient

condition for obtaining mechanisms satisfying outcome efficiency, strategyproofness and ICLB.

In Chun and Yengin [9], there is no gap between the necessary and sufficient conditions when

the number of agents n is odd and (like in Corollary 1) it is the standard ((n + 1)/2)-pivotal

mechanism up to a non-negative agent specific constant functions Hi(.). However, there is a

gap when n ≥ 4 is even. Specifically, Chun and Yengin’s [9] necessary condition on transfers

gives a (n/2+ 1)-pivotal mechanism up to a non-negative agent specific constant function Hi(.)

and their sufficient condition on transfers gives a n/2-pivotal mechanism up to a non-negative

agent specific constant function Hi(.). Corollary 1 shows that the simple average between the

necessary and sufficient mechanisms in Chun and Yengin [9] uniquely characterizes the set of

all strategyproof, ICLB mechanisms with outcome efficienct sequencing rule.
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