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Abstract

Robust rankings of poverty are ones that do not rely on a &ipglverty measure with
a single poverty line. Mathematically, such robust rankimd two populations specifies a
continuum of unconditional moment inequality constrainfshese constraints could be im-
posed in estimation then a statistical test can be perfoused) an empirical likelihood-ratio
(ELR) test, which is a nonparametric version of the liketileratio test in parametric infer-
ence. While these constraints cannot be imposed exactlghaw that these can be imposed
approximately with the approximation disappearing asytiqally. We then propose a boot-
strap test procedure that implements the resulting apmatei ELR test. The paper derives
the asymptotic properties of this test, presents MontecGaxperiments that show improved
power compared to existing tests such as that of Linton ¢2@1.0), and provides an empirical
illustration to Canadian income distribution data. Moragmlly, the bootstrap test procedure
provides a uniformly asymptotically valid nonparametsesttof a continuum of unconditional
moment inequality constraints. The proofs exploit the faet the constrained optimization

problem is a concave semi-infinite programming optimizapooblem.

JEL Classification: C12 (Hypothesis Testing); C14 (Senapwetric and Nonparametric Meth-

ods); 132 (Measurement and Analysis of Poverty)

Empirical Likelihood; Robust Poverty Comparison; Continuof Moment Inequality Con-

straints; Bootstrap.

Introduction

The comparison of income distributions in studies of povétan important component in the

economist’s toolbox. The simplest rankings are based onglespoverty measure with a fixed

poverty line, such as the proportion of households with ines below $5000. Such rankings are

very limited as they are based on a single measure and a pioxgety line: they may produce con-

tradictory conclusions at two different yet equally reasale poverty lines or poverty measures.
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Recently, attention has focused on robust one-way poveityparisons in the sense that the
ranking between the income distributions is unanimoussscnaultiple poverty measures or a set
of poverty lines. Specifically, a poverty-line ranking orsléhe distributions using a single poverty
measure over a range of poverty lines, rather than a singlerfyoline. And a poverty-measure
ranking orders the distributions using a single povertg brer a range of poverty measures where
the poverty measures are in a pre-specified family thatfeetisertain ethically desirable criteria
(axioms). These two robust rankings are conceptuallyrdisbut interconnectéd

Since population income distributions are not observablpractice, a statistical test is em-
ployed to rank the distributions using sample data on inrAs they are cumulative distribution
functions (CDFs) of income, income distributions can bated as CDFs of random variables for
the purposes of estimation and tests. In this respect, atyaveasure with a fixed poverty line
is an unconditional moment of a given income distributidrindicates the extent of poverty as-
sociated with the distribution under consideration. Thasaking two income distributions using
a single poverty measure with fixed poverty lines is charamsd by an inequality restriction on
these moments. Extrapolating from this case, a robustmgrntorresponds to an infinite number
of inequality restrictions on certain moments of the disttions. For this reason, a statistical test
for such a ranking entails testing for an infinite number ohmeat inequality restrictions.

This paper proposes a nonparametric bootstrap test foruhéypothesis that a given robust
one-way poverty comparison holds between two income Higions. The proposed test pro-
cedure uses the method of empirical likelihood (Owen, 1988 and Lawless, 1994; Imbens
et al., 1998; Kitamura, 2001). Itis a nonparametric likebld-based procedure that produces data-
determined shapes for the distributions, and it is pauitylppropriate in our setting where there
are many moment inequality constraints imposed in estonatiVe test the null hypothesis us-
ing the empirical likelihood-ratio (ELR) test statistichigh is a nonparametric counterpart of the
likelihood-ratio statistic in parametric inferences. Tddvantage is that this test statistic has the

internal Studentization property and accounts for theeatation between the different moment

1See Zheng (2000) for more on this point.



inequalities, which leads to a less conservative test.

The test this paper proposes uses conaarai-infinite programmingSIP) methods (Hettich
and Kortanek, 1993; Lopez and Still, 2007; Shapiro, 2009%xt@end Canay (2010)’s empirical
likelihood bootstrap, which is for a finite number of momamguality restrictions, to the setting
of the paper, where there is amfinite number of unconditional moment inequality constraints.
To establish the uniform validity of our testing proceduse, derive the uniform asymptotic null
distribution of the ELR statistic. This result extends ttsyraptotic distribution theory of this
statistic for a finite number of inequality constraints (e Barmi, 1996) to the infinite case.
The general theory is presented in such a way that it can deedpp any setting where the null
hypothesis has infinitely many unconditional moment indiueonstraints. Therefore, this result
is of independent interest and significantly advances threctliterature on constrained statistical
inference. Another attractive feature of this paper is thatgeneral infinite number of constraints
case is motivated by the need to solve an important problgroverty and income studies.

We also analyze the finite sample properties of our test intl@arlo simulation experiments
using models for second and third orders of restricted ststoh dominance. We compare its
performance with the bootstrap tests of Linton et al. (2QL@W) and Andrews and Shi (2010)
(AS). LSW propose a bootstrap test for traditional unrestd stochastic dominance under the null
using one-sided integral-type test statistic that is ational of the sample analogue estimator of
the moments. Their method also applies to restricted sthichdominance, which presents a point
of comparison with the current work. AS also propose a boastest, but for models defined
by many (possibly an infinite number of) conditional momemqualities and/or equalities. The
framework of AS covers the models in this paper. In the pamsatup, the test statistics AS propose
reduce to a one-sided Kolmogorov-Smirnov test statistt th a functional of the Studentized
sample analogue estimator of the moments. In contrast t&lietest statistic, neither of the
test statistics AS and LSW propose accounts for the coioelacross the moment inequality
constraints.

In the simulation results for these two models, all the ofgghecedures are found to control test



level well in moderate to large sample sizes. The LSW tesiuad to be conservative relative to
the AS and proposed tests, whereas the AS and proposedeahatgetsimilarly. The test this paper
proposes outperforms the LSW and AS tests in terms of povansigalternatives with some non-
violated inequalitiel with the AS test outperforming the LSW test. Furthermohe, proposed
test’'s power is substantially higher than the AS and LSWstaghainst such DGPs that are closer to
the null. Finally, all of the tests have similar power prdjgs against alternatives with population
moment functions that have a continuum of binding momerguiaédties.

This paper contributes to the literature on inference f@wusb poverty comparisons. The lit-
erature has focused almost exclusively on tests for taditiunrestricted stochastic dominance
orderings. Some examples include McFadden (1989), BanettDonald (2003), Linton et al.
(2005), Horvath et al. (2006), and LSW. From a normative pectve, such rankings are deficient
because they do not give equal ethical weight to all those avedoelow their respective poverty
lines, whereas the rankings based onrdstrictedstochastic dominance conditions do not suffer
from this deficiency. We contribute to this literature by considering tests &stricted stochastic
dominance under the null, and more broadly, tests for othtarst rankings.

Tests for restricted stochastic dominance are not new.d3awi and Duclos (2013) and David-
son (2009) propose asymptotic and bootstrap tests thatpsigad a null of non-dominance. Their
approach is convenient since a rejection of this null entitceptance of the only other possibility
which is restrict stochastic dominance; however, thegraktive hypothesis is a strong form of
restricted stochastic dominance, which implies the nufidiiiesis posited in the paper. Thus, the
proposed test procedure complements the aforementioresd on

This paper also contributes to the growing literature oan@fce for models defined by an infi-
nite number of unconditional moment inequality restricioThere are several papers on inference
for conditional moment inequalities, which can be treatedia infinite number of unconditional

moment inequalities; see, for example, Andrews and Shi320014) and Chernozhukov et al.

2The terminology for describing such alternatives is boedrom Andrews (2011); it refers to alternatives with
some positive moments and some moments that are negativeatetately small.
3See Bourguignon and Fields (1997) for more on this point.



(2013). In contrast, the infinite number of inequalitieshe paper are not generated from a con-
ditional moment inequality model. The papers closest topttesent work are AS and LSW. AS
extends Andrews and Shi (2013) to cover models defined byitglfirmany conditional moment
inequalities and/or equalities. Their extension also totiee case of models defined by an infinite
number of unconditional moment inequalities.

The approach of this paper differs from that of LSW and AS ia tmportant ways. Firstly, the
paper proposes the use of a likelihood-based test statigtie AS and LSW propose one-sided
test statistics based on the sample analogue estimatoe gioghulation moments. Secondly, the
paper’s approach to bootstrapping formulates the boptstasa-generating process (DGP) using
a constrained estimator of the underlying distributionshev¢as LSW and AS propose the use
of the empirical CDF of the data as the bootstrap DGP, whidsdwt incorporate the statistical
information from imposing the constraints that define thé hypothesis. Therefore, the main
technical contribution of this paper is to introduce a newvihnod of testing that applies to cases in
which an infinite number of unconditional moment inequasitdefines the null hypothesis.

The rest of this paper is organized as follows. Section 2ridestrobust one-way poverty com-
parisons within the framework of a moment inequality mogegsents examples, and introduces
the model of the null hypothesis. Section 3 defines the ELE&sEtg provides its uniform asymp-
totic null distribution, and specifies a computational aiton for computing it in practice. Sec-
tion 4 describes the proposed empirical likelihood boafstest procedure, establishes its uniform
asymptotic validity, and its consistency against all fixédraatives. Section 5 provides the Monte
Carlo simulation results. Section 6 illustrates the pregosiethod using data from the Canadian
Family Expenditures survey for the year 1986. Section 7 lemtes, and Section 8 collates the
acknowledgements of the individuals and institutions whaviged help during the research. All

proofs are relegated to the Appendix.



2 Robust One-Way Poverty Comparisons

2.1 Setup

The models described in this paper are of the following garferm:
Ep [g(X;t)] <0 Vte [t (2.1)

where[t,t] C R is a predesignated compact interval, the observat{dfg; , are a bivariate
random sample on two populations and B with typical elementX = [X4 X5], P, is the
unknown true distribution oX; with respect to the measurable spéak A), whereX = [0, 3] x
[0,5] is the sample space of jointly observable incomes from tlogampulations witls € (0, +00)
is known, andA is the Borel sigma algebra oki. Furthermoreyg (x;t) = h (z7;t) — h (z%;1)
whereh is a known moment function that is weakly monotonic in itstfalgument for each

The object of interest i$%, which is partially identified. We are interested in testihgttF,
satisfies the moment inequalities (2.1) under the null Hyggis. The next section characterizes
robust one-way poverty comparisons within the frameworthefmoment inequality model (2.1),

and presents a couple of examples.

2.2 Examples

The robust one-way comparisons of two populations are reftbeerty-line rankings or poverty-
measure rankings. The former carries out the one-way casgpaeover a predesignated set of
poverty measures with given poverty lines, whereas therléittes a poverty measure and com-
pares the distributions over a given set of poverty lines.ogpty measure has the general form
[ h(z;2,7) dL(x) wherez is a poverty liné, z is income,L(z) is an income distribution, angis
poverty aversion parameter that indexes the poverty meastinin a pre-specified family of such

measures. The function(zx; z,v) > 0 is the poverty contribution to total poverty of someone with

4A poverty line in a population is the threshold below whicleas considered to be poor.



incomex, with h (x; z,v) = 0 whenever: > z. Furthermoreh (x; z,y) is weakly monotonic in:
for eachz and~.

For poverty-measure rankings?, -” are given and lef' C R denote a set of poverty aversion
parameters. Then, we sayhas more poverty thaB according to the poverty measures defined

by the moment functions ifir (-;-,~),vy € I'} if
Ep, [h(XP2P,9) —h (X424, 9)] <0 vyeT. (2.2)

For a poverty-measure rankingis fixed and letZ C R, be a given set of poverty lines. Then, we
sayA has more poverty thaR according to the poverty measures defined by the momentdunsct

in{h(-;z7y),z€ Z}if
Ep, [0 (XP2,7) —h (X% 2,9)] <0 Vze Z. (2.3)

We now present two examples of robust one-way poverty cosges.

Example 1(The First Clark, Hemming and Ulf Family). Clark et al. (19§toposed the following
family of poverty measures; [ [1—(£)"] dL(z) wherey > 1. Income distributions can be
ordered using this family acrossfor given poverty lines, or across poverty lines for a givetn

the former setting, let <y <% < +oo, then the moment functions are

wherezX, K = A, B are given poverty lines. In the latter setting, lek z < z < 3, then the

moment functions, with given, are

Xyt [1 - (?ﬂ 1[a? < 2] — ! [1 _ (ﬁﬂ 1o <2 z€lzz)



Example 2(The Foster, Greer and Thorbecke Family). Foster et al. 41 9&posed the following

family of poverty measures%: foz (Zj”)7 dL(xz) wherey > 0. As in the previous example, income
distributions can be ordered using this family either agm@set of poverty aversion parameters or
across a set of poverty lines. In the former settingflet v <75 < +o0 andz4, 2P are given.

Then, the moment functions are

B _ ,.B\ 7 A _ AN\
XH(%) 1[;6393}_(%) 1t <4 ve Al

For the poverty-line rankings, is fixed and let: € |z, Z]. Then, the moment functions are

z z

XH('Z—‘”B)Wl[stz]—(Z“’“"A)vl[w%z] ez

For v = 0, this poverty-line ranking fixes thbeadcount raticas the poverty measure, and for
~v = 1 it fixes theper capita income gap Foster and Shorrocks (1988) called these poverty-line
rankings "poverty orderings”, and proved that they are ime-to-one correspondence with the
rankings based on stochastic dominance conditions. Sgabyfithey showed fory = 0,2z = 0
andz = s, these moment functions correspond to the ones that defih@fidsr stochastic domi-
nance conditions. And more generally, foequal to a positive integer, this poverty-line ranking

is equivalent to the ranking based on thet 1)-order stochastic dominance conditions.

The next section introduces regularity conditions on theniat functions that covers a broad

range of robust one-way poverty comparisons.

2.3 Conditions on Moment Functions

Without loss of generality, we represent the moment fumstim (2.2) and (2.3) by the set of
functions{x — g(x;t),t € [t,7]} . In this notation, the index parametecan either be a poverty
measure in a pre-specified family, or a poverty line, so thatihdex parameter over which the

comparison isot being conducted is suppressed for notational simplicity.
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The set{x — g(x;t), t € [t,7]} satisfies the following assumption:

Assumption 2.1. (i) For eachx € X, t — ¢ (x;t) is a Lipschitz continuous function ¢ ¢] with
known Lipschitz constank; (i) —1 < g < 1, V(x,t) € X x [t, t]; (i) Pointwise measurable; (iv)

VapnikCervonenkis class, and (#)’ € [t,7] such thaty(x; ') = 0 Vx € X

Many sets of moment functions that define poverty measutéesfysthe conditions in Assump-
tions 2.1. Condition (i) is standard in the concave SIP ojtion literature. It also excludes
moment functions that depend discontinuously on the paemtieat indexes them, such as the
ones that define the first-order stochastic dominance dondit Condition (v) excludes moment
functions that vanish uniformly over the sample space. Tteustand the impact of this condition,
consider the moment functions for the traditional unrettd s-th order stochastic dominance

conditions:
12" <t] teo,3). (2.4)

Condition (v) excludes the moment function correspondmg £ 0 since it is equal to zero for
everyx € X. Furthermore, the compactess of the intefwal] forcest > 0. Therefore, these
conditions exclude the traditional unrestricted stodbakiminance conditions from our analysis.
As already mentioned in Section 1, such rankings are defiGiem a normative perspective; for
this reason, the paper does not focus on them.

Conditions (i) and (v) justify the existence of Lagrange tiplier variables (via a Slater con-
dition), whose large sample properties establish the agyimpehavior of the ELR test statistic.
The value of the bounds in condition (ii) are not importamttfee validity of the proposed method
and are made for simplicity; all we require is that the monfanttions are uniformly bounded
with known bounds. Conditions (iii) and (iv) are importanot fleveloping the large sample prop-
erties of the ELR test statistic using empirical processmhelhe pointwise measurability of this
set is to ensure the measurability of the quantities we degdsted in; see Appendix B for their

formal definitions and a discussion of how to verify them iagdice.
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The bootstrap test procedure this paper proposes apphesiitypes of robust one-way poverty
comparisons. It is uniformly asymptotically valid undee timodel of the null hypothesis, and we

present this model in the next section.

2.4 Null Parameter Space

The bootstrap test procedure uses the ELR test statistsimg whether, satisfies (2.1) under
the null hypothesis. The asymptotic behavior of this tesistic depends on the form of the contact

set
A(PRy) ={telt1]: Ep [g(X;t)] =0}, (2.5)

and on the properties of the covariances of the random ‘aséh (X;t), t € A (F,)}. The setup
allows for a continuum of binding moment inequalities, amelltipschitz continuity of the moment
functions excludes the case in which a countable numberiadinig>. In general, A (7)) =
Ay (Py) UA. (R),whereA, (F) is the set of isolated points i\ (F,) , and A, (F,) is union of
the connected parts & (F) .

If A(R) = Ag(Py) = {t,85,...,t%,} wherem € Z,, then we denote by, (F) the

covariance matrix formed by the random variablegX;t%) , j = 1,...,m} , which is given by

Ep, [9 (X;89)]° Ep, [9(X;88) g (X5t5)] -+ Ep [g(Xith) g (X;5tb)]
Ep, [9(X;15) g (X588)]  Er, [9(X;13) g (X:5)] --- Ep [9(X13) 9 (X;15,)]
Ep, [9(Xsth,) 9 (X580)] Ep, [9(X5th,) g (X585)] - Ep, [9 (X;15,)]"

If A, (Fy) # (), then by the Lipschitz continuity of the moment functionss isufficient to consider

5A countable number of binding moments on a compact interezms that the moment functions have to oscillate
wildly, and hence, violate Lipschitz continuity.
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the covariance matrix of the variablt%s (X;t),te A ('PO)} , Where
A (Fo) = Mg (Py) U (Ac (P) N Q) (2.6)

andQ is the set of rational numbers. As(P,) = {#},#5,...} is a countable set, it gives rise to
the infinite covariance matriX., (P,) .
We denote the cardinality of (P) by w = ‘A ('PO)‘ _If A(PR,) is countable, then we set

w = oo. Additionally, define the vector spaces

2 = {a = (a1, as,...,a,) € RY s sup ;| < +OO} and (2.7)
J

I = {a:(al,ag,...,aw)ERW:Z|CLJ-| <+OO} (2.8)
j=1

with respective normfa||s, = 375, |a;], and||all; = sup; |a;].

Let P denote a generic value &f. Next we define the null parameter space Fr

Definition 2.1. Let M be some collection aP that satisfies the following conditions for a given

constant: > 0.

(i) Dependence: neither of the random variablé$ and X Z is a deterministic transformation

of the other,
(i) Sampling:{X;};_, is a random sample frorf,
(iii) Injectivity: 0'S,, (P)60 > ¢ V0 € I, such that|f,. =1,
(iv) Surjectivity: the covariance operatat,, (P) : IL, — [°, is surjective,
(v) The set of moment functiofis — g(x;t),¢ € [t, ]} satisfies Assumption 2.1,

(Vi) Eplg(X;t)] <0 Vteltt].
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Condition (i) of Definition 2.1 allows for an arbitrary depance structure between the marginal
random variables except that one cannot be a determimatisformation of the other. This flex-
ibility in the dependence configuration allows for struetithat could occur when dealing with
situations involving the comparison of pre- and post-taome distributions, or the distributions
of separate incomes of married couples, for instance.

The large sample behavior of the ELR statistic depends ormpitbeerties of the covariance
matrix X, () . Since it is possible undéi, for w = oo i.e. an infinite covariance matrix, these
properties are best described as conditions on the opétataf,) : I — 2. Condition (iii) of
Definition 2.1 implies the null space &f, (P,) contains only the zero vect®, < [.. Thatis,
Ker(X, (Py))={0€ll 2, (R)0=0,}={0,}. Therefore, the inverse operator
Y 1 (P) : RanggX, (Py)) — [} exists, and Range&,, (FPy)) = [ for finite w. Condition (iv)
of Definition 2.1 ensures that Ran@e,. (F)) = I3 holds as well. Sinceup, ; ¥ (Fo) < 1
is a consequence part (ii) of Assumption 2.1, Conditionsdid (iv) of Definition 2.1 imply that

Y. (Py) andX;! (Py) are bounded in the operator norms

1w (PO)l = sup[|% (F) 0], and (2.9)
{oettslon, =1}

1=,! (Po)|| = sup 125" (Po) 8], - (2.10)
{oetziliol =1} “
That is, || 3, (Fo)|| < sup;; Yw,i; (FP) < 1, and the boundedness Bf,' (P) follows from the
Bounded Inverse TheorémAs can be seen in (2.9) and (2.10), the operators norms depen
the vector spacel, and(>°; however, for ease of exposition, we suppress the depenaérice
operator norms on these spaces.
Now we introduce further notation. Thefold product probability measureB;”, defined on the
product measurable spac&”, .4") is used to compute the probabilities of eventsiih To keep
the notation simple when describing the probability of ésel), € A™, we adopt the convention

that Proly[A,,] is the probability of the evendi,, with respect to the joint distribution of the bi-

6See Theorem 4.12-2 of Kreyszig (1989) for a formal statement
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variate random samplé)". Suppos€ U; ;;Of is an i.i.d sequence of random variables with respect
to the product measurB> for every P € M. Then we say thafU;};°F = Op (1) uniformly
over M if for any e > 0, there existsB > 0 and N, such thatup p. ,, Pros[|U,| > B] < €
for all n > Np. Similarly, we say thafU;}.”> = op (1) uniformly over M if for any ¢ > 0,

SUp pe pq Probp[|U,| > €] — 0 asn — +oo.

3 Empirical Likelihood

This section introduces (i) the unrestricted and restliet@pirical likelihood estimators dfy, (ii)
the uniform asymptotic distribution of the ELR test statisand (iii) a computational algorithm

for approximating the ELR test statistic.

3.1 A Concave Semi-Infinite Programming Estimator

Because of the continuity of the moment functions, it is ejfoto impose the moment conditions
on [t,7] N Q, whereQ is the set of rational numbérs The restricted empirical log-likelihood

problem is

" — 1 i) pi =0, i =1, g (Xit) <0 Vtelt,t]nQ, », (3.1
ﬂ%ﬁ{?@g@w 2_pi=1) pig(Xit) €t Q} (3.1)

i=1 i=1 i=1

wherep, denotes the probability mass placedXyby a discrete distribution supported 6K}, .
The optimization problem (3.1) is a (random) concave serfiiite program since there is a finite
number of choice variables, and an infinite number of coimgsa It has auniquesolution for
realizations of{X;}!" , that yield a nonempty constraint efor 7, € M, this constraint set is
nonempty for a large enough sample 8iZEhe unrestricted empirical log-likelihood probleiti,,

is similar tol” except that the moment inequality condition$_, p;g (Xi;t) <0 Vt € [t,{]NQ,

"This is becausg, 7] N Q is dense irft, 7.

8This result follows by a standard application of Weiersgtra$heorem to the problem (3.1). It is stated as Propo-
sition C.1 in Appendix C for ease of exposition.

9This large sample property holds uniformly.M, and it is stated as Lemma C.1 in Appendix C.
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are not imposed. The solution in this case is simply= 1/n, and then™ = —nlog(n). The ELR

statistic is defined as

En=20" —1). (3.2)

Hence, large values of this statistic suggest the regirnés not supported by the data.

Let p denote the solution of (3.1). Its characterization it imtsrof Lagrange multipliers re-
quires formulating a dual of the problem (3.1). To do this, me®d to specify a pair of vector
spaces, one which serves as the space into which the monmeniofuts are embedded, and the
second its dual spate By Assumption 2.1, we can embéet — g(x;t), ¢t € [t,7] N Q} into the
sequence spade. Its dual space i$a (2@0@) : the Banach space of bounded finitely addi-
tive scalar-valued signed measures on the power $ettoh Q, endowed with the total variational
norml. An element € ba <2W”Q) is a bounded linear functional @r of the form} ™, v;w;,
wherew € R> andv; = v ({t,}) for eacht; € [t,7] N Q

The Lagrangian associated with problem (3.1) is

+o00 n

L(p, 1, A) = 3 log (pi) + (1 - Zn—) A=ndY pig (Xisty) (3.3)

j=1 i=1

where(p, i1, ) € R x ba (2V) x R. As in the case with finitely many constraints, a saddle point
of the Lagrangian yields the desired characterization @fttobabilities in terms of the Lagrange
multipliers. Such a characterization follows from the KartKuhn-Tucker (KKT) conditions un-
der a constraint qualification. Because there is an infinut@lrer of inequality constraints, the

Strong Slater Condition, introduced by Mordukhovich anchig2013), is the appropriate con-

10Given a vector spack¥, its dual space is by definition the set of all bounded lineacfionals ony.
1The total variation norm of a signed measure is defined thralsgHahn-Jordan decomposition; see Theorem 3.4
of Folland (1999).
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straint qualification. In the setting of the paper, it is armvin.A" given by

n

Sn:{EIpi>0i:1, ,nsuch that sz—l sup Z ig(Xi;t)<O}. (3.4)

=1 te[tTan 1

Denote the active gb constraints by:A (p) = {t € [t,{]]NQ: >, pig (X;;t) =0}, and let
ba (2[@5]”@) = {u € ba <2W”Q) ;> 0Vj € N} . Then, on the evens§,,, for some\ € R
+

andji € ba (2@@0@) , p satisfies the following KKT conditions
+

1 .
Pi>0, ——=XA-n)Y g(Xit;)j; =0, i=1...mn (3.5)
pi et
Zpl (X;:t) <0 Vtelt,]]NQ; supfji) C A(p Zpl—l (3.6)

where supfy:) is the support of.
Multiplying both sides of the-th equation in (3.5) by, and summing over yields A = n by

complementary slackness and the constraifit, 5; = 1; hence, the probabilities are given by

—+00

-1
| N -
pi=- (1 + Zujg (Xi;tj)> ;o i=1n (3.7)

j=1

This characterization of thg; in (3.7) only occurs on the evei,. The next result shows the

likelihood of this event tends to unity with uniformity, uedthe null hypothesis.

Proposition 3.1. Supposeé?, € M. Then,sup Probg [S,] — 1 asn — +o0.
PeM

Proof. See Appendix C.2. O

Consequently, under the null and for large enounghpon substituting in the probabilities (3.7)
into the expression for the ELR statistic (3.2) and re-agitag, results in the following expression

for the test statistic

En = 2) log | 1 (Xi:t) 3.8
m?fme Zog<+zg ) (3.8)

ueb
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Therefore, the asymptotic behavior&f under the null depends on the asymptotic behavigr. of
The restriction on: in (3.8) significantly affects the asymptotic null distritan of £,, and results

in a non-pitoval limit distribution, as the next section &iso

3.2 Uniform Asymptotic Null Distribution

This section presents the uniform asymptotic distributteeory for the ELR statistic (3.2) when

Py € M. This result relies on the uniform convergence of the randamction

Va (% > g (Xit) = En g (X: t>J> telti, (3.9)

which follows from Assumption 2.1, as it implies the set marnfeinctions is uniformly Donsker
and pre-Gaussian with respect to the probability measure®ti we formalize this result as
Lemma B.1 in the Appendix. The random function (3.9) is umity weakly convergent to a

zero-mean Gaussian proce§§t) ¢ € [, t], with covariance kernel
Ep, [9(X;u) g (X50)] = Ep, [9 (X5 u)] Ep, [g (X5 u)] - (u,v) € [t 2] x [t 1]. (3.10)

Furthermore, this uniform weak convergence implies theicnamfunction,ﬁ Yorig(Xit)t e
A (Py), is uniformly weakly convergent to a zero-mean Gaussiange®é: (t)t € A (), with
the covariance kerndlp, [g (X;u) g (X;v)], (u,v) € A(Py) x A (Fy) . If A(FPy) ={t1,...,tw}
andw € Z., then the limiting Gaussian process is a multivariate nomaatiom vector with di-
mensionw given byG,, ~ MVN (0, X, (Fp)) . If A (Py) = Ay (FPy) UA. (), then the limiting
Gaussian process is the extension of the discrete GaussieesgG., ~ MVN (0., X, (FP)) on
A (By).

To develop the uniform asymptotic distribution 8f, it is necessary to restrict1 to certain

submodels as follows.
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Definition 3.1. Giveney € Ry, let
Meg) ={PEM:A(P)=0tU{PeM:A(P)#Dand ||Z,' (P)||<e}, (3.11)

where|| - || is the operator norm (2.9).

Let ~ denote weak convergence, andligt = {0 € I3’ : 0; < 0Vj}. The following theorem

provides the uniform asymptotic distribution &f under the null.

Theorem 3.1. For everye, € R, , we have

0, if w=0,

minUelZ?L (Gw — U)/ ¥l (P(]) (Gw — U) , if w # 0,

uniformly in M (ep) .
Proof. See Appendix C.3. O

The form of the contact set has a significant discontinuofecebn the shape of the ELR’s
asymptotic null distribution. Theorem 3.1 shows that thetlilistribution of&,, when no inequality
constraint binds is degenerate at zero, sifice"s 0 in this case. If only a finite number of
constraints bind, then the ELR statistic converges in ihistion under the null to the familiar
Gaussian QLR statistic which has the chi-bar-square bigtan. The last case is when the set of
binding moments has isolated and connected parts, or onlyembed parts. The form of the ELR
statistic in this case is a generalization of the GaussiaR &tatistic.

A pre-requisite for using the result in Theorem 3.1 is thditgtib compute&,,. Its computation
is infeasible in practice since it is impossible to imposédinite number of inequality constraints
in numerical optimization routines. However, it is possiltd approximate, using standard

methods of approximation in the SIP literature, which isdssed in the next section.
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3.3 Computational Algorithm: An Exchange Method

This section introduces a computational algorithm thatexmates the solution of the SIP prob-
lem (3.1). Because the optimization problem associatel this estimator is a SIP, we adopt a
numerical approach to SIP to compute it. Nowdays the nuralesjgproach to SIP has become an
active research area; for a review on SIP algorithms, seegcHeind Kortanek (1993) and Reem-
sten and Gorner (1998).

An important first point that we emphasize is that from a nucaépoint of view, SIP is more
difficult than finite programming. The difficulty arises withe feasibility test of a candidate
solution to the SIP, because checking the feasibility ia taise is obviously equivalent to solving
the global maximization problemmnax;c, 7 >\, pig (Xi,t) , and to check whether for a global
solution to this problem that the continuum of constraintsimibdeed hold. The paper uses an
"exchange method" to compute an approximatiop.tth is one of the main algorithmic approaches
to solving SIP problems. This computational algorithm carséen as a compromise between pure
discretization methods and methods based on local reductio

The discretization method requires that we choose finiteesns{)tj}j.\[:1 =Ty C [t, 1] NQ, and

instead of solving the SIP problem (3.1), we solve the finitgpam

log (pi) ; pi 2 0, i =1, g (Xint) <0 j=1,....N ;. 3.12
pﬁ??iifn{; 0g (n:): pi 2 0. ) pi =1, ) pig (Xist) J } (3.12)

1 i=1 i=1

The sequence of sef9y } , are such that the Hausdorff distance betw&grand[t, {] N Q tends

to zero asV — +oo. Thatis, dist{ 7y, [,7] N Q) — 0 asN — +oo, where

diSt(TN, [t,E] N Q) — sup min|f —¢. (3.13)

telt,]nQ €T

The distance dig{7y, [t, ] N Q) is a measure for the mesh-size of the discretization. Sahen
the problem (3.1) is indeed discretizable, its (uniqueyisoh, provided it exists, is the point of

accumulation of the corresponding sequence of solutionthéproblems (3.12); see Sections 3
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and 6 of Shapiro (2009) for sufficient conditions on the désizability of general SIP problems.
On the other hand, methods based on local reduction redugrddtermination of all the local
maxima of the problem

max Z pig (X, 1) (3.14)

tetj

as they depend on the probabilities. This approach is caatipatlly expensive and can be infea-
sible in practice for data sets of a moderate size, becaeseutmber of independent variables in
these solutions grows one-to-one with the sample size.

Conceptually, the exchange method at ¥¢h step has a given grifly and a fixed small value

a > 0. Then, one proceeds as follows:
1. Compute a solutiop of the discretized problem (3.12).

2. Compute the local maximay,j = 1,. .., k of the problem (3.14) whep = py, such that

one of them, say, v is a global solution; that is,

szNg thlN)—maXszNg Xl7t)
— tett]
3. Stop, if)""  pinvg (Xi t1n) < a, with an approximate solutiop. Otherwise, update

TN+1:TNU{tj,Najzla"'ak}'

Naturally, the numerical accuracy of this method dependbhiemumber of grid pointsy, and on
the tolerance number. In practice, both will depend on the sample size. IndividuaV anda
introduce a bias variance trade-off in the computatioh 0f , p;g (X;, ¢) for eacht € [¢, t]. Large
values of NV and small values af increase the bias but reduce variance, whereas small vaflues
N and large values af decrease the bias but increase the variance.

Denote the solution of the exchange algorithmpby. . . | p,,, then the ELR statistic based on it
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is defined as
& =2 {—nlog(n) — Z log (pl)} . (3.15)
i=1

Theorem 3.2. Supposé?, € M. If min {N(n)™*, a(n)} — 0 asn — +oo, then
1. &, =&, + op (1) uniformly in M.
2.6 —E,=0p (n_1/2 min {ﬁ, a(n)}) uniformly in M,
whereL is the Lipschitz constant presented in Assumption 2.1.
Proof. See Appendix C.4. O

Theorem 3.2 shows that the ELR statistic arising from théarge algorithm is uniformly asymp-
totically equivalent to the ELR statistic (3.2). Consedjjert,, can be used to test the null hypoth-
esisP, € M in practice. A remarkable point regarding Theorem 3.2 is tha validity of the
uniform asymptotic equivalence does not require any i&giris on the rates a¥ (n) anda(n).

In general, the computation of fixed asymptotic criticalues is infeasible because the asymp-
totic null distribution in Theorem 3.1 depends discontiasiy on P, through the contact set (2.5).
This feature of the ELR statistic motivates the use of thetdtaap, which is discussed in the next

section.

4 Bootstrap Test Procedure

This section introduces the bootstrap ELR test for the nypldthesisP, € M. The testing proce-
dure extends the approach of Canay (2010) to the settingeqfaper.
The bootstrap DGP is the set of probabilities on the datatpdirat is the solution of a modified

version of the exchange algorithm. The modification reate finite program (3.12) in the
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exchange algorithm Section 3.3 with the following optintiaa problem:

.....

. {zlog ) 310 zpz_l zpz (Xit)) < —malty) j:l,...,zv}, @)

where they,,(t;) > 0 are (possibly random) numbers that satisfy the followingperties

Proby, [ lim n,(t;) = 0andliminf n,(t;) (n/ (2log logn))1/2 > aj} =1 and (4.2)

“+oo n——+o0o

sup nn(t)im uniformlyin M, where (4.3)
te(t ]

0} = B, lg G )" = (Br [9(X58)])* j=1,....,N(n).  (4.4)

The sequencs,(t;) provides a rule to determine whether theh moment is binding or slack. It
is similar to the sequences in Andrews and Soares (2010), B8WCanay (2010).

Denote the bootstrap DGP Wy, ...,p,), and let{X}}"" , be a random sample from it. Fur-
thermore, denote b{ps, . . ., %) the solution of the modified exchange method algorithm incivhi

{Xr}._, replaces the data. The bootstrap ELR statistic is defined as

g =2 {—nlog Zlog Di } : (4.5)

Letting B,, be the number of bootstrap replications, the approximatés@p p-value is defined

as

Ty, = Bin JB; g, 24, (4.6)

whereé&, is given by (3.15). The bootstrap test rejeéts if YT, < f,whereg € (0,1/2)is a

given nominal level.
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4.1 Uniform Asymptotic Validity Results

The following theorem shows the asymptotic null distribatiof the bootstrapped ELR statis-
tic (4.5) is exactly the same asymptotic null distributiodntive ELR statistic (3.2) provided in
Theorem 3.1.

Theorem 4.1. For eachn, let A, denote the sigma algebra generated {Y;}" , . For every

eo € R, the modified bootstrap ELR statistic defined in (4.5) safisfie

0, if w=0,

—%
&, ~

mingez  (Go — U)' 3.1 (P) (G —U), ifw#0

conditional onA,, in F, uniformly in M (ey).
Proof. See Appendix D.1. O

The result of Theorem 4.1 is uniform i (ey). Furthermore, it implies the following for the

bootstrap ELR test.

Corollary 4.1. Suppose the conditions of Theorem 4.1 hold. Additional§ ;  be given by (4.6)

andg € (0,1/2). Then, for everg, € R,

limsup sup Probp[Yps, < (] < 5. 4.7)

n—+o00 PeM(eg)
Proof. See Appendix D.2. O

Corollary 4.1 shows the bootstrap ELR test has asymptéticatrect size, uniformly inM e).

4.2 Test Consistency

Next we consider the power of the proposed bootstrap teststgal alternatives. The power of
this test is shown to converge to 1 as— +oo, which means the test is consistent against all

alternatives.
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Let A (Py) = {t € [t,?] : Ep, [9(X,t)] > 0} . Under the alternative, the Lipschitz continuity
of the moment functions implie&™ (/) has the cardinality of the continuum. As with the setup

underHy, A (Py) = Al (Ry)UAS (Py) whereAT (B,) is the set of isolated points iv* (F) and

A} (Py) is the union of the connected parts&f (7). Furthermore, leA* (Py) = AT (Py) U

(AT (Ry) NQ), and let2 (F,) denote the infinite matrix with typical element

Qt,t’ (PO) = EPO [g (X7 t) g <X7 t/>] l e AT <P0>

The following assumption is needed to prove test consigtenc

Assumption 4.1. (i) 'Q (Fy) 0 > 0 V6 € 1L with ||0]|,, = 1. (ii) 3t’ € [¢t, ] with Ep, [g (X, )] >
0, and{X;}", is IID F.

Next we have the result on test consistency.

Theorem 4.2. Supposé’, satisfies Assumption 4.1, and that Assumption 2.1 holdstiéwaally,
let min {N(n)~',a(n)} — 0asn — +oo. Then, Proby, [Tz, < 3] — 1 asn — +oo, where

g € (0,1/2) is a given nominal level anf 5, is the approximate bootstrap p-value (4.6).
Proof. See Appendix D.3. O

Theorem 4.2 shows that the proposed bootstrap procedusassstent against all fixed alterna-

tives.

5 Monte Carlo Simulations

The main purpose of this section is to evaluate the finite $gmpgformance of the tools developed
in previous sections. In each simulation experiment, thainal level was fixed at 5%\ (n) =

n'/2 a(n) = n~Y2, andn,(t) = &, /%" wheres? is the sample analogue estimatoragt
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Additionally, given the intervalt, ¢], the grid was constructed as follows:

(i)

m=it=t <ty <---<tym =1}, Wheret,;; =t; ,
TN @) {_ 1 2 N(n) } +1 + N(n)

(5.1)

fori =1,...,N(n) — 1. We considered the following sample sizes- 256, 512, 1024, 2048 with
1000 MC replications per experiment, and 199 bootstrap &smer MC replication. Finally, we
also report the empirical rejection frequency of the baatstests of LSW and AS; see Appen-
dices H and | for the implementation of these tests in thengettf the current paper. Otherwise,
the experiments were implemented using Matlab.

As described in Section 3.3, the exchange method uses firogrgms which have known
closed-forms for the first-order and second-order conaiti®@upplying this derivative information
to the Matlab optimization routine substantially speedsthg execution time of the exchange
method algorithm, especially for the cases in which the darmsjze is large e.g.n > 1024.
Overall, the Matlab code this paper uses executes the tigoviery rapidly on a desktop machine

with 12 CPUs and 8 gigabytes of RAM.

5.1 Independent Uniform and Discontinuous DGPs

We considered the case of restricted second and third oodl&B'? between the following sta-

tistically independent random variables. The CDFXof, F4(-;a0), depends on a parameter

125ee Example 2 in Section 2.2 for the definition of restrictBdcBnditions.
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ap € [0.5,0.75], and it is given by

1, if x> 1

x, if0.75 <x <1

mx+b, if0.5<x<0.75
Fy(w;a0) =

ao, if x =0.5

x, ifo<z<05

0, if x <0,

wherem = 3 — 4ag andb = a9 — m/2. Fa(-;a0) has a mass point at = 0.5 with probability
mass equal ta, — 0.5 whena, > 0.5. Finally, whena, = 0.5, Fa(-;ap) is the CDF ofU|0, 1].
We setX? ~ U0, 1]. Figure 1 depictd4(z; ag) for aq € {0.75,0.6} .

Plot of Fj(2;0.75) Plot of Fi(x;0.6)

08 1 08

05 4 05F

0.2 4 02

Figure 1: Plots off4(-;0.75) (left) and F'4(-; 0.6) (right).

The motivation for using DGPs with mass points is that pofoteincome distributions can be
discontinuous and/or continuous but non-differentiabfeognts in their supports. These properties
of income distributions are salient as Zinde-Walsh (200fws in examples that they can be a

result of policy and institutional effects.
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5.1.1 Experiments UnderH,

Our choice of distributions for populationsand B described in the previous subsection are such
that X? dominatesX“ at the second and third orders, € [0.5,0.75], and therefore, this SD

relationship holds for any choice @f ¢]. Figure 2 depicts the SD functions

. B\s—1
(- xm)"

(t . XA)S—ll
(s —1)!

(X7 <) - (s —1)!

(x4 <]
for t € [0.05,0.95],ap = 0.75, ands = 2, 3. The interesting feature of this set of DGPs is that
the restricted second order SD function has a point of néfardntiability atx = 0.5 whena, €
(0.5,0.75]. At ap = 0.5, F4 = Fp which implies that the index set of binding population motsen
is [t, ], where as itis equal tg, 0.5) U [0.75, ¢] for anya, € (0.5, 0.75]. Therefore, ag, increases
from 0.5 to 0.75, probability mass is progressively shifaehy from the sef0.5,0.75] towards
the set{0.5} .

In all of the experiments, we consideregl € {0.5,0.525,0.55,...,0.75}, and set[t,t] =
[0.05,0.95]. The rejection frequencies for restricted second order SED{Sand third order SD

(TSD) are presented in Figures 3 and 4 respectively.

Plot of Ep ([t — XP] 1[X5 <t] — [t — X1 1 [X4 <1]) Plot of Fp (["X”]l

2

000000

00000

L L L L L L L L L 0035 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t
t

Figure 2: Plots of SSD function (left) and TSD function (righ
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Figure 3: Plots of the rejection frequency for the test with $SD function.
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Figure 4: Plots of the rejection frequency for the test with TSD function.

Forag # 0.5, the LSW test has null rejection probabilities that decrgaseero for the SSD
and TSD DGPs. Note that these rejection probabilities @sereuite rapidly with the sample
size forag # 0.5. In contrast, the proposed test and that of AS have null riejegirobabilities
that are approximately within 0.02 of the 0.05 nominal levebr o, = 0.5, the DGP is in the
least favorable case of the model of the null hypothesis,thatefore we expect the rejection
probabilities for both tests to be close to the nominal |e¥€l.05.

The simulation results imply that the DGPs with # 0.5 do not belong to the subset of the
boundary ofH,, in which the LSW test is asymptotically similar. The reasonthe non-similarity
of the LSW test at these DGPs is that the bootstrap p-valu®iktge when some of the moments

in Ep, [g (X;t)] are negative and moderately small. Despite their test b@ngistent against all
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types of alternative$, a potential consequence of this non-similarity is thatltB&V test might
have relatively low power in finite samples against alteweatwith some non-violated inequalities
i.e. a population moment functiafis, [g (X; )] (as a function of) whose image contains positive
and negative values with the latter being moderately sr8aittion 5.2 examines the finite sample

power properties of the tests against such alternatives.

5.1.2 Experiments UnderH;

The DGPs in this section considers are as in the previou®aebut with the roles o4 and X ?
reversed. In this casé;p, [¢ (X;t)] > 0 V¢t € [0.05,0.95], and this population moment function
equals zero on the intervél.05, 0.5] for all oy € (0.5,0.75]. Furthermore, as, becomes larger,
P, becomes farther fromil,,.

The power curves of the tests are reported in Figure 5. Thdtseshow the tests behave

similarly under these DGPs, as their this little differebetween their empirical power functions.

135ee Theorem 3 of LSW.
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Figure 5: Plots of the rejection frequency for the test with SSDX 5.

5.2 Experiments UnderH; : Some Non-Violated Inequalities

Consider the following DGP from LSW. S&f“ ~ U[0, 1]. Then, define
XB = (U — aphy) 1[aghy < U < xo) + (U + agba) 1 [zg < U < 1 — aghy) (5.2)

for ag € (0,1), whereU ~ UJ0, 1]. As ao becomes closer to zero, the distribution’6f becomes

closer to the uniform distribution. The CDF &f” is Fiz (27; ag, by, ba, 79) = x5 + agd (),
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where

0, if 22 <0
bl, if0<l’B§$0—b1
6(‘TB) = \ o, if xo — by <.I'B§l’0+b2

—bg, ifl’o+bg<l’B§1

0, if 28 > 1.

\

The scale: plays the role of the "distancd, is from H,. Whena is large,F, is farther fromH,,
and whem, = 0, X4 and X” have the same distribution which meaRsbelongs to the model
of the null hypothesis under the least favorable configarati

In the simulation experiments, we set

(by, ba, 7o) = (0.1,0.5,0.15) and ag € {0.05,0.1,0.15,0.2,...,0.75} .

These configurations correspond to alternative DGPs fochvttiere are some non-violated in-
equalities in the restricted SSD function wjth05, 0.95] as its domain of definition. This function
is depicted in Figure 6 foty = 0.1.

The power curves for the tests are reported in Figure 7. Toyegsed test dominates the AS and
LSW tests since its power curve is greater than or equal tofltae other tests. Fat, > 0.5, there
is no difference between all three tests as the rejectiobgimtities are equal to unity. However,
outside these configurations, the power of the AS and ELR testubstantially higher than that
of the LSW test for quite modest sample sizes. Furthermbeepower of the ELR test is at least
as large as that of the AS test and strictly higher for DGP gonditions closer théi,. Finally,
because the LSW test is consistent against all kinds ofraitiees, we expect its finite sample

power to improve with larger sample sizes.
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Plot of Ep ([t — XP]1[XP <t] — [t — XA]1[XA < ¢])
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Figure 6: Plot of the restricted SSD function.
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Figure 7: Plots of the rejection frequency for the test with $SD function and SNVIs.

The simulation results in Figure 7 indicate that the ratéhdf improvement for their test is rather
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slow for DGPs which are close t,, €.9.a¢o = 0.1

6 Empirical lllustration

This section illustrates the proposed method in the cord&xdn empirical example on policy

evaluation. The data is from the Canadian Family Expenetitsurvey for the year 1986, which is
used by Barrett and Donald (2003). This survey in a given yegamrts the incomes of households
before and after a tax and transfer policy. We consider thepasison of the income distributions
in the year 1986 before and after this policy using reswi&8D conditions. In Table 1 below we

have supplied some basic descriptive statistics for thate d

Table 1: Descriptive Statistics

Pre-Policy Post-Policy
Sample Size 9,470 9,470
Mean 36,975 30,378
Std. Dev. 24,767 18,346
Median 32,658 27,337
Min 56.61 121.92
Max 206,670 180,390

The boxplots of the two income distributions are reportefigure 8 along with a scatter plot of
data. The scatter plot reveals a strong correlational digese between the two distributions with
a correlation coefficient of 0.982, which is expected betwae-policy and post-policy incomes.
The boxplots suggest that the policy reduced income inégjwee the post-policy incomes appear
closer to one another.

The question we ask is whether the policy reduced povert/yanproceed by testing the null
hypothesis that the pre-policy distribution dominategitst-policy counterpart stochastically at
the second order, over the interyal] = [1000, 10395]. The upper boundary point of this interval

is 40% of the median of the post-policy income data. Reswli@SD is a poverty-line ordering
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that compares the distributions using fher capita income gapoverty measure over a range of

poverty lines. In this illustrative example, the range oy

«10° Boxplots of Income Distributions c10°  Scatter Plot of Bivariate Incomes
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Figure 8: Descriptive plots of the income data.
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Figure 9: Plot of the empirical restricted SSD function.
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lines is given by[1000, 10395], which seem to be reasonable enough to encompass most of the
plausible poverty lines for an adult equivalent.

In terms of this paper’s notation, the pre-policy distribatcorresponds to populatiaB, and
the post-policy one to populatiaA. Figure 9 plots the empirical SSD function over this interval
in blue along with the 95% (pointwise) confidence intervaidgin red. Although it is not easily
visible from the figure, the empirical SSD function is pogtiand no larger than 1 on the set
[1000, 4035.6) U (4635.2, 4853.2), and non-positive otherwise. Singe= 9470, the empirical SSD
function is an accurate estimate of its population courmtermence, if the true joint distribution
belongs taf, then it is likely that it corresponds to a configuration in whthere are some non-
violated inequalities. Therefore, as suggested by thelation results in Section 5.2, one should
use the proposed test over the AS and LSW tests to bettert deielt a DGP when it is close to
H,.

We seta(n), N(n),n,(-), and the grid’s construction as in Section 5. Furthermor®, #&ot-
strap samples were used. Table 2 reports the bootstrapupsvidr the AS, LSW, and proposed

tests.

Table 2: Output of Tests: Bootstrap P-Values

ELR AS LSW
0 0.1303 0.6834

The bootstrap p-values of the AS and LSW tests are greaterathaf the conventional signif-
icance levels. Therefore, these tests does not reject thaypothesis at all of the conventional
significance levels. On the other hand, the bootstrap pevaitihe test this paper proposes is 0.

Hence, the proposed test rejects the null hypothesis ab@aentional significance levels.
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7 Conclusion

This paper proposes a new method of testing robust one-wasrfyccomparisons. Specifically,
our bootstrap test has asymptotic sizes that are exactigatan a uniform sense under regularity
conditions. Our simulation study uses restricted stoehdstminance conditions of the third and
second orders, and demonstrates that our method works tettethe bootstrap tests of Linton
et al. (2010) and Andrews and Shi (2010) for quite modest &sipes in the case of alternative
DGPs that have some non-violated inequalities. It shouludbed that their tests also apply to first
order stochastic dominance conditions, whereas ours dies n

While our setting has focused on matched data, the methogeged in this paper can be easily
extended to the setup of two independent random samplesafhies with natural modifications.
The methods proposed in the paper can also be easily extemdrdtidimensional robust poverty
comparisons. In that case, one uses classes of multidioreigboverty measures (e.g. Bour-
guignon and Chakravarty, 2003), and a concave SIP probleshvilas a multidimensional index
parameter set. Furthermore, the conditions that define tiaehof the null hypothesis must be

adjusted appropriately to reflect the multidimensionalirabf the moment functions.
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A Outline

This Appendix provides proofs of the results in the text.I$bantroduces further discussions of
Assumption 2.1, and of the finite-sample properties of thestrained and unconstrained estima-
tors of the population moments. And it presents the bogigiracedures of LSW and AS in the
framework of this paper.

This Appendix is organized as follows. Section B providesiidhier discussion of Assump-
tion 2.1. Section C presents the proofs of the results ini@e& along with other intermediate
results, and a further discussion of the finite-sample ptgseof the constrained and unconstrained
estimators of the population moments. Section D preseetptbofs of the results in Section 4.
Section E contains the auxiliary technical results thatiae=l in the proofs presented in Section C.
Similarly, Section F contains the auxiliary technical desthat are used in the proofs presented
in Section D. Finally, Sections H and | present the bootstesp procedures of LSW and AS

respectively within the paper’s setup.

B Further Discussion of Assumption 2.1

This section provides a further discussion of the cond#&ionAssumption 2.1. Given a set of
moment functions, all of the conditions of Assumption 2.& aasily verifiable in practice. The
conditions that are less known to applied researchers argwise measurability, and the VC
property. For this reason, this section focuses on thes@toerties.

Sets of moment functions that are continuous on a separabiaid are pointwise measurable.

The definition of this concept is the following:

Definition B.1. A classg of measurable functiong,: X — R on the probability spacéX’, A, P),
is pointwise measurable if there exists a countable sul¥set G such that, for every € G there

exists a sequendgy.,,} € G’ with g/, () — g(x), pointwise for eachr € X

To show that a class of moment functions is a VC-class, onaisarf heorem 2.6.7 of van der



Vaart and Wellner (1996) (VDW) which is a result on the enyrbpunds for such classes. Specif-

ically, if G is a VC-class, then for > 1 and any probability measutg on (X', A),

r(V(G)-1)
N(e,G, L.(Q)) < UV(G)(16e)V @ (—) : (B.1)

€

for a universal constarif and0 < ¢ < 1, whereV'(G) as the VC-index of the set of subgraphs
of functions inG, and N (¢, G, L,.(Q)) is the covering number @ (i.e. the minimal number of
balls in theL,. (@) norm needed to covel). Many classes of functions in practice satisfy this type
of bound in their entropy numbers (see van der Vaart and \&gll996, page 134).

The important point is that condition (B.1) implies

/+OO \/sup N(e,G, Ly(Q)) de < +o0, (B.2)
0 Q

where the supremum is taken over all finitely discrete proialneasuresy on (X, A). Con-
dition (B.2) is the uniform entropy bound. This conditioriad) with suitable measurability re-
guirements on a uniformly bounded set of functighgnplies uniform weak convergence of its
empirical process, where the uniformity holds over a prigpheged set of probability measures (see
van der Vaart and Wellner, 1996, Theorem 2.8.3).

An immediate consequence of Assumption 2.1 is that the set> g(x;t), ¢ € [t,7]} is uni-
formly Donsker and pre-Gaussian with respect to the prdibabieasures inM. For future refer-

ences, we formalize this result here.

Lemma B.1. Let M be the set of probability measures in Definition 2.1. Therctass of moment

functions {x — g(x;t), t € [t,7]}, is Donsker and pre-Gaussian uniformly.v.

Proof. LetG = {x > g(x; 1), ¢ € [t, 7]} . Assumption 2.1 implies that the sets

Qg,pz{f—h:f,heg,llf—hllp,z<5} and G5 ={(f-h)*:fged} (B3

are pointwise measurable for every> 0 and P € M, which is sufficient for them to bé-

2



measurable for every > 0 and P € M. Therefore, we meet all the conditions in Theorem 2.8.3

of van der Vaart and Wellner (1996), which implies the debnesult. O

This intermediate result is the driving force behind timformasymptotic validity of the proposed
test, which is essential for the asymptotic size of the psepdest to provide a good approximation

to its finite sample counterpart.

C Proofs of Results in Section 3

This section provides the intermediate results mentione8dction 3, and the proofs of main

results in the same section.

C.1 Intermediate Results

LetH, = {pi,i=1,...,n;> . pi=1p; >0,Vi=1,...,n}, and denote the interior of this

set by#?. Additionally, letH%(X) = {p € H, : Y1 pig (Xi3t) <0 Vi€ [t,TNQ, }.

Proposition C.1. On the even{#?(X) N 1. # 0}, the random set

i=1 =1 =1

arg max {Zlog (pi); pi >0, Zpi =1, Zpig (Xi3t) <0 Vte[tt]n @}

is nonempty and a singleton.

Proof. The proof proceeds by verifying the conditions of Weiersdialheorem. The objective
function is strictly concave in the probabilities. The coamt set,#°(X), is certainly bounded.
It is the countable intersection of closed half-planes @tare convex), and since convexity and
closedness are preserved under countable intersectislased and convex. Thus, we are done

wheneverH? (X) NHS # (). O

Lemma C.1. Let P € M. Thensupp,, Probe [H2(X) NHS, = 0] — 0 asn — +oo.



Proof. The proof proceeds by the direct method.
Note that{ H2(X) N Ho = 0} = {Vp € H, maxier Y, pig (Xi, t) > 0} . Therefore,

{HO(X)NH, =0} C {max—Zg X, t) > O}

teT n

which implies that Prop [#(X) N H;, = 0] < Probp [max,er 2 37 | g (X;,t) > 0] . Now the

right side of the above inequality is less than or equal tdPfmax.c7 (1 >0, g (X;,t)) > 0]

>0].

sinceP € M impliesmax;e7 ¥(t) < 0. Furthermore, we have

39Xt - w()

n

Prohy [max [— Zg X, t) — ()

> 0] < Probp [max
teT

To summarize, we have that

_Zg Xlat )

Proby [H)(X) NH; = 0] < Proby [max

>0].

Now using the fact that the set of moment functions is unif@tivenko-Cantelli because it is
VC and uniformly bounded, we can conclude that the prokaslion the right side of the above

inequality go to zero uniformly i over M. This concludes the proof. O

C.2 Proof of Proposition 3.1

Proof. The proof proceeds by using the direct method.
Proby [S,] = 1 — Proby [Vp € H, maxier Y., pig (X;,t) > 0]. On the complement of,,,

p ¢ H°(X), then using the same methods in the proof of Lemma C.1 we can gt
Proby [Vp € H;, maxier Y ., pig (Xi,t) > 0] converges to zero uniformly over the elements in
M.

p € H?(X) cannot occur on the complement&f. If it did, then we must havg = p. Now



consider the probabilities = %f) +(1- %)p_, where

0, if g(X;,t) >0 Vtelt,ti

ﬁ, if g(Xi,t) <0 Vtelti.

andl, = {ie{l,...,n}:g(X;;t) <0 Vtel[ti}.Clearlyp € H; which cannot occur on
the complemens,,, and hence, yields a contradiction. Finally, note that by renE.1 (in Ap-
pendix E), the probability of the eveRt = ()} tends to 1 ass — +oo, uniformly over the

elements inM. O

C.3 Proof of Theorem 3.1

Proof. The proof proceeds by the direct method. First, considec#iseA (P,) = (. In this case,
for large enoughe, 2 3" | ¢ (X;;t) < 0Vt € [t, 7] with probability tending to 1, and hence, by
part (i) of Property C.15 >-"" | p;g (X;;t) < 0Vt € [, 7] for largen with probability tending to 1,
which impliesgn 0.

Now consider the cas& () = Ay (Py) U A, (P) . This means we will focus on the case in
which A ('PO) = {t4,#},...} is countable. Recall that the set of Lagrange multiplier sneaon

the inequality constraints is given by the éet(ﬂﬁﬂ”‘@) . Additionally, let

ba <2[MOQ) {u € ba (2[2’510(@) tpy <00Vt et N Q} , (C.1)
ba0< olt ﬂ”@) {u € bag (2W”@) . supfy) C A(PO)}, and (C.2)
bag (2@”@)_ {u € ba ( tm@) - supp(u) C A (PO)} . (C.3)

The ELR statistic (3.8) can be expressed as

max {Zlog (1 + Z (Xist) p {t})) Z T({t}H) ({t})} .

min
[£.7n £ 7ne) -
T€ba(2LTNe)  pu(r)Ebal(2 te[t,7NQ te[t,7NQ



By part 1 of Lemma E.4E, can be expressed as

min mas {Zlog(H > 9Kt {t})) > T({t})u({t})}
)

€bap (2£71NQ €b ;
T ao( )7#17(7') aU teA(Py teA(Py)

for largen with probability tending to one. Fix € ba, (2£172)  such that -1 ({t}) =
_ tEA(Po)

Op (n=/2) uniformly in M. Then the first order condition fqt, (1) is

_Z g (X;;th)
1+2] 1,Ubjg (X tb)

7/7‘]

—me=0 Ve A(R), (C.4)

whereyy, ; = p ({t;’}) Vi, andn,; =T ({t;’}) Vj. Lety; = Z;’;lg (X“tj) fpi(T)i=1,...n.

Consider the following expansion of (C.4):

1 & 1
OZEZg(Xi;tg?)— [— g(X“tj) (Xutc)] Lhp.c

=1 c=1 =1
] — 72
~ X t) —— — 7, C.5
_'_ n — g ( ’ ]) 1 + ’YZ Tb,]7 ( )
which is based on the equalityi—w, =1—v+ 2
W) =75+ r1a(t) =Y Z X 1) g (X t’;)] fibe (C.6)
c=1 =1

wherer,,(t7) = £33, g (Xi;th) '“ - and () = L3 g (X;;¢h), vields the following

’H] “.7

infinite matrix problem:

Ty — 1+ T = Soo s, Where W, = [W(80), U(th), .. ) (C.7)

ﬂ - [,ub,lv :ub,27 .- ']/7 E = [Tb,la Tb,?) .- '],7 /rl,n = [Tl,n(tli)a rl,n(tg)v .. ']/7 (C8)

and3., is the sample infinite covariance matrix formed by the monfiemttions onA (PO).

For largen, the system (C.7) has a unique solution giver@)@) = 2;} [& — Ty + rm] )



However, this solution does not uniquely define an elemebdz(jr(ﬂi’ﬂ”@) because this set con-
tains measures that are afsatcountably additive; that i | /i (1) | < [lfis (%) llzv < +00

is feasible, wherg _7° | [/ ; (1) | < +o0. Therefore, the set of solutions is given by
0= {,u € bao <2[Qﬂﬂ@> D = 2;01 [& — E+ﬁ_7”:| ,Z |/~Lb,j‘ < ||,ubHTv} . (Cg)
j=1

We circumvent this non-uniqueness by using the Moore-Rensolutiomrg mingq {[/¢]|7v},
which is given bye; = fin; () Vt; € A(P), and [[&*lrv = 3232, |7 () |

Lemma E.4 and part (ii) of Assumption 2.1 implies foreach 1,...n

[yl < ZQ(Xi;tj)ﬂb,j (E) < || (E) |n =Op (n_1/2) uniformly in M, (C.10)
j=1
which in turn implies
171l < 1%%};7"2 = Op (n™") uniformly in M. (C.11)

Next, usdog (1 + ;) = v — /2 + ro; Where for some finit€' > 0
Probe [|ra;| < Clyil’,1<i<n] -1 n— oo, (C.12)

Now we can approximate the likelihood ratio and thengise: ! [& — Ty + ﬁ_n} .

&= mlﬁn@ {Zlog <1+Zg i) .>_nsz,jg;} (C.13)
j=1

TEbag (2
=  min 20"y — €S8 = 28T+ 2 1y (C.14)
rebao(2bine) | T o T T p

A / A A n
= min {n [\I/b — Tb} 2;01 [\I/b — Tb} - nTLn/E;OlTLn + Z T27i} (C15)
]QQ), - — - —C it L

t,t
Teba0(2[— i=1

=T, + Op (n™/*) uniformly in - M(ey), (C.16)



where

T, = min . {n [& — @]/i;} [& — E]} (C.17)

T€bag (2[ﬁ’ﬂ nQ

n

E T2

i=1

<> il <nmax [3f* < nOp (n7?) = Op (=) uniformlyin M,  (C.18)

i=1

and for large enough we haveHi;o1 H < ey which implies

2 2
eo =nOp (n=?) uniformly in M(eg). (C.19)

oo

<n o<

rs—1
nrl,n Eoo T1in T1in T1in

I

l

Since the asymptotic equivalence (C.16) is uniform\it(ey), we can now focus off;, to prove
the weak convergence 6f, to the QLR statistic.

Next note that

r,= i | [V - vin] 2 [Vat - vim) |

T€bag (2[ﬁvﬂm‘@)7

~ N ~

— min {[ﬁ\pb _ ub} 5! [\/ﬁxyb _ ub}} (C.20)
ﬂél;’ﬁ - - - -

whereu, = v/n7,. Then, define/nW, - G, ~ MVN (04, Eo0) 0N A (Ry), so thats! -

(s (Py)) " in the operator norm (2.10) uniformly ovért(e,), and

min { [\/ﬁg — @}/2;}1 [\/ﬁg — @} } ~» min {[GOO — @}/ (Beo (Po)) " [Goo — ﬂ]} (C.21)

up €l ub €l

uniformly over M (ey) by Proposition G.1.

Finally, the case\ (Py) = Ay (Py) = {8,...,t}} ,w € Z, follows similar steps as in the
previous case while keeping track of the fact that we haveite fdtimensional problem. The
main differences aréu, (QW”Q) = {w € bay (QW”Q) : SUPHW) C Ay (PO)} , and the matrix

equation (C.7) is now finite dimensional, where the popatatovariance matrix,, (F,) has a



bounded inverse. So one uses the sequence sfjaard/>° instead of}, and/°. O

C.4 Proof of Theorem 3.2

Proof. The proof proceeds by the direct method. The ELR statistit5)3can be decomposed as

follows:
=1

En=En+2 {Z (log (p;) — log (n))} : (C.22)

wherepy, ..., p, is the solution of the concave SIP optimization problem )3.Ry definition,

2 {37, (log (5;) — log (§;))} < 0. Therefore

0<

2 {Z(log (pi) — log (p;) H = 22 log (p:) — log (pi))
o pz _ﬁz’
= 2; (log (1 + = )) . (C.23)

Using the inequalityog(1 + x) < xVz > —1, and the FONC fopy, . .., p,,

2Z<1og<1+p’ pl))<2zpl p’_zz ({t)) Zpl (Xit). (C.24)

i=1 teA(D

Now using Lemma E.2, we have that

Z ({t}) sz (X;it) < 2min (Ld,, a(n) > i({t}), (C.25)

teA(D tEA(P)

and by Lemma E.32 max (L d,, a(n)) > yenpy £ ({t}) = 2min(Ldn, an)) [|flln,, = or(1),
wherew,, is the cardinality ofA (p) .
Finally, the result for the uniform rate of convergencedul directly since. d,, < 7= ThIS

completes the proof. O



C.5 Further Discussion for Section 3.3

This section presents finite-sample results that are usafuhcreasing the numerical accuracy
of the computation algorithm Section 3.3 proposes. Theseglteeare relationships between the
constrained and unconstrained estimators of the popualat@ments, which follow from a property
of the moment functions.

The form of the moment functions being differences of thees&umction, as in (2.2) and (2.3),

implies that they have the following property.

Property C.1. [Sign Conditions]

Let donit) denote the domain of definition of the index parameter.

1. Letz = max {z*, 2%} . For the ranking of distributions over a poverty aversion paveter
with given poverty linesvx € R2 — [0,z] x [0,z],9(x;t) = 0 V¢ € dom(t) and for
eachx € [0,z] x [0, z], eitherg (x;t) < 0Vt € dom(t), or g (x;t) > 0Vt € dom(t), or

g (x;t) =0Vt € dom(t).

2. For the ranking of distributions over poverty lines: faxahx € R? such thatz? # 2,
eitherg (x;t) < 0Vt € dom(t) or g (x;t) > 0Vt € dom(t), and g (x;t) = 0Vt € dom(t)

wheneverr4 = 25,

Property C.1 states that the sign of the functignis determined by the configuration in its data
dimension independently of

A consequence of Property C.1 on the Slater e the following.
Proposition C.2. 1. Proby, [Y1, pig (X;t) < 1570 g (Xst) VE € [1,1]]S,] = 1;
2. Probp, [A(P) C {te[t,f]: 237 g(X;t) > 0}]S,] = 1.

Proof. Part 1:the proof proceeds by the direct method.

Givent € [t,7], - 370, 9 (Xist) — 300 Pig (Xast) = 320 b 3o g (Xi 1) g (X, 1) . By

’'n

Property C.1, for eachg (X, ;) g (X;,t) > 0 Vt € [t, ], which implies the result.

10



Part 2:the proof proceeds by the direct method.
Lett € A(p), then0 < 237" g(Xyt) — >oi pig (Xist) = =30, g(X;;t), where the

non-negativity follows from part 1 of this proposition. 0J

Part 1 of Proposition C.2 indicates that conditional on tlate® event,% Yo, g(Xst) (weakly)
stochastically dominates. ., p;g (X;t), at first order, uniformly oveft, ¢] on a set of probability
measure one. Part 2 of Proposition C.2 indicates that withadrility one, the index set of active at
p constraints must be at points[in| where% >, g(X;t)is non-negative. Proposition C.2 does
not requirel,, € M, which implies that it is solely a consequence of the estiomgprocedure.
These results are useful for speeding up and checking ncaheomputation. Because these
results are inequality restrictions that relate the cams&d and unconstrained estimators of the
population moments, they thus hold at the grid-pointgjin therefore, they can be imposed as

constraints in (3.12) when implementing the algorithm.

D Proofs of Results in Section 4

D.1 Proof of Theorem 4.1

Proof. The proof follows the same steps as those in the proof of garof( Theorem 3.2. The

bootstrapped ELR statistic (4.5) can be decomposed asv&llo

E=En+2 {Z (log (p}) — log (ﬁ?))} 7 (D.1)

i=1

whereps, . .., pr is the solution of the concave SIP optimization problem@}i2 Proposition F.1,
and&? is the bootstrapped ELR statistic based on them. Propoditibshows tha€* converges in
distribution to the asymptotic distribution of the ELR st (3.2) conditional o P,, : n > 1}

for almost every sample path. Therefore, to complete thefpree need to show the second term

in (D.1) converges to zero.

11



To that end,

0<

2 {Z (log (p}) — log (ﬁ?))}‘ =2 {Z (log (7}) — log (ﬁ))}

i=1 i=1

—22(10g<1+_p—p’)). (D.2)

Using the inequalityog(1 + z) < 2Vz > —1, and the FONC fopy, ..., p:, (D.2) is less than or

equal to

Zp’ Py Z “({t}) (sz £) 4 (t)) (D.3)

1= teA(D
L
< 2min {W7a(n)} [zalr

wherew,, is the cardinality o\ () , [|2* [, = > jcaggr) £ ({t}) - by By LemmaF.2{[*([;1 N

v+ 2f a5, (D.4)

0 conditional onA,, uniformly in M. Therefore, under the assumptiorin {ﬁ, a(n)} = o(1),

the right side of (D.3) converges to zero in probability cdiodal on onA,, uniformly in M. O

D.2 Proof of Corollary 4.1

Proof. The proof proceeds by the direct method. For a large numbeoatistrap replications, we

have for eacly, € R, that

limsup sup Probp [Yp, <] =limsup sup Probp [PFOQ: [é'n < E;|An] < B} . (D.5)

n—+o00 PeM/(eq) n—+o0o PeM(eo)

Then, a direct application of Theorem 4.1 to the right sidéDob) yields

limsup sup Probe [Pl’ok}a [5n < EZLAH} < 5] < B, (D.6)

n—+o0o PeM(egp)

since the conditional distribution ETZ and the unconditional distribution ¢f, are equal asymp-

totically in a uniform sense. An inequality holds in (D.6)daese the asymptotic null distribution

12



of the ELR statistic can have a mass point at zero in the 8298) +# 0. O

D.3 Proof of Theorem 4.2

Proof. Under the assumptions of this theorem, Lemma F.4 says thedpmate ELR statis-
tic (3.15) diverges toroc as the sample size increases i%&. — -+oco. Therefore, to prove the
result, all we need to do is to shdly, = Op(1)P,, — a.e.

The bootstrapped approximate ELR statistic can be expiesse

8 _2Zlog (1+ Z o +77n(t))>

teA(P*)

< 2log (1+ > utz +nn(t))> (D.7)

teA(P*)

by Jensen’s inequality for a concave function. Adding anttraweting¥,,(t) = >°7 b9 (Xi; t)

under the logarithm on the right side of (D.7) as follows

2log (1 + Z % Z U, (1) + U, (t) + nn(t))> , (D.8)

teA(p*)

and multiplying and dividing by/n yields

2log | 1++vn Y fii— Z — W, () + T, (1) + () | (D.9)
\/’

teA(P*)

implies (D.9) is2log (1 + Op(1)) P,, — a.e. by Lemma F.6, parts 2 and 3 of Lemma F.5, and the

Central Limit Theorem. Therefor€, < Op(1)P, — a.e, which completes the proof. O
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E Auxiliary Technical Results For Section 3

Letl, = {ie{l,....,n}: g (X;;t) <0 Vte€[t7]}.We have the following result concerning

its large sample behavior.
Lemma E.1. Let P € M. Thensup p. Probp [, # 0] — 1.

Proof. The proof proceeds by the direct method. We show that theghitity of the complement

of {I,; # 0} converges to zero. Note that Property C.1 implies
{I, #0} = {foreachig(X;;t) >0 Vte[t1]}.
We have by the bivariate random sampling assumptiofs} ;" ,

sup Proby [1,, # 0] = sup (Probp [g(Xi;t) >0 Vte [t,7])"
PeM PeM

which must converge to either zero or 1. It can only conveogeeto because onlyd ¢ M has

g (Xy;t) > 0 for eacht almost surely. O

Lemma E.2. Let p be the solution of the exchange algorithm with toleranceapaatera(n).

Then,

sup > pig (Xy,t) < min (Ld,, a(n)), (E.1)
te[tvﬂ =1

whered,, = dist (TN(n), [t, ] N Q) is the Hausdorff distance (3.13), arids the Lipschitz constant

arising from the Lipschitz continuity of the moment funcsig.

Proof. The proof proceeds by the direct method and follows simiigps as in Lemma 1 of Still
(2001). First, we note thdt in (E.1) depends only on the class of moment functions tleabaing

used and off . Let ¢t; be a solution of



and lett, € T, such thatt, — t4| < d,,. By Lipschitz continuity of the moment functiogsand

using>_ 1, pig (X, ta) < 0 we find

> Big (Xista) <Y g (Xista) = > pig (Xista) < Llfa—ta] < Ld, Vte[tT. (E2)
= =1

i=1

The result follows directly sincg also satisfies

sz (X, 1) < aln) Vet

Lemma E.3. Supposé’, € M. Then
1. A(p) C A(F) for largen.

2. Letj be the Lagrange multiplier measure in the FONCs (3.5) an@))(3lf /, € M and
= [A(P)], then|alln, = > cap) i ({t}) = op(1) uniformly in M at the/n — rate.

Proof. Part 1. Givent € [t, t] N Q, we prove this result by showing that
t¢ A(Fy) = t¢ A(p) forlargen.

Proposition C.2 implies
1< 1<
sz (Xit) < — = g (Xit) = - > 9(Xit) — Ep, [g(X;t)] + Ep, [9(X:t)].  (E3)
=1

i=1

Then, for sucht we haveEp, [g (X; )] < 0, which implies)"" | p;g (X;,t) < 0 for large enough
n since

%Z 9(Xi,t) = Bp, [9(X;#)] = Op(n™/%) by LLN.

This impliest ¢ A (p) for large enough.
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Part 2. Letw, = |A(p)|. For ease of exposition, we will use the following notatign: =

w1 ({t;}) . The the equality constraints are

g (X tx) -
— =0 Vi,e A(p). (E.4)
Z 1+ Zt JEA(D) Njg (Xz;t ) g ( )

Let /i = [|]|0 whered € RY" such thad _; 0; = 1. Because the Lagrange multipliers are nonneg-

ative, the elements ¢f must be non-negative and sum to unity, which means they aghtge

If w,, = oo, which means\ (p) is countable, then without loss of generality, suppadg) =
{t1,t2,...}, and letg; = [g(Xi;t1),9(Xist2),...) and i = [fi, fio, . ..]". Additionally, if w,
is positive and finite, then without loss of generality, sogpA (p) = {t1,t2,..., 1y, }, and let
gi =9 (Xist1), 9 (Xista), .., 9 (X tw,)] @andjp = [fiy, fig, . . ., fiw,]"

The system (E.4) implies

1 & gi
0| - = =0. E.5
LetY; = i/g; and uselj—yi_ 1+Y
il (o (23 22) 9) ) 4) — Zgz . (E-6)
. L1+
The sample analogue estimatortf (P) is 3, = LN g (&)’. Sincel +Y; >0 Vi,
liilly, (6/50.0) < il (& 1igi(9")' o) (1+ max |y
wn wnt) = wn n 1+Y, ) ) U =1,
N gi -
§||u||zan< ( Z— )> )(1+||u||%). E.7)
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Using (E.6), we can substitute o[, (9/ (% s o:(s:) ) 9) from (E.7) yielding

=1 1+Y;

|7, (6.,0) <0 (%Zg) (1+ 17l ) (E:8)

Rewriting (E.8) as follows

N . 1 G 1<
12, <9/2wn9—9 (g Z&)) <9 <5Z&> : (E.9)

i=1 i=1

yields an upper bound afyi[;3, .
Now we prove that’ (% S &) converges to zero in probability and at the desired rate, uni

formly in M. Note that
0 (%; g_) = ;% (%ggm;m) (E.10)
= Zej (% ang (Xist;) — Epy 9 (X tj)]) ; (E.11)
J -
sincet; e A(p) = t; € A (PO) for largen by part 1 of this lemma. This implies

(%)l ()

% Z g (Xz, t) - EPO [g (X7 t>]

IA

% Z 9 (Xisty) — Ep, [9(X; ;)]

. (E.12)

sup
tet,?]

The VC property of the class of moment functions in Assump8d. implies the right side of (E.9)
isop(1) uniformly in M.
All that is left to conclude the proof is to show th#t:,, 0 > ¢ uniformly in M, where the

constant is defined in Definition 2.1. Part 1 of this lemma implﬁsn is a sub-covariance matrix
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of 3, wherew = ‘A (PO)‘ . Thereforeg’s,, 6 can be expressed as

0'S, 0 =0'S,0, (E.13)

wherev € R is such that

Gj, if tj EA(f)),

Uj:

0, ift;eA(R)—AP).

Now the injectivity condition of Definition 2.1 implies’s.,,v > ¢ holds for large enough since

Py, € M. Hence,

OP(l)

- <o)
||:u||lbn = C+0P(1)’

(E.14)

which implies that|il|;;, = op(1) uniformly in M. Finally, the,/n rate of uniform convergence

of [|2]l;1, is a consequence of the class of moment functions beingraminsker. O

Lemma E.4. Consider the set of binding moments( ), and recall thatji € ba (2[@5]“@) is the

Lagrange multiplier measure o@ N [t, ¢] described in Section 3.1.
1. Forlargen, iu({t}) =0 VYt e Qn It — A (P), uniformly in M.
2. Letfy, (1,,5) be an element of the set

zzrg(rr?az]( ) {22105; (1 + Z wy ({t}) g (Xﬁt)) -n Z o ({}) b ({t})} )
1y Ebag (2[£:7NT i=1

teA(Py) teA(Py)

where
bag <2[§’HOQ) = {I/ € ba (2[@0@) ssupp(v) = A (‘Po)} )

Top ({t}) < OV € A (Py), and ZteA(-PO) Tup ({t}) = Op (n=Y/2) uniformly in M. Then,
for Py € M, 3702 A iy lis({t} s Tp)| = Op(n™"?), uniformly in M.
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Proof. The proof proceeds by the direct method.

Part 1. For largen, the Slater condition (3.4) holds. Therefore, by Proposi@o?2:
> hig (Xit) < Zg X;t) WeQnlti.
=1

Sincel Y7 | g (X;;t) < 0 for eacht such thatEp, [g (X; )] < 0, by complementary slackness it
follows thatj({t}) = 0 for sucht. The uniformity in the convergence pf to zero holds since the
set of moment functions is uniform Glivenko-Cantelli, besa it is uniform Donsker.

Part 2. First suppose thah, (P) # 0. ThenA (Py) = {t%,t5,...} is countable. For ease of
exposition, we will use the following notatioms, ; = 4 ({¢%}) , and7,,; = 7, ({t%}) . The first

order condition fotfi, (7,,5) iS

Xzatk) b 3
—g —Tape =0 V. € A(R). E.15
1 + Z+ < Mbjg (X“ t?) T, b,k k ( O) ( )

Let i (Tnp) = s (Tns) [l @ whered e [ such that||d];,. = 1. Furthermore, for ease of
exposition, we will suppress, ; in the notation the Lagrange multiplier.
Let &b = [g (Xi; tl{) , g (Xi; tg) o iy = (e, fn, - andM = [Tub1, Tap2s ---- The

system (E.15) implies

NSNS _
9<n221+ﬂb’ - = Tap | = 0. (E.16)

LetY; = ju'g;" and uselj—yi =

1+Y

iy (15 (e ,
1728113, <9 (ﬁ;_H_Yi ) ) =0 ( Zg, L) (E.17)

1=
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The sample analogue estimator’of, is ¥, = I3 gt (&b)' .Sincel +Y; >0 Vi,

o ) (1&g ()
I o [l <9 EOOQ) < sl (9 (5;W 1+ max |Y|)
1 3 9" (9:") )

n b
< il (e’ <g 2 )(HHuszl max nglew)- (E.18)

1+,
Using (E.17), we can substitute i, ||;:_ (9’ (% >y gilgf;) ) 9) from (E.18) yielding

0
0

.....

R 1 <&
I ol (9/2009> < (E;% T_) (1 + [, o  max nglegg) : (E.19)

yields an upper bound oy ||,z -
Now we prove tha¥’ (% Yo &b) converges to zero in probability and at the desired rate,

uniformly in M. Note that

9'<%§&b>:;@< Zg X,,t§> -0, (%; (X, 1) — Ep, [g(x;tg.)}>.

J

(E.21)
Therefore,
1 n
o (5 &b> < (Z ‘9 ‘) m]ax — Xz,tS) EPO [g (X,tS)]‘
i=1 j

1 n
< sup |~ > g(Xist) — Ep, [g(X; )] (E.22)

tetd] |1

The VC property of the class of moment functions in Assumptl implies the right side
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of (E.19) isop(1) uniformly in M. The \/n rate of uniform convergence of (£ >" , ¢,°) re-

sults from the fact that the class of moment function is umf@onsker.

.....

o (y/n) . This implies

..... n

_max H&le% 74 <% Z&b — M) =0 (v/n) Op (n71?) = 0p(1), (E.23)
i=1

uniformly in M. Hence, it follows that
I7islls, (6506 = 0p (1)) < Op (n7172). (E.24)

Finally, since the injectivity condition of Definition 2.nipliest’S..6 > 0 for largen, the inequal-
ity (E.24) implies||fi,[|n. = Op (n7/?).

The proof whemA. (Fy) = () follows similar steps as in the previous case. The contddsse
finite in this case; therefore, the difference is that themof I}, with w < +occ is used instead of

thel! norm. O

F Auxiliary Technical Results For Section 4

F.1 Asymptotic Validity Under H,

Lemma F.1. LetU(t) = >°° b9 (X;;t), where(p,, ..., B,) is the bootstrap DGP described in

Section 4. IR, € M, then the following two statements hold.
1. Ift € [t,ffNnQandEp, [g (X;t)] < 0, thenV () < —n,(t) for large n with probability one.

2. Ift € A(PR) andt € Ty for large enoughn, then () = —n,(¢) for large n with

probability one.

3. Ift € A(R) andt ¢ Ty, Vn, thenl(t) = —n, (¢) for large n with probability one.
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Proof. The proof follows similar steps in the proof of Lemma B.4 im@g (2010).
Part 1. The proof proceeds using the direct method. Suppesg, {]NQ andEp, [g (X;t)] <

0. From

N(n) n
2nlog [1 + Z ;i (% Zg (Xist) + nn(tj)>] ; (F.1)

j=1 i=1

it follows thatZN(? i (2500 9(Xist;) 4+ na(t;)) > 0. Now,

g (Xi; ) + 1 (t) ]
L+ N7 (g (Xasty) + malty)
B (% Zz 19 (Xz; t) + nn(t))

(F.2)
1 + WIS (9(Xisty) + ma(t5))
by Jensen’s inequality. Sln(,EN(" >0 (9 (Xisty) 4+ ma(t;)) > 0 for all n and
1 n
_ (5 Zg (X5 t) + nn(t)> >0
i=1
for largen with probability 1, we have
—U(t) —m(t) === N(i)(_ )+ (t) ] >0 (F.3)
eI+ Zj:l My (9 (Xist;) +ma(t)))

with probability one, which is equivalent #(¢) < —n, (t) with probability one.
Part 2. The proof proceeds by the direct method. First, for largeughn thatt € Ty,

Then it must be equal to one ofj = 1,..., N(n), and suppose = t;, € Tn(,) Without loss of

22



generality. Seti; =0Vj =1,..., N(n) and consider the FONC for,

1 Z sztk) + nn(tk) ]

1 n
= - Xiste n(Tk F.4

1 =0Yj=1,....N(n) =1

We know 3" | g (X;; ) + na(tk) < 0 for largen with probability 1. If

1 n
- Y 9(Xist) +malty) =0,
i=1

we are done since

W(te) = 39 (Xite) = ma(t2)

andy, = 0 is optimal. If%ZZf;lg (Xy;tk) + ma(tr) < 0, then the optimal value of;, has to
increase (so it will be positive) by continuity of the objeetfunction inu,. Since the optimal
solution has to satisfy, (¥ (ty,) + 1.(tx)) = 0, it follows that W (t;,) = —n, (tx).

Part 3. The proof proceeds by the direct method. tet 7y, for large enough. Then
(t) +a(t) = (V) = U(ta)) + (0a(t) — ma(ta)) + ¥(ta) + nalta), (F.5)
where
(U(t) — ¥(ta)) = o(1) n — +oo because| ¥ (t) — U(ty)| < L/N(n) (F.6)

by Lipschitz continuity of the moment functions whelas the Lipschitz constant (see Assump-
tion 2.1), (7, (t) — n.(ts)) = o,(1) by property (4.2), andb(t;) + n,.(tq) = 0 for largen with

probability tending to one by part 2 of this lemma. O

Lemma F.2. SupposeP, € M. Let P, be the bootstrap DGP described in Section 4, and let
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{X;}"_, be IID P,. Furthermore, letp* denote the solution of the following SIP problem

max {Zlog pi);pi >0, Zp,_1 Zp, ) < —ma(t) Vte[;,ﬂm@,}. (F.7)

.....

1. A(p*) C A (FR) for largen, where

A(p") = {t eLUINQ: Y Frg(X;t) = —ﬁn(t)} : (F.8)

i=1

2. Letw; denote the cardinality of the set (F.8), and fet denote the Lagrange multiplier

measure on the inequality constraints in the SIP problem) (R hen,
~ % ~% P
a0, = >, ({t) —o0
teA(p*)

conditional onA,, uniformly in M.

Proof. Part 1. The proof proceeds by the direct method. Given|[t, {] N Q, we prove this result
by showing that
t¢ A(P) = t¢ A(p*) forlargen.

Note thatt ¢ A (Fy) < Ep, [¢(X;t)] <0for By € M. Then,

1¢ 9 (X}5t) + na(t) — (£ 200 9 (X558) + 7 (1)) £9
2T a ) )| C TR s @)

by Jensen’s inequality. The right side of (F.9) is equal to

GRS eXED - Fi Py (Xit) (i1 Pig (X3 t) + ma(t) (F.10)
L+ X0 G i g (Xist) +m(t) - 14+ 05 75 (5 X0 9 (X5 ty) + ()

where the first term i©)p (n~'/?) P, a.e., and part 1 of Lemma F.1 implies the second term is

positive with probability tending to one. Thus, the leftesidf (F.9) is positive fom sufficiently
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large P,, a.e., which is equivalent to
sz ) < —nt) (F.11)

for n sufficiently largeP,, a.e..
Part 2. The proof follows the same steps as those in the part 2 of Lefa8. Letw; =
|A (p*)| . For ease of exposition, we will use the following notatiqr, = p* ({;}). The the

equality constraints are

1 9 (X75ty) + ma(te)
Z 1+>, N YA (9 (X73t5) +1a(t;)

=0 Vi eAPY). (F.12)

Let i* = ||ﬁ*||111%9 wheref € Rﬂ’fl such that) ;0 = 1. Because the Lagrange multipliers are
nonnegative, the elements 6fmust be non-negative and sum to unity, which means they are
weights.

If w = oo, which meansg\ (p*) is countable, then without loss of generality, suppase*) =
{ti,ta, ...}, and letg; +n, = [g (X}5 1) +nn(t1), 9 (XT3 t2) +nu(te), .. [ andi* = [fi7, fis, . . .]'.
Additionally, if w} is positive and finite, then without loss of generality, sog@

A(P*) = {t1,t2, ..., tu: },and let
9+ = 9 (X5 t1) + 0a(t1), g (X5 t2) 4+ 0alta), -y g (X5 twy) + 1 (tug))

andla_* = [:a)lkv ﬁ;’ ce natu;;],‘
The system (F.12) implies

NERS 9_i+?7_n _
0 EZ = 0. (F.13)
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LetY; = i (g_Z* + n_n> and use# =1- Jy to expand (F.13) as follows:

T izl<9+n)<9+n> , =9<%Z<9_+H_)> (F14)

1+Yr

A !/
Let S5, () = £ 20, (g7 + ) (g7 +m) - Sincel +7 >0 v,

!/
10, (65, (0) < 1%l ( (iz G +77_1)+(5_+n_) ) 9) (1+ zmx 1v21)

i=1

< A, ( (iz": (gi+n_1n)+%+”—”) )9) (L[| 2x]]) - (F.15)

i=1

Using (F.14), we can substitute giit*||,: , (9/ (l S M) 9) from (F.15) yielding

n 1+Yi*

n

=1

I, (S5, 0 )<a<% (%+ng>(r+mw@9. (F16)

Rewriting (F.16) as follows

nwm%G@* ee( n(g+@»>sw< n(g+@D, F.17)
i=1 =1

yields an upper bound gfyi*||;: . .

§|'—‘
S|

Now we prove that’ (% > <g_2* + n_n>> -+ 0 conditional onA4,, uniformly in M. Since

the elements of are non-negative and sum to unity, it suffices to show that

> e|lA,| 250 uniformlyin M, (F.18)

Proby ” Zg £) + (1)

for eacht € A (F,), which is the content of Lemma G.3.
All that is left to complete the proof is to show th%@;z (n)0 > 0 for largen conditional on

A,, uniformly in M. From part 1 of this lemma, we can conclude tﬁ@%(n) is a sub-covariance
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matrix of £ (1), wherew = ‘A ('PO)‘ . for large enough. Thereforeﬂ’i;z (n)0 can be expressed

as
0'Ss,. (n)0 = 'Sk (n)v, (F.19)
wherev € R is such that

0;, ift; e A(pY),

Uj:

0, ift;eA(R)—AP).

By Part 1 of LemmaG.4, for large, * (1)) gets close td,, (P,) in operator norm conditional
on A, uniformly in M. Then, the injectivity condition from Definition 2.1 impli%i;ﬁe =

v’i;v > ¢ > 0 conditional onA4,, uniformly in M. O

Proposition F.1. Let P,, be the bootstrap DGP described in Section 4, and ¥t} be [ID P,,.
Furthermore, le€* = 2 {—nlog(n) — Z"’*} , where

.....

= max {Zlog pi); pi >0, sz—l sz t) < —mu(t) Vte [Lf]ﬂ@,} (F.20)

For everye, € R,

0, if w=0,

minyge (G —U)' 2,1 (G -U), ifw#0,

conditional onA4,, in Py uniformly in M (e).

Proof. The proof proceeds by the direct method. The ELR stat‘fs.;timn be expressed as

min Inaxth {Zlog (1+ Yooy {t})) > T({t})ﬂ({t})} (F.21)

(.71
7€bag(2147N2) _ pu(r)€bao(2 te[t, N0 te(t,NQ
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From part 1 of Lemma F.2, fare [t, t] N Q such thatEy, [¢ (X;t)] < 0, we have
sz ) < —na(t) (F.22)

for n sufficiently largeP,, a.e.. Then equation (F.22) impligs ({t}) = 0 for n sufficiently large
P, a.e. by complementary slackness. So the ELR statistic ial ¢égu

min maxt anc) {Z log (1 + Z w({t}) ) Z T ({t}) ({t})} (F.23)

cb 2[t,t1]NQ €b ”
7 €bao ) mlr)€bao teA(Py) teA(Py)

for largen P, a.e..

By similar arguments as those in the proof of part 2 of Lemmé iEfollows ||z, =
Op (n~'/%) conditional on4,, in P uniformly in M, wherew = ‘A ('PO)‘ . Suppose thah, (P,) #
(). Then by following the steps in Theorem 3.1, the correspanélist order condition foyi; (7;)

is

n [ (X35 82) + ma(22)

T ] =nny Vi e A(P), (F.24)

=1

where||@glli. = Op (n7'?) ) 7F = X020 55 (1) (9 (X5385) +1a(t2)) , andmaxi—y ., 77| =
op(1). Therefore, using the same expansion in (C.12), the stafisiis given by

g o (B nn] (52) 7[R rn-a]} o)

— (W) 4 (4 W) - 0] (52) (8- %) + 0+ T) -]},

TEbao (2[3vt]m@)7
+ Op(l)

=T (m) + op(1), (F.25)

where

n

~ 1 /
X5 (n) = EZ (&Z"—ﬂ) <@Z+Q) cogir=lo(Xnt) (X5,

i=1
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U, = [U(t), (ty),...] with T(t) = 37, Pig (X;;t) . Now define the stochastic process,

and note that,

Gy =n (g . @) 24 MVN (0.0, 5.0) (F.26)
conditional on4,, uniformly in M. Then, lettingu, = /n (7, — (7, + ¥s))

Ty (m) = i {(<;,b—ﬂ(@—ﬁ+m))’(izo)l (<;,b—¢ﬁ(@—ﬁ+@))} (F.27)

TEbag (2147
. . . -1 N
= {gbezg:gb?%(@+z)} {(<n,b - Qb) (Eoo) (<n,b - gb)} . (F.28)

By LemmaF.1,/n (n, + ¥y) 5 0., with probability 1 forn sufficiently large, which implies

the following equality holds with probability tending to en

) = i { (G- ) (52) (G- (F.29)

u, €12 _

~ —1
Since(Z;o(n)) -2, ¥Z!in the operator norm conditional o#, uniformly in M (e), it follows

that7* (n,) = T + op(1) conditional onA4,, uniformly in M(e,), where

T= min {(¢—u) (Ze) (G —1u)} (F.30)

uy €IS

This is exactly the same asymptotic distributiorfgfand the result follows.
The casel (Py) = Ay (Py) = {t},...,t5,} ,m € Z follows similar steps as in the previous

case while keeping track of the fact that we now have a finiteetlisional problem. O

F.2 Test Consistency

Lemma F.3. Suppose Assumptions 2.1 and 4.1 hold. Then,

1. {t € [t,7]NQ: Ep,[g(X;t)] > 0} C A(p) for large enoughn with probability tending to

one.
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i, = Op(1).

3. f‘fn — 400 asn — +o0o.

Proof. Part 1: The Lipschitz continuity of the moment functions (i.e. Asgption 2.1(i)) im-
plies3t € [t,t] N Q such thatEp, [¢ (X;t)] > 0. Without loss of generality, suppose thate
{te[t.7]NQ: Ep, [g(X;t)] > 0} . Recall thatw,, = |A (p)|. For ease of exposition, we will

use the following notation:; = 1 ({¢;}) . The the equality constraints are

g (X5 t) ~
— E =0 Ve A(p). (F.31)
1+ JEA(P) Mjg (Xist)) g (B)

Evaluating att = a and atu; = 0V¢; € A (p) in (F.31) yields

n

L3 (Xeita) = 39 (Xeita) = talta) + () (F32)
i=1

1=1

The Law of the Iterated Logarithm impli€sd """, g (Xi;t.) — . (t.) > 0 for large enough with
probability tending to one, and we also haygt,) > 0. Therefore, the optimal value of ({t,})
must increase for large enouglwith probability tending to one. Hence, impliese supg;i) for
large enough with probability tending to one. Finally, by the FONCs (3.9} have supfi) C
A (p) so thatt, € A (p) for large enough with probability tending to one.

Part 2: Using the same notation and steps from part 2 of Lemma E.3anearrive at equa-

tion (E.6), which is repeated here for convenience:

7, (9( Zﬁ’fﬁ ) e) =0 (%Zg_> (F:33)
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wherefi = ||il;2, 6 wheref € R{" suchthal)®;0; = 1, andY; = ji'g;. Letting £ denote theu,

vector of the population moments whose index set is $fippwe have

(Ly o (1gi(g) 1L ,
0 <E;&_E>+9E:HMH% <9 (EzleYi_ﬁZ&(&)

= 1=1

T R
+ 11, 0 (g g @’) 0
i=1

By the Law of Large Numbers, for large enougliF.34) becomes

op(1) + 8B =~y (e’ (Zm& @)’) e) iy, (00 (P)v),
=1

wherev € [% is such that

0;, ift; € AD),

0, |ft]€A+(P0)—A(13)

Since0 < Plim (¢’ E) by part 1 of this lemma, we must have

Plim (v'Q (Py) v) — Plim (9/ (i piYigi (@’) 9) > 0,

i=1

Furthermore]l > Plim (¢’ £) by condition (ii) of Assumption 2.1 implies

1
1A, < — '
VO (Po) o = 0 (S0, iYigs (90)') 0

for large enough. Hence,

ills, = Op(1).
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Part 3: The ELR statistic can be expressed as the following maxtim over the Lagrange

multiplier measure:

E, =2 max Zlog (1 + E’&) > 2 Zlog (1+g(Xi;t"), (F.40)

1
Mel,w,’“+ =1 i=1

where the inequality follows from part 1 of this lemma witre A (p) such thattp, [ (X;t')] >
0. By condition (ii) of Assumption 2.1, the range of the momantdtions is a subset of the interval
(—1,1); therefore, we can apply the Taylor series expansiolg(fl + =) aroundz = 0 to the

functionlog (1 + g (X;;t')) :

n

2> log (149 (Xit) =2 g(Xit) = > g* (Xi;t) (Zg (Xt ) . (F41)

=1
Appropriately adding and subtractirdgy, [¢ (X;t')] into (F.41) yields

n

on (% > (9(Xiit) = B g (X: t'm) +nEp, lg(X; 1)

2Ep, [¢* (X;)] + 0, (n'?)

+n (EPO [g (X§t/)] — Ep0 [92 (X;t’)D + :

—n (% Z (9° (Xist') — Ep, [¢° (X;1)] )) (F.42)

, Which equals

Oy (n'2) + 5-Bn lg (X)) + 5 (En, lg (Xst)] + En, [3° (X:1)])

+n (Ep, [9(X;1)] = Ep, [¢* (X;1)]) - (F.43)
Since—1 < g < —1, we have

(Ep, [9(X:t)] + Ep, [¢° X 1)]) . (Er [g (X5 t)] — Ep, [¢* (X;1)]) >0,
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and therefore

2n
?EPO [g (X; t,)] +

n

2 (Ep, [9(X;t)] + ER, [¢° (X;t)]) = +o0 as n— +oo, (F.44)

at then-th rate, which dominates the, (n1/2) terms in (F.43). Using this result in the inequal-

ity (F.40), it follows that€,, — +o0 asn — +oo. O
From Lemma F.3, we have the following result regarding thgdaample behavior df,.

Lemma F.4. Suppose Assumptions 2.1 and 4.1 holdhilf {ﬁ, a(n)} — 0 asn — +oo, then

E, — +oo.

Proof. The approximate ELR statistic (3.15) can be decomposed @3.22), which is repeated

now for convenience:

En=En+2 {Z (log (ps) — log (zﬁi))} : (F.45)
=1
Furthermore, in the proof of Theorem 3.1

< 2l min { a0 | (F46)

i=1

2 {Z (log (i) — log (p»)}

As part 2 of Lemma F.3 indicatdgi|,;, = Op(1), the desired result follows from letting

min{ﬁ,a(n)} — 0asn — +oo. O

The next result describes the behaviorlaft) = Y7 b, (X;;t), where(py,...,p,) is the

bootstrap DGP described in Section 4, under the alternative

Lemma F5. LetU(t) = 37 p,g (Xi;t), where(p,, ..., p,) is the bootstrap DGP described in

Section 4. Suppoge, satisfies the alternative hypothesis, then the followinggstatements hold.

1. Ift € [t,fjNnQandEp, [g (X;t)] < 0, thenV(t) < —n,(t) for large n with probability one.
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2. Ift € AL (Ry) andt € Ty for large enoughn, then¥ () = —n,(¢) for large n with

probability one.
3. Ift € Ay (Py) andt ¢ Ty Vn, then¥(t) = —n,,(¢) for large n with probability one.

Proof. The proof of this lemma follows identical steps as those imbrea F.1; therefore, we omit

it for brevity. O

The next result describes the behavior of the bootstrappgdange multiplier vector that arises

in the modified Exchange Algorithm.

Lemma F.6. Suppose Assumptions 2.1 and 4.1 hold. Pgte the bootstrap DGP described in
Section 4, and lefX:}" | be IID P,. Also letp* denote the solution of the modified Exchange

algorithm, but with the bootstrap sample instead of the da&tse following statements hold.

1. A(p*) C Ay (Fy) for large n, whereA (p*) denotes the index set of binding moments from

the modified Exchange Algorithm that uses the bootstrap amp

2. Let/* be the optimal value of the Lagrange multiplier vector onitiexjuality constraints
in the modified Exchange Algorithm that uses the bootstragpéa Also letv; = |A (p*)].

Then||@*(ln, = a4 = or(1) Py — a.e. atthe,/n — rate

Proof. Part 1. The proof of this part follows identical steps as those irt faof Lemma F.2,
but with A (Fy) andA (p*) , replaced byA | (P,) andA (p*) respectively, and by using part 1 of
Lemma F.5.

Part 2. The proof of this part follows identical steps as those irt gaf Lemma F.2, but with
A (p*) replaced byA (p*) . Now we focus on the convergence of
i;; = %Zj;l (g_; + 77_n> (g_; + U_n)/ to complete the proof. Let be a non-negative unit vector

inil.,

and letv € I, be such that

g;, ift; e AP,
v; =

0, ift; €A, (R)—AD).
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Then,0'S%. 0 = o' v. Now we will show that'S% v > 0P, — a.e. By the LLN, it follows

thati* L5 lim Ep, [Z;O] P, — a.e. Therefore, we can focus on the large sample behavior of

n—-+00

V' Ep [Z;O} v. conditional on the data.

Conditionally on the data,

Bp, 5] = Zﬁ (91 +1ma) (g3 + 1)

1=1

where(g; +1,) is now an infinite vector of the moment functions are indexgd\h (PO). Then,

adding and subtracting as follows

En:@ (9 + 11n) (&M_n)':i (‘i— %) (9: + 1) (&+@)'+%i(&+@) (9:+ )",

=1 =1 i=1

makes the right side asymptotically equivalent to

Zn:( ) (96 + 1) (g: +10)' Zgzgz —Z(l %) (i +10) (9 + )’

i=1 i=1

+ Op(l) + Q (P()) . (F47)

Now we show thatl, = 37 (5; — 1) (g; + 1) (9: + 1) is0p(1). Itis equal to

_sz ( Z (g (Xi:t) +nn(t))) (g +na) (g9 + 1) (F.48)

teA(pP)

which can be re-arranged into

> m( sz( (Xiit) +7a(1) (i + m0) (&+@)’)>. (F.49)

teA(P)

Therefore| A, || is bounded from above by

lAilly ( sz (X 1) + (1)) (F.50)
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wherew, = |A (p)|, and (g; + .) (i +1.)" is non-negative for each(by Property C.1) and
bounded from above by 1 (part 2 of Assumption 2.1). Now parés@ 3 of Lemma F.5 show
(=) >, P (9 (X5 t) +n,(t)) tends to zero for large enoughwith probability tending to one.
Finally, by following similar arguments as in the proof ofrp@ of LemmaF.3, it follows that
H/ZL||111Un = Op(1). Therefore,A,, = op(1).

Putting these two parts together, impli€; [Z;O] v =o0p(1l) +0'Q(Py) v+ v'A,v, which
is equal tov'Q2 (Py) v + op(1). Finally, v'Q2 (Fy) v > 0 follows from part 1 of Assumption 4.1.

This completes the proof. 0J

G Technical Uniform Weak Convergence Results

G.1 Asymptotic Null Distribution

In this section, we present large sample results that aktogerove that the statistit,, defined
in (C.20), is uniformly weakly convergent to the QLR statish Theorem 3.1. The first result is

an immediate consequence of Lemma B.1.

Corollary G.1. Let,(P) be the covariance matrix defined in Section 2.4, andllgtP) be its

sample analogue estimator. Then,
1. |2u(P) — Zu(P)|| = op(1) uniformly in M, where| - || is the operator norm (2.9).

2. For everyey, € R, [|[X21(P) — 2.1 (P)|| = op(1) uniformly in M(ey), where|| - || is the

w

operator norm (2.10).

Proof. Part 1: As G being uniform Donsker implies that it is also uniform GlikenCantelli, we
have|| S, (P) — Lu(P)|| =< sup;; |Su.ij(P) — Su.i,(P)| = op(1) uniformly in M, since the
uniform Donsker property is preserved under the multiplicatransform and that the moment

functions are uniformly bounded (Assumption 2.1).
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Part 2: The result follows directly from Part 1 of this corollary upcealizing that

521 (P) = =2t (P) < IS IS || = | G1)
which is less than or equal t§or (1) uniformly in M(e,) for large enoughn. O
Let T be the Gaussian QLR statistic in Theorem 3.1.:
Tp = min {[Gw — ub}/Z;l (P) [Gw - ub} } , (G.2)
@6@’37 — —

whereG,, ~ MVN (0,, ¥, (P)), and for convenience, we repeat the definitiofpin (C.20)

= i { [V - ) £ [Vt - w]

up€lgy

Our objective is to show that for eaeh € R, T}, ~ Tp uniformly in M (e).
Tr andT,, are optimal values of quadratic optimization problems vehbagrangians are re-

spectively

L (up, A) = [Go — w) T51 (P) [Gy — ] + Ny, (G.3)

w

L (%7 7) = [\/E% - %} , 2;1 (P) [\/ﬁg o %] + 7/%7 ) (G-4)

where)\ and~ are the non-negative Lagrange multiplier vector with disienw. The FONCs for

these optimization problems are

=S (PN G wetr . and (A 0w eAlr)  (G5)

1 3 T .
p= =55 (P)y+ VW, wely . and w (8)y (%) =04 € AP).  (G6)

Let A\* and~* denote the optimal values. Then, using the complementacyisess conditions we
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haveN'G,, = IX'¥,\ andy' ¥, = 145, ~, which implies

— 2

* * ]' * * ]' *
[Gulliy N1y, = (V) G = 5 (V) Bk = Sinf Sy (PN, . and (G.7)
T * *\/ \T 1 *\/ < * 1 S *
|vag| 10l = 68 = 5 (Y Sy = Sinf Sy (P IV (G8)
Therefore,
e, < 2NGulie 210Gl 2 v, 6.9)
e T infy By (P) T c e = inf; ; X g (P)’ .

wherec is the constant in Definition 2.1. The first result concerrimgLagrange multipliers is the

following.

LemmaG.1. 1. ||\, =Op(1)and|[y*[|;; = Op(1), uniformly in M.
2. v~ ATin |||, uniformly in M.

Proof. Part 1: To show thaf{A*[|,, = Op(1) uniformlyin. M, we need to provgG., ||,.. = Op(1)
uniformly in M. Let G(J) be ad-net for (G, pp) with & = |G(4)| independent of € M, where

pp(t,t') = Varp (9(X; ) — g(X; 1)) (G.10)

and X has distributionP. Additionally, let 15 denote a map frong to a nearest point ig(J).
Then,

|Gl < sup [G(2)]

te(t,?]

< sup |G(t) = (Golls) (D] + G lgey < sup |G(t) = GE) +1G(H)llgq -

tet?] pp(tt')<d

(G.11)

We have|[G(t)||g; = Or(1) uniformly in M since it is the maximum over at mostGaussian

random variables, each having zero mean and variance neeéxg unity. The uniform pre-
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Gaussianity of7 implies for everye > 0,

lgigl 52/1\34 Proby pp(stl’lgd |G(t) — G(t')] > €| = 0. (G.12)
Therefore, letting | 0, the inequality (G.11) implie§G,, [|,.. = Op(1) uniformly in M.

Now we will show thatj|y*[|;, = Op(1) uniformly in M. Lemma B.1 says th4i is Donsker
and pre-Gaussian uniformly itf. Since the envelope function gfis the constant function equal
to one, it satisfiedim, ., supp Probp [1 > v] = 0. Therefore, Theorem 2.1 of Sheehy and
Wellner (1992) implies the empirical proce% Yo (X t) — Ep[g(X;t)]) admits a weak
Gaussian approximation uniformly ifv. This means that there exists a sequenc€ abherent

stochastic processe§+(", G, ...} such that for every > 0

Tim sup Proby Lsél[lﬁ] % z;: (9(Xi;t) — Bp[9(X;t)]) — G (t)| > 6] = 0. (G.13)
Using

H\/ﬁg)m = |[vad, - Gy + G, N (G.14)

< Vil - Gu|  + Gl (G.15)

= ||[Vn¥, — G, - +Op(1) uniformlyin M (G.16)

< ||vnl, - G o |GG = Gul,. + Op(1) uniformlyin M (G.17)

=op(1) + Op(1) uniformlyin M. (G.18)

Furthermore, for large, inf, ; ¥, ; (P) > c sinceX,, (P) converges td,, (P) in the operator
norm (2.9), uniformly inM.
Part 2: We prove this part by showing that the FONCs and second oathelittons of the dual

problems that definé» andT,, are the same in distribution. The dual optimization proldere
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the following:

1 L ¢ ;
max {—Z)\'Ew(P))\ - )\/Gw} , and max {—ZVIZw(P))‘ - )‘/\/ﬁ%} , (G.19)

Al Vel 4

and their respective FONCs and second order conditions are

—%sz(P) — G, >0, — NS, (P)A<0, and (G.20)
5V Su(P) Vil > 0, — /S, (P)y <0 (G.21)

Lemma B.1 and Part 1 of Corollary G.1 imply that these condgiare asymptotically the same
in distribution, uniformly inM. Since the objective functions in these optimization protdere
strictly concave in the Lagrange multipliers, these optatiopn problems have a unique solution,

and therefore||y* — A*||,, ~» 0 uniformly in M. O
We can now prove the main result in this section.

Proposition G.1. For eache, € R, we havel, ~ T uniformly in M (ey).

Proof. The proof proceeds by the direct method. @tbe as in equation (C.7). Le#, and,
are respectively the solutions of the minimization prode(®@.2) and (C.20). Then, difference
Tp — T, is given by:

Tp—Tn:[Gw—ﬂ]/E;I(P)[Gw—@]—[\/ﬁg—ﬁb}li
:[Gw—@]/%l(P)[Gw—@]—[be—Ub ( w —Zu 3, )[\/ﬁﬁ—@]
(G — vl + i~ w] 55" (P) |G — vy + i
~ [vat, - @}' (5" -0t [vads - ] (G.23)
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First, we prove that (G.23) isp(1) uniformly in M(eg). In modulus, (G.23) is

A ! N R . 9 X A
H\/ﬁﬂ—@} (2:”1_2;1) {\/ﬁ&_@} < H\/ﬁﬂ—% . HZEIIIIE;lIIHEw—ZwH (G.24)
1 ¢ Mk o )
e s s s ©29
1| 2 B . A
<1 [Be@| e s Sl -5 @29

Now, by Lemmas B.1 and G.1, and for large(G.26) is bounded above by

2
%op(nop(n uniformly in - M (ep), (G.27)

which implies the desired result.
Now we will show that (G.22) converges to zero in distribatianiformly in M (eo). First, note

that (G.22) is equal to
[Su(P)y = Su(PIV] 55! [Pl = Su(P)X]. (G.28)

Furthermorey,, (P)y* — S, (P)A\* = (iw(P) - Ew(P)> v+ — Xu(P) (\* — ~*) . Corollary G.1
and Part 1 of Lemma G.1 implie(sfjw(P) — Zw(P)> v =op(1)in || - |, uniformly in M(eo),
and Part 2 of Lemma G.1 implies thato! [X,(P) (\* —7*)] = —(A* —+*) ~ 0in || - ||,
uniformly in M(ey).

Hence, putting these two parts together impligs— 7,, ~ 0 uniformly in M(eg), which

completes the proof. O

G.2 Bootstrap Validity

Lemma G.2. Suppose’, € M, and letw,, = |A (p)| wherep is the bootstrap DGP from Sec-
tion 4. Additionally, lefz denote the Lagrange multiplier vector from the modified earge algo-

rithm with optimization problem (4.1). Thelyi||, = op(1) uniformly in M.
Proof. Firstly, a consequence of Lemma F.1 is thatp) C A (F7) for largen. Now the proof
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follows the same steps as in the proof of part 2 of Lemma E.87ile |||, ¢ wheref € RT"

is such thad _; ¢; = 1. Using the same vector notation, we have

n

1 g; +1
0| - == ] =o
(nzlﬁ’@w))

i=1

LetY; =7 (g, +n) and user - = 1 — Jy to expand (G.29) as follows:

LGSR )) i)

i=1 i=1

721

(G.29)

(G.30)

The sample analogue estimatorXf,, (Py) is Xw, (1) = 130 (9:+7) (g +n) . Sincel +

Y, >0 Vi,

n

-----

i (s _ (1 (gt n) (gi+n)
iy, (950, (1)6) < llly. (9 (52 e ) 9) (1+ s v

n

i=1

< 7l (e/ (%Z e ) e) (11l ). (©3D)

Therefore, we have the following inequality

7l (9’% (n) 0 - ¢ (% Z (9:+ ﬂ))) <¢ (% Z (9:+ Q)) -

i=1 i=1

Now by arguments similar to those in the proof of part 2 of Leari3, we have

1 < , :
o' (5 Z (&+Q)> =op(1) uniformlyin M,

i=1

0'Sw, (1) 0 > ¢, with probability approaching 1 uniformly in M,
where we made use of the following expansion
S S / 1 - / 1 - /
S, (1) = S, ' + > g ) ngi
i=1 i=1
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and that) tends to zero in probability uniformly in1. This implies|zf|,. = op(1) uniformly in

M, which is the desired result. O
Let .4,, denotes the Borel sigma algebra generated by the randomesé®g ;. ,
Lemma G.3. Suppose&?, € M and thatt € A (F). Additionally, let{X*}"  denote the boot-

strap sample. Thee > 0

Probp

‘ Zg t) + nn(t)

> e|An] 50 uniformlyin M. (G.36)

Proof. Let U,,(t) = > ._, 7 (¢ (X;;t) + ma(t)) . Givene > 0, by Markov’s inequality and the
triangular inequality, we have

Probp H Zg t) + 1 (1)

> €|An‘| < EilEp

1
+e [T, (G.37)

Concentrating on the second term on the RHS of the inequ&i87), by the triangular inequality

we have

[T(t)] < <l + (G.38)

T, (1) — %Zg (Xi: )| +

=1

%gg(xﬁt)

%;g(Xz-;t) :

By Lemma B.1,sup,c; 7 |+ >, 9 (Xist) — Ep [g (X;1)]| 5 0 uniformly in M. Therefore,
undert € A (P,), we must hav% Y oiey 9 (X t)\ converging to zero in probability uniformly in
M. Furthermore, Lemma G.2 impli¢|$||l1m L 0 uniformly in M. Therefore, the second term
on the RHS of the inequality (G.37) tends zero in probabuityformly in M.

Now we concentrate on the first term on the RHS of the inequéBt37). By the triangular
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inequality, we have

|An S EP

> g (Xt - Tl

A

+ N () (G.39)

and by the Cauchy-Schwartz inequality, the RHS of (G.3%ss than or equal to

( (L3 omxin - >>2|,4

By assumptiony,,(¢) 50 uniformly in M. Furthermore,

oo s ] -

1/2
) + 7 (1) (G.40)

Bp {2 3 (9 (X35) = Ta(t) (9 (X531) = (1)) | A,

i

+Ep % Zn: (9 (X50) = Tu(t)” |An] , (G.41)
and
1 N -
Ep |5 D (9(X550) = W (1)) (9 (X55t) — Ta(t)) |An] =0 (G.42)
i)

as{X*} is a random sample conditiondl,. Hence,

2 n
( Zg v )) |A.| = Ep % Z (9(X5t) — Tu()’ 4. | (G.43)
= 2 (9 (X551) — (1) | A, (G.44)
< % by Assumption 2.1. (G.45)
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Therefore,

(m Gzymmw@mﬂh%

uniformly in M.

+aa(t) 50, (G.46)

R

1/2
) + nn@) <

Finally, putting together the above uniform convergenailts in two parts from the RHS of
the inequality (G.37), we have

Proby ” Zg £) + (1)

> E\An] 50 uniformlyin M, (G.47)

which is the desired result. O

Let ., be the covariance matrix defined in Section 2.4, anditg(tn) be its sample analogue

estimator based on the bootstrap sample.
Lemma G.4. Supposé&’ € M. Then the following statements hold.

1. Ve > 0, Probp [||2% (1) — Sy > e|An} - 0 uniformly in.M, where|| - || is the operator
norm (2.9).

2. Letey € Ry, Ve > 0, Probp {

(2m) -2

where|| - || is the operator norm (2.10).

> e‘An} Lo uniformly in M(ey),

Proof. Part 1. Firstly, under Assumption 2.1, the class of functions

GG ={xm—yg(xt)g(xt), tt e[t} (G.48)

is also a uniformly bounded VC-class. We will use this resuthe proof. We have

w(n)_iw+iw_iw+zw_2w, (G49)
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whereY,, is the matrix withZ,, ., = S0 7,9 (X 1) g (Xi;t;), and X, is the matrix with

Sk = L3 9 (X te) g (Xi5t;) . Then by the triangular inequality
125 (1) = Zull < IE50) = Sull + 1% = S5l + 120 = Sull- (G.50)

We will prove the result of this part of the lemma by showingttbach part on the RHS of (G.50)

converges to zero. We have that

~

S0 = Sull € sup (S = Sup| € swp [Saopy = Teops| >0 (G5
th,t; EA(P) bt €L,TNQ

uniformly in M, since the class of moment functions (G.48) is a uniformlyrated VC class, and

hence, Glivenko-Cantelli uniformly in. We also have that

IT0 =Sl € sup [Suns— Swns| < Elp —> 0 uniformlyin M,  (G.52)
tit; EA(P) wn

which follows from Lemma G.2.

This leaves us with the first term on the RHS of (G.50). We hheé t

1500 = Sull < sup [E5(n) — T
ti,t;EA(P)

< 2 sup a(t) + (sup %(ﬂ)

telLi] telLi]

+  sup EZ (X*: t), Z (Xi;tr) g (Xiit))

tit;€A(P) | TV T

, (G.53)

and thatup,c, 7 7.(t) 50 uniformly in M by assumption. Therefore, to conclude the proof of

this part of the lemma, all that remains is to show that

sup
thst; EA(P)

Zg sz X27tk th )

(G.54)
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converges to zero conditional ofy, uniformly in M. We will show that (G.54) converges in mean
to zero conditional om4,, uniformly in M, which implies the desired result.

Let{¢};_, are independent Rademacher variables that are indepesfdét} " and{X;}", .
We have that

1< ]
E sup |— g (X5t 7,9 (Xitk) 9 (Xi5t5)| A,
, [() WIS z D00%31) 14,
1< X ]
<Ep| sup |- g(X5it)g(X sz (Xis te) 9 (Xis t5)| A
teoti€ltd] |1 S5 i

1 n

<Ep|E| sup =) eg(X5it) g (Xity)|| [Anl (G.55)
trtieltd |7

where the last inequality follows from an application of thhem the symmetrization lemma
(Lemma 2.3.1 in van der Vaart and Wellner, 1996) applied tedd@nal expectations. Now let
P* be the empirical measure based on the bootstrap sampl&XiFiXs;, ..., X}, and letH be a

e—netinL, (P*) overGg. Then

n n

1 1
E.| sup |— Z €9 (XZte) g (X5 t5)|| < Ee [sup |— Z e:h (XF) (G.56)
trtieltd | iy her |
Furthermore, the RHS of (G.56) is less than or equal to
1+1o Ly (Px)) h(XT) +
i g (N (6,66, Ly ( 21612 - Z e:h €
Yo X*
6
<+/1+41log (N (¢,GG, L, (P;)))\/;+ €, (G.57)

where the Orlicz normg- |, x+ are taken ovefe; }" , with {X*} , fixed, andN (¢, GG, L, (P}))
is the minimal number of balls of radiusn the L; (P*) metric needed to cover the $8§.

The VC property ofGG impliessupg log (N (¢, GG, L1 (Q))) < +oo, where the supremum is
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taken over all probability measureg, Hence, the RHS of (G.57) is bounded above by

\/1 + Slclép log (N (¢,GG, Ly (Q)))\/g + ¢, (G.58)

which does not depend diX;}.", , {X;},_, , and P. Thereforeve > 0,

A

Zg sz (Xiste) g (X))

\/1 + sgp log (N (€,GG, Ly (Q)))\/%Jr €. (G.59)

sup
ti,ts eA(P

This concludes the proof of this part upon realizing that

\/1+suplog( €,GG, L1 (Q \/7—>0
Q

asn — +o00.

Part 2. Since(i;(77)>_1 S (E* (77))_1 (i;(n) — Zw> »-1 we have

<[ e | =2
(S2m)

which is less than or equal tgor(1) conditional onA,, uniformly in M(e,) for large enough

|Ga) " -z

Sa0m) = (G.60)

) , (G.61)

by Part 1 of this lemma. O

H The Bootstrap Procedure of LSW

In this section, we outline the steps in the bootstrap preedf Linton et al. (2010) (LSW hence-

forth) which is used in the MC simulation experiments in 88tb. LSW use an integral-type test
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statistic. In the setting of the paper, itis

(max{% ig(th},O}) dt. (H.1)

The estimate of the contact set we use in the MC simulations is

. i
7, [
t

¢ - {t Cl: LY o) > —nn<t>}, (H2)

where the random numbers(t) satisfy property (4.2). In the MC simulations we use

2logn

nt:A )
Nu(t) = 64 0

wheres? is the sample analogue estimatorogf Because of the continuity of the moment func-
tions,C will always have positive Lebesgue measure when it is nomgmp
The bootstrap DGP LSW use is the ECDF on the data{&gt}; , be a random sample from

the ECDF of the data, then their bootstrap test statistic is

/E (max{%i [g(Xf;t)—lig(Xi;t)] ,O}) dt, ifC =0,
Tr = t " in:l " ;:1 2
/é(max{%z [g(X;‘;t)—%Zg(Xi;t)] ,0}) dt, if C#0.

Letting B,, be the number of bootstrap replications, the approximatés@p p-value is defined

as

B
RN
T = iR ! |:Tn,j > Tn:| : (H.3)
i=1

n

and one rejectdl; if T < 3, whereg € (0,1/2) is a given nominal level.
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| The Bootstrap Procedure of AS

In this section, we outline the steps of the bootstrap proegroposed by Andrews and Shi
(2010)(AS henceforth) which is used in the MC simulationexikpents in Section 5. AS propose
a Kolmogorov-Smirnov and Cramér von Mises test statisticsiriference on possibly infinite

number of conditional moment inequality conditions. Rettelt the setting of the paper considers
a continuum of unconditional moment inequality conditiowkich the AS procedure covers. In

this setting, the AS test statistics are identical, andgiven by

T, = sup <max{\/ﬁ (l ig(Xmﬁ)) /&(t),O}) , Wwhere (1.1)
te(t]

a—%):%z (Xi;t) — [ Zg X“t] . (1.2)

lew

i=1

Next we describe the steps for computing the bootstrap GMiSairvalue of AS in the setting

of the paper. The critical value is obtained through theofeihg steps.

1. Computep,,(t) for t € [t, ¢], wherep,, (t) is defined as follows. Let

Enlt) = Ky '/ ( Zg Xt ) (1), (1.3)
wherex,, = (0.3log(n))"/*. Define
2,(t) =6(t)By1[6.(t) < —1] and B, = (0.4log(n)/loglog(n))"*.  (1.4)

2. Generate3 bootstrap samplefX;,}"  fors=1,....B using the ECDF on the data.

3. For each bootstrap sample, compbte’ | g (X} ;

2,87

ando?(t) just aso?(t) is computed
t) . ands;

but with the bootstrap sample in place of the original sample

4. For each bootstrap sample, compute the bootstrap tﬁstist&;s asT,, is computed in (1.1)
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but with /n (£ >, g (X;;t)) replaced by
V(A5 g (Xrat) = 130, 9 (X t) — B, (1)) and witha?(1) replaced bys?(t).

5. Take the bootstrap GMS critical valug,_s to be thel — 3 + n sample quantile of the

n,s?

bootstrap test statistio%f* s=1,..., B} plusn, wheren = 107.

For a given nominal levet € (0,1/2), the AS test rejectdl,, if T, > Cni—p-
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