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Abstract

Robust rankings of poverty are ones that do not rely on a single poverty measure with

a single poverty line. Mathematically, such robust rankings of two populations specifies a

continuum of unconditional moment inequality constraints. If these constraints could be im-

posed in estimation then a statistical test can be performedusing an empirical likelihood-ratio

(ELR) test, which is a nonparametric version of the likelihood-ratio test in parametric infer-

ence. While these constraints cannot be imposed exactly, weshow that these can be imposed

approximately with the approximation disappearing asymptotically. We then propose a boot-

strap test procedure that implements the resulting approximate ELR test. The paper derives

the asymptotic properties of this test, presents Monte Carlo experiments that show improved

power compared to existing tests such as that of Linton et al.(2010), and provides an empirical

illustration to Canadian income distribution data. More generally, the bootstrap test procedure

provides a uniformly asymptotically valid nonparametric test of a continuum of unconditional

moment inequality constraints. The proofs exploit the factthat the constrained optimization

problem is a concave semi-infinite programming optimization problem.

JEL Classification: C12 (Hypothesis Testing); C14 (Semiparametric and Nonparametric Meth-

ods); I32 (Measurement and Analysis of Poverty)

Empirical Likelihood; Robust Poverty Comparison; Continuum of Moment Inequality Con-

straints; Bootstrap.

1 Introduction

The comparison of income distributions in studies of poverty is an important component in the

economist’s toolbox. The simplest rankings are based on a single poverty measure with a fixed

poverty line, such as the proportion of households with incomes below $5000. Such rankings are

very limited as they are based on a single measure and a singlepoverty line: they may produce con-

tradictory conclusions at two different yet equally reasonable poverty lines or poverty measures.
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Recently, attention has focused on robust one-way poverty comparisons in the sense that the

ranking between the income distributions is unanimous across multiple poverty measures or a set

of poverty lines. Specifically, a poverty-line ranking orders the distributions using a single poverty

measure over a range of poverty lines, rather than a single poverty line. And a poverty-measure

ranking orders the distributions using a single poverty line over a range of poverty measures where

the poverty measures are in a pre-specified family that satisfies certain ethically desirable criteria

(axioms). These two robust rankings are conceptually distinct but interconnected1.

Since population income distributions are not observable in practice, a statistical test is em-

ployed to rank the distributions using sample data on incomes. As they are cumulative distribution

functions (CDFs) of income, income distributions can be treated as CDFs of random variables for

the purposes of estimation and tests. In this respect, a poverty measure with a fixed poverty line

is an unconditional moment of a given income distribution: it indicates the extent of poverty as-

sociated with the distribution under consideration. Thus,ranking two income distributions using

a single poverty measure with fixed poverty lines is characterized by an inequality restriction on

these moments. Extrapolating from this case, a robust ranking corresponds to an infinite number

of inequality restrictions on certain moments of the distributions. For this reason, a statistical test

for such a ranking entails testing for an infinite number of moment inequality restrictions.

This paper proposes a nonparametric bootstrap test for the null hypothesis that a given robust

one-way poverty comparison holds between two income distributions. The proposed test pro-

cedure uses the method of empirical likelihood (Owen, 1988;Qin and Lawless, 1994; Imbens

et al., 1998; Kitamura, 2001). It is a nonparametric likelihood-based procedure that produces data-

determined shapes for the distributions, and it is particularly appropriate in our setting where there

are many moment inequality constraints imposed in estimation. We test the null hypothesis us-

ing the empirical likelihood-ratio (ELR) test statistic, which is a nonparametric counterpart of the

likelihood-ratio statistic in parametric inferences. Theadvantage is that this test statistic has the

internal Studentization property and accounts for the correlation between the different moment

1See Zheng (2000) for more on this point.
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inequalities, which leads to a less conservative test.

The test this paper proposes uses concavesemi-infinite programming(SIP) methods (Hettich

and Kortanek, 1993; López and Still, 2007; Shapiro, 2009) toextend Canay (2010)’s empirical

likelihood bootstrap, which is for a finite number of moment inequality restrictions, to the setting

of the paper, where there is aninfinite number of unconditional moment inequality constraints.

To establish the uniform validity of our testing procedure,we derive the uniform asymptotic null

distribution of the ELR statistic. This result extends the asymptotic distribution theory of this

statistic for a finite number of inequality constraints (e.g. El Barmi, 1996) to the infinite case.

The general theory is presented in such a way that it can be applied to any setting where the null

hypothesis has infinitely many unconditional moment inequality constraints. Therefore, this result

is of independent interest and significantly advances the current literature on constrained statistical

inference. Another attractive feature of this paper is thatthe general infinite number of constraints

case is motivated by the need to solve an important problem inpoverty and income studies.

We also analyze the finite sample properties of our test in Monte Carlo simulation experiments

using models for second and third orders of restricted stochastic dominance. We compare its

performance with the bootstrap tests of Linton et al. (2010)(LSW) and Andrews and Shi (2010)

(AS). LSW propose a bootstrap test for traditional unrestricted stochastic dominance under the null

using one-sided integral-type test statistic that is a functional of the sample analogue estimator of

the moments. Their method also applies to restricted stochastic dominance, which presents a point

of comparison with the current work. AS also propose a bootstrap test, but for models defined

by many (possibly an infinite number of) conditional moment inequalities and/or equalities. The

framework of AS covers the models in this paper. In the paper’s setup, the test statistics AS propose

reduce to a one-sided Kolmogorov-Smirnov test statistic that is a functional of the Studentized

sample analogue estimator of the moments. In contrast to theELR test statistic, neither of the

test statistics AS and LSW propose accounts for the correlation across the moment inequality

constraints.

In the simulation results for these two models, all the of theprocedures are found to control test
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level well in moderate to large sample sizes. The LSW test is found to be conservative relative to

the AS and proposed tests, whereas the AS and proposed tests behave similarly. The test this paper

proposes outperforms the LSW and AS tests in terms of power against alternatives with some non-

violated inequalities2, with the AS test outperforming the LSW test. Furthermore, the proposed

test’s power is substantially higher than the AS and LSW tests against such DGPs that are closer to

the null. Finally, all of the tests have similar power properties against alternatives with population

moment functions that have a continuum of binding moment inequalities.

This paper contributes to the literature on inference for robust poverty comparisons. The lit-

erature has focused almost exclusively on tests for traditional unrestricted stochastic dominance

orderings. Some examples include McFadden (1989), Barrettand Donald (2003), Linton et al.

(2005), Horváth et al. (2006), and LSW. From a normative perspective, such rankings are deficient

because they do not give equal ethical weight to all those whoare below their respective poverty

lines, whereas the rankings based on therestrictedstochastic dominance conditions do not suffer

from this deficiency3. We contribute to this literature by considering tests for restricted stochastic

dominance under the null, and more broadly, tests for other robust rankings.

Tests for restricted stochastic dominance are not new. Davidson and Duclos (2013) and David-

son (2009) propose asymptotic and bootstrap tests that posit instead a null of non-dominance. Their

approach is convenient since a rejection of this null entails acceptance of the only other possibility

which is restrict stochastic dominance; however, their alternative hypothesis is a strong form of

restricted stochastic dominance, which implies the null hypothesis posited in the paper. Thus, the

proposed test procedure complements the aforementioned ones.

This paper also contributes to the growing literature on inference for models defined by an infi-

nite number of unconditional moment inequality restrictions. There are several papers on inference

for conditional moment inequalities, which can be treated as an infinite number of unconditional

moment inequalities; see, for example, Andrews and Shi (2013, 2014) and Chernozhukov et al.

2The terminology for describing such alternatives is borrowed from Andrews (2011); it refers to alternatives with
some positive moments and some moments that are negative andmoderately small.

3See Bourguignon and Fields (1997) for more on this point.
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(2013). In contrast, the infinite number of inequalities in the paper are not generated from a con-

ditional moment inequality model. The papers closest to thepresent work are AS and LSW. AS

extends Andrews and Shi (2013) to cover models defined by infinitely many conditional moment

inequalities and/or equalities. Their extension also covers the case of models defined by an infinite

number of unconditional moment inequalities.

The approach of this paper differs from that of LSW and AS in two important ways. Firstly, the

paper proposes the use of a likelihood-based test statistic, while AS and LSW propose one-sided

test statistics based on the sample analogue estimator of the population moments. Secondly, the

paper’s approach to bootstrapping formulates the bootstrap data-generating process (DGP) using

a constrained estimator of the underlying distributions. Whereas LSW and AS propose the use

of the empirical CDF of the data as the bootstrap DGP, which does not incorporate the statistical

information from imposing the constraints that define the null hypothesis. Therefore, the main

technical contribution of this paper is to introduce a new method of testing that applies to cases in

which an infinite number of unconditional moment inequalities defines the null hypothesis.

The rest of this paper is organized as follows. Section 2 describes robust one-way poverty com-

parisons within the framework of a moment inequality model,presents examples, and introduces

the model of the null hypothesis. Section 3 defines the ELR statistic, provides its uniform asymp-

totic null distribution, and specifies a computational algorithm for computing it in practice. Sec-

tion 4 describes the proposed empirical likelihood bootstrap test procedure, establishes its uniform

asymptotic validity, and its consistency against all fixed alternatives. Section 5 provides the Monte

Carlo simulation results. Section 6 illustrates the proposed method using data from the Canadian

Family Expenditures survey for the year 1986. Section 7 concludes, and Section 8 collates the

acknowledgements of the individuals and institutions who provided help during the research. All

proofs are relegated to the Appendix.
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2 Robust One-Way Poverty Comparisons

2.1 Setup

The models described in this paper are of the following general form:

EP0 [g (X; t)] ≤ 0 ∀t ∈ [t, t], (2.1)

where [t, t] ⊂ R is a predesignated compact interval, the observations{Xi}ni=1 are a bivariate

random sample on two populationsA andB with typical elementX = [XA, XB], P0 is the

unknown true distribution ofXi with respect to the measurable space(X ,A), whereX = [0, s]×

[0, s] is the sample space of jointly observable incomes from the two populations withs ∈ (0,+∞)

is known, andA is the Borel sigma algebra onX . Furthermore,g (x; t) = h
(

xB; t
)

− h
(

xA; t
)

whereh is a known moment function that is weakly monotonic in its first argument for eacht.

The object of interest isP0, which is partially identified. We are interested in testing thatP0

satisfies the moment inequalities (2.1) under the null hypothesis. The next section characterizes

robust one-way poverty comparisons within the framework ofthe moment inequality model (2.1),

and presents a couple of examples.

2.2 Examples

The robust one-way comparisons of two populations are either poverty-line rankings or poverty-

measure rankings. The former carries out the one-way comparison over a predesignated set of

poverty measures with given poverty lines, whereas the latter fixes a poverty measure and com-

pares the distributions over a given set of poverty lines. A poverty measure has the general form
∫

h (x; z, γ) dL(x) wherez is a poverty line4, x is income,L(x) is an income distribution, andγ is

poverty aversion parameter that indexes the poverty measure within a pre-specified family of such

measures. The functionh (x; z, γ) ≥ 0 is the poverty contribution to total poverty of someone with

4A poverty line in a population is the threshold below which one is considered to be poor.
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incomex, with h (x; z, γ) = 0 wheneverx > z. Furthermore,h (x; z, γ) is weakly monotonic inx

for eachz andγ.

For poverty-measure rankings,zA, zB are given and letΓ ⊂ R denote a set of poverty aversion

parameters. Then, we sayA has more poverty thanB according to the poverty measures defined

by the moment functions in{π (· ; ·, γ) , γ ∈ Γ} if

EP0

[

h
(

XB; zB, γ
)

− h
(

XA; zA, γ
)]

≤ 0 ∀γ ∈ Γ. (2.2)

For a poverty-measure ranking,γ is fixed and letZ ⊂ R+ be a given set of poverty lines. Then, we

sayA has more poverty thanB according to the poverty measures defined by the moment functions

in {h (· ; z, γ) , z ∈ Z} if

EP0

[

h
(

XB; z, γ
)

− h
(

XA; z, γ
)]

≤ 0 ∀z ∈ Z. (2.3)

We now present two examples of robust one-way poverty comparisons.

Example 1(The First Clark, Hemming and Ulf Family). Clark et al. (1981) proposed the following

family of poverty measures:1
γ

∫ z

0

[

1−
(

x
z

)γ]
dL(x) whereγ ≥ 1. Income distributions can be

ordered using this family acrossγ for given poverty lines, or across poverty lines for a givenγ. In

the former setting, let1 ≤ γ < γ < +∞, then the moment functions are

x 7→ γ−1

[

1−
(

xB

zB

)γ]

1
[

xB ≤ zB
]

− γ−1

[

1−
(

xA

zA

)γ]

1
[

xA ≤ zA
]

γ ∈ [γ, γ],

wherezK , K = A,B are given poverty lines. In the latter setting, let0 < z < z ≤ s, then the

moment functions, withγ given, are

x 7→ γ−1

[

1−
(

xB

z

)γ]

1
[

xB ≤ z
]

− γ−1

[

1−
(

xA

z

)γ]

1
[

xA ≤ z
]

z ∈ [z, z].
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Example 2(The Foster, Greer and Thorbecke Family). Foster et al. (1984) proposed the following

family of poverty measures:1
γ

∫ z

0

(

z−x
z

)γ
dL(x) whereγ ≥ 0. As in the previous example, income

distributions can be ordered using this family either across a set of poverty aversion parameters or

across a set of poverty lines. In the former setting, let0 ≤ γ < γ < +∞ andzA, zB are given.

Then, the moment functions are

x 7→
(

zB − xB

zB

)γ

1
[

xB ≤ zB
]

−
(

zA − xA

zA

)γ

1
[

xA ≤ zA
]

γ ∈ [γ, γ].

For the poverty-line rankings,γ is fixed and letz ∈ [z, z]. Then, the moment functions are

x 7→
(

z − xB

z

)γ

1
[

xB ≤ z
]

−
(

z − xA

z

)γ

1
[

xA ≤ z
]

z ∈ [z, z].

For γ = 0, this poverty-line ranking fixes theheadcount ratioas the poverty measure, and for

γ = 1 it fixes theper capita income gap. Foster and Shorrocks (1988) called these poverty-line

rankings "poverty orderings", and proved that they are in a one-to-one correspondence with the

rankings based on stochastic dominance conditions. Specifically, they showed forγ = 0, z = 0

andz = s, these moment functions correspond to the ones that define first-order stochastic domi-

nance conditions. And more generally, forγ equal to a positive integer, this poverty-line ranking

is equivalent to the ranking based on the(γ + 1)-order stochastic dominance conditions.

The next section introduces regularity conditions on the moment functions that covers a broad

range of robust one-way poverty comparisons.

2.3 Conditions on Moment Functions

Without loss of generality, we represent the moment functions in (2.2) and (2.3) by the set of

functions
{

x 7→ g(x; t), t ∈ [t, t]
}

. In this notation, the index parametert can either be a poverty

measure in a pre-specified family, or a poverty line, so that the index parameter over which the

comparison isnot being conducted is suppressed for notational simplicity.
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The set
{

x 7→ g(x; t), t ∈ [t, t]
}

satisfies the following assumption:

Assumption 2.1. (i) For eachx ∈ X , t 7→ g (x; t) is a Lipschitz continuous function on[t, t] with

known Lipschitz constant,L; (ii) −1 ≤ g ≤ 1, ∀(x, t) ∈ X × [t, t]; (iii) Pointwise measurable; (iv)

Vapnik-C̆ervonenkis class, and (v)∄t′ ∈ [t, t] such thatg(x; t′) = 0 ∀x ∈ X .

Many sets of moment functions that define poverty measures satisfy the conditions in Assump-

tions 2.1. Condition (i) is standard in the concave SIP optimization literature. It also excludes

moment functions that depend discontinuously on the parameter that indexes them, such as the

ones that define the first-order stochastic dominance conditions. Condition (v) excludes moment

functions that vanish uniformly over the sample space. To understand the impact of this condition,

consider the moment functions for the traditional unrestricted s-th order stochastic dominance

conditions:

x 7→
(

t− xB
)s−1

(s− 1)!
1
[

xB ≤ t
]

−
(

t− xA
)s−1

(s− 1)!
1
[

xA ≤ t
]

t ∈ [0, s]. (2.4)

Condition (v) excludes the moment function corresponding to t = 0 since it is equal to zero for

everyx ∈ X . Furthermore, the compactess of the interval[t, t] forcest > 0. Therefore, these

conditions exclude the traditional unrestricted stochastic dominance conditions from our analysis.

As already mentioned in Section 1, such rankings are deficient from a normative perspective; for

this reason, the paper does not focus on them.

Conditions (i) and (v) justify the existence of Lagrange multiplier variables (via a Slater con-

dition), whose large sample properties establish the asymptotic behavior of the ELR test statistic.

The value of the bounds in condition (ii) are not important for the validity of the proposed method

and are made for simplicity; all we require is that the momentfunctions are uniformly bounded

with known bounds. Conditions (iii) and (iv) are important for developing the large sample prop-

erties of the ELR test statistic using empirical process theory. The pointwise measurability of this

set is to ensure the measurability of the quantities we are interested in; see Appendix B for their

formal definitions and a discussion of how to verify them in practice.
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The bootstrap test procedure this paper proposes applies toboth types of robust one-way poverty

comparisons. It is uniformly asymptotically valid under the model of the null hypothesis, and we

present this model in the next section.

2.4 Null Parameter Space

The bootstrap test procedure uses the ELR test statistic in testing whetherP0 satisfies (2.1) under

the null hypothesis. The asymptotic behavior of this test statistic depends on the form of the contact

set

∆(P0) =
{

t ∈ [t, t] : EP0 [g (X; t)] = 0
}

, (2.5)

and on the properties of the covariances of the random variables{g (X; t) , t ∈ ∆(P0)} . The setup

allows for a continuum of binding moment inequalities, and the Lipschitz continuity of the moment

functions excludes the case in which a countable number are binding.5. In general,∆(P0) =

∆d (P0) ∪∆c (P0) , where∆d (P0) is the set of isolated points in∆(P0) , and∆c (P0) is union of

the connected parts of∆(P0) .

If ∆(P0) = ∆d (P0) =
{

tb1, t
b
2, . . . , t

b
m

}

wherem ∈ Z+, then we denote byΣm (P0) the

covariance matrix formed by the random variables
{

g
(

X; tbj
)

, j = 1, . . . , m
}

, which is given by



















EP0

[

g
(

X; tb1
)]2

EP0

[

g
(

X; tb1
)

g
(

X; tb2
)]

· · · EP0

[

g
(

X; tb1
)

g
(

X; tbm
)]

EP0

[

g
(

X; tb2
)

g
(

X; tb1
)]

EP0

[

g
(

X; tb2
)

g
(

X; tb2
)]

· · · EP0

[

g
(

X; tb2
)

g
(

X; tbm
)]

...
...

. . .
...

EP0

[

g
(

X; tbm
)

g
(

X; tb1
)]

EP0

[

g
(

X; tbm
)

g
(

X; tb2
)]

· · · EP0

[

g
(

X; tbm
)]2



















.

If ∆c (P0) 6= ∅, then by the Lipschitz continuity of the moment functions, itis sufficient to consider

5A countable number of binding moments on a compact interval means that the moment functions have to oscillate
wildly, and hence, violate Lipschitz continuity.
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the covariance matrix of the variables
{

g (X; t) , t ∈ ˙∆ (P0)
}

, where

˙∆ (P0) = ∆d (P0) ∪ (∆c (P0) ∩Q) (2.6)

andQ is the set of rational numbers. As ˙∆ (P0) =
{

tb1, t
b
2, . . .

}

is a countable set, it gives rise to

the infinite covariance matrixΣ∞ (P0) .

We denote the cardinality of ˙∆ (P0) by w =
∣

∣

∣

˙∆ (P0)
∣

∣

∣
. If ˙∆ (P0) is countable, then we set

w = ∞. Additionally, define the vector spaces

l∞w =

{

a = (a1, a2, . . . , aw) ∈ Rw : sup
j

|aj| < +∞
}

and (2.7)

l1w =

{

a = (a1, a2, . . . , aw) ∈ Rw :
w
∑

j=1

|aj | < +∞
}

(2.8)

with respective norms‖a‖l1w =
∑w

j=1 |aj|, and‖a‖l∞w = supj |aj |.

Let P denote a generic value ofP0. Next we define the null parameter space forP0.

Definition 2.1. LetM be some collection ofP that satisfies the following conditions for a given

constantc > 0.

(i) Dependence: neither of the random variablesXA andXB is a deterministic transformation

of the other,

(ii) Sampling:{Xi}ni=1 is a random sample fromP,

(iii) Injectivity: θ′Σw (P ) θ ≥ c ∀θ ∈ l1w such that‖θ‖l1w = 1,

(iv) Surjectivity: the covariance operator,Σw (P ) : l1w → l∞w , is surjective,

(v) The set of moment functions
{

x 7→ g(x; t), t ∈ [t, t]
}

satisfies Assumption 2.1,

(vi) EP [g (X; t)] ≤ 0 ∀t ∈ [t, t].
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Condition (i) of Definition 2.1 allows for an arbitrary dependence structure between the marginal

random variables except that one cannot be a deterministic transformation of the other. This flex-

ibility in the dependence configuration allows for structures that could occur when dealing with

situations involving the comparison of pre- and post-tax income distributions, or the distributions

of separate incomes of married couples, for instance.

The large sample behavior of the ELR statistic depends on theproperties of the covariance

matrixΣw (P0) . Since it is possible underH0 for w = ∞ i.e. an infinite covariance matrix, these

properties are best described as conditions on the operatorΣw (P0) : l
1
w → l∞w . Condition (iii) of

Definition 2.1 implies the null space ofΣw (P0) contains only the zero vector0w ∈ l1w. That is,

Ker(Σw (P0)) = {θ ∈ l1w : Σw (P0) θ = 0w} = {0w} . Therefore, the inverse operator

Σ−1
w (P0) : Range(Σw (P0)) → l1w exists, and Range(Σw (P0)) = l∞w for finite w. Condition (iv)

of Definition 2.1 ensures that Range(Σ∞ (P0)) = l∞∞ holds as well. Sincesupi,j Σw,i,j (P0) ≤ 1

is a consequence part (ii) of Assumption 2.1, Conditions (iii) and (iv) of Definition 2.1 imply that

Σw (P0) andΣ−1
w (P0) are bounded in the operator norms

‖Σw (P0)‖ = sup
{

θ∈l1w;‖θ‖
l1w

=1
}

‖Σw (P0) θ‖l∞w and (2.9)

∥

∥Σ−1
w (P0)

∥

∥ = sup
{θ∈l∞w ;‖θ‖l∞w =1}

∥

∥Σ−1
w (P0) θ

∥

∥

l1w
. (2.10)

That is,‖Σw (P0)‖ ≤ supi,j Σw,i,j (P0) ≤ 1, and the boundedness ofΣ−1
w (P0) follows from the

Bounded Inverse Theorem6. As can be seen in (2.9) and (2.10), the operators norms depend on

the vector spacesl1w andl∞w ; however, for ease of exposition, we suppress the dependenceof the

operator norms on these spaces.

Now we introduce further notation. Then-fold product probability measures,P n, defined on the

product measurable space(X n,An) is used to compute the probabilities of events inAn. To keep

the notation simple when describing the probability of eventsAn ∈ An, we adopt the convention

that ProbP [An] is the probability of the eventAn with respect to the joint distribution of the bi-

6See Theorem 4.12-2 of Kreyszig (1989) for a formal statement.
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variate random sample,P n. Suppose{Ui}+∞
i=1 is an i.i.d sequence of random variables with respect

to the product measureP∞ for everyP ∈ M. Then we say that{Ui}+∞
i=1 = OP (1) uniformly

overM if for any ǫ > 0, there existsB > 0 andN0 such thatsupP∈M ProbP [|Un| > B] < ǫ

for all n > N0. Similarly, we say that{Ui}+∞
i=1 = oP (1) uniformly overM if for any ǫ > 0,

supP∈M ProbP [|Un| > ǫ] → 0 asn → +∞.

3 Empirical Likelihood

This section introduces (i) the unrestricted and restricted empirical likelihood estimators ofP0, (ii)

the uniform asymptotic distribution of the ELR test statistic, and (iii) a computational algorithm

for approximating the ELR test statistic.

3.1 A Concave Semi-Infinite Programming Estimator

Because of the continuity of the moment functions, it is enough to impose the moment conditions

on [t, t] ∩ Q, whereQ is the set of rational numbers7. The restricted empirical log-likelihood

problem is

lr = max
p1,...,pn

{

n
∑

i=1

log (pi) ; pi ≥ 0,

n
∑

i=1

pi = 1,

n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ [t, t] ∩Q,

}

, (3.1)

wherepi denotes the probability mass placed onXi by a discrete distribution supported on{Xi}ni=1 .

The optimization problem (3.1) is a (random) concave semi-infinite program since there is a finite

number of choice variables, and an infinite number of constraints. It has auniquesolution for

realizations of{Xi}ni=1 that yield a nonempty constraint set8; for P0 ∈ M, this constraint set is

nonempty for a large enough sample size9. The unrestricted empirical log-likelihood problem,lur,

is similar tolr except that the moment inequality conditions
∑n

i=1 pig (Xi; t) ≤ 0 ∀t ∈ [t, t]∩Q,

7This is because[t, t] ∩Q is dense in[t, t].
8This result follows by a standard application of Weierstrass’ Theorem to the problem (3.1). It is stated as Propo-

sition C.1 in Appendix C for ease of exposition.
9This large sample property holds uniformly inM, and it is stated as Lemma C.1 in Appendix C.
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are not imposed. The solution in this case is simplyp̂i = 1/n, and thenlur = −n log(n). The ELR

statistic is defined as

Ẽn = 2 (lur − lr) . (3.2)

Hence, large values of this statistic suggest the restriction is not supported by the data.

Let p̃ denote the solution of (3.1). Its characterization it in terms of Lagrange multipliers re-

quires formulating a dual of the problem (3.1). To do this, weneed to specify a pair of vector

spaces, one which serves as the space into which the moment functions are embedded, and the

second its dual space10. By Assumption 2.1, we can embed
{

x 7→ g(x; t), t ∈ [t, t] ∩Q
}

into the

sequence spacel∞∞. Its dual space isba
(

2[t,t]∩Q
)

: the Banach space of bounded finitely addi-

tive scalar-valued signed measures on the power set of[t, t]∩Q, endowed with the total variational

norm11. An elementν ∈ ba
(

2[t,t]∩Q
)

is a bounded linear functional onR∞ of the form
∑∞

j=1 νjwj,

wherew ∈ R∞ andνj = ν ({tj}) for eachtj ∈ [t, t] ∩Q

The Lagrangian associated with problem (3.1) is

L(p, µ, λ) =
n
∑

i=1

log (pi) +

(

1−
n
∑

i=1

pi

)

λ− n
+∞
∑

j=1

n
∑

i=1

pig (Xi; tj)µj, (3.3)

where(p, µ, λ) ∈ Rn
+ × ba

(

2N
)

× R. As in the case with finitely many constraints, a saddle point

of the Lagrangian yields the desired characterization of the probabilities in terms of the Lagrange

multipliers. Such a characterization follows from the Karush-Kuhn-Tucker (KKT) conditions un-

der a constraint qualification. Because there is an infinite number of inequality constraints, the

Strong Slater Condition, introduced by Mordukhovich and Nghia (2013), is the appropriate con-

10Given a vector spaceY, its dual space is by definition the set of all bounded linear functionals onY.
11The total variation norm of a signed measure is defined through its Hahn-Jordan decomposition; see Theorem 3.4

of Folland (1999).
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straint qualification. In the setting of the paper, it is an event inAn given by

Sn =

{

∃ pi > 0 i = 1, . . . , n such that
n
∑

i=1

pi = 1, sup
t∈[t,t]∩Q

n
∑

i=1

pig (Xi; t) < 0

}

. (3.4)

Denote the active at̃p constraints by:∆(p̃) =
{

t ∈ [t, t] ∩Q :
∑n

i=1 p̃ig (Xi; t) = 0
}

, and let

ba
(

2[t,t]∩Q
)

+
=
{

µ ∈ ba
(

2[t,t]∩Q
)

: µj ≥ 0 ∀j ∈ N
}

. Then, on the eventSn, for someλ̃ ∈ R

andµ̃ ∈ ba
(

2[t,t]∩Q
)

+
, p̃ satisfies the following KKT conditions

p̃i > 0,
1

p̃i
− λ̃− n

+∞
∑

j=1

g (Xi; tj) µ̃j = 0, i = 1 . . . , n; (3.5)

n
∑

i=1

p̃ig (Xi; t) ≤ 0 ∀t ∈ [t, t] ∩Q; supp(µ̃) ⊂ ∆(p̃) ,
n
∑

i=1

p̃i = 1, (3.6)

where supp(µ̃) is the support of̃µ.

Multiplying both sides of thei-th equation in (3.5) bỹpi and summing overi yields λ̃ = n by

complementary slackness and the constraint
∑n

i=1 p̃i = 1; hence, the probabilities are given by

p̃i =
1

n

(

1 +
+∞
∑

j=1

µ̃jg (Xi; tj)

)−1

, i = 1, . . . , n. (3.7)

This characterization of thẽpi in (3.7) only occurs on the eventSn. The next result shows the

likelihood of this event tends to unity with uniformity, under the null hypothesis.

Proposition 3.1. SupposeP0 ∈ M. Then, sup
P∈M

ProbP [Sn] → 1 asn → +∞.

Proof. See Appendix C.2.

Consequently, under the null and for large enoughn, upon substituting in the probabilities (3.7)

into the expression for the ELR statistic (3.2) and re-arranging, results in the following expression

for the test statistic

Ẽn = max
µ∈ba(2[t,t]∩Q)

+

2

n
∑

i=1

log

(

1 +

+∞
∑

j=1

g (Xi; t)µj

)

. (3.8)
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Therefore, the asymptotic behavior ofẼn under the null depends on the asymptotic behavior ofµ̃.

The restriction onµ in (3.8) significantly affects the asymptotic null distribution of Ẽn, and results

in a non-pitoval limit distribution, as the next section shows.

3.2 Uniform Asymptotic Null Distribution

This section presents the uniform asymptotic distributiontheory for the ELR statistic (3.2) when

P0 ∈ M. This result relies on the uniform convergence of the random function

√
n

(

1

n

n
∑

i=1

g (X; t)−EP0 [g (X; t)]

)

t ∈ [t, t], (3.9)

which follows from Assumption 2.1, as it implies the set moment functions is uniformly Donsker

and pre-Gaussian with respect to the probability measures in M; we formalize this result as

Lemma B.1 in the Appendix. The random function (3.9) is uniformly weakly convergent to a

zero-mean Gaussian process,G(t) t ∈ [t, t], with covariance kernel

EP0 [g (X; u) g (X; v)]−EP0 [g (X; u)]EP0 [g (X; u)] (u, v) ∈ [t, t]× [t, t]. (3.10)

Furthermore, this uniform weak convergence implies the random function, 1√
n

∑n
i=1 g (X; t) t ∈

∆(P0) , is uniformly weakly convergent to a zero-mean Gaussian process,G(t) t ∈ ∆(P0) , with

the covariance kernelEP0 [g (X; u) g (X; v)] , (u, v) ∈ ∆(P0)×∆(P0) . If ∆(P0) = {t1, . . . , tw}

andw ∈ Z+, then the limiting Gaussian process is a multivariate normalrandom vector with di-

mensionw given byGw ∼ MVN (0w,Σw (P0)) . If ∆(P0) = ∆d (P0)∪∆c (P0) , then the limiting

Gaussian process is the extension of the discrete Gaussian processG∞ ∼ MVN (0∞,Σ∞ (P0)) on

˙∆ (P0).

To develop the uniform asymptotic distribution ofẼn, it is necessary to restrictM to certain

submodels as follows.
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Definition 3.1. Givene0 ∈ R+, let

M (e0) = {P ∈ M : ∆ (P ) = ∅} ∪
{

P ∈ M : ∆ (P ) 6= ∅ and
∥

∥Σ−1
w (P )

∥

∥ ≤ e0
}

, (3.11)

where‖ · ‖ is the operator norm (2.9).

Let denote weak convergence, and letl∞w,− = {θ ∈ l∞w : θj ≤ 0 ∀j} . The following theorem

provides the uniform asymptotic distribution ofẼn under the null.

Theorem 3.1.For everye0 ∈ R+, we have

Ẽn  















0, if w = 0,

minU∈l∞w,−
(Gw −U)′ Σ−1

w (P0) (Gw −U) , if w 6= 0,

uniformly inM (e0) .

Proof. See Appendix C.3.

The form of the contact set has a significant discontinuous effect on the shape of the ELR’s

asymptotic null distribution. Theorem 3.1 shows that the limit distribution ofẼn when no inequality

constraint binds is degenerate at zero, sinceẼn P−→ 0 in this case. If only a finite number of

constraints bind, then the ELR statistic converges in distribution under the null to the familiar

Gaussian QLR statistic which has the chi-bar-square distribution. The last case is when the set of

binding moments has isolated and connected parts, or only connected parts. The form of the ELR

statistic in this case is a generalization of the Gaussian QLR statistic.

A pre-requisite for using the result in Theorem 3.1 is the ability to computeẼn. Its computation

is infeasible in practice since it is impossible to impose aninfinite number of inequality constraints

in numerical optimization routines. However, it is possible to approximatẽEn using standard

methods of approximation in the SIP literature, which is discussed in the next section.
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3.3 Computational Algorithm: An Exchange Method

This section introduces a computational algorithm that approximates the solution of the SIP prob-

lem (3.1). Because the optimization problem associated with this estimator is a SIP, we adopt a

numerical approach to SIP to compute it. Nowdays the numerical approach to SIP has become an

active research area; for a review on SIP algorithms, see Hettich and Kortanek (1993) and Reem-

sten and Gorner (1998).

An important first point that we emphasize is that from a numerical point of view, SIP is more

difficult than finite programming. The difficulty arises withthe feasibility test of a candidate

solution to the SIP, because checking the feasibility in this case is obviously equivalent to solving

the global maximization problem:maxt∈[t,t]
∑n

i=1 p̃ig (Xi, t) , and to check whether for a global

solution to this problem that the continuum of constraints do indeed hold. The paper uses an

"exchange method" to compute an approximation top̃. It is one of the main algorithmic approaches

to solving SIP problems. This computational algorithm can be seen as a compromise between pure

discretization methods and methods based on local reduction.

The discretization method requires that we choose finite subsets{tj}Nj=1 = TN ⊂ [t, t]∩Q, and

instead of solving the SIP problem (3.1), we solve the finite program

max
p1,...,pn

{

n
∑

i=1

log (pi) ; pi ≥ 0,
n
∑

i=1

pi = 1,
n
∑

i=1

pig (Xi; tj) ≤ 0 j = 1, . . . , N

}

. (3.12)

The sequence of sets{TN}N are such that the Hausdorff distance betweenTN and[t, t] ∩Q tends

to zero asN → +∞. That is, dist
(

TN , [t, t] ∩Q
)

→ 0 asN → +∞, where

dist
(

TN , [t, t] ∩Q
)

= sup
t∈[t,t]∩Q

min
t̆∈TN

|t̆− t|. (3.13)

The distance dist
(

TN , [t, t] ∩Q
)

is a measure for the mesh-size of the discretization. So thatwhen

the problem (3.1) is indeed discretizable, its (unique) solution, provided it exists, is the point of

accumulation of the corresponding sequence of solutions for the problems (3.12); see Sections 3
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and 6 of Shapiro (2009) for sufficient conditions on the discretizability of general SIP problems.

On the other hand, methods based on local reduction require the determination of all the local

maxima of the problem

max
t∈[t,t]

n
∑

i=1

pig (Xi, t) , (3.14)

as they depend on the probabilities. This approach is computationally expensive and can be infea-

sible in practice for data sets of a moderate size, because the number of independent variables in

these solutions grows one-to-one with the sample size.

Conceptually, the exchange method at theN-th step has a given gridTN and a fixed small value

α > 0. Then, one proceeds as follows:

1. Compute a solutioñpN of the discretized problem (3.12).

2. Compute the local maximatj,N , j = 1, . . . , k of the problem (3.14) whenp = p̃N , such that

one of them, sayt1,N is a global solution; that is,

n
∑

i=1

p̃i,Ng (Xi, t1,N) = max
t∈[t,t]

n
∑

i=1

p̃i,Ng (Xi, t) .

3. Stop, if
∑n

i=1 p̃i,Ng (Xi, t1,N) ≤ α, with an approximate solutioñpN . Otherwise, update

TN+1 = TN
⋃ {tj,N , j = 1, . . . , k} .

Naturally, the numerical accuracy of this method depends onthe number of grid points,N, and on

the tolerance numberα. In practice, both will depend on the sample size. Individually, N andα

introduce a bias variance trade-off in the computation of
∑n

i=1 p̃ig (Xi, t) for eacht ∈ [t, t]. Large

values ofN and small values ofα increase the bias but reduce variance, whereas small valuesof

N and large values ofα decrease the bias but increase the variance.

Denote the solution of the exchange algorithm byṕ1, . . . , ṕn, then the ELR statistic based on it
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is defined as

Én = 2

{

−n log(n)−
n
∑

i=1

log (ṕi)

}

. (3.15)

Theorem 3.2.SupposeP0 ∈ M. If min {N(n)−1, α(n)} → 0 asn → +∞, then

1. Én = Ẽn + oP (1) uniformly inM.

2. Én − Ẽn = OP

(

n−1/2 min
{

L
N(n)

, α(n)
})

uniformly inM,

whereL is the Lipschitz constant presented in Assumption 2.1.

Proof. See Appendix C.4.

Theorem 3.2 shows that the ELR statistic arising from the exchange algorithm is uniformly asymp-

totically equivalent to the ELR statistic (3.2). Consequently, Én can be used to test the null hypoth-

esisP0 ∈ M in practice. A remarkable point regarding Theorem 3.2 is that the validity of the

uniform asymptotic equivalence does not require any restrictions on the rates ofN(n) andα(n).

In general, the computation of fixed asymptotic critical values is infeasible because the asymp-

totic null distribution in Theorem 3.1 depends discontinuously onP0 through the contact set (2.5).

This feature of the ELR statistic motivates the use of the bootstrap, which is discussed in the next

section.

4 Bootstrap Test Procedure

This section introduces the bootstrap ELR test for the null hypothesisP0 ∈ M. The testing proce-

dure extends the approach of Canay (2010) to the setting of the paper.

The bootstrap DGP is the set of probabilities on the data points that is the solution of a modified

version of the exchange algorithm. The modification replaces the finite program (3.12) in the
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exchange algorithm Section 3.3 with the following optimization problem:

max
p1,...,pn

{

n
∑

i=1

log (pi) ; pi ≥ 0,

n
∑

i=1

pi = 1,

n
∑

i=1

pig (Xi; tj) ≤ −ηn(tj) j = 1, . . . , N

}

, (4.1)

where theηn(tj) ≥ 0 are (possibly random) numbers that satisfy the following properties

ProbP0

[

lim
n→+∞

ηn(tj) = 0 and lim inf
n→+∞

ηn(tj) (n/ (2 log logn))
1/2 ≥ σj

]

= 1 and (4.2)

sup
t∈[t,t]

ηn(t)
P−→ 0 uniformly in M, where (4.3)

σ2
j = EP0 [g (X; tj)]

2 − (EP0 [g (X; tj)])
2 j = 1, . . . , N(n). (4.4)

The sequenceηn(tj) provides a rule to determine whether thetj-th moment is binding or slack. It

is similar to the sequences in Andrews and Soares (2010), LSW, and Canay (2010).

Denote the bootstrap DGP by(p1, . . . , pn), and let{X⋆
i }ni=1 be a random sample from it. Fur-

thermore, denote by(p⋆1, . . . , p
⋆
n) the solution of the modified exchange method algorithm in which

{X⋆
i }ni=1 replaces the data. The bootstrap ELR statistic is defined as

E⋆n = 2

{

−n log(n)−
n
∑

i=1

log (p⋆i )

}

. (4.5)

LettingBn be the number of bootstrap replications, the approximate bootstrap p-value is defined

as

ΥBn
=

1

Bn

Bn
∑

j=1

1
[

E⋆n,j ≥ Én
]

, (4.6)

whereÉn is given by (3.15). The bootstrap test rejectsH0 if ΥBn
≤ β, whereβ ∈ (0, 1/2) is a

given nominal level.
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4.1 Uniform Asymptotic Validity Results

The following theorem shows the asymptotic null distribution of the bootstrapped ELR statis-

tic (4.5) is exactly the same asymptotic null distribution of the ELR statistic (3.2) provided in

Theorem 3.1.

Theorem 4.1. For eachn, let An denote the sigma algebra generated by{Xi}ni=1 . For every

e0 ∈ R+, the modified bootstrap ELR statistic defined in (4.5) satisfies

E⋆n  















0, if w = 0,

minU∈l∞w,−
(Gw −U)′ Σ−1

w (P0) (Gw −U) , if w 6= 0

conditional onAn in P0 uniformly inM(e0).

Proof. See Appendix D.1.

The result of Theorem 4.1 is uniform inM(e0). Furthermore, it implies the following for the

bootstrap ELR test.

Corollary 4.1. Suppose the conditions of Theorem 4.1 hold. Additionally, letΥBn
be given by (4.6)

andβ ∈ (0, 1/2). Then, for everye0 ∈ R+

lim sup
n→+∞

sup
P∈M(e0)

ProbP [ΥBn
≤ β] ≤ β. (4.7)

Proof. See Appendix D.2.

Corollary 4.1 shows the bootstrap ELR test has asymptotically correct size, uniformly inM(e0).

4.2 Test Consistency

Next we consider the power of the proposed bootstrap test against all alternatives. The power of

this test is shown to converge to 1 asn → +∞, which means the test is consistent against all

alternatives.
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Let ∆+ (P0) =
{

t ∈ [t, t] : EP0 [g (X, t)] ≥ 0
}

. Under the alternative, the Lipschitz continuity

of the moment functions implies∆+ (P0) has the cardinality of the continuum. As with the setup

underH0,∆
+ (P0) = ∆+

d (P0)∪∆+
c (P0)where∆+

d (P0) is the set of isolated points in∆+ (P0) and

∆+
c (P0) is the union of the connected parts of∆+ (P0) . Furthermore, let ˙∆+ (P0) = ∆+

d (P0) ∪

(∆+
c (P0) ∩Q) , and letΩ (P0) denote the infinite matrix with typical element

Ωt,t′ (P0) = EP0 [g (X, t) g (X, t′)] t, t′ ∈ ˙∆+ (P0).

The following assumption is needed to prove test consistency.

Assumption 4.1. (i) θ′Ω (P0) θ > 0 ∀θ ∈ l1∞ with ‖θ‖l1
∞
= 1. (ii) ∃t′ ∈ [t, t] withEP0 [g (X, t′)] >

0, and{Xi}ni=1 is IID P0.

Next we have the result on test consistency.

Theorem 4.2. SupposeP0 satisfies Assumption 4.1, and that Assumption 2.1 holds. Additionally,

let min {N(n)−1, α(n)} → 0 asn → +∞. Then, ProbP0 [ΥBn
≤ β] → 1 asn → +∞, where

β ∈ (0, 1/2) is a given nominal level andΥBn
is the approximate bootstrap p-value (4.6).

Proof. See Appendix D.3.

Theorem 4.2 shows that the proposed bootstrap procedure is consistent against all fixed alterna-

tives.

5 Monte Carlo Simulations

The main purpose of this section is to evaluate the finite sample performance of the tools developed

in previous sections. In each simulation experiment, the nominal level was fixed at 5%,N(n) =

n1/2, α(n) = n−1/2, andηn(t) = σ̂t

√

2 logn
n

whereσ̂2
t is the sample analogue estimator ofσ2

t .
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Additionally, given the interval[t, t], the grid was constructed as follows:

TN(n) =
{

t = t1 < t2 < · · · < tN(n) = t
}

, whereti+1 = ti +

(

t− t
)

N(n)
, (5.1)

for i = 1, . . . , N(n)− 1. We considered the following sample sizesn = 256, 512, 1024, 2048 with

1000 MC replications per experiment, and 199 bootstrap samples per MC replication. Finally, we

also report the empirical rejection frequency of the bootstrap tests of LSW and AS; see Appen-

dices H and I for the implementation of these tests in the setting of the current paper. Otherwise,

the experiments were implemented using Matlab.

As described in Section 3.3, the exchange method uses finite programs which have known

closed-forms for the first-order and second-order conditions. Supplying this derivative information

to the Matlab optimization routine substantially speeds upthe execution time of the exchange

method algorithm, especially for the cases in which the sample size is large e.g.n ≥ 1024.

Overall, the Matlab code this paper uses executes the algorithm very rapidly on a desktop machine

with 12 CPUs and 8 gigabytes of RAM.

5.1 Independent Uniform and Discontinuous DGPs

We considered the case of restricted second and third ordersof SD12 between the following sta-

tistically independent random variables. The CDF ofXA, FA(· ; a0), depends on a parameter

12See Example 2 in Section 2.2 for the definition of restricted SD conditions.
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a0 ∈ [0.5, 0.75], and it is given by

FA(x; a0) =















































































1, if x ≥ 1

x, if 0.75 < x < 1

mx+ b, if 0.5 < x ≤ 0.75

a0, if x = 0.5

x, if 0 ≤ x < 0.5

0, if x < 0,

wherem = 3 − 4a0 andb = a0 − m/2. FA(· ; a0) has a mass point atx = 0.5 with probability

mass equal toa0 − 0.5 whena0 > 0.5. Finally, whena0 = 0.5, FA(· ; a0) is the CDF ofU [0, 1].

We setXB ∼ U [0, 1]. Figure 1 depictsFA(x; a0) for a0 ∈ {0.75, 0.6} .
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Figure 1: Plots ofFA(· ; 0.75) (left) andFA(· ; 0.6) (right).

The motivation for using DGPs with mass points is that population income distributions can be

discontinuous and/or continuous but non-differentiable at points in their supports. These properties

of income distributions are salient as Zinde-Walsh (2008) shows in examples that they can be a

result of policy and institutional effects.
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5.1.1 Experiments UnderH0

Our choice of distributions for populationsA andB described in the previous subsection are such

thatXB dominatesXA at the second and third orders∀a0 ∈ [0.5, 0.75], and therefore, this SD

relationship holds for any choice of[t, t]. Figure 2 depicts the SD functions

t 7→ EP

[

(

t−XB
)s−1

(s− 1)!
1
[

XB ≤ t
]

−
(

t−XA
)s−1

(s− 1)!
1
[

XA ≤ t
]

]

for t ∈ [0.05, 0.95], a0 = 0.75, ands = 2, 3. The interesting feature of this set of DGPs is that

the restricted second order SD function has a point of non-differentiability atx = 0.5 whena0 ∈

(0.5, 0.75]. At a0 = 0.5, FA = FB which implies that the index set of binding population moments

is [t, t], where as it is equal to[t, 0.5)∪ [0.75, t] for anya0 ∈ (0.5, 0.75]. Therefore, asa0 increases

from 0.5 to 0.75, probability mass is progressively shiftedaway from the set(0.5, 0.75] towards

the set{0.5} .

In all of the experiments, we considereda0 ∈ {0.5, 0.525, 0.55, . . . , 0.75}, and set[t, t] =

[0.05, 0.95]. The rejection frequencies for restricted second order SD (SSD) and third order SD

(TSD) are presented in Figures 3 and 4 respectively.
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Figure 2: Plots of SSD function (left) and TSD function (right).
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Figure 3: Plots of the rejection frequency for the test with the SSD function.
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Figure 4: Plots of the rejection frequency for the test with the TSD function.

For a0 6= 0.5, the LSW test has null rejection probabilities that decreaseto zero for the SSD

and TSD DGPs. Note that these rejection probabilities decrease quite rapidly with the sample

size fora0 6= 0.5. In contrast, the proposed test and that of AS have null rejection probabilities

that are approximately within 0.02 of the 0.05 nominal level. For a0 = 0.5, the DGP is in the

least favorable case of the model of the null hypothesis, andtherefore we expect the rejection

probabilities for both tests to be close to the nominal levelof 0.05.

The simulation results imply that the DGPs witha0 6= 0.5 do not belong to the subset of the

boundary ofH0 in which the LSW test is asymptotically similar. The reason for the non-similarity

of the LSW test at these DGPs is that the bootstrap p-value is too large when some of the moments

in EP0 [g (X; t)] are negative and moderately small. Despite their test beingconsistent against all
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types of alternatives13, a potential consequence of this non-similarity is that theLSW test might

have relatively low power in finite samples against alternatives with some non-violated inequalities

i.e. a population moment functionEP0 [g (X; t)] (as a function oft) whose image contains positive

and negative values with the latter being moderately small.Section 5.2 examines the finite sample

power properties of the tests against such alternatives.

5.1.2 Experiments UnderH1

The DGPs in this section considers are as in the previous section, but with the roles ofXA andXB

reversed. In this case,EP0 [g (X; t)] ≥ 0 ∀t ∈ [0.05, 0.95], and this population moment function

equals zero on the interval[0.05, 0.5] for all a0 ∈ (0.5, 0.75]. Furthermore, asa0 becomes larger,

P0 becomes farther fromH0.

The power curves of the tests are reported in Figure 5. The results show the tests behave

similarly under these DGPs, as their this little differencebetween their empirical power functions.

13See Theorem 3 of LSW.
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Figure 5: Plots of the rejection frequency for the test withXA SSDXB.

5.2 Experiments UnderH1 : Some Non-Violated Inequalities

Consider the following DGP from LSW. SetXA ∼ U [0, 1]. Then, define

XB = (U − a0b1) 1 [a0b1 ≤ U ≤ x0] + (U + a0b2) 1 [x0 < U ≤ 1− a0b2] (5.2)

for a0 ∈ (0, 1), whereU ∼ U [0, 1]. As a0 becomes closer to zero, the distribution ofXB becomes

closer to the uniform distribution. The CDF ofXB is FB
(

xB; a0, b1, b2, x0

)

= xB + a0δ
(

xB
)

,
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where

δ
(

xB
)

=































































0, if xB ≤ 0

b1, if 0 < xB ≤ x0 − b1

x0, if x0 − b1 < xB ≤ x0 + b2

−b2, if x0 + b2 < xB ≤ 1

0, if xB > 1.

The scalea plays the role of the "distance"P0 is fromH0. Whena is large,P0 is farther fromH0,

and whena0 = 0, XA andXB have the same distribution which meansP0 belongs to the model

of the null hypothesis under the least favorable configuration.

In the simulation experiments, we set

(b1, b2, x0) = (0.1, 0.5, 0.15) and a0 ∈ {0.05, 0.1, 0.15, 0.2, . . . , 0.75} .

These configurations correspond to alternative DGPs for which there are some non-violated in-

equalities in the restricted SSD function with[0.05, 0.95] as its domain of definition. This function

is depicted in Figure 6 fora0 = 0.1.

The power curves for the tests are reported in Figure 7. The proposed test dominates the AS and

LSW tests since its power curve is greater than or equal to that of the other tests. Fora0 > 0.5, there

is no difference between all three tests as the rejection probabilities are equal to unity. However,

outside these configurations, the power of the AS and ELR tests is substantially higher than that

of the LSW test for quite modest sample sizes. Furthermore, the power of the ELR test is at least

as large as that of the AS test and strictly higher for DGP configurations closer theH0. Finally,

because the LSW test is consistent against all kinds of alternatives, we expect its finite sample

power to improve with larger sample sizes.
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Figure 6: Plot of the restricted SSD function.
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Figure 7: Plots of the rejection frequency for the test with the SSD function and SNVIs.

The simulation results in Figure 7 indicate that the rate of this improvement for their test is rather
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slow for DGPs which are close toH0, e.g.a0 = 0.1

6 Empirical Illustration

This section illustrates the proposed method in the contextof an empirical example on policy

evaluation. The data is from the Canadian Family Expenditures survey for the year 1986, which is

used by Barrett and Donald (2003). This survey in a given yearreports the incomes of households

before and after a tax and transfer policy. We consider the comparison of the income distributions

in the year 1986 before and after this policy using restricted SSD conditions. In Table 1 below we

have supplied some basic descriptive statistics for these data.

Table 1: Descriptive Statistics

Pre-Policy Post-Policy

Sample Size 9,470 9,470

Mean 36,975 30,378

Std. Dev. 24,767 18,346

Median 32,658 27,337

Min 56.61 121.92

Max 206,670 180,390

The boxplots of the two income distributions are reported inFigure 8 along with a scatter plot of

data. The scatter plot reveals a strong correlational dependence between the two distributions with

a correlation coefficient of 0.982, which is expected between pre-policy and post-policy incomes.

The boxplots suggest that the policy reduced income inequality as the post-policy incomes appear

closer to one another.

The question we ask is whether the policy reduced poverty, and we proceed by testing the null

hypothesis that the pre-policy distribution dominates itspost-policy counterpart stochastically at

the second order, over the interval[t, t] = [1000, 10395]. The upper boundary point of this interval

is 40% of the median of the post-policy income data. Restricted SSD is a poverty-line ordering
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that compares the distributions using theper capita income gappoverty measure over a range of

poverty lines. In this illustrative example, the range of poverty
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Figure 8: Descriptive plots of the income data.
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lines is given by[1000, 10395], which seem to be reasonable enough to encompass most of the

plausible poverty lines for an adult equivalent.

In terms of this paper’s notation, the pre-policy distribution corresponds to populationB, and

the post-policy one to populationA. Figure 9 plots the empirical SSD function over this interval

in blue along with the 95% (pointwise) confidence interval bands in red. Although it is not easily

visible from the figure, the empirical SSD function is positive and no larger than 1 on the set

[1000, 4035.6)∪(4635.2, 4853.2), and non-positive otherwise. Sincen = 9470, the empirical SSD

function is an accurate estimate of its population counterpart; hence, if the true joint distribution

belongs toH1, then it is likely that it corresponds to a configuration in which there are some non-

violated inequalities. Therefore, as suggested by the simulation results in Section 5.2, one should

use the proposed test over the AS and LSW tests to better detect such a DGP when it is close to

H0.

We setα(n), N(n), ηn(·), and the grid’s construction as in Section 5. Furthermore, 499 boot-

strap samples were used. Table 2 reports the bootstrap p-values for the AS, LSW, and proposed

tests.

Table 2: Output of Tests: Bootstrap P-Values

ELR AS LSW

0 0.1303 0.6834

The bootstrap p-values of the AS and LSW tests are greater than all of the conventional signif-

icance levels. Therefore, these tests does not reject the null hypothesis at all of the conventional

significance levels. On the other hand, the bootstrap p-value of the test this paper proposes is 0.

Hence, the proposed test rejects the null hypothesis at all conventional significance levels.
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7 Conclusion

This paper proposes a new method of testing robust one-way poverty comparisons. Specifically,

our bootstrap test has asymptotic sizes that are exactly correct in a uniform sense under regularity

conditions. Our simulation study uses restricted stochastic dominance conditions of the third and

second orders, and demonstrates that our method works better than the bootstrap tests of Linton

et al. (2010) and Andrews and Shi (2010) for quite modest sample sizes in the case of alternative

DGPs that have some non-violated inequalities. It should benoted that their tests also apply to first

order stochastic dominance conditions, whereas ours does not.

While our setting has focused on matched data, the methods proposed in this paper can be easily

extended to the setup of two independent random samples of incomes with natural modifications.

The methods proposed in the paper can also be easily extendedto multidimensional robust poverty

comparisons. In that case, one uses classes of multidimensional poverty measures (e.g. Bour-

guignon and Chakravarty, 2003), and a concave SIP problem which has a multidimensional index

parameter set. Furthermore, the conditions that define the model of the null hypothesis must be

adjusted appropriately to reflect the multidimensional nature of the moment functions.
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A Outline

This Appendix provides proofs of the results in the text. It also introduces further discussions of

Assumption 2.1, and of the finite-sample properties of the constrained and unconstrained estima-

tors of the population moments. And it presents the bootstrap procedures of LSW and AS in the

framework of this paper.

This Appendix is organized as follows. Section B provides a further discussion of Assump-

tion 2.1. Section C presents the proofs of the results in Section 3 along with other intermediate

results, and a further discussion of the finite-sample properties of the constrained and unconstrained

estimators of the population moments. Section D presents the proofs of the results in Section 4.

Section E contains the auxiliary technical results that areused in the proofs presented in Section C.

Similarly, Section F contains the auxiliary technical results that are used in the proofs presented

in Section D. Finally, Sections H and I present the bootstraptest procedures of LSW and AS

respectively within the paper’s setup.

B Further Discussion of Assumption 2.1

This section provides a further discussion of the conditions in Assumption 2.1. Given a set of

moment functions, all of the conditions of Assumption 2.1 are easily verifiable in practice. The

conditions that are less known to applied researchers are pointwise measurability, and the VC

property. For this reason, this section focuses on these twoproperties.

Sets of moment functions that are continuous on a separable domain are pointwise measurable.

The definition of this concept is the following:

Definition B.1. A classG of measurable functions,g : X → R on the probability space(X ,A, P ),

is pointwise measurable if there exists a countable subsetG ′ ⊂ G such that, for everyg ∈ G there

exists a sequence{g′m} ∈ G ′ with g′m(x) → g(x), pointwise for eachx ∈ X .

To show that a class of moment functions is a VC-class, one canuse Theorem 2.6.7 of van der
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Vaart and Wellner (1996) (VDW) which is a result on the entropy bounds for such classes. Specif-

ically, if G is a VC-class, then forr ≥ 1 and any probability measureQ on (X ,A),

N(ǫ,G, Lr(Q)) ≤ U V (G)(16e)V (G)
(

1

ǫ

)r(V (G)−1)

, (B.1)

for a universal constantU and0 < ǫ < 1, whereV (G) as the VC-index of the set of subgraphs

of functions inG, andN(ǫ,G, Lr(Q)) is the covering number ofG (i.e. the minimal number ofǫ

balls in theLr(Q) norm needed to coverG). Many classes of functions in practice satisfy this type

of bound in their entropy numbers (see van der Vaart and Wellner, 1996, page 134).

The important point is that condition (B.1) implies

∫ +∞

0

√

sup
Q

N(ǫ,G, L2(Q)) dǫ < +∞, (B.2)

where the supremum is taken over all finitely discrete probability measuresQ on (X ,A). Con-

dition (B.2) is the uniform entropy bound. This condition along with suitable measurability re-

quirements on a uniformly bounded set of functionsG implies uniform weak convergence of its

empirical process, where the uniformity holds over a predesignated set of probability measures (see

van der Vaart and Wellner, 1996, Theorem 2.8.3).

An immediate consequence of Assumption 2.1 is that the set
{

x 7→ g(x; t), t ∈ [t, t]
}

is uni-

formly Donsker and pre-Gaussian with respect to the probability measures inM. For future refer-

ences, we formalize this result here.

Lemma B.1. LetM be the set of probability measures in Definition 2.1. Then theclass of moment

functions,
{

x 7→ g(x; t), t ∈ [t, t]
}

, is Donsker and pre-Gaussian uniformly inM.

Proof. Let G =
{

x 7→ g(x; t), t ∈ [t, t]
}

. Assumption 2.1 implies that the sets

Gδ,P =
{

f − h : f, h ∈ G, ‖f − h‖P,2 < δ
}

and G2
∞ =

{

(f − h)2 : f, g ∈ G
}

(B.3)

are pointwise measurable for everyδ > 0 andP ∈ M, which is sufficient for them to beP -

2



measurable for everyδ > 0 andP ∈ M. Therefore, we meet all the conditions in Theorem 2.8.3

of van der Vaart and Wellner (1996), which implies the desired result.

This intermediate result is the driving force behind theuniformasymptotic validity of the proposed

test, which is essential for the asymptotic size of the proposed test to provide a good approximation

to its finite sample counterpart.

C Proofs of Results in Section 3

This section provides the intermediate results mentioned in Section 3, and the proofs of main

results in the same section.

C.1 Intermediate Results

Let Hn = {pi, i = 1, . . . , n;
∑n

i=1 pi = 1, pi ≥ 0, ∀i = 1, . . . , n} , and denote the interior of this

set byH◦
n. Additionally, letH0

n(X) =
{

p ∈ Hn :
∑n

i=1 pig (Xi; t) ≤ 0 ∀t ∈ [t, t] ∩Q,
}

.

Proposition C.1. On the event{H0
n(X) ∩ H◦

n 6= ∅} , the random set

argmax

{

n
∑

i=1

log (pi) ; pi ≥ 0,
n
∑

i=1

pi = 1,
n
∑

i=1

pig (Xi; t) ≤ 0 ∀t ∈ [t, t] ∩Q

}

is nonempty and a singleton.

Proof. The proof proceeds by verifying the conditions of Weierstrass’ Theorem. The objective

function is strictly concave in the probabilities. The constraint set,H0
n(X), is certainly bounded.

It is the countable intersection of closed half-planes (which are convex), and since convexity and

closedness are preserved under countable intersections, it is closed and convex. Thus, we are done

wheneverH0
n(X) ∩H◦

n 6= ∅.

Lemma C.1. LetP ∈ M. ThensupP∈M ProbP [H0
n(X) ∩H◦

n = ∅] → 0 asn → +∞.
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Proof. The proof proceeds by the direct method.

Note that{H0
n(X) ∩ H◦

n = ∅} = {∀p ∈ H◦
n,maxt∈T

∑n
i=1 pig (Xi, t) > 0} . Therefore,

{

H0
n(X) ∩H◦

n = ∅
}

⊂
{

max
t∈T

1

n

n
∑

i=1

g (Xi, t) > 0

}

which implies that ProbP [H0
n(X) ∩H◦

n = ∅] ≤ ProbP
[

maxt∈T
1
n

∑n
i=1 g (Xi, t) > 0

]

. Now the

right side of the above inequality is less than or equal to ProbP
[

maxt∈T
(

1
n

∑n
i=1 g (Xi, t)

)

> 0
]

sinceP ∈ M impliesmaxt∈T Ψ(t) ≤ 0. Furthermore, we have

ProbP

[

max
t∈T

[

1

n

n
∑

i=1

g (Xi, t)−Ψ(t)

]

> 0

]

≤ ProbP

[

max
t∈T

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (Xi, t)−Ψ(t)

∣

∣

∣

∣

∣

> 0

]

.

To summarize, we have that

ProbP
[

H0
n(X) ∩H◦

n = ∅
]

≤ ProbP

[

max
t∈T

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (Xi, t)−Ψ(t)

∣

∣

∣

∣

∣

> 0

]

.

Now using the fact that the set of moment functions is uniformGlivenko-Cantelli because it is

VC and uniformly bounded, we can conclude that the probabilities on the right side of the above

inequality go to zero uniformly inP overM. This concludes the proof.

C.2 Proof of Proposition 3.1

Proof. The proof proceeds by using the direct method.

ProbP [Sn] = 1 − ProbP [∀p ∈ H◦
n,maxt∈T

∑n
i=1 pig (Xi, t) ≥ 0] . On the complement ofSn,

if p̂ /∈ H0
n(X), then using the same methods in the proof of Lemma C.1 we can show that

ProbP [∀p ∈ H◦
n,maxt∈T

∑n
i=1 pig (Xi, t) ≥ 0] converges to zero uniformly over the elements in

M.

p̂ ∈ H0
n(X) cannot occur on the complement ofSn. If it did, then we must havẽp = p̂. Now
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consider the probabilitiešp = 1
n
p̂+ (1− 1

n
)p−, where

p−i =















0, if g (Xi, t) > 0 ∀t ∈ [t, t]

1
|I−n | , if g (Xi, t) < 0 ∀t ∈ [t, t].

andI−n =
{

i ∈ {1, . . . , n} : g (Xi; t) < 0 ∀t ∈ [t, t]
}

. Clearly p̌ ∈ H◦
n which cannot occur on

the complementSn, and hence, yields a contradiction. Finally, note that by Lemma E.1 (in Ap-

pendix E), the probability of the event{I−n 6= ∅} tends to 1 asn → +∞, uniformly over the

elements inM.

C.3 Proof of Theorem 3.1

Proof. The proof proceeds by the direct method. First, consider thecase∆(P0) = ∅. In this case,

for large enoughn, 1
n

∑n
i=1 g (Xi; t) < 0 ∀t ∈ [t, t] with probability tending to 1, and hence, by

part (i) of Property C.1,1
n

∑n
i=1 p̃ig (Xi; t) < 0 ∀t ∈ [t, t] for largen with probability tending to 1,

which impliesẼn P−→ 0.

Now consider the case∆(P0) = ∆d (P0) ∪ ∆c (P0) . This means we will focus on the case in

which ˙∆ (P0) =
{

tb1, t
b
2, . . .

}

is countable. Recall that the set of Lagrange multiplier measure on

the inequality constraints is given by the setba
(

2[t,t]∩Q
)

. Additionally, let

ba
(

2[t,t]∩Q
)

−
=
{

µ ∈ ba
(

2[t,t]∩Q
)

: µj ≤ 0 ∀tj ∈ [t, t] ∩Q
}

, (C.1)

ba0

(

2[t,t]∩Q
)

=
{

µ ∈ ba0

(

2[t,t]∩Q
)

: supp(µ) ⊂ ˙∆ (P0)
}

, and (C.2)

ba0

(

2[t,t]∩Q
)

−
=

{

µ ∈ ba
(

2[t,t]∩Q
)

−
: supp(µ) ⊂ ˙∆ (P0)

}

. (C.3)

The ELR statistic (3.8) can be expressed as

min
τ∈ba(2[t,t]∩Q)

−

max
µ(τ)∈ba(2[t,t]∩Q)

2







n
∑

i=1

log



1 +
∑

t∈[t,t]∩Q

g (Xi; t)µ ({t})



− n
∑

t∈[t,t]∩Q

τ ({t})µ ({t})







.
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By part 1 of Lemma E.4,̃En can be expressed as

min
τ∈ba0(2[t,t]∩Q)

−

max
µb(τ)∈ba0(2[t,t]∩Q)

2







n
∑

i=1

log



1 +
∑

t∈ ˙∆(P0)

g (Xi; t)µ ({t})



− n
∑

t∈ ˙∆(P0)

τ ({t})µ ({t})







for largen with probability tending to one. Fixτ ∈ ba0

(

2[t,t]∩Q
)

−
such that

∑

t∈ ˙∆(P0)
τ ({t}) =

OP

(

n−1/2
)

uniformly inM. Then the first order condition for̃µb (τ) is

1

n

n
∑

i=1

g
(

Xi; t
b
k

)

1 +
∑+∞

j=1 µb,jg
(

Xi; tbj
) − τb,k = 0 ∀tbk ∈ ˙∆ (P0), (C.4)

whereµb,j = µ
({

tbj
})

∀j, andτb,j = τ
({

tbj
})

∀j. Let γi =
∑∞

j=1 g
(

Xi; t
b
j

)

µ̃b,j (τ) i = 1, . . . n.

Consider the following expansion of (C.4):

0 =
1

n

n
∑

i=1

g
(

Xi; t
b
j

)

−
∞
∑

c=1

[

1

n

n
∑

i=1

g
(

Xi; t
b
j

)

g
(

Xi; t
b
c

)

]

µb,c

+
1

n

n
∑

i=1

g
(

Xi; t
b
j

) γ2
i

1 + γi
− τb,j , (C.5)

which is based on the equality:1
1+γi

= 1− γi +
γ2i

1+γi
. Re-arranging (C.5) as follows:

Ψ̂(tbj)− τb,j + r1,n(t
b
j) =

∞
∑

c=1

[

1

n

n
∑

i=1

g
(

Xi; t
b
j

)

g
(

Xi; t
b
c

)

]

µb,c (C.6)

wherer1,n(tbj) = 1
n

∑n
i=1 g

(

Xi; t
b
j

) γ2i
1+γi

and Ψ̂(tbj) = 1
n

∑n
i=1 g

(

Xi; t
b
j

)

, yields the following

infinite matrix problem:

Ψ̂b − τb + r1,n = Σ̂∞ µb, where Ψ̂b = [Ψ̂(tb1), Ψ̂(tb2), . . .]
′ (C.7)

µb = [µb,1, µb,2, . . .]
′, τb = [τb,1, τb,2, . . .]

′, r1,n = [r1,n(t
b
1), r1,n(t

b
2), . . .]

′, (C.8)

andΣ̂∞ is the sample infinite covariance matrix formed by the momentfunctions on ˙∆ (P0).

For largen, the system (C.7) has a unique solution given byµ̃b
(

τb
)

= Σ̂−1
∞

[

Ψ̂b − τb + r1,n

]

.
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However, this solution does not uniquely define an element inba0

(

2[t,t]∩Q
)

because this set con-

tains measures that are alsonotcountably additive; that is,
∑∞

j=1 |µ̃b,j
(

τb
)

| < ‖µ̃b
(

τb
)

‖TV < +∞

is feasible, where
∑∞

j=1 |µ̃b,j
(

τb
)

| < +∞. Therefore, the set of solutions is given by

Ω =

{

µ ∈ ba0

(

2[t,t]∩Q
)

: µb = Σ̂−1
∞

[

Ψ̂b − τb + r1,n

]

,

∞
∑

j=1

|µb,j| ≤ ‖µb‖TV
}

. (C.9)

We circumvent this non-uniqueness by using the Moore-Penrose solution,argminξ∈Ω {‖ξ‖TV } ,

which is given byξ⋆j = µ̃b,j
(

τb
)

∀tj ∈ ˙∆ (P ), and ‖ξ⋆‖TV =
∑∞

j=1 |µ̃b,j
(

τb
)

|.

Lemma E.4 and part (ii) of Assumption 2.1 implies for eachi = 1, . . . n

|γi| ≤
∣

∣

∣

∣

∣

∞
∑

j=1

g (Xi; tj) µ̃b,j
(

τb
)

∣

∣

∣

∣

∣

≤ ‖µ̃b
(

τb
)

‖l1 = OP

(

n−1/2
)

uniformly in M, (C.10)

which in turn implies

‖r1,n‖l∞
∞
≤ max

1≤i≤n
γ2
i = OP

(

n−1
)

uniformly in M. (C.11)

Next, uselog (1 + γi) = γi − γ2
i /2 + r2,i where for some finiteC > 0

ProbP
[

|r2,i| ≤ C|γi|3, 1 ≤ i ≤ n
]

→ 1 n → +∞. (C.12)

Now we can approximate the likelihood ratio and then useξ⋆ = Σ̂−1
∞

[

Ψ̂b − τb + r1,n

]

.

Ẽn = min
τ∈ba0(2[t,t]∩Q)

−

2

{

n
∑

i=1

log

(

1 +

∞
∑

j=1

g
(

Xi; t
b
j

)

ξ⋆j

)

− n

∞
∑

j=1

τb,jξ
⋆
j

}

(C.13)

= min
τ∈ba0(2[t,t]∩Q)

−

{

2nξ⋆′Ψ̂b − nξ⋆′Σ̂∞ξ⋆ − 2nξ⋆′τ + 2

n
∑

i=1

r2,i

}

(C.14)

= min
τ∈ba0(2[t,t]∩Q)

−

{

n
[

Ψ̂b − τb

]′
Σ̂−1

∞

[

Ψ̂b − τb

]

− nr1,n
′Σ̂−1

∞ r1,n +
n
∑

i=1

r2,i

}

(C.15)

= Tn +OP

(

n−1/2
)

uniformly in M(e0), (C.16)
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where

Tn = min
τ∈ba0(2[t,t]∩Q)

−

{

n
[

Ψ̂b − τb

]′
Σ̂−1

∞

[

Ψ̂b − τb

]

}

(C.17)

∣

∣

∣

∣

∣

n
∑

i=1

r2,i

∣

∣

∣

∣

∣

≤
n
∑

i=1

|γi|3 ≤ n max
1≤i≤n

|γi|3 ≤ nOP

(

n−3/2
)

= OP

(

n−1/2
)

uniformly in M, (C.18)

and for large enoughn we have
∥

∥

∥
Σ̂−1

∞

∥

∥

∥
≤ e0 which implies

∣

∣

∣
nr1,n

′Σ̂−1
∞ r1,n

∣

∣

∣
≤ n

∥

∥

∥
r1,n

∥

∥

∥

2

l∞
∞

∥

∥

∥
Σ̂−1

∞

∥

∥

∥
≤
∥

∥

∥
r1,n

∥

∥

∥

2

l∞
∞

e0 = nOP

(

n−2
)

uniformly in M(e0). (C.19)

Since the asymptotic equivalence (C.16) is uniform inM(e0), we can now focus onTn to prove

the weak convergence of̃En to the QLR statistic.

Next note that

Tn = min
τ∈ba0(2[t,t]∩Q)

−

{

[√
nΨ̂b −

√
nτb

]′
Σ̂−1

∞

[√
nΨ̂b −

√
nτb

]

}

= min
ub∈l∞∞,−

{

[√
nΨ̂b − ub

]′
Σ̂−1

∞

[√
nΨ̂b − ub

]

}

(C.20)

whereub =
√
nτb. Then, define

√
nΨ̂b

P−→ G∞ ∼ MVN (0∞,Σ∞) on ˙∆ (P0), so thatΣ̂−1
∞

P−→

(Σ∞ (P0))
−1 in the operator norm (2.10) uniformly overM(e0), and

min
ub∈l∞

∞,−

{

[√
nΨ̂b − ub

]′
Σ̂−1

∞

[√
nΨ̂b − ub

]

}

 min
ub∈l∞

∞,−

{

[

G∞ − ub

]′
(Σ∞ (P0))

−1 [
G∞ − ub

]

}

(C.21)

uniformly overM(e0) by Proposition G.1.

Finally, the case∆(P0) = ∆d (P0) =
{

tb1, . . . , t
b
w

}

, w ∈ Z+ follows similar steps as in the

previous case while keeping track of the fact that we have a finite dimensional problem. The

main differences areba0
(

2[t,t]∩Q
)

=
{

ω ∈ ba0

(

2[t,t]∩Q
)

: supp(ω) ⊂ ∆d (P0)
}

, and the matrix

equation (C.7) is now finite dimensional, where the population covariance matrixΣw (P0) has a

8



bounded inverse. So one uses the sequence spacesl1w andl∞w instead ofl1∞ andl∞∞.

C.4 Proof of Theorem 3.2

Proof. The proof proceeds by the direct method. The ELR statistic (3.15) can be decomposed as

follows:

Én = Ẽn + 2

{

n
∑

i=1

(log (p̃i)− log (ṕi))

}

, (C.22)

where p̃1, . . . , p̃n is the solution of the concave SIP optimization problem (3.1). By definition,

2 {∑n
i=1 (log (p̃i)− log (ṕi))} ≤ 0. Therefore

0 ≤
∣

∣

∣

∣

∣

2

{

n
∑

i=1

(log (p̃i)− log (ṕi))

}∣

∣

∣

∣

∣

= 2
n
∑

i=1

(log (ṕi)− log (p̃i))

= 2

n
∑

i=1

(

log

(

1 +
ṕi − p̃i

p̃i

))

. (C.23)

Using the inequalitylog(1 + x) ≤ x ∀x > −1, and the FONC for̃p1, . . . , p̃n,

2
n
∑

i=1

(

log

(

1 +
ṕi − p̃i

p̃i

))

≤ 2
n
∑

i=1

ṕi − p̃i
p̃i

= 2
∑

t∈∆(p̃)

µ̃ ({t})
n
∑

i=1

ṕig (Xi; t) . (C.24)

Now using Lemma E.2, we have that

2
∑

t∈∆(p̃)

µ̃ ({t})
n
∑

i=1

ṕig (Xi; t) ≤ 2min (Ldn, α(n))
∑

t∈∆(p̃)

µ̃ ({t}) , (C.25)

and by Lemma E.3,2max (Ldn, α(n))
∑

t∈∆(p̃) µ̃ ({t}) = 2min (Ldn, α(n)) ‖µ̃‖l1wn
= oP (1),

wherewn is the cardinality of∆(p̃) .

Finally, the result for the uniform rate of convergence follows directly sinceLdn ≤ L
N(n)

. This

completes the proof.
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C.5 Further Discussion for Section 3.3

This section presents finite-sample results that are usefulfor increasing the numerical accuracy

of the computation algorithm Section 3.3 proposes. These results are relationships between the

constrained and unconstrained estimators of the population moments, which follow from a property

of the moment functions.

The form of the moment functions being differences of the same function, as in (2.2) and (2.3),

implies that they have the following property.

Property C.1. [Sign Conditions]

Let dom(t) denote the domain of definition of the index parameter.

1. Letz = max
{

zA, zB
}

. For the ranking of distributions over a poverty aversion parameter

with given poverty lines:∀x ∈ R2
+ − [0, z] × [0, z], g (x; t) = 0 ∀t ∈ dom(t) and for

eachx ∈ [0, z] × [0, z], either g (x; t) ≤ 0 ∀t ∈ dom(t), or g (x; t) ≥ 0 ∀t ∈ dom(t), or

g (x; t) = 0 ∀t ∈ dom(t).

2. For the ranking of distributions over poverty lines: for eachx ∈ R2
+ such thatxA 6= xB,

eitherg (x; t) ≤ 0 ∀t ∈ dom(t) or g (x; t) ≥ 0 ∀t ∈ dom(t), andg (x; t) = 0 ∀t ∈ dom(t)

wheneverxA = xB.

Property C.1 states that the sign of the functionsg is determined by the configuration in its data

dimension independently oft.

A consequence of Property C.1 on the Slater eventSn is the following.

Proposition C.2. 1. ProbP0

[
∑n

i=1 p̃ig (X; t) ≤ 1
n

∑n
i=1 g (X; t) ∀t ∈ [t, t] |Sn

]

= 1;

2. ProbP0

[

∆(p̃) ⊂
{

t ∈ [t, t] : 1
n

∑n
i=1 g (X; t) ≥ 0

}

|Sn
]

= 1.

Proof. Part 1:the proof proceeds by the direct method.

Given t ∈ [t, t], 1
n

∑n
i=1 g (Xi; t) −

∑n
i=1 p̃ig (Xi; t) =

∑n
i=1 p̃i

∑∞
j=1 µ̃jg (Xi, tj) g (Xi, t) . By

Property C.1, for eachi g (Xi, tj) g (Xi, t) ≥ 0 ∀t ∈ [t, t], which implies the result.
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Part 2:the proof proceeds by the direct method.

Let t ∈ ∆(p̃) , then 0 ≤ 1
n

∑n
i=1 g (Xi; t) −

∑n
i=1 p̃ig (Xi; t) = 1

n

∑n
i=1 g (Xi; t) , where the

non-negativity follows from part 1 of this proposition.

Part 1 of Proposition C.2 indicates that conditional on the Slater event,1
n

∑n
i=1 g (X; t) (weakly)

stochastically dominates
∑n

i=1 p̃ig (X; t) , at first order, uniformly over[t, t] on a set of probability

measure one. Part 2 of Proposition C.2 indicates that with probability one, the index set of active at

p̃ constraints must be at points in[t, t] where1
n

∑n
i=1 g (X; t) is non-negative. Proposition C.2 does

not requireP0 ∈ M, which implies that it is solely a consequence of the estimation procedure.

These results are useful for speeding up and checking numerical computation. Because these

results are inequality restrictions that relate the constrained and unconstrained estimators of the

population moments, they thus hold at the grid-points inTN ; therefore, they can be imposed as

constraints in (3.12) when implementing the algorithm.

D Proofs of Results in Section 4

D.1 Proof of Theorem 4.1

Proof. The proof follows the same steps as those in the proof of part (1) of Theorem 3.2. The

bootstrapped ELR statistic (4.5) can be decomposed as follows:

E⋆n = Ẽ⋆n + 2

{

n
∑

i=1

(log (p̃⋆i )− log (p⋆i ))

}

, (D.1)

wherep̃⋆1, . . . , p̃
⋆
n is the solution of the concave SIP optimization problem (F.20) in Proposition F.1,

andẼ⋆n is the bootstrapped ELR statistic based on them. Proposition F.1 shows that̃E⋆n converges in

distribution to the asymptotic distribution of the ELR statistic (3.2) conditional on
{

P n : n ≥ 1
}

for almost every sample path. Therefore, to complete the proof, we need to show the second term

in (D.1) converges to zero.
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To that end,

0 ≤
∣

∣

∣

∣

∣

2

{

n
∑

i=1

(log (p̃⋆i )− log (p⋆i ))

}∣

∣

∣

∣

∣

= 2

{

n
∑

i=1

(log (p⋆i )− log (p̃⋆i ))

}

= 2
n
∑

i=1

(

log

(

1 +
p⋆i − p̃⋆i

p̃⋆i

))

. (D.2)

Using the inequalitylog(1 + x) ≤ x ∀x > −1, and the FONC for̃p⋆1, . . . , p̃
⋆
n, (D.2) is less than or

equal to

2

n
∑

i=1

p⋆i − p̃⋆i
p̃⋆i

= 2
∑

t∈∆(p̃⋆)

µ̃⋆ ({t})
(

n
∑

i=1

p⋆i g (X
⋆
i ; t) + ηn (t)

)

(D.3)

≤ 2min

{

L

N(n)
, α(n)

}

‖µ̃⋆‖l1wn
+ 2‖µ̃⋆‖l1wn

, (D.4)

wherewn is the cardinality of∆(p̃) , ‖µ̃⋆‖l1wn
=
∑

t∈∆(p̃⋆) µ̃
⋆ ({t}) . by By Lemma F.2,‖µ̃⋆‖l1wn

P−→

0 conditional onAn uniformly inM. Therefore, under the assumptionmin
{

L
N(n)

, α(n)
}

= o(1),

the right side of (D.3) converges to zero in probability conditional on onAn uniformly inM.

D.2 Proof of Corollary 4.1

Proof. The proof proceeds by the direct method. For a large number ofbootstrap replications, we

have for eache0 ∈ R+ that

lim sup
n→+∞

sup
P∈M(e0)

ProbP [ΥBn
≤ β] = lim sup

n→+∞
sup

P∈M(e0)

ProbP
[

ProbP
[

Én ≤ E⋆n|An

]

≤ β
]

. (D.5)

Then, a direct application of Theorem 4.1 to the right side of(D.5) yields

lim sup
n→+∞

sup
P∈M(e0)

ProbP
[

ProbP
[

Én ≤ E⋆n|An

]

≤ β
]

≤ β, (D.6)

since the conditional distribution ofE⋆n and the unconditional distribution of́En are equal asymp-

totically in a uniform sense. An inequality holds in (D.6) because the asymptotic null distribution
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of the ELR statistic can have a mass point at zero in the case∆(P0) 6= ∅.

D.3 Proof of Theorem 4.2

Proof. Under the assumptions of this theorem, Lemma F.4 says the approximate ELR statis-

tic (3.15) diverges to+∞ as the sample size increases i.e.Én → +∞. Therefore, to prove the

result, all we need to do is to showE⋆n = OP (1)P n − a.e..

The bootstrapped approximate ELR statistic can be expressed as

E⋆n = 2

n
∑

i=1

log



1 +
∑

t∈∆(p⋆)

µ́⋆t (g (X
⋆
i ; t) + ηn(t))





≤ 2 log



1 +
∑

t∈∆(p⋆)

µ́⋆t

n
∑

i=1

(g (X⋆
i ; t) + ηn(t))



 (D.7)

by Jensen’s inequality for a concave function. Adding and subtractingΨn(t) =
∑n

i=1 pig (Xi; t)

under the logarithm on the right side of (D.7) as follows

2 log



1 +
∑

t∈∆(p⋆)

µ́⋆t

n
∑

i=1

(

g (X⋆
i ; t)−Ψn(t) + Ψn(t) + ηn(t)

)



 , (D.8)

and multiplying and dividing by
√
n yields

2 log



1 +
√
n
∑

t∈∆(p⋆)

µ́⋆t
1√
n

n
∑

i=1

(

g (X⋆
i ; t)−Ψn(t) + Ψn(t) + ηn(t)

)



 , (D.9)

implies (D.9) is2 log (1 +OP (1))P n − a.e. by Lemma F.6, parts 2 and 3 of Lemma F.5, and the

Central Limit Theorem. Therefore,E⋆n ≤ OP (1)P n − a.e., which completes the proof.
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E Auxiliary Technical Results For Section 3

Let I−n =
{

i ∈ {1, . . . , n} : g (Xi; t) < 0 ∀t ∈ [t, t]
}

. We have the following result concerning

its large sample behavior.

Lemma E.1. LetP ∈ M. ThensupP∈M ProbP [I−n 6= ∅] → 1.

Proof. The proof proceeds by the direct method. We show that the probability of the complement

of {I−n 6= ∅} converges to zero. Note that Property C.1 implies

{

I−n 6= ∅
}

=
{

for each ig (Xi; t) ≥ 0 ∀t ∈ [t, t]
}

.

We have by the bivariate random sampling assumption on{Xi}ni=1 ,

sup
P∈M

ProbP
[

I−n 6= ∅
]

= sup
P∈M

(

ProbP
[

g (X1; t) ≥ 0 ∀t ∈ [t, t]
])n

which must converge to either zero or 1. It can only converge to zero because only aP 6∈ M has

g (X1; t) ≥ 0 for eacht almost surely.

Lemma E.2. Let ṕ be the solution of the exchange algorithm with tolerance parameterα(n).

Then,

sup
t∈[t,t]

n
∑

i=1

ṕig (Xi, t) ≤ min (Ldn, α(n)) , (E.1)

wheredn = dist
(

TN(n), [t, t] ∩Q
)

is the Hausdorff distance (3.13), andL is the Lipschitz constant

arising from the Lipschitz continuity of the moment functions,g.

Proof. The proof proceeds by the direct method and follows similar steps as in Lemma 1 of Still

(2001). First, we note thatL in (E.1) depends only on the class of moment functions that are being

used and onT . Let td be a solution of

max
t∈[t,t]

n
∑

i=1

ṕig (Xi, t)

14



and lett̂d ∈ TN(n) such that|t̂d − td| ≤ dn. By Lipschitz continuity of the moment functionsg and

using
∑n

i=1 ṕig
(

Xi, t̂d
)

≤ 0 we find

n
∑

i=1

ṕig (Xi, td) ≤
n
∑

i=1

ṕig (Xi, td)−
n
∑

i=1

ṕig
(

Xi, t̂d
)

≤ L|t̂d − td| ≤ Ldn ∀t ∈ [t, t]. (E.2)

The result follows directly sincép also satisfies

n
∑

i=1

ṕig (Xi, t) ≤ α(n) ∀t ∈ [t, t].

Lemma E.3. SupposeP0 ∈ M. Then

1. ∆(p̃) ⊂ ∆(P0) for largen.

2. Let µ̃ be the Lagrange multiplier measure in the FONCs (3.5) and (3.6). If P0 ∈ M and

wn = |∆(p̃)| , then‖µ̃‖l1wn
=
∑

t∈∆(p̃) µ̃ ({t}) = oP (1) uniformly inM at the
√
n− rate.

Proof. Part 1. Givent ∈ [t, t] ∩Q, we prove this result by showing that

t /∈ ∆(P0) =⇒ t /∈ ∆(p̃) for largen.

Proposition C.2 implies

n
∑

i=1

p̃ig (Xi, t) ≤
1

n

n
∑

i=1

g (Xi, t) =
1

n

n
∑

i=1

g (Xi, t)− EP0 [g (X; t)] + EP0 [g (X; t)] . (E.3)

Then, for sucht we haveEP0 [g (X; t)] < 0, which implies
∑n

i=1 p̃ig (Xi, t) < 0 for large enough

n since
1

n

n
∑

i=1

g (Xi, t)−EP0 [g (X; t)] = OP (n
−1/2) by LLN.

This impliest /∈ ∆(p̃) for large enoughn.
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Part 2. Let wn = |∆(p̃)| . For ease of exposition, we will use the following notation:µj =

µ ({tj}) . The the equality constraints are

1

n

n
∑

i=1

g (Xi; tk)

1 +
∑

tj∈∆(p̃) µ̃jg (Xi; tj)
= 0 ∀tk ∈ ∆(p̃) . (E.4)

Let µ̃ = ‖µ̃‖θ whereθ ∈ Rwn

+ such that
∑

j θj = 1. Because the Lagrange multipliers are nonneg-

ative, the elements ofθ must be non-negative and sum to unity, which means they are weights.

If wn = ∞, which means∆(p̃) is countable, then without loss of generality, suppose∆(p̃) =

{t1, t2, . . .} , and letgi = [g (Xi; t1) , g (Xi; t2) , . . .]
′ and µ̃ = [µ̃1, µ̃2, . . .]

′. Additionally, if wn

is positive and finite, then without loss of generality, suppose∆(p̃) = {t1, t2, . . . , twn
} , and let

gi = [g (Xi; t1) , g (Xi; t2) , . . . , g (Xi; twn
)]′ andµ̃ = [µ̃1, µ̃2, . . . , µ̃wn

]′.

The system (E.4) implies

θ′

(

1

n

n
∑

i=1

gi

1 + µ̃′gi

)

= 0. (E.5)

Let Yi = µ̃′gi and use 1
1+Yi

= 1− Yi
1+Yi

to expand (E.5) as follows:

‖µ̃‖l1wn

(

θ′

(

1

n

n
∑

i=1

gi
(

gi
)′

1 + Yi

)

θ

)

= θ′

(

1

n

n
∑

i=1

gi

)

. (E.6)

The sample analogue estimator ofΣwn
(P0) is Σ̂wn

= 1
n

∑n
i=1 gi

(

gi
)′
. Since1 + Yi > 0 ∀i,

‖µ̃‖l1wn

(

θ′Σ̂wn
θ
)

≤ ‖µ̃‖l1wn

(

θ′

(

1

n

n
∑

i=1

gi
(

gi
)′

1 + Yi

)

θ

)

(

1 + max
i=1,...,n

|Yi|
)

≤ ‖µ̃‖l1wn

(

θ′

(

1

n

n
∑

i=1

gi
(

gi
)′

1 + Yi

)

θ

)

(

1 + ‖µ̃‖l1wn

)

. (E.7)
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Using (E.6), we can substitute out‖µ̃‖l1wn

(

θ′
(

1
n

∑n
i=1

gi(gi)
′

1+Yi

)

θ

)

from (E.7) yielding

‖µ̃‖l1wn

(

θ′Σ̂wn
θ
)

≤ θ′

(

1

n

n
∑

i=1

gi

)

(

1 + ‖µ̃‖l1wn

)

. (E.8)

Rewriting (E.8) as follows

‖µ̃‖l1wn

(

θ′Σ̂wn
θ − θ′

(

1

n

n
∑

i=1

gi

))

≤ θ′

(

1

n

n
∑

i=1

gi

)

, (E.9)

yields an upper bound on‖µ̃‖l1wn
.

Now we prove thatθ′
(

1
n

∑n
i=1 gi

)

converges to zero in probability and at the desired rate, uni-

formly in M. Note that

θ′

(

1

n

n
∑

i=1

gi

)

=
∑

j

θj

(

1

n

n
∑

i=1

g (Xi; tj)

)

(E.10)

=
∑

j

θj

(

1

n

n
∑

i=1

g (Xi; tj)− EP0 [g (X; tj)]

)

, (E.11)

sincetj ∈ ∆(p̃) =⇒ tj ∈ ˙∆ (P0) for largen by part 1 of this lemma. This implies

∣

∣

∣

∣

∣

θ′

(

1

n

n
∑

i=1

gi

)∣

∣

∣

∣

∣

≤
(

∑

j

θj

)

max
j

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (Xi; tj)−EP0 [g (X; tj)]

∣

∣

∣

∣

∣

= sup
t∈[t,t]

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (Xi; t)−EP0 [g (X; t)]

∣

∣

∣

∣

∣

. (E.12)

The VC property of the class of moment functions in Assumption 2.1 implies the right side of (E.9)

is oP (1) uniformly inM.

All that is left to conclude the proof is to show thatθ′Σ̂wn
θ > c uniformly in M, where the

constantc is defined in Definition 2.1. Part 1 of this lemma impliesΣ̂wn
is a sub-covariance matrix
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of Σ̂w, wherew =
∣

∣

∣

˙∆ (P0)
∣

∣

∣
. Therefore,θ′Σ̂wn

θ can be expressed as

θ′Σ̂wn
θ = υ′Σ̂wυ, (E.13)

whereυ ∈ Rw is such that

υj =















θj , if tj ∈ ∆(p̃) ,

0, if tj ∈ ˙∆ (P0)−∆(p̃) .

Now the injectivity condition of Definition 2.1 impliesυ′Σ̂wυ > c holds for large enoughn since

P0 ∈ M. Hence,

‖µ̃‖l1wn
≤ oP (1)

c+ oP (1)
, (E.14)

which implies that‖µ̃‖l1wn
= oP (1) uniformly in M. Finally, the

√
n rate of uniform convergence

of ‖µ̃‖l1wn
is a consequence of the class of moment functions being uniform Donsker.

Lemma E.4. Consider the set of binding moments,̇∆(P0), and recall thatµ̃ ∈ ba
(

2[t,t]∩Q
)

is the

Lagrange multiplier measure onQ ∩ [t, t] described in Section 3.1.

1. For largen, µ̃({t}) = 0 ∀t ∈ Q ∩ [t, t]− ˙∆ (P0), uniformly inM.

2. Letµ̃b (τn,b) be an element of the set

argmax
µb∈ba0(2[t,t]∩Q)







2

n
∑

i=1

log



1 +
∑

t∈ ˙∆(P0)

µb ({t}) g (Xi; t)



− n
∑

t∈ ˙∆(P0)

µb ({t}) τn,b ({t})







,

where

ba0

(

2[t,t]∩Q
)

=
{

ν ∈ ba
(

2[t,t]∩Q
)

: supp(ν) = ˙∆ (P0)
}

,

τn,b ({t}) ≤ 0 ∀t ∈ ˙∆ (P0), and
∑

t∈ ˙∆(P0)
τn,b ({t}) = OP

(

n−1/2
)

uniformly inM. Then,

for P0 ∈ M,
∑∞

t∈ ˙∆(P0)
|µ̃b({t} , τn,b)| = Op(n

−1/2), uniformly inM.
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Proof. The proof proceeds by the direct method.

Part 1. For largen, the Slater condition (3.4) holds. Therefore, by Proposition C.2:

n
∑

i=1

p̃ig (Xi; t) ≤
1

n

n
∑

i=1

g (Xi; t) ∀t ∈ Q ∩ [t, t].

Since 1
n

∑n
i=1 g (Xi; t) < 0 for eacht such thatEP0 [g (X; t)] < 0, by complementary slackness it

follows thatµ̃({t}) = 0 for sucht. The uniformity in the convergence ofµ̃s to zero holds since the

set of moment functions is uniform Glivenko-Cantelli, because it is uniform Donsker.

Part 2. First suppose that∆c (P0) 6= ∅. Then ˙∆ (P0) =
{

tb1, t
b
2, . . .

}

is countable. For ease of

exposition, we will use the following notation:µb,j = µ
({

tbj
})

, andτn,b,j = τn
({

tbj
})

. The first

order condition for̃µb (τn,b) is

1

n

n
∑

i=1

g
(

Xi; t
b
k

)

1 +
∑+∞

j=1 µb,jg
(

Xi; tbj
) − τn,b,k = 0 ∀tbk ∈ ˙∆ (P0). (E.15)

Let µ̃b (τn,b) = ‖µ̃b (τn,b) ‖l1
∞
θ whereθ ∈ l1∞ such that‖θ‖l1

∞
= 1. Furthermore, for ease of

exposition, we will suppressτn,b in the notation the Lagrange multiplier.

Let gib = [g
(

Xi; t
b
1

)

, g
(

Xi; t
b
2

)

, . . .]′, µ̃b = [µ̃b,1, µ̃b,2, . . .]
′ andτn,b = [τn,b,1, τn,b,2, . . .]

′. The

system (E.15) implies

θ′

(

1

n

n
∑

i=1

gi
b

1 + µ̃b
′gib

− τn,b

)

= 0. (E.16)

Let Yi = µ̃b
′gi

b and use 1
1+Yi

= 1− Yi
1+Yi

to expand (E.16) as follows:

‖µ̃b‖l1
∞

(

θ′

(

1

n

n
∑

i=1

gi
b
(

gi
b
)′

1 + Yi

)

θ

)

= θ′

(

1

n

n
∑

i=1

gi
b − τn,b

)

. (E.17)
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The sample analogue estimator ofΣ∞ is Σ̂∞ = 1
n

∑n
i=1 gi

b
(

gi
b
)′
. Since1 + Yi > 0 ∀i,

‖µ̃b‖l1
∞

(

θ′Σ̂∞θ
)

≤ ‖µ̃b‖l1
∞

(

θ′

(

1

n

n
∑

i=1

gi
b
(

gi
b
)′

1 + Yi

)

θ

)

(

1 + max
i=1,...,n

|Yi|
)

≤ ‖µ̃b‖l1
∞

(

θ′

(

1

n

n
∑

i=1

gi
b
(

gi
b
)′

1 + Yi

)

θ

)

(

1 + ‖µ̃b‖l1
∞

max
i=1,...,n

∥

∥gi
b
∥

∥

l∞
∞

)

. (E.18)

Using (E.17), we can substitute out‖µ̃b‖l1
∞

(

θ′
(

1
n

∑n
i=1

gib(gib)
′

1+Yi

)

θ

)

from (E.18) yielding

‖µ̃b‖l1
∞

(

θ′Σ̂∞θ
)

≤ θ′

(

1

n

n
∑

i=1

gi
b − τn,b

)

(

1 + ‖µ̃b‖l1
∞

max
i=1,...,n

∥

∥gi
b
∥

∥

l∞
∞

)

. (E.19)

Rewriting (E.19) as follows

‖µ̃b‖l1
∞

(

θ′Σ̂∞θ − max
i=1,...,n

∥

∥gi
b
∥

∥

l∞
∞

θ′

(

1

n

n
∑

i=1

gi
b − τn,b

))

≤ θ′

(

1

n

n
∑

i=1

gi
b − τn,b

)

, (E.20)

yields an upper bound on‖µ̃b‖l1
∞
.

Now we prove thatθ′
(

1
n

∑n
i=1 gi

b
)

converges to zero in probability and at the desired rate,

uniformly in M. Note that

θ′

(

1

n

n
∑

i=1

gi
b

)

=
∑

j

θj

(

1

n

n
∑

i=1

g
(

Xi; t
b
j

)

)

=
∑

j

θj

(

1

n

n
∑

i=1

g
(

Xi; t
b
j

)

− EP0

[

g
(

X; tbj
)]

)

.

(E.21)

Therefore,

∣

∣

∣

∣

∣

θ′

(

1

n

n
∑

i=1

gi
b

)∣

∣

∣

∣

∣

≤
(

∑

j

|θj |
)

max
j

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g
(

Xi; t
b
j

)

− EP0

[

g
(

X; tbj
)]

∣

∣

∣

∣

∣

≤ sup
t∈[t,t]

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (Xi; t)−EP0 [g (X; t)]

∣

∣

∣

∣

∣

. (E.22)

The VC property of the class of moment functions in Assumption 2.1 implies the right side
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of (E.19) isoP (1) uniformly in M. The
√
n rate of uniform convergence ofθ′

(

1
n

∑n
i=1 gi

b
)

re-

sults from the fact that the class of moment function is uniform Donsker.

By similar arguments to those in Lemma 11.2 of Owen (2001), wehavemaxi=1,...,n

∥

∥gi
b
∥

∥

l∞
∞

=

o (
√
n) . This implies

max
i=1,...,n

∥

∥gi
b
∥

∥

l∞
∞

θ′

(

1

n

n
∑

i=1

gi
b − τn,b

)

= o
(√

n
)

OP

(

n−1/2
)

= oP (1), (E.23)

uniformly in M. Hence, it follows that

‖µ̃b‖l1
∞

(

θ′Σ̂∞θ − oP (1)
)

≤ OP

(

n−1/2
)

. (E.24)

Finally, since the injectivity condition of Definition 2.1 impliesθ′Σ̂∞θ > 0 for largen, the inequal-

ity (E.24) implies‖µ̃b‖l1
∞
= OP

(

n−1/2
)

.

The proof when∆c (P0) = ∅ follows similar steps as in the previous case. The contact set is

finite in this case; therefore, the difference is that the norm of l1w with w < +∞ is used instead of

thel1∞ norm.

F Auxiliary Technical Results For Section 4

F.1 Asymptotic Validity Under H0

Lemma F.1. LetΨ(t) =
∑n

i=1 pig (Xi; t) , where(p1, . . . , pn) is the bootstrap DGP described in

Section 4. IfP0 ∈ M, then the following two statements hold.

1. If t ∈ [t, t] ∩Q andEP0 [g (X; t)] < 0, thenΨ(t) < −ηn(t) for largen with probability one.

2. If t ∈ ∆(P0) and t ∈ TN(n) for large enoughn, thenΨ(t) = −ηn(t) for large n with

probability one.

3. If t ∈ ∆(P0) andt /∈ TN(n) ∀n, thenΨ(t) = −ηn(t) for largen with probability one.
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Proof. The proof follows similar steps in the proof of Lemma B.4 in Canay (2010).

Part 1. The proof proceeds using the direct method. Supposet ∈ [t, t]∩Q andEP0 [g (X; t)] <

0. From

0 ≤ max
µj≥0,j=1,...,N(n)

2

n
∑

i=1

log



1 +

N(n)
∑

j=1

µj (g (Xi; tj) + ηn(tj))





2n log



1 +

N(n)
∑

j=1

µj

(

1

n

n
∑

i=1

g (Xi; t) + ηn(tj)

)



 , (F.1)

it follows that
∑N(n)

j=1 µj
(

1
n

∑n
i=1 g (Xi; tj) + ηn(tj)

)

≥ 0. Now,

−
(

Ψ(t) + ηn(t)
)

= −1

n

n
∑

i=1

[

g (Xi; t) + ηn(t)

1 +
∑N(n)

j=1 µj (g (Xi; tj) + ηn(tj))

]

≥ −
(

1
n

∑n
i=1 g (Xi; t) + ηn(t)

)

1 +
∑N(n)

j=1 µj
1
n

∑n
i=1 (g (Xi; tj) + ηn(tj))

(F.2)

by Jensen’s inequality. Since
∑N(n)

j=1 µj
1
n

∑n
i=1 (g (Xi; tj) + ηn(tj)) ≥ 0 for all n and

−
(

1

n

n
∑

i=1

g (Xi; t) + ηn(t)

)

> 0

for largen with probability 1, we have

−Ψ(t)− ηn(t) = −1

n

n
∑

i=1

[

g (Xi; t) + ηn(t)

1 +
∑N(n)

j=1 µj (g (Xi; tj) + ηn(tj))

]

> 0 (F.3)

with probability one, which is equivalent toΨ(t) < −ηn(t) with probability one.

Part 2. The proof proceeds by the direct method. First, for large enoughn that t ∈ TN(n).

Then it must be equal to one oftj j = 1, . . . , N(n), and supposet = tk ∈ TN(n) without loss of
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generality. Setµj = 0 ∀j = 1, . . . , N(n) and consider the FONC forµk,

1

n

n
∑

i=1

[

g (Xi; tk) + ηn(tk)

1 +
∑N(n)

j=1 µj (g (Xi; tj) + ηn(tj))

]∣

∣

∣

∣

∣

µj=0∀j=1,...,N(n)

=
1

n

n
∑

i=1

g (Xi; tk) + ηn(tk) (F.4)

We know 1
n

∑n
i=1 g (Xi; tk) + ηn(tk) ≤ 0 for largen with probability 1. If

1

n

n
∑

i=1

g (Xi; tk) + ηn(tk) = 0,

we are done since

Ψ(tk) =
1

n

n
∑

i=1

g (Xi; tk) = ηn(tk)

andµk = 0 is optimal. If 1
n

∑n
i=1 g (Xi; tk) + ηn(tk) < 0, then the optimal value ofµk has to

increase (so it will be positive) by continuity of the objective function inµk. Since the optimal

solution has to satisfyµk
(

Ψ(tk) + ηn(tk)
)

= 0, it follows thatΨ(tk) = −ηn(tk).

Part 3. The proof proceeds by the direct method. Lettd ∈ TN(n) for large enoughn. Then

Ψ(t) + ηn(t) =
(

Ψ(t)−Ψ(td)
)

+ (ηn(t)− ηn(td)) + Ψ(td) + ηn(td), (F.5)

where

(

Ψ(t)−Ψ(td)
)

= o(1)n → +∞ because
∣

∣Ψ(t)−Ψ(td)
∣

∣ ≤ L/N(n) (F.6)

by Lipschitz continuity of the moment functions whereL is the Lipschitz constant (see Assump-

tion 2.1), (ηn(t)− ηn(td)) = op(1) by property (4.2), andΨ(td) + ηn(td) = 0 for largen with

probability tending to one by part 2 of this lemma.

Lemma F.2. SupposeP0 ∈ M. Let P n be the bootstrap DGP described in Section 4, and let
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{X⋆
i }ni=1 be IID P n. Furthermore, let̃p⋆ denote the solution of the following SIP problem

max
p1,...,pn

{

n
∑

i=1

log (pi) ; pi ≥ 0,
n
∑

i=1

pi = 1,
n
∑

i=1

pig (X
⋆
i ; t) ≤ −ηn(t) ∀t ∈ [t, t] ∩Q,

}

. (F.7)

Then,

1. ∆(p̃⋆) ⊂ ∆(P0) for largen, where

∆(p̃⋆) =

{

t ∈ [t, t] ∩Q :

n
∑

i=1

p̃⋆i g (X
⋆
i ; t) = −ηn(t)

}

. (F.8)

2. Letw⋆
n denote the cardinality of the set (F.8), and letµ̃⋆ denote the Lagrange multiplier

measure on the inequality constraints in the SIP problem (F.7). Then,

‖µ̃⋆‖l1
w⋆
n

=
∑

t∈∆(p̃⋆)

µ̃⋆ ({t}) P−→ 0

conditional onAn uniformly inM.

Proof. Part 1. The proof proceeds by the direct method. Givent ∈ [t, t] ∩Q, we prove this result

by showing that

t /∈ ∆(P0) =⇒ t /∈ ∆(p̃⋆) for largen.

Note thatt /∈ ∆(P0) ⇐⇒ EP0 [g (X; t)] < 0 for P0 ∈ M. Then,

− 1

n

n
∑

i=1

[

g (X⋆
i ; t) + ηn(t)

1 +
∑+∞

j=1 µ̃
⋆
j (g (X

⋆
i ; tj) + ηn(tj))

]

≥ −
(

1
n

∑n

i=1 g (X
⋆
i ; t) + ηn(t)

)

1 +
∑+∞

j=1 µ̃
⋆
j

(

1
n

∑n

i=1 g (X
⋆
i ; tj) + ηn(tj)

) (F.9)

by Jensen’s inequality. The right side of (F.9) is equal to

−
(

1
n

∑n

i=1 g (X
⋆
i ; t)−

∑n

i=1 pig (Xi; t)
)

1 +
∑+∞

j=1 µ̃
⋆
j

(

1
n

∑n

i=1 g (X
⋆
i ; tj) + ηn(tj)

) − (
∑n

i=1 pig (Xi; t) + ηn(t))

1 +
∑+∞

j=1 µ̃
⋆
j

(

1
n

∑n

i=1 g (X
⋆
i ; tj) + ηn(tj)

) , (F.10)

where the first term isOP

(

n−1/2
)

P n a.e., and part 1 of Lemma F.1 implies the second term is

positive with probability tending to one. Thus, the left side of (F.9) is positive forn sufficiently
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largeP n a.e., which is equivalent to

n
∑

i=1

p̃⋆i g (X
⋆
i ; t) < −ηn(t) (F.11)

for n sufficiently largeP n a.e..

Part 2. The proof follows the same steps as those in the part 2 of Lemma E.3. Letw⋆
n =

|∆(p̃⋆)| . For ease of exposition, we will use the following notation:µ⋆j = µ⋆ ({tj}) . The the

equality constraints are

1

n

n
∑

i=1

g (X⋆
i ; tk) + ηn(tk)

1 +
∑

tj∈∆(p̃⋆) µ̃
⋆
j (g (X

⋆
i ; tj) + ηn(tj))

= 0 ∀tk ∈ ∆(p̃⋆) . (F.12)

Let µ̃⋆ = ‖µ̃⋆‖l1
w⋆
n

θ whereθ ∈ Rw⋆
n

+ such that
∑

j θj = 1. Because the Lagrange multipliers are

nonnegative, the elements ofθ must be non-negative and sum to unity, which means they are

weights.

If w⋆
n = ∞,which means∆(p̃⋆) is countable, then without loss of generality, suppose∆(p̃⋆) =

{t1, t2, . . .} , and letg⋆i + ηn = [g (X⋆
i ; t1)+ ηn(t1), g (X

⋆
i ; t2)+ ηn(t2), . . .]

′ andµ̃⋆ = [µ̃⋆1, µ̃
⋆
2, . . .]

′.

Additionally, if w⋆
n is positive and finite, then without loss of generality, suppose

∆(p̃⋆) =
{

t1, t2, . . . , tw⋆
n

}

, and let

g⋆i + ηn = [g (X⋆
i ; t1) + ηn(t1), g (X

⋆
i ; t2) + ηn(t2), . . . , g

(

X⋆
i ; tw⋆

n

)

+ ηn(tw⋆
n
)]′

andµ̃⋆ = [µ̃⋆1, µ̃
⋆
2, . . . , µ̃

⋆
w⋆

n
]′.

The system (F.12) implies

θ′





1

n

n
∑

i=1

g⋆i + ηn

1 + µ̃⋆′
(

g⋆i + ηn

)



 = 0. (F.13)
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Let Y ⋆
i = µ̃⋆′

(

g⋆i + ηn

)

and use 1
1+Y ⋆

i

= 1− Y ⋆
i

1+Y ⋆
i

to expand (F.13) as follows:

‖µ̃⋆‖l1
w⋆
n






θ′







1

n

n
∑

i=1

(

g⋆i + ηn

)(

g⋆i + ηn

)′

1 + Y ⋆
i






θ






= θ′

(

1

n

n
∑

i=1

(

g⋆i + ηn

)

)

. (F.14)

Let Σ̂⋆w⋆
n
(η) = 1

n

∑n
i=1

(

g⋆i + ηn

)(

g⋆i + ηn

)′
. Since1 + Y ⋆

i > 0 ∀i,

‖µ̃⋆‖l1
w⋆

n

(

θ′Σ̂⋆
w⋆

n
(η)θ

)

≤ ‖µ̃⋆‖l1
w⋆

n






θ′







1

n

n
∑

i=1

(

g⋆i + ηn

)(

g⋆i + ηn

)′

1 + Y ⋆
i






θ







(

1 + max
i=1,...,n

|Y ⋆
i |
)

≤ ‖µ̃⋆‖l1
w⋆

n






θ′







1

n

n
∑

i=1

(

g⋆i + ηn

)(

g⋆i + ηn

)′

1 + Y ⋆
i






θ






(1 + ‖µ̃⋆‖) . (F.15)

Using (F.14), we can substitute out‖µ̃⋆‖l1
w⋆
n

(

θ′
(

1
n

∑n
i=1

(g⋆i +ηn)(g⋆i +ηn)
′

1+Y ⋆
i

)

θ

)

from (F.15) yielding

‖µ̃⋆‖l1
w⋆
n

(

θ′Σ̂⋆w⋆
n
(η)θ

)

≤ θ′

(

1

n

n
∑

i=1

(

g⋆i + ηn

)

)

(

1 + ‖µ̃⋆‖l1
w⋆
n

)

. (F.16)

Rewriting (F.16) as follows

‖µ̃⋆‖l1
w⋆
n

(

θ′Σ̂⋆w⋆
n
(η)θ − θ′

(

1

n

n
∑

i=1

(

g⋆i + ηn

)

))

≤ θ′

(

1

n

n
∑

i=1

(

g⋆i + ηn

)

)

, (F.17)

yields an upper bound on‖µ̃⋆‖l1
w⋆
n

.

Now we prove thatθ′
(

1
n

∑n
i=1

(

g⋆i + ηn

))

P−→ 0 conditional onAn uniformly in M. Since

the elements ofθ are non-negative and sum to unity, it suffices to show that

ProbP

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (X⋆
i ; t) + ηn(t)

∣

∣

∣

∣

∣

> ǫ|An

]

P−→ 0 uniformly in M, (F.18)

for eacht ∈ ∆(P0) , which is the content of Lemma G.3.

All that is left to complete the proof is to show thatθ′Σ̂⋆w⋆
n
(η)θ > 0 for largen conditional on

An uniformly in M. From part 1 of this lemma, we can conclude thatΣ̂⋆w⋆
n
(η) is a sub-covariance
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matrix of Σ̂⋆w(η), wherew =
∣

∣

∣

˙∆ (P0)
∣

∣

∣
. for large enoughn. Therefore,θ′Σ̂⋆w⋆

n
(η)θ can be expressed

as

θ′Σ̂⋆w⋆
n
(η)θ = υ′Σ̂⋆w(η)υ, (F.19)

whereυ ∈ Rw is such that

υj =















θj , if tj ∈ ∆(p̃⋆) ,

0, if tj ∈ ˙∆ (P0)−∆(p̃⋆) .

By Part 1 of LemmaG.4, for largen, Σ̂⋆w(η) gets close toΣw (P0) in operator norm conditional

on An uniformly in M. Then, the injectivity condition from Definition 2.1 impliesθ′Σ̂⋆w⋆
n
θ =

υ′Σ̂⋆wυ > c > 0 conditional onAn uniformly in M.

Proposition F.1. LetP n be the bootstrap DGP described in Section 4, and let{X⋆
i }ni=1 be IIDP n.

Furthermore, letẼ⋆n = 2
{

−n log(n)− l̃r,⋆
}

, where

l̃r,⋆ = max
p1,...,pn

{

n
∑

i=1

log (pi) ; pi ≥ 0,

n
∑

i=1

pi = 1,

n
∑

i=1

pig (X
⋆
i ; t) ≤ −ηn(t) ∀t ∈ [t, t] ∩Q,

}

. (F.20)

For everye0 ∈ R+,

Ẽ⋆n  















0, if w = 0,

minU∈l∞w,−
(G−U)′ Σ−1

w (G−U) , if w 6= 0,

conditional onAn in P0 uniformly inM(e0).

Proof. The proof proceeds by the direct method. The ELR statisticẼ⋆n can be expressed as

min
τ∈ba0(2[t,t]∩Q)

−

max
µ(τ)∈ba0(2[t,t]∩Q)

2







n
∑

i=1

log



1 +
∑

t∈[t,t]∩Q

g (X⋆
i ; t)µ ({t})



− n
∑

t∈[t,t]∩Q

τ ({t})µ ({t})







(F.21)
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From part 1 of Lemma F.2, fort ∈ [t, t] ∩Q such thatEP0 [g (X; t)] < 0, we have

n
∑

i=1

p̃⋆i g (X
⋆
i ; t) < −ηn(t) (F.22)

for n sufficiently largeP n a.e.. Then equation (F.22) impliesµ̃⋆ ({t}) = 0 for n sufficiently large

P n a.e. by complementary slackness. So the ELR statistic is equal to

min
τ∈ba0(2[t,t]∩Q)

−

max
µ(τ)∈ba0(2[t,t]∩Q)

2







n
∑

i=1

log



1 +
∑

t∈ ˙∆(P0)

g (X⋆
i ; t)µ ({t})



− n
∑

t∈ ˙∆(P0)

τ ({t})µ ({t})







(F.23)

for largen P n a.e..

By similar arguments as those in the proof of part 2 of Lemma E.4 it follows ‖µ̃⋆b‖l1w =

OP

(

n−1/2
)

conditional onAn inP uniformly inM,wherew =
∣

∣

∣

˙∆ (P0)
∣

∣

∣
.Suppose that∆c (P0) 6=

∅. Then by following the steps in Theorem 3.1, the corresponding first order condition for̃µ⋆b (τb)

is

n
∑

i=1

[

g
(

X⋆
i ; t

b
k

)

+ ηn(t
b
k)

1 + γ⋆i

]

= nτb,k ∀tbk ∈ ˙∆ (P0), (F.24)

where‖µ̃⋆b‖l1∞ = OP

(

n−1/2
)

, γ⋆i =
∑+∞

j=1 µ̃
⋆
b,j (τb)

(

g
(

X⋆
i ; t

b
j

)

+ ηn(t
b
j)
)

, andmaxi=1,...,n |γ⋆i | =
oP (1). Therefore, using the same expansion in (C.12), the statistic Ẽ⋆n is given by

Ẽ⋆
n = min

τ∈ba0(2[t,t]∩Q)
−

{

n
[

Ψ̂b

⋆
+ ηb − τb

]′ (
Σ̂⋆

∞

)−1 [

Ψ̂b

⋆
+ ηb − τb

]

}

+ oP (1)

= min
τ∈ba0(2[t,t]∩Q)

−

{

n
[(

Ψ̂b

⋆ −Ψb

)

+
(

ηb +Ψb

)

− τb

]′ (
Σ̂⋆

∞

)−1 [(

Ψ̂b

⋆ −Ψb

)

+
(

ηb +Ψb

)

− τb

]

}

,

+ oP (1)

= T ⋆
n

(

ηb
)

+ oP (1), (F.25)

where

Σ̂⋆∞(η) =
1

n

n
∑

i=1

(

gi
⋆

b
+ η
)(

gi
⋆

b
+ η
)′
, gi

⋆

b
=
[

g
(

X⋆
i ; t

b
1

)

, g
(

X⋆
i ; t

b
2

)

, . . .
]′
,
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Ψb =
[

Ψ(tb1),Ψ(tb2), . . .
]′

with Ψ(t) =
∑n

i=1 pig (Xi; t) . Now define the stochastic processζ⋆n,b

and note that,

ζ⋆n,b =
√
n
(

Ψ̂b
⋆ −Ψb

)

p−→ MVN (0∞,Σ∞) (F.26)

conditional onAn uniformly inM. Then, lettingub =
√
n
(

τb −
(

ηb +Ψb

))

T ⋆
n

(

ηb
)

= min
τ∈ba0(2[t,t]∩Q)

−

{

(

ζ⋆n,b −
√
n
(

τb −Ψb + ηb
))′ (

Σ̂⋆
∞

)−1
(

ζ⋆n,b −
√
n
(

τb −Ψb + ηb
))

}

(F.27)

= min
{ub∈l∞

∞
:ub≤

√
n(ηb+Ψb)}

{

(

ζ⋆n,b − ub

)′
(

Σ̂⋆
∞

)−1
(

ζ⋆n,b − ub

)

}

. (F.28)

By Lemma F.1,
√
n
(

ηb +Ψb

) P−→ 0∞ with probability 1 forn sufficiently large, which implies

the following equality holds with probability tending to one:

T ⋆
n (ηn) = min

ub∈l∞∞,−

{

(

ζ⋆n,b − ub
)′
(

Σ̂⋆∞

)−1
(

ζ⋆n,b − ub
)

}

. (F.29)

Since
(

Σ̂⋆∞(η)
)−1 p−→ Σ−1

∞ in the operator norm conditional onAn uniformly inM(e0), it follows

thatT ⋆
n (ηn) = T + oP (1) conditional onAn uniformly inM(e0), where

T = min
ub∈l∞∞,−

{

(ζb − ub)
′ (Σ∞)−1 (ζb − ub)

}

. (F.30)

This is exactly the same asymptotic distribution ofẼn and the result follows.

The case∆(P0) = ∆d (P0) =
{

tb1, . . . , t
b
m

}

, m ∈ Z+ follows similar steps as in the previous

case while keeping track of the fact that we now have a finite dimensional problem.

F.2 Test Consistency

Lemma F.3. Suppose Assumptions 2.1 and 4.1 hold. Then,

1.
{

t ∈ [t, t] ∩Q : EP0 [g (X; t)] > 0
}

⊂ ∆(p̃) for large enoughn with probability tending to

one.
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2. ‖µ̃‖l1wn
= Op(1).

3. Ẽn → +∞ asn → +∞.

Proof. Part 1: The Lipschitz continuity of the moment functions (i.e. Assumption 2.1(i)) im-

plies∃t ∈ [t, t] ∩ Q such thatEP0 [g (X; t)] > 0. Without loss of generality, suppose thatta ∈
{

t ∈ [t, t] ∩Q : EP0 [g (X; t)] > 0
}

. Recall thatwn = |∆(p̃)| . For ease of exposition, we will

use the following notation:µj = µ ({tj}) . The the equality constraints are

1

n

n
∑

i=1

g (Xi; tk)

1 +
∑

tj∈∆(p̃) µ̃jg (Xi; tj)
= 0 ∀tk ∈ ∆(p̃) . (F.31)

Evaluating atk = a and atµj = 0 ∀tj ∈ ∆(p̃) in (F.31) yields

1

n

n
∑

i=1

g (Xi; ta) =
1

n

n
∑

i=1

g (Xi; ta)− ηn(ta) + ηn(ta). (F.32)

The Law of the Iterated Logarithm implies1
n

∑n
i=1 g (Xi; ta)− ηn(ta) > 0 for large enoughn with

probability tending to one, and we also haveηn(ta) ≥ 0. Therefore, the optimal value ofµ ({ta})

must increase for large enoughn with probability tending to one. Hence, impliesta ∈ supp(µ̃) for

large enoughn with probability tending to one. Finally, by the FONCs (3.6), we have supp(µ̃) ⊂

∆(p̃) so thatta ∈ ∆(p̃) for large enoughn with probability tending to one.

Part 2: Using the same notation and steps from part 2 of Lemma E.3, wecan arrive at equa-

tion (E.6), which is repeated here for convenience:

‖µ̃‖l1wn

(

θ′

(

1

n

n
∑

i=1

gi
(

gi
)′

1 + Yi

)

θ

)

= θ′

(

1

n

n
∑

i=1

gi

)

, (F.33)

30



whereµ̃ = ‖µ̃‖l1wn
θ whereθ ∈ Rwn

+ such that
∑

j θj = 1, andYi = µ̃′gi. LettingE denote thewn

vector of the population moments whose index set is supp(µ̃) , we have

θ′

(

1

n

n
∑

i=1

gi −E

)

+ θ′E = ‖µ̃‖l1wn

(

θ′

(

1

n

n
∑

i=1

gi
(

gi
)′

1 + Yi
− 1

n

n
∑

i=1

gi
(

gi
)′
)

θ

)

(F.34)

+ ‖µ̃‖l1wn
θ′

(

1

n

n
∑

i=1

gi
(

gi
)′
)

θ. (F.35)

By the Law of Large Numbers, for large enoughn (F.34) becomes

oP (1) + θ′E = −‖µ̃‖l1wn

(

θ′

(

n
∑

i=1

p̃iYigi
(

gi
)′
)

θ

)

+ ‖µ̃‖l1wn

(

υ′Ω̂∞ (P0) υ
)

, (F.36)

(F.37)

whereυ ∈ l1∞ is such that

υj =















θj , if tj ∈ ∆(p̃) ,

0, if tj ∈ ˙∆+ (P0)−∆(p̃) .

Since0 < Plim(θ′E) by part 1 of this lemma, we must have

Plim(υ′Ω∞ (P0) υ)− Plim

(

θ′

(

n
∑

i=1

p̃iYigi
(

gi
)′
)

θ

)

> 0, (F.38)

Furthermore,1 ≥ Plim(θ′E) by condition (ii) of Assumption 2.1 implies

‖µ̃‖l1wn
≤ 1

υ′Ω̂∞ (P0) υ − θ′
(

∑n
i=1 p̃iYigi

(

gi
)′
)

θ
. (F.39)

for large enoughn. Hence,‖µ̃‖l1wn
= OP (1).
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Part 3: The ELR statistic can be expressed as the following maximization over the Lagrange

multiplier measure:

Ẽn = 2 max
µ∈l1wn,+

n
∑

i=1

log
(

1 + µ̃′gi
)

≥ 2

n
∑

i=1

log (1 + g (Xi; t
′)) , (F.40)

where the inequality follows from part 1 of this lemma witht′ ∈ ∆(p̃) such thatEP0 [g (X; t′)] >

0. By condition (ii) of Assumption 2.1, the range of the moment functions is a subset of the interval

(−1, 1); therefore, we can apply the Taylor series expansion oflog(1 + x) aroundx = 0 to the

functionlog (1 + g (Xi; t
′)) :

2
n
∑

i=1

log (1 + g (Xi; t
′)) = 2

n
∑

i=1

g (Xi; t
′)−

n
∑

i=1

g2 (Xi; t
′) +Op

(

n
∑

i=1

g3 (Xi; t
′)

)

. (F.41)

Appropriately adding and subtractingEP0 [g (X; t′)] into (F.41) yields

2n

(

1

n

n
∑

i=1

(g (Xi; t
′)− EP0 [g (X; t′)])

)

+ nEP0 [g (X; t′)]

+ n
(

EP0 [g (X; t′)]−EP0

[

g2 (X; t′)
])

+
n

3
EP0

[

g3 (X; t′)
]

+Op

(

n1/2
)

− n

(

1

n

n
∑

i=1

(

g2 (Xi; t
′)−EP0

[

g2 (X; t′)
])

)

(F.42)

, which equals

Op

(

n1/2
)

+
2n

3
EP0 [g (X; t′)] +

n

3

(

EP0 [g (X; t′)] + EP0

[

g3 (X; t′)
])

+ n
(

EP0 [g (X; t′)]−EP0

[

g2 (X; t′)
])

. (F.43)

Since−1 < g ≤ −1, we have

(

EP0 [g (X; t′)] + EP0

[

g3 (X; t′)
])

,
(

EP0 [g (X; t′)]− EP0

[

g2 (X; t′)
])

≥ 0,
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and therefore

2n

3
EP0 [g (X; t′)] +

n

3

(

EP0 [g (X; t′)] + EP0

[

g3 (X; t′)
])

→ +∞ as n → +∞, (F.44)

at then-th rate, which dominates theOp

(

n1/2
)

terms in (F.43). Using this result in the inequal-

ity (F.40), it follows thatẼn → +∞ asn → +∞.

From Lemma F.3, we have the following result regarding the large sample behavior of̌En.

Lemma F.4. Suppose Assumptions 2.1 and 4.1 hold. Ifmin
{

L
N(n)

, α(n)
}

→ 0 asn → +∞, then

Ěn → +∞.

Proof. The approximate ELR statistic (3.15) can be decomposed as in(C.22), which is repeated

now for convenience:

Én = Ẽn + 2

{

n
∑

i=1

(log (p̃i)− log (ṕi))

}

. (F.45)

Furthermore, in the proof of Theorem 3.1

∣

∣

∣

∣

∣

2

{

n
∑

i=1

(log (p̃i)− log (ṕi))

}∣

∣

∣

∣

∣

≤ 2‖µ̃‖l1wn
min

{

L

N(n)
, α(n)

}

. (F.46)

As part 2 of Lemma F.3 indicates‖µ̃‖l1wn
= OP (1), the desired result follows from letting

min
{

L
N(n)

, α(n)
}

→ 0 asn → +∞.

The next result describes the behavior ofΨ(t) =
∑n

i=1 pig (Xi; t) , where(p1, . . . , pn) is the

bootstrap DGP described in Section 4, under the alternative.

Lemma F.5. LetΨ(t) =
∑n

i=1 pig (Xi; t) , where(p1, . . . , pn) is the bootstrap DGP described in

Section 4. SupposeP0 satisfies the alternative hypothesis, then the following two statements hold.

1. If t ∈ [t, t] ∩Q andEP0 [g (X; t)] < 0, thenΨ(t) < −ηn(t) for largen with probability one.
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2. If t ∈ ∆+ (P0) and t ∈ TN(n) for large enoughn, thenΨ(t) = −ηn(t) for large n with

probability one.

3. If t ∈ ∆+ (P0) andt /∈ TN(n) ∀n, thenΨ(t) = −ηn(t) for largen with probability one.

Proof. The proof of this lemma follows identical steps as those in Lemma F.1; therefore, we omit

it for brevity.

The next result describes the behavior of the bootstrapped Lagrange multiplier vector that arises

in the modified Exchange Algorithm.

Lemma F.6. Suppose Assumptions 2.1 and 4.1 hold. LetP n be the bootstrap DGP described in

Section 4, and let{X⋆
i }ni=1 be IID P n. Also letp⋆ denote the solution of the modified Exchange

algorithm, but with the bootstrap sample instead of the data. The following statements hold.

1. ∆(p⋆) ⊂ ∆+ (P0) for largen, where∆(p⋆) denotes the index set of binding moments from

the modified Exchange Algorithm that uses the bootstrap sample.

2. Let µ́⋆ be the optimal value of the Lagrange multiplier vector on theinequality constraints

in the modified Exchange Algorithm that uses the bootstrap sample. Also letw⋆
n = |∆(p⋆)| .

Then‖µ́⋆‖l1
w⋆
n

=
∑

t∈∆(p⋆) µ́
⋆
t = oP (1)P n − a.e. at the

√
n− rate.

Proof. Part 1. The proof of this part follows identical steps as those in part 1 of Lemma F.2,

but with∆(P0) and∆(p̃⋆) , replaced by∆+ (P0) and∆(p⋆) respectively, and by using part 1 of

Lemma F.5.

Part 2. The proof of this part follows identical steps as those in part 2 of Lemma F.2, but with

∆(p̃⋆) replaced by∆(p⋆) . Now we focus on the convergence of

Σ̂⋆w⋆
n
= 1

n

∑n
i=1

(

g⋆i + ηn

)(

g⋆i + ηn

)′
to complete the proof. Letθ be a non-negative unit vector

in l1w⋆
n
, and letυ ∈ l1∞ be such that

υj =















θj , if tj ∈ ∆(p⋆) ,

0, if tj ∈ ˙∆+ (P0)−∆(p⋆) .
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Then,θ′Σ̂⋆w⋆
n
θ = υ′Σ̂⋆∞υ. Now we will show thatυ′Σ̂⋆∞υ > 0Pn − a.e.. By the LLN, it follows

thatΣ̂⋆∞
P−→ lim

n→+∞
EPn

[

Σ̂⋆∞

]

P n−a.e.. Therefore, we can focus on the large sample behavior of

υ′EPn

[

Σ̂⋆∞

]

υ. conditional on the data.

Conditionally on the data,

EPn

[

Σ̂⋆∞

]

=
n
∑

i=1

pi
(

gi + ηn
) (

gi + ηn
)′
,

where
(

gi + ηn
)

is now an infinite vector of the moment functions are indexed by ˙∆+ (P0). Then,

adding and subtracting as follows

n
∑

i=1

pi
(

gi + ηn
) (

gi + ηn
)′
=

n
∑

i=1

(

pi −
1

n

)

(

gi + ηn
) (

gi + ηn
)′
+

1

n

n
∑

i=1

(

gi + ηn
) (

gi + ηn
)′
,

makes the right side asymptotically equivalent to

n
∑

i=1

(

pi −
1

n

)

(

gi + ηn
) (

gi + ηn
)′
+

1

n

n
∑

i=1

gigi
′ =

n
∑

i=1

(

pi −
1

n

)

(

gi + ηn
) (

gi + ηn
)′

+ oP (1) + Ω (P0) . (F.47)

Now we show thatAn =
∑n

i=1

(

pi − 1
n

) (

gi + ηn
) (

gi + ηn
)′

is oP (1). It is equal to

−
n
∑

i=1

pi





∑

t∈∆(p)

µt (g (Xi; t) + ηn(t))





(

gi + ηn
) (

gi + ηn
)′
, (F.48)

which can be re-arranged into

∑

t∈∆(p)

µt

(

(−)

n
∑

i=1

pi

(

(g (Xi; t) + ηn(t))
(

gi + ηn
) (

gi + ηn
)′
)

)

. (F.49)

Therefore,|An‖ is bounded from above by

‖µ́‖l1wn
(−)

n
∑

i=1

pi (g (Xi; t) + ηn(t)) , (F.50)
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wherewn = |∆(p)| , and
(

gi + ηn
) (

gi + ηn
)′

is non-negative for eachi (by Property C.1) and

bounded from above by 1 (part 2 of Assumption 2.1). Now parts 2and 3 of Lemma F.5 show

(−)
∑n

i=1 pi (g (Xi; t) + ηn(t)) tends to zero for large enoughn with probability tending to one.

Finally, by following similar arguments as in the proof of part 2 of LemmaF.3, it follows that

‖µ́‖l1wn
= OP (1). Therefore,An = oP (1).

Putting these two parts together, impliesυ′EPn

[

Σ̂⋆∞

]

υ = oP (1) + υ′Ω (P0) υ + υ′Anυ, which

is equal toυ′Ω (P0) υ + oP (1). Finally, υ′Ω (P0) υ > 0 follows from part 1 of Assumption 4.1.

This completes the proof.

G Technical Uniform Weak Convergence Results

G.1 Asymptotic Null Distribution

In this section, we present large sample results that are used to prove that the statisticTn, defined

in (C.20), is uniformly weakly convergent to the QLR statistic in Theorem 3.1. The first result is

an immediate consequence of Lemma B.1.

Corollary G.1. LetΣw(P ) be the covariance matrix defined in Section 2.4, and letΣ̂w(P ) be its

sample analogue estimator. Then,

1. ‖Σ̂w(P )− Σw(P )‖ = oP (1) uniformly inM, where‖ · ‖ is the operator norm (2.9).

2. For everye0 ∈ R+, ‖Σ̂−1
w (P ) − Σ−1

w (P )‖ = oP (1) uniformly inM(e0), where‖ · ‖ is the

operator norm (2.10).

Proof. Part 1: As G being uniform Donsker implies that it is also uniform Glivenko-Cantelli, we

have‖Σ̂w(P ) − Σw(P )‖ =≤ supi,j

∣

∣

∣
Σ̂w,i,j(P )− Σw,i,j(P )

∣

∣

∣
= oP (1) uniformly in M, since the

uniform Donsker property is preserved under the multiplication transform and that the moment

functions are uniformly bounded (Assumption 2.1).
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Part 2: The result follows directly from Part 1 of this corollary upon realizing that

‖Σ̂−1
w (P )− Σ−1

w (P )‖ ≤ ‖Σ−1
w ‖‖Σ̂−1

w ‖
∥

∥

∥
Σ̂w − Σw

∥

∥

∥
, (G.1)

which is less than or equal toe20oP (1) uniformly inM(e0) for large enoughn.

Let TP be the Gaussian QLR statistic in Theorem 3.1:

TP = min
ub∈l∞w,−

{

[

Gw − ub
]′
Σ−1
w (P )

[

Gw − ub
]

}

, (G.2)

whereGw ∼ MVN (0w,Σw (P )) , and for convenience, we repeat the definition ofTn in (C.20)

Tn = min
ub∈l∞w,−

{

[√
nΨ̂b − ub

]′
Σ̂−1
w

[√
nΨ̂b − ub

]

}

.

Our objective is to show that for eache0 ∈ R+, Tn  TP uniformly inM(e0).

TP andTn are optimal values of quadratic optimization problems whose Lagrangians are re-

spectively

L
(

ub, λ
)

=
[

Gw − ub
]′
Σ−1
w (P )

[

Gw − ub
]

+ λ′ub, (G.3)

L
(

ub, γ
)

=
[√

nΨ̂b − ub

]′
Σ̂−1
w (P )

[√
nΨ̂b − ub

]

+ γ′ub, , (G.4)

whereλ andγ are the non-negative Lagrange multiplier vector with dimensionw. The FONCs for

these optimization problems are

ub = −1

2
Σw (P )λ+Gw, ub ∈ l∞w,−, and ub

(

tbi
)

λ
(

tbi
)

= 0 ∀tbi ∈ ˙∆ (P ) (G.5)

ub = −1

2
Σ̂w (P ) γ +

√
nΨ̂b, ub ∈ l∞w,−, and ub

(

tbi
)

γ
(

tbi
)

= 0 ∀tbi ∈ ˙∆ (P ). (G.6)

Let λ⋆ andγ⋆ denote the optimal values. Then, using the complementary-slackness conditions we
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haveλ′Gw = 1
2
λ′Σwλ andγ′Ψ̂b =

1
2
γ′Σ̂wγ, which implies

‖Gw‖l∞w ‖λ⋆‖l1w ≥ (λ⋆)′ Gw =
1

2
(λ⋆)′ Σwλ

⋆ ≥ 1

2
inf
i,j

Σw,i,j (P ) ‖λ⋆‖2l1w , and (G.7)

∥

∥

∥

√
nΨ̂b

∥

∥

∥

l∞w

‖γ⋆‖l1w ≥ (γ⋆)′ Ψ̂b =
1

2
(γ⋆)′ Σ̂wγ

⋆ ≥ 1

2
inf
i,j

Σ̂w,i,j (P ) ‖γ⋆‖2l1w . (G.8)

Therefore,

‖λ⋆‖l1w ≤
2 ‖Gw‖l∞w

inf i,j Σw,i,j (P )
≤

2 ‖Gw‖l∞w
c

, and ‖γ⋆‖l1w ≤
2
∥

∥

∥

√
nΨ̂b

∥

∥

∥

l∞w

inf i,j Σ̂w,i,j (P )
, (G.9)

wherec is the constant in Definition 2.1. The first result concerningthe Lagrange multipliers is the

following.

Lemma G.1. 1. ‖λ⋆‖l1w = OP (1) and‖γ⋆‖l1w = OP (1), uniformly inM.

2. γ⋆  λ⋆ in ‖·‖l1w , uniformly inM.

Proof. Part 1: To show that‖λ⋆‖l1w = OP (1) uniformly inM,we need to prove‖Gw‖l∞w = OP (1)

uniformly in M. Let G(δ) be aδ-net for(G, ρP ) with k = |G(δ)| independent ofP ∈ M, where

ρ2P (t, t
′) = VarP (g(X; t)− g(X; t′)) (G.10)

andX has distributionP. Additionally, letΠδ denote a map fromG to a nearest point inG(δ).

Then,

‖Gw‖l∞w ≤ sup
t∈[t,t]

|G(t)|

≤ sup
t∈[t,t]

|G(t)− (G ◦ Πδ) (t)|+ ‖G(t)‖G(δ) ≤ sup
ρP (t,t′)<δ

|G(t)−G(t′)|+ ‖G(t)‖G(δ) .

(G.11)

We have‖G(t)‖G(δ) = OP (1) uniformly in M since it is the maximum over at mostk Gaussian

random variables, each having zero mean and variance not exceeding unity. The uniform pre-
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Gaussianity ofG implies for everyǫ > 0,

lim
δ↓0

sup
P∈M

ProbP

[

sup
ρP (t,t′)<δ

|G(t)−G(t′)| > ǫ

]

= 0. (G.12)

Therefore, lettingδ ↓ 0, the inequality (G.11) implies‖Gw‖l∞w = OP (1) uniformly inM.

Now we will show that‖γ⋆‖l1w = OP (1) uniformly in M. Lemma B.1 says thatG is Donsker

and pre-Gaussian uniformly inM. Since the envelope function ofG is the constant function equal

to one, it satisfieslimν→∞ supP∈M ProbP [1 ≥ ν] = 0. Therefore, Theorem 2.1 of Sheehy and

Wellner (1992) implies the empirical process1√
n

∑n
i=1 (g(Xi; t)− EP [g(X; t)]) admits a weak

Gaussian approximation uniformly inM. This means that there exists a sequence ofG coherent

stochastic processes,
{

G(1), G(2), . . .
}

such that for everyǫ > 0

lim
n→∞

sup
P∈M

ProbP

[

sup
t∈[t,t]

∣

∣

∣

∣

∣

1√
n

n
∑

i=1

(g(Xi; t)− EP [g(X; t)])−G(n)(t)

∣

∣

∣

∣

∣

> ǫ

]

= 0. (G.13)

Using

∥

∥

∥

√
nΨ̂b

∥

∥

∥

l∞w

=
∥

∥

∥

√
nΨ̂b −Gw +Gw

∥

∥

∥

l∞w

(G.14)

≤
∥

∥

∥

√
nΨ̂b −Gw

∥

∥

∥

l∞w

+ ‖Gw‖l∞w (G.15)

=
∥

∥

∥

√
nΨ̂b −Gw

∥

∥

∥

l∞w

+OP (1) uniformly in M (G.16)

≤
∥

∥

∥

√
nΨ̂b −G(n)

w

∥

∥

∥

l∞w

+
∥

∥G(n)
w −Gw

∥

∥

l∞w
+OP (1) uniformly in M (G.17)

= oP (1) +OP (1) uniformly in M. (G.18)

Furthermore, for largen, inf i,j Σ̂w,i,j (P ) > c sinceΣ̂w (P ) converges toΣw (P ) in the operator

norm (2.9), uniformly inM.

Part 2: We prove this part by showing that the FONCs and second order conditions of the dual

problems that defineTP andTn are the same in distribution. The dual optimization problems are
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the following:

max
λ∈l1w,+

{

−1

4
λ′Σw(P )λ− λ′Gw

}

, and max
γ∈l1w,+

{

−1

4
γ′Σ̂w(P )λ− λ′√nΨ̂b

}

, (G.19)

and their respective FONCs and second order conditions are

−1

2
λ′Σw(P )−Gw ≥ 0w − λ′Σw(P )λ ≤ 0, and (G.20)

−1

2
γ′Σ̂w(P )−

√
nΨ̂b ≥ 0w − γ′Σ̂w(P )γ ≤ 0. (G.21)

Lemma B.1 and Part 1 of Corollary G.1 imply that these conditions are asymptotically the same

in distribution, uniformly inM. Since the objective functions in these optimization problems are

strictly concave in the Lagrange multipliers, these optimization problems have a unique solution,

and therefore,‖γ⋆ − λ⋆‖l1w  0 uniformly inM.

We can now prove the main result in this section.

Proposition G.1. For eache0 ∈ R+, we haveTn  TP uniformly inM(e0).

Proof. The proof proceeds by the direct method. LetΨ̂b be as in equation (C.7). Letub and ûb

are respectively the solutions of the minimization problems (G.2) and (C.20). Then, difference

TP − Tn is given by:

TP − Tn =
[

Gw − ub

]′
Σ−1

w (P )
[

Gw − ub

]

−
[√

nΨ̂b − ûb

]′
Σ̂−1

w

[√
nΨ̂b − ûb

]

=
[

Gw − ub

]′
Σ−1

w (P )
[

Gw − ub

]

−
[√

nΨ̂b − ûb

]′ (
Σ̂−1

w − Σ−1
w +Σ−1

w

) [√
nΨ̂b − ûb

]

=
[

Gw −√
nΨ̂b + ûb − ub

]′
Σ−1

w (P )
[

Gw −√
nΨ̂b + ûb − ub

]

(G.22)

−
[√

nΨ̂b − ûb

]′ (
Σ̂−1

w − Σ−1
w

) [√
nΨ̂b − ûb

]

. (G.23)
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First, we prove that (G.23) isoP (1) uniformly in M(e0). In modulus, (G.23) is

∣

∣

∣

∣

[√
nΨ̂b − ûb

]′ (
Σ̂−1

w − Σ−1
w

) [√
nΨ̂b − ûb

]

∣

∣

∣

∣

≤
∥

∥

∥

√
nΨ̂b − ûb

∥

∥

∥

2

l∞w

‖Σ−1
w ‖‖Σ̂−1

w ‖
∥

∥

∥Σ̂w − Σw

∥

∥

∥ (G.24)

=
1

4

∥

∥

∥
Σ̂w(P )γ⋆

∥

∥

∥

2

l∞w

‖Σ−1
w ‖‖Σ̂−1

w ‖
∥

∥

∥
Σ̂w − Σw

∥

∥

∥
(G.25)

≤ 1

4

∥

∥

∥Σ̂w(P )
∥

∥

∥

2

‖γ⋆‖2l1w ‖‖Σ−1
w ‖‖Σ̂−1

w ‖
∥

∥

∥Σ̂w − Σw

∥

∥

∥ . (G.26)

Now, by Lemmas B.1 and G.1, and for largen, (G.26) is bounded above by

e20
4
OP (1)oP (1) uniformly in M(e0), (G.27)

which implies the desired result.

Now we will show that (G.22) converges to zero in distribution, uniformly inM(e0). First, note

that (G.22) is equal to

1

4

[

Σ̂w(P )γ⋆ − Σw(P )λ⋆
]′
Σ−1
w

[

Σ̂w(P )γ⋆ − Σw(P )λ⋆
]

. (G.28)

Furthermore,̂Σw(P )γ⋆ − Σw(P )λ⋆ =
(

Σ̂w(P )− Σw(P )
)

γ⋆ − Σw(P ) (λ⋆ − γ⋆) . Corollary G.1

and Part 1 of Lemma G.1 implies
(

Σ̂w(P )− Σw(P )
)

γ⋆ = oP (1) in ‖ · ‖l∞w , uniformly in M(e0),

and Part 2 of Lemma G.1 implies that−Σ−1
w [Σw(P ) (λ⋆ − γ⋆)] = − (λ⋆ − γ⋆)  0 in ‖ · ‖l1w ,

uniformly in M(e0).

Hence, putting these two parts together impliesTP − Tn  0 uniformly in M(e0), which

completes the proof.

G.2 Bootstrap Validity

Lemma G.2. SupposeP0 ∈ M, and letwn = |∆(p)| wherep is the bootstrap DGP from Sec-

tion 4. Additionally, letµ denote the Lagrange multiplier vector from the modified exchange algo-

rithm with optimization problem (4.1). Then,‖µ‖l1
wn

= oP (1) uniformly inM.

Proof. Firstly, a consequence of Lemma F.1 is that∆(p) ⊂ ∆(P0) for largen. Now the proof
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follows the same steps as in the proof of part 2 of Lemma E.3. Let µ = ‖µ‖l1wn

θ whereθ ∈ Rwn

+

is such that
∑

j θj = 1. Using the same vector notation, we have

θ′

(

1

n

n
∑

i=1

gi + η

1 + µ′ (gi + η
)

)

= 0. (G.29)

Let Yi = µ′ (gi + η
)

and use 1
1+Yi

= 1− Yi
1+Yi

to expand (G.29) as follows:

‖µ‖l1wn

(

θ′

(

1

n

n
∑

i=1

(

gi + η
) (

gi + η
)′

1 + Yi

)

θ

)

= θ′

(

1

n

n
∑

i=1

(

gi + η
)

)

. (G.30)

The sample analogue estimator ofΣwn
(P0) is Σ̂wn

(

η
)

= 1
n

∑n
i=1

(

gi + η
) (

gi + η
)′
. Since1 +

Yi > 0 ∀i,

‖µ‖l1
wn

(

θ′Σ̂wn

(

η
)

θ
)

≤ ‖µ‖l1
wn

(

θ′

(

1

n

n
∑

i=1

(

gi + η
) (

gi + η
)′

1 + Yi

)

θ

)

(

1 + max
i=1,...,n

|Yi|
)

≤ ‖µ‖l1
wn

(

θ′

(

1

n

n
∑

i=1

(

gi + η
) (

gi + η
)′

1 + Yi

)

θ

)

(

1 + ‖µ‖l1
wn

)

. (G.31)

Therefore, we have the following inequality

‖µ‖l1
wn

(

θ′Σ̂wn

(

η
)

θ − θ′

(

1

n

n
∑

i=1

(

gi + η
)

))

≤ θ′

(

1

n

n
∑

i=1

(

gi + η
)

)

. (G.32)

Now by arguments similar to those in the proof of part 2 of Lemma E.3, we have

θ′

(

1

n

n
∑

i=1

(

gi + η
)

)

= oP (1) uniformly in M, (G.33)

θ′Σ̂wn

(

η
)

θ > c, with probability approaching 1 uniformly inM, (G.34)

where we made use of the following expansion

Σ̂wn

(

η
)

= Σ̂wn
+ ηη′ +

1

n

n
∑

i=1

giη
′ +

1

n

n
∑

i=1

ηgi
′, (G.35)
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and thatη tends to zero in probability uniformly inM. This implies‖µ‖l1wn

= oP (1) uniformly in

M, which is the desired result.

Let An denotes the Borel sigma algebra generated by the random sample {Xi}ni=1 .

Lemma G.3. SupposeP0 ∈ M and thatt ∈ ∆(P0) . Additionally, let{X⋆
i }ni=1 denote the boot-

strap sample. Then,∀ǫ > 0

ProbP

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (X⋆
i ; t) + ηn(t)

∣

∣

∣

∣

∣

> ǫ|An

]

P−→ 0 uniformly in M. (G.36)

Proof. Let Ψn(t) =
∑

i=1 pi (g (Xi; t) + ηn(t)) . Given ǫ > 0, by Markov’s inequality and the

triangular inequality, we have

ProbP

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (X⋆
i ; t) + ηn(t)

∣

∣

∣

∣

∣

> ǫ|An

]

≤ ǫ−1EP

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

(g (X⋆
i ; t) + ηn(t))−Ψn(t)

∣

∣

∣

∣

∣

|An

]

+ ǫ−1
∣

∣Ψn(t)
∣

∣ . (G.37)

Concentrating on the second term on the RHS of the inequality(G.37), by the triangular inequality

we have

∣

∣Ψn(t)
∣

∣ ≤
∣

∣

∣

∣

∣

Ψn(t)−
1

n

∑

i=1

g (Xi; t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

∑

i=1

g (Xi; t)

∣

∣

∣

∣

∣

≤ ‖µ‖l1
wn

+

∣

∣

∣

∣

∣

1

n

∑

i=1

g (Xi; t)

∣

∣

∣

∣

∣

. (G.38)

By Lemma B.1,supt∈[t,t]
∣

∣

1
n

∑

i=1 g (Xi; t)− EP [g (X; t)]
∣

∣

P−→ 0 uniformly in M. Therefore,

undert ∈ ∆(P0) , we must have
∣

∣

1
n

∑

i=1 g (Xi; t)
∣

∣ converging to zero in probability uniformly in

M. Furthermore, Lemma G.2 implies‖µ‖l1
wn

P−→ 0 uniformly in M. Therefore, the second term

on the RHS of the inequality (G.37) tends zero in probabilityuniformly in M.

Now we concentrate on the first term on the RHS of the inequality (G.37). By the triangular
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inequality, we have

EP

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

(g (X⋆
i ; t) + ηn(t))−Ψn(t)

∣

∣

∣

∣

∣

|An

]

≤ EP

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (X⋆
i ; t)−Ψn(t)

∣

∣

∣

∣

∣

|An

]

+ ηn(t) (G.39)

and by the Cauchy-Schwartz inequality, the RHS of (G.39) is less than or equal to



EP





(

1

n

n
∑

i=1

g (X⋆
i ; t)−Ψn(t)

)2

|An









1/2

+ ηn(t). (G.40)

By assumption,ηn(t)
P−→ 0 uniformly inM. Furthermore,

EP





(

1

n

n
∑

i=1

g (X⋆
i ; t)−Ψn(t)

)2

|An



 = EP





1

n2

∑

i6=j

(

g (X⋆
i ; t)−Ψn(t)

) (

g
(

X
⋆
j ; t
)

−Ψn(t)
)

|An





+ EP

[

1

n2

n
∑

i=1

(

g (X⋆
i ; t)−Ψn(t)

)2 |An

]

, (G.41)

and

EP

[

1

n2

∑

i 6=j

(

g (X⋆
i ; t)−Ψn(t)

) (

g
(

X⋆
j ; t
)

−Ψn(t)
)

|An

]

= 0 (G.42)

as
{

X⋆
j

}n

j=1
is a random sample conditionalAn. Hence,

EP





(

1

n

n
∑

i=1

g (X⋆
i ; t)−Ψn(t)

)2

|An



 = EP

[

1

n2

n
∑

i=1

(

g (X⋆
i ; t)−Ψn(t)

)2 |An

]

(G.43)

=
1

n
EP

[

(

g (X⋆
i ; t)−Ψn(t)

)2 |An

]

(G.44)

≤ 4

n
by Assumption 2.1. (G.45)
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Therefore,



EP





(

1

n

n
∑

i=1

g (X⋆
i ; t)−Ψn(t)

)2

|An









1/2

+ ηn(t) ≤
2√
n
+ ηn(t)

P−→ 0, (G.46)

uniformly in M.

Finally, putting together the above uniform convergence results in two parts from the RHS of

the inequality (G.37), we have

ProbP

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (X⋆
i ; t) + ηn(t)

∣

∣

∣

∣

∣

> ǫ|An

]

P−→ 0 uniformly in M, (G.47)

which is the desired result.

Let Σw be the covariance matrix defined in Section 2.4, and letΣ̂⋆w(η) be its sample analogue

estimator based on the bootstrap sample.

Lemma G.4. SupposeP0 ∈ M. Then the following statements hold.

1. ∀ǫ > 0,ProbP
[

‖Σ̂⋆w(η)− Σw‖ > ǫ|An

]

P−→ 0 uniformly inM, where‖ · ‖ is the operator

norm (2.9).

2. Let e0 ∈ R+, ∀ǫ > 0,ProbP

[∥

∥

∥

∥

(

Σ̂⋆w(η)
)−1

− Σ−1
w

∥

∥

∥

∥

> ǫ|An

]

P−→ 0 uniformly inM(e0),

where‖ · ‖ is the operator norm (2.10).

Proof. Part 1. Firstly, under Assumption 2.1, the class of functions

GG =
{

x 7→ g (x; t) g (x; t′) , t, t′ ∈ [t, t]
}

(G.48)

is also a uniformly bounded VC-class. We will use this resultin the proof. We have

Σ̂⋆w(η)− Σw = Σ̂⋆w(η)− Σw + Σw − Σ̂w + Σ̂w − Σw, (G.49)
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whereΣw is the matrix withΣw,k,j =
∑n

i=1 pig (Xi; tk) g (Xi; tj) , and Σ̂w is the matrix with

Σ̂w,k,j =
1
n

∑n
i=1 g (Xi; tk) g (Xi; tj) . Then by the triangular inequality

‖Σ̂⋆w(η)− Σw‖ ≤ ‖Σ̂⋆w(η)− Σw‖+ ‖Σw − Σ̂⋆w‖+ ‖Σ̂w − Σw‖. (G.50)

We will prove the result of this part of the lemma by showing that each part on the RHS of (G.50)

converges to zero. We have that

‖Σ̂w − Σw‖ ≤ sup
tk ,tj∈∆(P )

∣

∣

∣
Σ̂w,k,j − Σw,k,j

∣

∣

∣
≤ sup

tk,tj∈[t,t]∩Q

∣

∣

∣
Σ̂∞,k,j − Σ∞,k,j

∣

∣

∣

P−→ 0 (G.51)

uniformly inM, since the class of moment functions (G.48) is a uniformly bounded VC class, and

hence, Glivenko-Cantelli uniformly inM. We also have that

‖Σw − Σ̂w‖ ≤ sup
tk,tj∈∆(P )

∣

∣

∣
Σw,k,j − Σ̂w,k,j

∣

∣

∣
≤ ‖µ‖l1

wn

P−→ 0 uniformly in M, (G.52)

which follows from Lemma G.2.

This leaves us with the first term on the RHS of (G.50). We have that

‖Σ̂⋆w(η)− Σw‖ ≤ sup
tk ,tj∈∆(P )

∣

∣Σ⋆w(η)− Σw
∣

∣

≤ 2 sup
t∈[t,t]

ηn(t) +

(

sup
t∈[t,t]

ηn(t)

)2

+ sup
tk ,tj∈∆(P )

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (X⋆
i ; tk) g (X

⋆
i ; tj)−

n
∑

i=1

pig (Xi; tk) g (Xi; tj)

∣

∣

∣

∣

∣

, (G.53)

and thatsupt∈[t,t] ηn(t)
P−→ 0 uniformly in M by assumption. Therefore, to conclude the proof of

this part of the lemma, all that remains is to show that

sup
tk,tj∈∆(P )

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (X⋆
i ; tk) g (X

⋆
i ; tj)−

n
∑

i=1

pig (Xi; tk) g (Xi; tj)

∣

∣

∣

∣

∣

(G.54)
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converges to zero conditional onAn uniformly inM. We will show that (G.54) converges in mean

to zero conditional onAn uniformly in M, which implies the desired result.

Let{ǫi}ni=1 are independent Rademacher variables that are independentof {X⋆
i }ni=1 and{Xi}ni=1 .

We have that

EP

[

sup
tk ,tj∈∆(P )

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (X⋆
i ; tk) g (X

⋆
i ; tj)−

n
∑

i=1

pig (Xi; tk) g (Xi; tj)

∣

∣

∣

∣

∣

|An

]

≤ EP

[

sup
tk ,tj∈[t,t]

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (X⋆
i ; tk) g (X

⋆
i ; tj)−

n
∑

i=1

pig (Xi; tk) g (Xi; tj)

∣

∣

∣

∣

∣

|An

]

≤ EP

[

Eǫ

[

sup
tk,tj∈[t,t]

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫig (X
⋆
i ; tk) g (X

⋆
i ; tj)

∣

∣

∣

∣

∣

]

|An

]

, (G.55)

where the last inequality follows from an application of thefrom the symmetrization lemma

(Lemma 2.3.1 in van der Vaart and Wellner, 1996) applied to conditional expectations. Now let

P⋆n be the empirical measure based on the bootstrap sample. FixX⋆
1,X

⋆
2, . . . ,X

⋆
n, and letH be a

ǫ−net inL1 (P⋆n) overGG. Then

Eǫ

[

sup
tk ,tj∈[t,t]

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫig (X
⋆
i ; tk) g (X

⋆
i ; tj)

∣

∣

∣

∣

∣

]

≤ Eǫ

[

sup
h∈H

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ǫih (X
⋆
i )

∣

∣

∣

∣

∣

]

+ ǫ (G.56)

Furthermore, the RHS of (G.56) is less than or equal to

√

1 + log (N (ǫ,GG, L1 (P⋆n))) sup
h∈H

∥

∥

∥

∥

∥

1

n

n
∑

i=1

ǫih (X
⋆
i )

∥

∥

∥

∥

∥

ψ2|X⋆

+ ǫ

≤
√

1 + log (N (ǫ,GG, L1 (P⋆n)))

√

6

n
+ ǫ, (G.57)

where the Orlicz norms‖·‖ψ2|X⋆ are taken over{ǫi}ni=1 with {X⋆
i }ni=1 fixed, andN (ǫ,GG, L1 (P⋆n))

is the minimal number of balls of radiusǫ in theL1 (P⋆n) metric needed to cover the setGG.

The VC property ofGG implies supQ log (N (ǫ,GG, L1 (Q))) < +∞, where the supremum is
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taken over all probability measures,Q. Hence, the RHS of (G.57) is bounded above by

√

1 + sup
Q

log (N (ǫ,GG, L1 (Q)))

√

6

n
+ ǫ, (G.58)

which does not depend on{X⋆
i }ni=1 , {Xi}ni=1 , andP. Therefore,∀ǫ > 0,

EP

[

sup
tk,tj∈∆(P )

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g (X⋆
i ; tk) g (X

⋆
i ; tj)−

n
∑

i=1

pig (Xi; tk) g (Xi; tj)

∣

∣

∣

∣

∣

|An

]

≤

√

1 + sup
Q

log (N (ǫ,GG, L1 (Q)))

√

6

n
+ ǫ. (G.59)

This concludes the proof of this part upon realizing that

√

1 + sup
Q

log (N (ǫ,GG, L1 (Q)))

√

6

n
→ 0

asn → +∞.

Part 2. Since
(

Σ̂⋆w(η)
)−1

− Σ−1
w =

(

Σ̂⋆w(η)
)−1 (

Σ̂⋆w(η)− Σw

)

Σ−1
w , we have

∥

∥

∥

∥

(

Σ̂⋆w(η)
)−1

− Σ−1
w

∥

∥

∥

∥

≤
∥

∥

∥

∥

(

Σ̂⋆w(η)
)−1
∥

∥

∥

∥

∥

∥Σ−1
w

∥

∥

∥

∥

∥
Σ̂⋆w(η)− Σw

∥

∥

∥
(G.60)

≤ e0

∥

∥

∥

∥

(

Σ̂⋆w(η)
)−1
∥

∥

∥

∥

∥

∥

∥
Σ̂⋆w(η)− Σw

∥

∥

∥
, (G.61)

which is less than or equal toe20oP (1) conditional onAn uniformly in M(e0) for large enoughn

by Part 1 of this lemma.

H The Bootstrap Procedure of LSW

In this section, we outline the steps in the bootstrap procedure of Linton et al. (2010) (LSW hence-

forth) which is used in the MC simulation experiments in Section 5. LSW use an integral-type test
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statistic. In the setting of the paper, it is

T̂n =

∫ t

t

(

max

{

1√
n

n
∑

i=1

g (Xi; t) , 0

})2

dt. (H.1)

The estimate of the contact set we use in the MC simulations is

Ĉ =

{

t ∈ [t, t] :
1

n

n
∑

i=1

g (Xi; t) > −ηn(t)

}

, (H.2)

where the random numbersηn(t) satisfy property (4.2). In the MC simulations we use

ηn(t) = σ̂t

√

2 logn

n
,

whereσ̂2
t is the sample analogue estimator ofσ2

t . Because of the continuity of the moment func-

tions,Ĉ will always have positive Lebesgue measure when it is nonempty.

The bootstrap DGP LSW use is the ECDF on the data. Let{X⋆
i }ni=1 be a random sample from

the ECDF of the data, then their bootstrap test statistic is

T ⋆
n =























∫ t

t

(

max

{

1√
n

n
∑

i=1

[

g (X⋆
i ; t)−

1

n

n
∑

i=1

g (Xi; t)

]

, 0

})2

dt, if Ĉ = ∅,
∫

Ĉ

(

max

{

1√
n

n
∑

i=1

[

g (X⋆
i ; t)−

1

n

n
∑

i=1

g (Xi; t)

]

, 0

})2

dt, if Ĉ 6= ∅.

LettingBn be the number of bootstrap replications, the approximate bootstrap p-value is defined

as

ΥLSW
Bn

=
1

Bn

Bn
∑

j=1

1
[

T ⋆
n,j ≥ T̂n

]

, (H.3)

and one rejectsH0 if ΥLSW
Bn

≤ β, whereβ ∈ (0, 1/2) is a given nominal level.
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I The Bootstrap Procedure of AS

In this section, we outline the steps of the bootstrap procedure proposed by Andrews and Shi

(2010)(AS henceforth) which is used in the MC simulation experiments in Section 5. AS propose

a Kolmogorov-Smirnov and Cramér von MIses test statistics for inference on possibly infinite

number of conditional moment inequality conditions. Recall that the setting of the paper considers

a continuum of unconditional moment inequality conditions, which the AS procedure covers. In

this setting, the AS test statistics are identical, and it isgiven by

T̂n = sup
t∈[t,t]

(

max

{

√
n

(

1

n

n
∑

i=1

g (Xi; t)

)

/σ̂(t), 0

})2

, where (I.1)

σ̂2(t) =
1

n

n
∑

i=1

g2 (Xi; t)−
[

1

n

n
∑

i=1

g (Xi; t)

]2

. (I.2)

Next we describe the steps for computing the bootstrap GMS critical value of AS in the setting

of the paper. The critical value is obtained through the following steps.

1. Computeϕn(t) for t ∈ [t, t], whereϕn(t) is defined as follows. Let

ξn(t) = κ−1
n

√
n

(

1

n

n
∑

i=1

g (Xi; t)

)

/σ̂(t), (I.3)

whereκn = (0.3 log(n))1/2 . Define

ϕn(t) = σ̂(t)Bn1 [ξn(t) < −1] and Bn = (0.4 log(n)/ log log(n))1/2 . (I.4)

2. GenerateB bootstrap samples
{

X⋆
i,s

}n

i=1
for s = 1, . . . .B using the ECDF on the data.

3. For each bootstrap sample, compute1
n

∑n
i=1 g

(

X⋆
i,s; t

)

, andσ̂2
s (t) just asσ̂2(t) is computed

but with the bootstrap sample in place of the original sample.

4. For each bootstrap sample, compute the bootstrap test statistic T̂ ⋆
n,s asT̂n is computed in (I.1)
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but with
√
n
(

1
n

∑n
i=1 g (Xi; t)

)

replaced by
√
n
(

1
n

∑n
i=1 g

(

X⋆
i,s; t

)

− 1
n

∑n
i=1 g (Xi; t)− ϕn(t)

)

and withσ̂2(t) replaced bŷσ2
s (t).

5. Take the bootstrap GMS critical valuecn,1−β to be the1 − β + η sample quantile of the

bootstrap test statistics
{

T̂ ⋆
n,s, s = 1, . . . , B

}

plusη, whereη = 10−6.

For a given nominal levelβ ∈ (0, 1/2), the AS test rejectsH0 if T̂n > cn,1−β.
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