
Arbitrage Comes Hand in Hand
with the Risk of Market Crash∗

Dong-Hyun Ahn† Soohun Kim‡ Kyoungwon Seo§

March 7, 2019

Abstract

This paper proposes a simple model in which hedge funds can initiate a sequence
of arbitrage and a potential market crash even without any exogenous shock.
When hedge fund managers share a concern that a rare event, not necessarily
affecting the fundamentals, may occur, some hedge funds may opt out for fear
of redemption risk, which leads to coordination failure. Our model demonstrates
that the coordination failure generates an initial arbitrage opportunity but it
comes with a chance of market crash. The model provides novel theoretical
insights on the cause and amplification of the financial crisis. It also explains
some empirically documented behavior of hedge funds in the existing literature
and discusses policy implications.
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1 Introduction

This paper proposes a simple theoretical model which explains how an asset market
could collapse from coordination failure among hedge funds even in the absence of any
exogenous shock. Such coordination failure arises from key features that characterize
a hedge fund industry such as redemption risk, high leverage, synchronized collective
actions of hedge funds, information asymmetry between investors and hedge fund man-
agers and a fee structure of hedge funds. In the quest for arbitrage gains, hedge funds
police and cleanse the market by eliminating mispricing. The effectiveness of arbitrage
increases in proportion to the strength of unidirectional collective actions among hedge
funds. When hedge fund managers share a concern that a rare event may occur, some
hedge funds may opt out for fear of redemption risk, which leads to coordination failure.
Once it takes place, the initial price of the asset deviates from its fundamental value,
which delivers an arbitrage opportunity to the hedge funds. But concurrently it carries
a chance of market crash in the future. Surprisingly, we find that this coordination
failure can arise even without any exogenous shock.

The most notable feature of this coordination failure is that every arbitrage oppor-
tunity is spawned in tandem with the risk of market crash. Therefore the coordination
failure is a double-edged sword to the hedge fund managers. This is the nature of
the crisis equilibrium of our model. In contrast, if no hedge fund escapes from the
coordination, the calm equilibrium holds such that there is neither mispricing in the
initial price nor any chance of crash. Therefore, as typical in the model of coordina-
tion failure, our model demonstrates multiple equilibria, the calm equilibrium and the
crisis equilibrium, depending on the success and failure of coordination, and the crisis
equilibrium results in a self-fulfilling prophecy.

We show that a potential failure of coordination is an inherent nature of a hedge
fund industry due to the redemption risk that each fund faces. Following the intuition
of Shleifer and Vishny (1997) among many others, we assume that hedge fund investors
redeem their investment once the value of the fund hits a certain threshold from above.1

1A key feature of this assumption is information asymmetry between hedge fund managers and
investors. The investors may withdraw their investment even when the best opportunity of gains
is available. Shleifer and Vishny (1997) validate this assumption by arguing that if the fund loses,
the investors infer that the arbitragers are not as competent as they believed initially. They refer
to the arbitrage constrained by such redemption risk as performance-based arbitrage. Gromb and
Vayanos (2002) show that margin constraints have a similar effect of triggering redemption while Liu
and Mello (2011) designate investor’s concerns about coordination risk among themselves as a cause
of redemption. All of these papers focus on why hedge funds withdraw their investment when the
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Upon the redemption request from investors, a hedge fund should unwind its position
and liquidate the fund.2 On the alert for the redemption risk, a risk-neutral hedge fund
manager a priori decides the optimal leverage ratio, i.e., how much she invests in the
asset. In doing so, the fund manager who maximizes the hedge fund fee (similar to
the so-called “two+twenty”), confronts a trade-off between redemption risk and return
on investment. This involves choosing one of two diametrically opposite strategies3:
an aggressive leverage strategy, which takes excess risk by maximally utilizing leverage
capacity given the convex fee schedule and a defensive leverage strategy, which takes
a trivial amount of leverage or a leverage only up to the level which eliminates any
chance of liquidation. In equilibrium, how much portion of the ex-ante identical hedge
fund managers chooses each type of strategy is endogenously determined and, as a
result, the equilibrium price of the asset is derived. We demonstrate that a significant
portion of funds is unnecessarily liquidated even when funding is sufficient enough to
allow the calm equilibrium. Coordination failure is a driving force behind such a crisis
equilibrium because if a particular fund is liquidated, the asset price plunges, which
triggers a redemption request for another fund and so on.

This paper contributes to the literature on financial crisis by proposing an alternative
cause. The existing studies have focused on explaining how an exogenous shock can
be amplified within a financial system through a variety of frictions.4 In contrast, our

market allows for the best opportunities. There is also ample evidence that redemption requests are
induced by the performance of funds. According to the estimates of Buraschi et al. (2014), hedge
funds experience sudden large outflows or forced deleveraging after experiencing 20% loss on average.
Ben-David et al. (2012) find that during the 2008-2009 financial crisis, the redemption of hedge funds
were three times more intense than that of mutual funds. Herein we do not intend to propose an
alternative cause of redemption. Following the above mentioned theoretical papers coupled with the
empirical evidence, we simply assume the redemption risk is given to the fund manager and focus on
how such redemption risk may disrupt coordination among hedge funds and ultimately dislocate the
market.

2Our main results do not change qualitatively even if a hedge fund is allowed to unwind only a
part of its position to meet the redemption request and avoid the run. All we need is that the fund
manager perceives a ‘concern’ about the possibility that the amount of redemption demanded may
exceed a certain threshold. In fact, the frequent liquidation of hedge funds is an essential character of
hedge fund industry; 1,057 (784) hedge funds were closed over the year 2016 (2017), 12.8% (9.4%) of
the total number of hedge funds as of the year end in HFR database.

3Leverage plays an important role in hedge fund. Ang et al. (2011) estimate that the average
gross leverage across all hedge funds from December 2004 to October 2009 is 2.1. The gross leverage
increases to 4.8 after excluding equity sector which tend to use less leverage. Some funds such as fixed
income arbitrage funds, show extremely large leverage, well above 30.

4For example, Bernanke and Gertler (1989) and Kiyotaki and Moore (1997) among many others
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model shows that a financial crisis is feasible even in the absence of an exogenous shock.
The only required assumption is that hedge fund managers share a concern that a rare
event may occur in the next period. The event itself is unsubstantial and if the event is
realized, it is nothing but a self-fulfilling prophecy resulting from coordination failure
among hedge funds in their response to the concern.

In addition, our model distinguishes itself from the existing models of coordina-
tion failures on the bank run, which was pioneered by Diamond and Dybvig (1983)
and extended by others to incorporate the uncertainty on the fundamentals (Chari
and Jagannathan (1988), Jacklin and Bhattacharya (1988), Allen and Gale (1998) and
Goldstein and Pauzner (2005)). In these models, the bank runs resulting from coor-
dination failure are caused directly by contractual linkages such as deposit contracts.
In contrast, a series of fund liquidations are induced indirectly by a price mechanism
in our model. As a result, the resulting crisis becomes market wide, much beyond
institution-level crises analyzed in the bank run literature.

Our model also delivers some additional novel insights on the limits to arbitrage and
the financial crisis. First, unlike the existing models of coordination failure, coordination
failure in our model does not necessarily trigger a market crash. Upon the outbreak of
coordination failure, hedge fund managers recognize only the fact that a market crash
on the back of systemic redemptions may occur in the future. That is, in our model,
a market crash is a probabilistic event, not a sure event even when the coordination
failure arises.

Second and more importantly, our model implies that an arbitrage opportunity
inherently accompanies the possibility of market crash. That is, they always come as a
pair! In the calm equilibrium, the market price of the asset always equals its fair value
and hedge fund managers earn only the fair rate of return from investment in the asset.
In contrast, if the crisis equilibrium occurs, the market price deviates from its fair value
and the hedge fund managers immediately recognize the occurrence of coordination
failure and attempt to pounce on a resulting arbitrage opportunity. Moreover, they

show that adverse shocks can depress economic activity further through collateral channel in macroeco-
nomics. In a context of financial markets, Gromb and Vayanos (2002) and Brunnermeier and Pedersen
(2008) study the amplification of shocks through margin constraints imposed on arbitrageurs. He and
Krishnamurthy (2013) endogenize the equity constraints on financial intermediaries through moral
hazard and show that the capital scarcity plays a critical part for price dynamics. In the literature
on bank runs, many studies analyze how bad news on the fundamentals can be escalated into panics
(e.g., Postlewaite and Vives (1987), Jacklin and Bhattacharya (1988), Chari and Jagannathan (1988)).
Global games have been also widely used in modeling the propagation of shocks through correlated
signals (e.g., Morris and Shin (1998, 2000, 2004), Goldstein and Pauzner (2005), Liu and Mello (2011)).
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all notice that in the next period, one of two states will occur; (i) a good state, in
which the market price restores its fair value and (ii) a bad state, in which the market
crashes due to redemption request from investors in the aggressively leveraged hedge
funds. Which state will be realized in the next period is probabilistic. Expecting this
redemption possibility, the hedge fund managers should decide their initial leverage
ratios and, in turn, this demand from hedge funds determines the asset price at time
zero, which is shown to deviate from the fair value. Notice that all of these results
are endogenously derived in equilibrium. Therefore, our model demonstrates that a
chance of market crash in the next period is a necessary and sufficient condition for the
existence of arbitrage opportunity. This theoretical implication is in sharp contrast with
the existing models on the limits to arbitrage, which assumes the arbitrage opportunity
is exogenously given due to a fundamental shock or a demand shock. This novel feature
of our model results from the fact that a single trigger, coordination failure among hedge
funds, is a driving force behind the arbitrage opportunity as well as a market crash.

Third, the crisis equilibrium in our model is supported by heterogeneous strategies
across ex-ante homogeneous hedge fund managers. Upon the outbreak of the crisis
equilibrium, the aggressive leverage strategy speculates on arbitrage gains while taking
liquidation risk. In contrast, the defensive leverage strategy safeguards against liquida-
tion risk during the market crash and then buys the asset at a heavily discounted price
with the maximum leverage. We calculate the expected payoff to the fund managers de-
rived from each type of strategy. If one particular strategy delivers the higher expected
payoff, some fund managers switch to that strategy. An overall equilibrium requires the
two to have the same expected payoff and thus how much portion of the fund managers
chooses each type of strategy is endogenously determined in the equilibrium.

Fourth, our model explains why some arbitrage trading strategies appear to ‘pick
up nickels in front of steamrollers.’ Our model demonstrates that the crisis equilibrium
is feasible only if the probability of the bad state is sufficiently small; otherwise, the
crash equilibrium never occurs and only the calm equilibrium prevails. Therefore the
aggressive leverage strategy resembles the steamroller analogy since it is characterized
by a high probability of mediocre arbitrage gains coupled with a low probability of huge
losses.

Besides the above theoretical predictions, our model also delivers some policy and
empirical implications. First, our model predicts that hedge funds have a Jekyll and
Hyde social role of enforcing market efficiency over a cycle of crisis. Hedge funds
eliminate mispricing completely in the calm equilibrium and effectively do so even in
the crisis equilibrium. In addition, we show that, in the crisis equilibrium, hedge funds
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are more effective in correcting mispricing than long-term funds, which is consistent with
the argument of Stulz (2007) and the empirical findings by Kokkonen and Suominen
(2015). This suggests that regulations such as the Volcker Rule may lead to more severe
crisis by limiting bank investments in hedge funds.

Second, our model explains the behavior of hedge fund leverage empirically docu-
mented in Ang et al. (2011). They show that hedge fund leverage decreases prior to
the start of the financial crisis in mid-2007. This empirical result is precisely what our
model predicts. In the crisis equilibrium, coordination is disrupted and some funds
choose the defensive leverage strategy in the pre-crisis period so that the overall hedge
funds industry is relatively under-leveraged. Therefore, the empirical finding of Ang
et al. (2011) is a ‘must-be’ in our model.

Our model can be considered an extension of the model proposed by Liu and Mello
(2011), which investigates the redemption risk of a hedge fund through coordination fail-
ure among hedge fund investors in an individual hedge fund. Specifically, they assume
that the investors in a particular hedge fund receive private signals about redemption
requests and design the fragility of hedge fund capital through global games among
hedge fund investors. Their model delivers a unique threshold equilibrium in which a
hedge fund manager behaves conservatively once coordination risk is factored into their
investment decisions. Thus they propose an alternative explanation for the limits to
arbitrage by highlighting the investor’s concerns about coordination risk. In contrast,
our model assumes the redemption risk that an individual hedge fund confronts as given
and rather focuses on the market-wide coordination risk among hedge funds. That is,
we investigate hedge fund managers’ concern about what other fund managers might
decide to do whereas Liu and Mello (2011) explore hedge fund investors’ concern about
what other investors might decide to do. By doing so, we investigate the systematic
risk of the market itself wherein the asset price in tandem with the individual fund’s
investment strategy is endogenously determined in equilibrium.5 In addition, our model
assumes only a dissemination of a public concern or signal, which may trigger coordi-
nation failure. Thus our model results in multiple equilibria, not a unique equilibrium
unlike the model of Liu and Mello (2011).

This paper is also related to the prior studies which examine the indirect spillover
through price mechanism in many other contexts, such as margin requirements (Brun-
nermeier and Pedersen (2008)) or performance-based fund flow (Shleifer and Vishny

5More broadly, our paper is related to the literature on fund flow decisions (Berk and Green (2004)
and Chen et al. (2010)). We suggest an alternative underlying mechanism of fund flow solely due to
the market-wide coordination failure among fund managers.
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(1997)). Brunnermeier and Pedersen (2008) show that the firesale of collaterals can
be induced by an increase in margin requirements requested by financiers, igniting a
spiral between funding illiquidity and market illiquidity. In their model, the linkage
between funding illiquidity and market illiquidity stems from the binding nature of the
margin requirements of all investors. In contrast, the defensive funds discretionarily
choose to be underleveraged in our model. Furthermore, because sufficient funds can
be provided, the acute dry-up of liquidity during a crisis in our model is an equilibrium
outcome rather than a cause for amplified shocks as in their paper.

Finally, Shleifer and Vishny (1997) provide the key step that enables our model to
connect coordination failure with a market-wide crisis. The resulting price dynamics
in the crisis equilibrium of our model looks somewhat similar to those in their model.
However, while they assume an exogenous demand shock to generate such a price dy-
namics, we fully endogenizes the creation and dissipation of an arbitrage opportunity
through the coordination failure. Furthermore, the incentive of fund managers in our
model is quite different from those in Shleifer and Vishny (1997). In their model, the
potential redemption risk undermines significantly the aggressiveness of arbitrage. In
contrast, the crisis equilibrium in our model demonstrates that aggressively leveraged
funds coexist with the defensively leveraged funds. Besides, a key assumption underly-
ing their model is that funding in the market is not sufficient to bring the asset price
back to its fundamental value whereas mispricings in our model does not require such
an assumption.

The rest of this paper proceeds as follows. Section 2 describes our model. Section
3 establishes the main result. Section 4 examines the policy implications. Section 5
concludes. All proofs are in the Appendix.

2 Setup

Our model is based on Shleifer and Vishny (1997). There are three participants: hedge
fund managers, investors and long-term holders. Each investor deposits her wealth to
a hedge fund at time 0 and the fund manager may invest it in a specific asset of our
interest from time 0. At time 0 and 1, only fund managers know the true value of the
asset, which is normalized to be 1. At time 2, everyone knows the true value and the
price becomes the true value of 1. The asset supply is assumed to be 1. In our model,
hedge fund managers play a role of marginal investors in setting the market price of
the asset. We assume that hedge fund managers are risk-neutral. Hence, the fair rate
of return equals the risk-free interest rate, which is normalized to be zero. Therefore,
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Figure 1: Model Summary
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in the absence of arbitrage trades, the hedge funds would earn the fair rate of return,
which is zero.

Figure 1 illustrates the model setup. Long-term holders refer to those whose demand
for the asset is stable over time. Examples include pension funds, insurance companies,
banks and mutual funds. The demand of long-term holders for the asset is assumed to
be X < 1 at time 0. There are two states at time 1. With probability 1−q, the demand
of long-term holders remains the same and is X. With probability q, long-term holders
are hit by a shock and their demand reduces to X (1− ε) for a given ε ∈ [0, 1]. We call
the first event a g (good) state and the latter a b (bad) state. As mentioned before, we
are interested in an economy where the demand of long-term holders is stable. Hence,
our main analysis is performed when a liquidity shock ε is small or even nonexistent in
the b state.

Investors play the role of triggering redemption risk. There are a continuum of
investors and fund managers, each with unit mass. At t = 0, the i-th investor, i ∈ [0, 1],
deposits her wealth Wi,0 = W0 to the fund operated by the i-th fund manager.6 The
investors do not know the hedge fund’s strategy but observe the net asset value of the
fund at time 1. It is assumed that each investor requests redemption if the hedge fund
experiences a loss greater than a given level, namely W0 −Wi,1 > sW0 where Wi,1 is
the asset value of hedge fund i (in each state) at time 1 and s ≥ 0 is a given constant.

6The assumption of Wi,0 = W0 for all i ∈ [0, 1] can be relaxed. The required assumption is that
W0 =

∫ 1
0 Wi,0di is well-defined and bounded. In this case, W0 is interpreted as the ex-ante aggregate

capital of hedge funds in the economy. Also, we simplify our model in the dimension of investors’
strategy because our interest is on the coordination failure among fund managers. See Liu and Mello
(2011) for coordination failure among investors in a single fund.
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If s = 0, investors do not tolerate any losses from hedge funds, and a larger level of s
means smaller redemption risk to hedge funds.7

The incentive of a fund manager, who is assumed to be risk-neutral, is modeled
as follows. If fund i survives till t = 2, the i-th investor compensates the i-th fund
manager and gives (i) α > 0 proportion of the gain, max (Wi,2 −W0, 0) , (performance
fee) and (ii) β > 0 proportion of the total fund size Wi,2 at t = 2 (management fee).
If the i-th fund is liquidated in the interim period, the i-th fund manager is penalized
by C, where C > 0. The liquidation cost, C, captures a reputation damage or a job
search cost that a fund manager may face if his fund is liquidated.

Next, we characterize the strategy of a fund manager. We assume an external
borrowing/lending market where the borrowing/lending rate is normalized to 0.8 Fund
managers can access this borrowing/lending market as well as invest in the asset. The
strategy of fund manager i is a triplet (li,0, li,1g, li,1b) , where li,0 ∈

[
−1, l0

]
is the leverage

(borrowing divided by the fund capital) at t = 0, and li,1g and li,1b ∈
[
−1, l1

]
are the

leverage levels in states g and b at t = 1, respectively. A fund manager is constrained
to use leverage at most l0

(
l1
)

at t = 0 (1) and is not allowed to take a short position on
the asset.9 We make the natural assumption that l0 > −1 and l1 > −1. The maximum
leverage constraint can be interpreted as the margin requirements from the lender (e.g.,
a prime broker).10 The demand of fund i for the asset is W0 (1 + li,0) /P0 at time 0,
Wi,1g (1 + li,1g) /P1g in state g and Wi,1b (1 + li,1b) /P1b in state b if the fund survives.
Here, P0, P1g and P1b are the prices at time 0, in state g and in state b, respectively.
The asset prices and the optimal leverage are discussed later.

The market clearing condition at t = 0 is 1 = X+
∫ 1

0 W0 (1 + li,0) /P0di, which gives

p0 (1−X) = W0

∫ 1

0
(1 + li,0) di. (1)

At t = 1, we have

p1g (1−X) =
∫ 1

0
Wi,1g (1 + li,1g) · 1 (Wi,1g ≥ W0 (1− s)) di, (2)

7The assumption of constant s across investors is not necessary. However, the homogeneous s
emphasizes that the heterogeneous behavior of fund managers in an equilibrium is not driven by the
ex-ante heterogeneity of fund manager types.

8The most of the hedge fund leverage is provided through short-term funding. See Section 2.2 of
Ang et al. (2011).

9The short-sale constraints are innocuous because we focus on the case that the asset is underpriced
once its price deviates from its fundamental value.

10This assumption can be relaxed to the case that the funding rate is proportional to the leverage
ratio.
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where Wi,1g = W0
(
p1g

p0
(1 + li,0)− li,0

)
, and

p1b (1−X (1− ε)) =
∫ 1

0
Wi,1b (1 + li,1b) · 1 (Wi,1b ≥ W0 (1− s)) di, (3)

where Wi,1b = W0
(
p1b

p0
(1 + li,0)− li,0

)
. The asset is mispriced if any of p0, p1g and p1b

is different from the fundamental value of 1. Similarly, it is overpriced if the prices are
greater than 1, and underpriced if smaller than 1.

Finally, we define an equilibrium of this economy as follows.

Definition 1. An equilibrium of the economy is the leverage profile (li,0, li,1g, li,1b)i∈[0,1]
and the price (p0, p1g, p1b), such that
(i) given the price (p0, p1g, p1b) and the leverage li,0 at t = 0, li,1g solves the maximization
problem,

Ui,1g = max
li,1g

[αmax (Wi,2g −W0, 0) + βWi,2g] · 1 (Wi,1g ≥ W0 (1− s))

− C·1 (Wi,1g < W0 (1− s)) (4)

where

Wi,2g =Wi,1g

(
1
p1g

(1 + li,1g)− li,1g
)
, and (5)

Wi,1g =W0

(
p1g

p0
(1 + li,0)− li,0

)
, (6)

and li,1b solves the maximization problem,

Ui,1b = max
li,1b

[αmax (Wi,2b −W0, 0) + βWi,2b] · 1 (Wi,1b ≥ W0 (1− s))

− C·1 (Wi,1b < W0 (1− s)) (7)

where

Wi,2b =Wi,1b

(
1
p1b

(1 + li,1b)− li,1b
)
, (8)

Wi,1b =W0

(
p1b

p0
(1 + li,0)− li,0

)
; (9)

(ii) given the price (p0, p1g, p1b), li,0 maximizes

U0 (li,0) = (1− q)Ui,1g + qUi,1b, (10)
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where Ui,1g and Ui,1b are given by (4) and (7); and
(iii) given the strategy profile (li,0, li,1g, li,1b)i∈[0,1], the price (p0, p1g, p1b) satisfies the
market clearing conditions, (1)-(3).

Condition (i) gives the optimization problem of fund manager i at time 1. Given
the price (p0, p1g, p1b) and the leverage li,0 at t = 0, the value of fund i at t = 1,
is evaluated by (6) in state g and (9) in state b. If Wi,1 < W0 (1− s), the i-th fund
manager is penalized by the liquidation cost C. When Wi,1 ≥ W0 (1− s), fund manager
i maximizes his compensation αmax (Wi,2 −W0, 0) + βWi,2 where Wi,2, the final value
of the i-th fund at t = 2, is evaluated by (5) following state g and (8) following state
b. Thus, the i-th fund manager finds the optimal leverage li,1 at t = 1 by solving (4) in
state g and (7) in state b.

Condition (ii) specifies the optimization problem of the i-th fund manager at t = 0.
Note that from (10), U0 (li,0) is the expected utility of fund manager i at t = 0. Hence,
the optimal leverage of the i-th fund manager at t = 0 is the maximizer of the expected
utility. Condition (iii) states that the asset market clears.

In the next section, we provide detailed procedures for finding equilibria described in
Definition 1 for an economy with parameters of our interest. Then, our main theoretical
results follow.

3 Model Prediction

We show that there are two equilibria under certain conditions. In one equilibrium, a
financial crisis is generated without any exogenous shock, and in the other, the funda-
mental value of the asset is fully reflected in the market price.

For the rest of the paper, we make the following assumption.

Assumption 1. W0
(
1 + l0

)
+X ≥ 1 and W0

(
1 + l1

)
+X (1− ε) ≥ 1.

Assumption 1 posits that funding liquidity is large enough to support the fair prices.
We intentionally assume sufficient funding liquidity to emphasize that the crisis in our
economy is not caused by the exogenous shortage in funding liquidity. When the asset
has the fair price 1 at time 0, the maximally possible market demand equals the amount
of all available funding which is W0

(
1 + l0

)
+X, and this is greater than the supply, 1,

by the first condition of Assumption 1. Similarly, the second condition implies sufficient
funding liquidity in both states at time 1.

Before solving for equilibria, we discuss some useful properties. First, overpricing is
not possible, and therefore we focus only on underpricing.

11



Lemma 1. In any equilibrium, p1g ≤ 1, p1b ≤ 1 and p0 ≤ 1.

The intuition behind this lemma is as follows. Fund managers know that the price will
be 1 eventually and do not hold an overpriced asset because short selling is not allowed.
Since the long-term holders’ demand is smaller than the supply, any price greater than
1 cannot be an equilibrium price.

Next, due to the following lemma, we can restrict our attention to an equilibrium
where the mispricing in state b is always at least larger than that in state g.

Lemma 2. Under Assumption 1, if q and s are sufficiently small, it holds that p1g ≥ p1b.

Small q means that state b is considered a rare event. Also, small s describes an asset
market where redemption risk cannot be ignored.11

Furthermore, the following theorem provides additional restrictions on equilibrium
prices.

Theorem 1. Under Assumption 1, if q and s are sufficiently small, the followings hold:
(i) there is no liquidation if and only if p0 = p1g = p1b = 1, and
(ii) there are some liquidations if and only if p1b < p0 < p1g = 1.

Because the existence and non-existence of liquidations are collectively exhaustive and
mutually exclusive, the above theorem implies that there are only two possibilities of
equilibria, p0 = p1g = p1b = 1 and p1b < p0 < p1g = 1. Accordingly, we adopt the
following definitions.

Definition 2. A calm equilibrium is an equilibrium with p0 = p1g = p1b = 1. A crisis
equilibrium is an equilibrium with p1b < p0 < p1g = 1.

When p0 = p1g = p1b = 1, the information of the fund managers is fully reflected in the
market price at t = 0, before the fundamental value of the two-period asset is known
to the public. Because the price does not fluctuate around the fundamental value, we
say the equilibrium is calm. In contrast, a crisis equilibrium generates underpricing at
time 0 and allows even worse mispricing in state b.

The key feature of a crisis equilibrium is that an arbitrage opportunity (p0 < 1)
comes hand in hand with the risk of market crash (p1b < p0). Hence, a crisis equilib-
rium can be a double-edged sword to the fund managers. They may bet on state g
aggressively at t = 0 by taking high leverage but will suffer a large loss from the market
crash in state b. On the other hand, they may opt out and avoid the risk of the market

11Upper bounds for q and s are provided in (22) and (23), respectively.
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crash by being defensive initially and waiting for the later opportunity. We will show
that the crisis equilibrium stands at the balance of tensions between the two trading
strategies.

If both calm and crisis equilibria exist, a crisis equilibrium may be considered a coor-
dination failure. In a crisis equilibrium, a hedge fund is liquidated because other funds
are liquidated and thus the asset price plummets. However, Assumption 1 guarantees
sufficient funding in the market and no hedge funds need to be liquidated if no other
funds are liquidated. In this sense, the crisis in our model is distinctive from the one
in Brunnermeier and Pedersen (2008), in that funding liquidity or interaction between
funding liquidity and market liquidity is not the reason for the crisis in our model. A
crisis materializes in our economy because fund managers’ incentives and redemption
risk can make agents in the economy fail to coordinate their strategies to achieve a calm
equilibrium. Our model is distinctive also from Diamond and Dybvig (1983) because
coordination failure in our model does not necessarily trigger a market crash. Even in
the crisis equilibrium where fund managers fail to coordinate on their strategies, the
market crashes only in state b which occurs probabilistically.

Existence of one equilibrium is shown first.

Theorem 2. A calm equilibrium exists if Assumption 1 holds.

Given the existence of a calm equilibrium, we solve for a crisis equilibrium to show
the existence of multiple equilibria.

3.1 Time 1

In this subsection, we solve for a crisis equilibrium at t = 1, where p0 and (li,0)i∈[0,1] are
given. Then, we express Ui,1g, Ui,1b, p1g, and p1b as functions of p0 and (li,0)i∈[0,1].

We start with state g. First, we confirm that no fund is liquidated in state g.

Lemma 3. If Assumption 1 holds and q and s are sufficiently small, no fund is liqui-
dated in state g in any equilibrium.

The intuition underlying the above lemma is as follows. From Lemma 2, the AUM of a
hedge fund is greater in state g than state b. Hence, if a fund is liquidated in state g, it
will be liquidated in state b, too. For this case, the fund manager gets the utility −C.
Because he can always deviate to the minimum leverage −1 and avoid liquidation, this
cannot occur in any equilibrium.

Furthermore, the following lemma pins down the equilibrium price in state g.
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Lemma 4. If Assumption 1 holds and q and s are sufficiently small, p1g = 1 in any
equilibrium.

Knowing that p2 = 1, a fund manager will take the maximum leverage to invest in
the asset as long as p1g < 1. Then, we see p1g = 1 because every hedge fund survives,
funding liquidity is sufficient and overpricing is not possible.

It is straightforward to compute the equilibrium utility in state g as a function of
p0 and li,0 because p1g = p2 = 1 and the AUM will not change from stage g to time 2.

Lemma 5. Suppose Assumption 1 holds and q and s are sufficiently small. Given p0

and li,0, the equilibrium utility of fund manager i in stage g is

Ui,1g = αmax (Wi,1g −W0, 0) + βWi,1g, (11)

where Wi,1g = W0
(

1
p0

(1 + li,0)− li,0
)
.

Now, we examine state b. For state b, those who are liquidated exit the market,
and only the remaining fund managers demand the asset. Because the i-th fund is
liquidated if

Wi,1b < W0 (1− s) ,

we can define the critical leverage l∗ at t = 0 as

Wi,1b = W0

(
p1b

p0
+
(
p1b

p0
− 1

)
l∗
)

= W0 (1− s) .

This gives

l∗ =
p1b

p0
− (1− s)
1− p1b

p0

, (12)

and it follows that
li,0 ≤ l∗ ⇔ Wi,1b ≥ W0 (1− s) . (13)

Then, we can express the i-th fund manager’s compensation at t = 2 as

−C if li,0 > l∗(liquidated) and
αmax (Wi,2b −W0, 0) + βWi,2b if li,0 ≤ l∗(not liquidated). (14)

Note that the leverage decision in state b is relevant only for the fund managers who
have survived in state b.

The following Lemma describes the optimal leverage li,1b for fund manager i who
has survived in state b.
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Lemma 6. If p1b < 1, the optimal li,1b for the i-th fund that survives in state b is l1.

Because the asset is underpriced (p1b < 1), a fund manager who has survived will take
the maximum leverage l1.

Using this optimal leverage in state b, we can express the final wealth of hedge fund
i as

Wi,2b = Wi,1b

(
1
p1b

(
1 + l1

)
− l1

)

= W0

(
p1b

p0
(1 + li,0)− li,0

)(
1
p1b

(
1 + l1

)
− l1

)
. (15)

Combining Lemma 6 and the condition (3), we describe the equilibrium price in
state b in the following proposition:

Proposition 1. The equilibrium price in state b is determined by

p1b = 1
1−X (1− ε)

∫ 1

0
Wi,1b

(
1 + l1

)
· 1 (Wi,1b ≥ W0 (1− s)) di. (16)

This proposition reveals the key mechanism of mispricing amplification. When the
long-term funds sell ε proportion of their holdings, it directly reduces the price as
shown in 1

1−X(1−ε) of (16). Although the size of ε may be minuscule, the ultimate
effect is amplified because the value of fund, Wi,1b = W0

(
p1b

p0
(1 + li,0)− li,0

)
, is quoted

by the market price of the asset. Note that Wi,1b determines the size of the dollar
demand at t = 1, Wi,1b

(
1 + l1

)
, and more importantly the liquidation decision by

investors, 1 (Wi,1b ≥ W0 (1− s)) . Not only is the direct impact of the decrease in p1b

on Wi,1b negative, but the decrease in Wi,1b also ignites the liquidations such that
Wi,1b < W0 (1− s), forcing fund managers to sell more, which in turn causes a further
price decline and so on.

By plugging Wi,1b = W0
(
p1b

p0
(1 + li,0)− li,0

)
into (16), we obtain p1b as an implicit

function of p0 and (li,0)i∈[0,1]:12

p1b = 1
1−X (1− ε)

∫ 1

0
W0

(
p1b

p0
(1 + li,0)− li,0

)(
1 + l1

)
· 1
(
p1b

p0
(1 + li,0)− li,0 > 1− s

)
di. (17)

Then, l∗ defined in (12) is also an implicit function of p0 and (li,0)i∈[0,1].
Finally, we can express the i-th fund manager’s expected utility in state b as a

function of p0 and (li,0)i∈[0,1].
12We show the existence of p1b in (17) given p0 and (li,0)i∈[0,1] with parameters of our interests in

the proof of Theorems 2 and 3.
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Lemma 7. Given p0 and (li,0)i∈[0,1], the equilibrium utility of fund manager i in state
b is

Ui,1b = (αmax (Wi,2b −W0, 0) + βWi,2b) · 1 (li,0 ≤ l∗)− C · 1 (li,0 > l∗) , (18)

where Wi,2b is written as a function of p0 and (li,0)i∈[0,1] by (15) and (17).

3.2 Time 0

This subsection analyzes a crisis equilibrium in time 0. As we have seen in the previous
subsection, a high leverage decision at time 0 leads to liquidation in state b (li,0 > l∗).
As will be shown later, it turns out that some fund managers take high leverage at
time 0 to be liquidated in state b and the others decide to survive. We consider the
liquidation case first.

Lemma 8. If p0 < p1g = 1, the optimal li,0 for the i-th fund which is liquidated in state
b, is l0.

If a hedge fund is to be liquidated in state b at time 1, it is optimal at time 0 for the
fund to bet on state g. Because the asset price will rise in state g, the fund manager
chooses to lever up his position as much as possible, that is, li,0 = l0.

Resorting to Lemmas 6 and 8, we restrict our attention to the following strategy
profile in finding a crisis equilibrium.13 We do not fix the proportion h and l∗ now but
let them be determined endogenously in equilibrium.

Definition 3. The bang-bang strategy profile refers to a strategy profile in which h ∈
(0, 1) proportion of fund managers take li,0 = l0 > l∗ and the other fund managers take
(lj,0, lj,1b) =

(
l∗, l1

)
, where l∗ = −1 or l∗.

In the bang-bang strategy profile, the h proportion of the total fund managers use
the aggressive strategy that takes the maximum leverage l0(> l∗) to earn high profits
from t = 0 to t = 1 if state g realizes. The remaining (1− h) proportion use the
defensive leverage l∗(≤ l∗) so that they can survive in state b to exploit the arbitrage
opportunity.

The coexistence of aggressive and defensive strategies in the bang-bang strategy
profile reflects that arbitrage is inherently associated with the risk of market crash.
Due to the defensive strategy of some funds, the market price does not support the

13We do not explicitly consider the strategy in state g because it does not affect the fund manager’s
utility.
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Figure 2: Optimal Leverage Decision

(a) (b) (c)

This figure shows how the i-th fund manager maximizes U0 (li,0) at t = 0 by choosing
the leverage at t = 0 over the admissible range of

[
−1, l0

]
using the piecewise linearity

of U0 (li,0) as expressed in (19). The i-th fund manager takes −1, l∗, or l0 as the optimal
leverage, as shown in panels (a), (b) and (c), respectively.

fair value initially, p0 < 1, and arbitrage opportunities arise, which in turn makes the
aggressive strategy attractive. Once state b is realized, investors of aggressive funds
request redemption, triggering the firesale. As a result, the market crash is realized,
p1b < p0.

The objective of fund managers at t = 0 is to maximize U0 (·) in (10),

U0 (li,0) = (1− q)Ui,1g + qUi,1b, (19)

where Ui,1g and Ui,1b are now given by (11) and (18), the equilibrium utilities at t = 1,
respectively.

In the bang-bang strategy profile, we consider only
{
−1, l∗, l0

}
as possible leverage at

t = 0. To show why this is justifiable intuitively, consider the case of α = 0 and β = 1.14

Then, U0 (li,0) in (19) becomes a piecewise linear function of li,0 with a discontinuity
at l∗. The piecewise linearity of U0 (li,0) makes the optimal leverage decision at t = 0
over the admissible range of

[
−1, l0

]
quite simple; the optimal leverage should be found

among
{
−1, l∗, l0

}
as illustrated in Figure 2.

We discuss how h is determined in equilibrium. Suppose h is close to 0. Then,
almost all hedge funds go defensive and wait for a bigger shock (state b) which gives an
arbitrage opportunity. But survival of many hedge funds in state b pushes up the price
P1b and the arbitrage profit will be small. Thus the defensive strategy is less attractive

14Lemmas 11 and 15 provide the general case α, β > 0.
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and hedge funds will switch to the aggressive strategy, which increases h. On the other
hand, if h is large, only a small group of hedge funds (1 − h) survive in state b. This
implies the underpricing of P1b is large and so are arbitrage profits. Then, hedge funds
have incentives to go defensive, which decreases h.

In short, h is determined in equilibrium when the aggressive strategy is indifferent
to the defensive strategy. This implies

U0 (l∗) = U0
(
l0
)
, (20)

where U0 (·) is from (19). In addition, recall that p1b < p0 < p1g from Theorem 1.
Then, the market clearing prices of p0 and p1b given by (1) and (3), respectively, need
to satisfy

p1b = W∗,1b
1−X (1− ε) (1− h)

(
1 + l1

)
< p0 = W0

1−X
(
1 + hl0 + (1− h) l∗

)
< p1g = 1,

(21)
where W∗,1b = W0

(
p1b

p0
(1 + l∗)− l∗

)
. If (20) and (21) hold for some h ∈ (0, 1), a crisis

equilibrium exists. The following theorem shows such h exists under some conditions.15

Theorem 3. Assume that ε > 0. Under Assumption 1, if q, s and W0 are sufficiently
small, a crisis equilibrium exists.

The theorem implies multiple equilibria because a calm equilibrium exists under
weaker conditions by Theorem 2. A remarkable prediction of the multiple equilibria is
that the asset may be underpriced and some funds are liquidated even when liquidity
can be sufficiently provided in the market to support the calm equilibrium. In the crisis
equilibrium, long-term holders initiates a small shock by selling a small fraction ε > 0
of their asset holdings, and the selling pressure ignites the liquidation of some hedge
funds when some conditions are met.

The conditions for a crisis equilibrium are that the probability for state b is small,
the initial capital size of hedge funds is not too large (but large enough so that the fair
pricing equilibrium exists) and there is substantial risk of redemption. The required
conditions are economically justifiable in the following context. First, with small q,
our model intends to describe an unusual crisis rather than a normal phenomenon.
Second, for small s, after such a rare event occurs, investors in panic will compete to
exit the market before others and they will request redemption under a tight condition.
Many existing models describe how such an amplification is triggered once a crisis is

15Upper bounds for parameters are provided in the proof of the theorem in the appendix.
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initiated (see, e.g., Diamond and Dybvig (1983), Morris and Shin (2004), Goldstein
and Pauzner (2005), Brunnermeier and Pedersen (2008) and Liu and Mello (2011)).
Third, with small W0, we stress that the asset market in our model is an example of a
highly specialized market. Hence, although there is a large amount of outside capital,
many potential investors are reluctant to participate, limiting the initial capital of funds.
While there is a potentially large amount of capital in the economy (Assumption 1), the
arbitrage trades in the asset market are heavily dependent on the short-term funding.
Theorem 3 shows that, under these circumstances, mispricing coupled with the risk of
a crisis may arise as a result of coordination failure.

In the next theorem, we assume ε = 0 and find a striking result that the selling
pressure from the long-term holders is not essential for a crisis. Thus, a crisis can arise
completely endogenously without any demand shock.

Theorem 4. Assume that ε = 0. Under Assumption 1, if q, s and W0 are sufficiently
small, a crisis equilibrium exists.

A calm equilibrium still exists and the theorem shows existence of multiple equilibria
even when the long-term holders do not initiate any shock. It also implies that an
arbitrage opportunity is spawned in tandem with the risk of market crash because the
crisis equilibrium demonstrates both an arbitrage opportunity and the risk of market
crash whereas the calm one does none of them.

Note that when ε = 0, state b is essentially identical to state g. While there is
no fundamental difference between states g and b, the state realization is common
knowledge. If state b turns out to be the true one, a significant mass of fund managers
exit the market simultaneously only because others do so. At t = 0, the fund managers
expect this coordination failure to happen in state b and decide their time-0 positions;
Some bet on the coordination failure by going defensive and the others do the opposite.
The defensive strategy reduces demand for the asset at t = 0 and invites an arbitrage
opportunity which may not disappear quickly.

The comparison of our crisis equilibrium to the limits of arbitrage by Shleifer and
Vishny (1997, SV) follows. First, note that the price in SV’s model economy behaves
like our price dynamics p1b < p0 < p1g = 1 in the crisis equilibrium. However, they need
to assume an exogenous demand shock dynamics to generate such a price pattern. In
their model, arbitrageurs do not fully exploit the given mispricing (p0 < 1) due to the
possibility of the deeper mispricing (p1b < p0) driven by accentuated demand shocks.
In contrast, our model fully endogenizes the creation and dissipation of an arbitrage
opportunity. We find that coordination failure can explain how an arbitrage opportunity
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arises (p0 < 1) as well as why it becomes more severe (p1b < p0) or disappears (p1g = 1) .
It is worth emphasizing that our approach to a crisis is clearly different from crises

in global games in two ways. First, our model does not need exogenous demand shocks
but requires only a public concern or signal so that fund managers can coordinate
on it. The asset prices are determined endogenously through coordination failure and
its expectation. In contrast, a standard global game requires correlated private signals
through which a unique equilibrium is derived when the exogenously given prices are not
affected by the behavior of the agents. Second, a crisis in our model can arise without
any fundamental shocks while a crisis in a global game is ignited by bad fundamentals
on real macro outcomes or economy-wide preference shocks. In our crisis equilibrium,
it is hedge funds’ coordination failure, not the economic fundamentals reflected in the
correlated private information, that results in a mispricing.

Another distinctive feature of our model is that the crisis equilibrium is supported
by heterogeneous strategies across ex-ante homogeneous hedge fund managers. Recall
that mispricing in our economy exists at the balance of aggressive and defensive fund
managers. In addition, as we previously explained, more (less) players with the aggres-
sive leverage make the payoff from the aggressive strategy less (more) attractive. That
is, in state b, a hedge fund has a strong incentive to survive if all the other funds are
liquidated. This leads to the following lemma which is not true in bank run models.

Lemma 9. In any equilibrium, there are some funds which survive in state b.

In particular, a bank run in Diamond and Dybvig (1983) is triggered by the strategic
complementarity of early withdrawals among depositors—if a depositor believes that
other depositors will withdraw, it would be better for him or her to withdraw early.
Hence, in a bank run, all depositors withdraw their funds altogether. In contrast, the
key amplifier in our crisis equilibrium is the price feedback mechanism, which equalizes
the attractiveness of the two strategic substitutes in the bang-bang strategy profile. The
introduction of this price feedback generates a market-wide crisis through heterogeneous
strategies, distinctive from an institution-level crisis of Diamond and Dybvig, Goldstein
and Pauzner (2005) and Liu and Mello (2011).

Lastly, we close this section by showing that the crisis equilibrium is feasible only if
the probability of the bad state is sufficiently small.

Theorem 5. Under Assumption 1, only a calm equilibrium exists if q is sufficiently
large.

Our model provides one potential explanation of why some arbitrage trading strategies
appear to ‘pick up nickels in front of steamrollers.’ Note that the aggressive strategy
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in the crisis equilibrium is characterized by a high probability of small arbitrage gains
coupled with a low probability of huge losses.

4 Policy Implications

In this section, we examine policy implications of our model economy. We focus on
the scenario of a crisis equilibrium to learn about the effect of a certain policy on the
evolution of a given crisis. In particular, the responses to three episodes are analyzed;
(i) the aggregate capital size of the fund industry, (ii) the liquidation cost on a fund
hedge manager and (iii) the beliefs on the future prospect of the economy.

First, we examine the effect of the fund industry size on mispricing. Recall that
W0 is the aggregate capital size of hedge funds and X is the aggregate holdings by the
long-term holders in our model economy at the beginning of time 0. We assume that
before time 0, during which the asset is fairly priced, long-term holders’ capital X may
be transferred to hedge funds. The following theorem describes how mispricing in the
crisis equilibrium responds to the capital allocations in fund industry.

Theorem 6. Under Assumption 1, if q, s and W0 are sufficiently small, it holds that
dp0
dW0

> dp0
dX

> 0 and dp1b

dW0
> dp1b

dX
> 0 in a crisis equilibrium.

We find that the hedge fund capital W0 is more effective in alleviating the mispric-
ing than other types of capital X. More interestingly, the hedge fund capital has a
larger impact on price efficiency than the long-term holders’ demand. This implies that
transferring capital from long-term holders to hedge funds may induce higher efficiency.
This theoretical finding supports the argument by Stulz (2007) that hedge funds can
reduce mispricing more effectively than other funds. Agreeing to his view, Kokkonen
and Suominen (2015) empirically demonstrate that the aggregate size of hedge funds
is more important than that of mutual funds in reducing the misvaluation of U.S. indi-
vidual stocks. Furthermore, this theorem suggests that regulators need to be cautious
in implementing policies. For example, regardless of the necessity of regulating specu-
lative investments through the newly adopted rules after the financial crisis such as the
Volcker Rule, our model shows the possibility that it may lead to more severe crisis by
limiting bank investments in hedge funds.

However, Theorem 6 needs to be interpreted carefully. As is shown in the previous
section, hedge funds can destabilize a financial market because hedge funds generate a
crisis equilibrium in which a crisis may arise without any exogenous shock. Theorem 6
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assumes a crisis equilibrium realizes and then shows hedge funds mitigate the mispricing.
When a calm equilibrium realizes, Theorem 6 is silent.

The two opposing effects of hedge funds on financial markets, as described in The-
orems 4 and 6, reflect controversial views on hedge funds in literature. While Stulz
(2007) and Kokkonen and Suominen (2015) take a stance that hedge funds reduce mar-
ket inefficiency, Brunnermeier and Nagel (2004) and Griffin et al. (2011) suggest that
hedge funds might accentuate mispricing of technology stocks in the tech bubble\burst
from 1997 to 2002.16 Ahn et al. (2018) propose this dual-effect of arbitrageurs as their
inherent nature with the supporting evidence in fixed-income arbitrage markets.

Next, we examine the reaction to liquidation costs. In particular, we are interested
in the monetary and non-monetary incentives such as legal damages or job search
frictions, which is captured by C in our model economy. Recalling general public’s
criticism on that bankers or traders did not suffer much but also receive bonuses from
bailout money given to financial institutions in the middle of the financial crisis,17 we
consider the effect of C in our model as a highly topical issue.

As manifested in the following theorem, our model predicts that as the liquidation
cost C increases, the proportion h of aggressive hedge funds decreases and hence more
hedge funds survive in a crisis (state b), pushing the price in a crisis toward the fair
value. However, the pre-crisis price will diverge away from the fair value.

Theorem 7. Under Assumption 1, if q, s and W0 are sufficiently small, it holds that
dh
dC

< 0, dp0
dC

< 0 and dp1b

dC
> 0 in a crisis equilibrium.

The theorem means that if the collapse of a hedge fund is costlier to the hedge
fund manager, a crisis will be less severe at the cost of more severe mispricing in a
pre-crisis period. If managers of liquidated funds do not suffer much but receive even
bonuses during a crisis, C may be viewed as small and Theorem 7 implies that the
crisis mispricing will be severe but, in a pre-crisis period, the asset price will be closer
to the fair value. Another instance of regulations making C larger is to make it harder
to start another hedge fund after shutting down one. Under this regulation, the market
may be depressed in the pre-crisis period but the benefit from such a strict policy will
realize in the case of a crisis.

16Khandani and Lo (2011) point out the Quant Meltdown in August 2007 was caused by the inter-
action among hedge funds adopting similar strategies. Ang et al. (2011) track the deleveraging process
of hedge funds over the financial crisis from 2007 to 2009.

17For example, see the article in the following link: https://www.nytimes.com/2009/07/31/
business/31pay.html.
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Lastly, our model predicts that the aggregate leverage of hedge funds at time 0 is
lower in a crisis equilibrium than in a calm equilibrium. Recall that p0 = 1 in a calm
equilibrium and p0 < 1 in a crisis equilibrium. Then, in conjunction with multiple
equilibria (Theorems 2-4), the market clearing condition at time 0 yields the following
corollary.

Corollary 1. The aggregate leverage of hedge funds at time 0,
∫
li,0di, is lower in a

crisis equilibrium than in a calm equilibrium.

This corollary predicts low leverage of hedge funds prior to a financial crisis. It implies
that in a crisis equilibrium, the hedge funds do not take enough leverage to support
the fair price when a financial crisis (state b) did not happen yet and no hedge fund is
liquidated (time 0). Interestingly, this finding provides one of the potential causes for
the empirical observations by Ang et al. (2011). They show leverage in the hedge fund
industry decreases prior to the start of the financial crisis in mid-2007.18 According to
the prediction of our model, lower leverage, especially driven by some defensive hedge
funds, may indicate an immediate crisis.

5 Conclusion

There are two unique characteristics of hedge funds driving the main results of our
model: the redemption risk and the heavy reliance on leverage. As argued by Liu
and Mello (2011), equity in hedge funds is fragile, because it can be redeemed at the
request of investors, whereas equity in banks is locked in permanently. According to
the empirical study of Buraschi et al. (2014), hedge funds experience large outflows of
capital after experiencing 20% loss on average. In contrast, banks’ capital do not show
such a tendency.

In addition, leverage plays a central role in the hedge fund industry. Many hedge
funds rely heavily on leverage to enhance returns on assets which would not be suffi-
ciently high to attract funding, on an unlevered basis. Ang et al. (2011) estimate that
the average gross leverage across all hedge funds from December 2004 to October 2009
is 2.1. Excluding hedging funds in equity sector which rely less on leverage, this figure
increases to 4.8. Some funds such as fixed income arbitrage funds, show extremely large
leverage, well above 30.19

18See Fig.4 of Ang et al. (2011).
19At the beginning of 1998, the leverage ratio of the LTCM was greater than 25. See Lowenstein

(2000).
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In this paper, we demonstrate that hedge funds can initiate a financial crisis due
to these two unique features even in the absence of any exogenous shock. Such a crisis
arises as a result of coordination failure in the sense that a significant mass of fund
managers may exit the market simultaneously only because others do so.

In addition to the implications of our model stated in the section of introduction, we
want to stress the implication of our model for a market design. The crisis-proofness of
a particular security market could be associated with the relative portion of arbitragers
in the market. If the security is designed to attract a larger portion of arbitragers,
the security becomes rarely and less mispriced thanks to the active move of the ar-
bitragers. However, they may initiate the crisis itself. Note that the arbitragers are
extremely similar in identifying a trade opportunity and implementing it. They seize a
trade opportunity when the gap between the market price and its fair value widens and
unwind their positions if the gap contracts. Simply put, their investment strategies are
homogeneous and lack diversity. Furthermore, to monetize the arbitrage gains, they
need to act as a huddled mass. Thus, the payoff to each hedge fund is positively related
to how much portion of the hedge funds take the same action. In that sense, this is a
coordination game with strategic complementarities. This requirement for collective ac-
tions is destructive to the market once coordination is disrupted.20 As such, our model
delivers an important implication for the sustainability of the security market; the secu-
rity should be well designed to attract demand from diverse sets of investors who have
different investment strategies, different investment horizons, different redemption risk
and different leverages; the viability of the market depends on the balanced composition
of market participants.

20Chung et al. (2018) empirically investigate how the Japanese Floater (JF) market collapsed during
the financial crisis. The JF market is composed mainly of foreign relative value driven hedge funds so
that it is substantially lack of diversity in market participants. Even after the crisis, the market fails
to resurrect.
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A Proofs

We need the following lemma for the proofs below.

Lemma 10. In any equilibrium, U0 (li,0) in (10) satisfies that

U0 (li,0) ≥ βW0

for any i ∈ [0, 1] .

Proof Note that any fund manager can choose the strategy of the minimum leverage,
li,0 = li,1g = li,1b = −1, yielding Wi,2g = Wi,2b = W0, which in turn implies that
Ui,1g = Ui,1b = βW0. Hence, for U0 (li,0) with the optimal leverage li,0, it holds that

U0 (li,0) ≥ (1− q) βW0 + qβW0 = βW0,

proving the lemma. �

Proof of Lemma 1 Assume that p1b > 1. Since p1b is positive, some fund managers
have survived in state b. (Otherwise, p1b = 0 by (3).) Suppose the i-th fund manager
is one of them. He knows that for sure the price will decrease from state b in t = 1
to t = 2. Since the i-th fund manager’s compensation, αmax (Wi,2b −W0, 0) + βWi,2b,

is strictly increasing in Wi,2b and, from (8), Wi,2b is strictly decreasing in li,1b by the
assumption that p1b > 1, he will take li,1b = −1, the lowest leverage. This optimal
leverage is applied to every manager who has survived, implying p1b = 0 by (3). This
contradicts p1b > 1. Hence, p1b ≤ 1.

Assume that p1g > 1. From the identical logic above, it leads to a contradiction.
Hence, p1g ≤ 1.

Assume that p0 > 1. Since p1g ≤ 1 and p1b ≤ 1, the i-th fund manager knows that
the price will decrease from t = 0 to both states in t = 1. Note that if li,0 > −1, by
lowering li,0, he can strictly increase both Wi,1g and Wi,2b, in turn strictly increasing
his expected utility in (10). Hence, he will take the lowest leverage, -1. This leverage
choice is applied to all fund managers at t = 0, implying p0 = 0 by (1). This contradicts
p0 > 1. Hence, p0 ≤ 1. �

Proof of Theorem 2 Consider a strategy profile that all fund managers take the
leverage of li,0 = li,1g = 1−X

W0
− 1 ≤ min

(
l0, l1

)
and li,1b = 1−X(1−ε)

W0
− 1 ≤ l1. Given this
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strategy profile, the market clearing conditions (1)-(3) imply p0 = p1g = p1b = 1. Note
that the i-th fund manager’s investment decision does not affect the prices. Plugging
p0 = p1g = p1b = 1 into (10) gives

U0 (li,0) = (1− q) βW0 + qβW0 = βW0,

which does not depend on the i-th fund manager’s decision. Thus, he does not have
an incentive to deviate from his strategy. Therefore, we have a calm equilibrium. This
completes the proof. �

Proof of Lemma 2 First, assume that q and s are small enough so that

q < min
(

1
2 ,

1 + l1

2 + l0 + l1

)
(22)

and

s < 1−

(
1 + l1

)
W0

1−X . (23)

Assume p1b > p1g to show contradiction in the following steps.
Step 1. p1g < 1: This follows from p1b ≤ 1 (Lemma 1) and p1g < p1b (assumption).
Step 2. There exists fund i which is liquidated in state g: Because p1g < 1 and

p2 = 1, Wi,2g = Wi,1g
(
p2
p1g

(1 + li,1g)− li,1g
)

is strictly increasing in li,1g, implying that
any fund that has survived in state g takes li,1g = l1. Assume that there does not exists
any liquidation in state g. Then, it follows that

p1g (1−X) =
(
1 + l1

) ∫ 1

0
Wi,1gdi ≥

(
1 + l1

)
W0 (1− s) > (1−X) ,

where the first equality is due to the assumption of no liquidation, the first inequality
is due to the redemption rule and the last inequality is from (23). Hence, it holds
that p1g (1−X) > 1 − X, which contradicts p1g < 1. Thus, there should exists some
liquidation in state g.

Step 3. The fund i in Step 1 survives in state b: If the fund i in Step 2 is liquidated
also in state b, the payoff to the fund manager is −C, a contradiction to Lemma 10.

Step 4. There is no liquidation in state b: Assume that there exists fund j which
is liquidated in state b. Then, the fund j is also liquidated in state g because Wj,1g =(
W0

p1g

p0
(1 + li,0)−W0li,0

)
≤ Wj,1b =

(
W0

p1b

p0
(1 + li,0)−W0li,0

)
≤ W0 (1− s) . This con-

tradicts to Steps 2 and 3.
Step 5. p1b = 1 : From Lemma 1, it suffices to show that p1b < 1 leads to

a contradiction. Assume that p1b < 1. Because p1b < 1 and p2 = 1, Wi,2b =
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Wi,1b
(
p2
p1b

(1 + li,1b)− li,1b
)

is strictly increasing in li,1b, implying that any fund that
has survived in state b takes li,1b = l1. By Step 4, there is no liquidation in state b.
Then, it follows that

p1b (1−X) =
(
1 + l1

) ∫ 1

0
Wi,1bdi ≥

(
1 + l1

)
W0 (1− s) > (1−X) ,

where the first equality is due to Step 4, the first inequality is due to the redemption
rule and the last inequality is from (23). It gives p1b (1−X) > (1−X), a contradiction.

Step 6. p1g < p0 < p1b = 1 : If p0 ≤ p1g, there is no liquidation in state g,
contradicting Step 2. Hence, p0 > p1g. If p0 = p1b = 1, Ui,2g = Ui,1g = −C and
Ui,2b = Ui,1b = βW0 for the fund i in Step 2. Hence, the i-th fund manager has an
incentive to deviate to li,0 = −1, which guarantees Ui,1g = Ui,1b = βW0. Hence, p0 < 1.

Step 7. For the fund i in Step 2, li,0 = l0 : Because Ui,2g = Ui,1g = −C, the i-th
fund manager in Step 2 maximizes only Wi,2b = Wi,1b = W0

(
p1b

p0
(1 + li,0)− li,0

)
, which

is strictly increasing in li,0 when p0 < p1b = 1 (Step 6).
Step 8. The lemma holds: We show that Step 7 induces a contradiction. With

li,0 = l0, the fund i in Step 2 has the expected utility,

Ũ = −qC + (1− q)
(
α

(
W0

1
p0

(
1 + l0

)
−W0l0 −W0

)
+ β

(
W0

1
p0

(
1 + l0

)
−W0l0

))
.

Consider an alternative strategy li,0 = −1, li,1g = l1, which yields the expected utility

Û = q

(
α

(
W0

1
p1g

(
1 + l1

)
−W0l1 −W0

)
+ β

(
W0

1
p

(
1 + l1

)
−W0l1

))
+ (1− q) βW0.

Some algebras show that the two inequalities p1g < p0 (Step 6) and (22) imply Û > Ũ,

contradicting the optimality of li,0 = l0 (Step 7). �

Proof of Lemma 3 Assume that fund i is liquidated in state g, W0 (1− s) > Wi,1g.

From Lemma 2,

Wi,1g = W0

(
p1g

p0
(1 + li,0)− li,0

)
≥ W0

(
p1b

p0
(1 + li,0)− li,0

)
= Wi,1b.

Hence, the i-th fund is liquidated in both states, resulting in U0 (li,0) = −C. This
contradicts Lemma 10. Hence, the i-th fund is not liquidated in state b. �
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Proof of Lemma 4 Assume p1g 6= 1 by contradiction. Lemma 1 implies p1g < 1.
Pick an arbitrary fund i. Recall that fund i is not liquidated in state g by Lemma
3, i.e., Wi,1g ≥ W0 (1− s) . Then, Ui,1g in (4) is a strictly increasing function of Wi,2g.

Furthermore, with p1g < 1, Wi,2g, given by (5), strictly increases with li,1g, which in
turn leads to li,1g = l1 for all i ∈ [0, 1]. Because no fund is liquidated in state g by
Lemma 3 and the fair pricing is not supported, we have that

∫ 1

0
W0

(
1
p0

(1 + li,0)− li,0
)(

1 + l1
)
di < 1−X.

With the relationship
∫ 1
0 li,0di = p0(1−X)

W0
− 1 by (1), the inequality above can be written

as
((1− p0) (1−X) +W0)

(
1 + l1

)
< 1−X. (24)

Then,

1−X < W0
(
1 + l1

)
≤ ((1− p0) (1−X) +W0)

(
1 + l1

)
< 1−X.

The first inequality holds by Assumption 1, the second inequality is due to Lemma 1
and the last inequality is from (24). This is a contradiction and we have proved p1g = 1.
�

Proof of Lemma 5 Because p1g = 1 (Theorem 1) and p2 = 1, the i-th fund manager
knows that the fund size will not change at t = 2. Hence, Wi,2g = Wi,1g, implying that

Ui,1g = αmax (Wi,2g −W0, 0) + βWi,2g = αmax (Wi,1g −W0, 0) + βWi,1g,

where Wi,1g = W0
(

1
p0

(1 + li,0)− li,0
)
. �

Proof of Lemma 6 Note that Ui,1b = αmax (Wi,2b −W0, 0) + βWi,2b from (7) is
strictly increasing in Wi,2b and that Wi,2b = Wi,1b

((
1
p1b
− 1

)
li,1b + 1

p1b

)
is strictly in-

creasing in li,1b when p1b < 1. Hence, the i-th fund which survives in state b will take
the optimal leverage of l1, proving the lemma. �
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Proof of Lemma 8 For the i-th fund to be liquidated in state b, it holds that
Wi,1b < W0 (1− s) , implying that Ui,1b = −C. Note that p1g = 1 from Lemma 4.
Then, the i-th fund manger’s expected utility (10) can be written as follows:

U0 (li,0) = (1− q)Ui,1g + qUi,1b

= (1− q) (αmax (Wi,2g −W0, 0) + βWi,2g)− qC
= (1− q) ((α + β)Wi,2g − αW0)− qC

= (1− q)
(

(α + β)W0

(
1
p0
− 1

)
(1 + li,0) + βW0

)
− qC

where the third and fourth equalities hold becauseWi,2g = Wi,1g = W0
(

1
p0

(1 + li,0)− li,0
)
>

W0. Note that the above is strictly increasing in li,0 with p0 < 1, proving the lemma.
�

Proof of Lemma 9 Assume that no fund survives in state b in some equilibria.
Consider two cases of (i) p1g = 0 and (ii) p1g > 0.

Step 1. p0 > 0: From (1), p0 = 0 implies almost every fund takes li,0 = −1, no
position in the asset at t = 0. This contradicts the assumption that no fund survives
in state b. Hence, p0 > 0.

Step 2. p1b = 0: Since no fund survives in state b, this is implied by (3).
Step 3. Ui,1b = ∞ if the i-th fund manager survives: Note that for any li,1b > −1,

(8) implies Wi,2b =∞ by Step 2 and hence Ui,1b =∞ from (7).
Step 4. If p1g = 0, every fund is liquidated in state g : Assume that some funds

survive in state g. That is, there exists a fund i such that Wi,1g ≥ W0 (1− s) . Fund i

maximizes the utility of (4), which is a strictly increasing in Wi,2 given by (5). Because
Wi,2g is infinite with any li,1b > −1, there should be a strictly positive demand. This
contradicts p1g = 0. Hence, no fund survives in state g.

Step 5. The lemma holds: If p1g = 0, U0 (li,0) = −C for all i ∈ [0, 1] because every
fund is liquidated in state g (Step 4) and in state b (assumption). If p1g > 0, U0 (li,0) is
finite for all i ∈ [0, 1] in the equilibrium because p1g > 0 (assumption), p0 > 0 (Step 1)
and every fund is liquidated in state b. Hence, for any nonnegative p1g, U0 (li,0) is finite
for all i ∈ [0, 1]. However, if the i-th fund manager deviates and takes li,0 = −1, he will
survive in state b, which gives U0 (−1) = (1− q)Ui,1g+qUi,1b ≥ − (1− q)C+qUi,1b =∞
by Step 3. This is a contradiction to the assumption that no fund survives in state b.
Hence, the lemma holds. �
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Proof of Theorem 1 (i) ⇒: Consider an equilibrium without liquidation. It will be
verified that p0 = p1b = p1g = 1. From Lemma 4, p1g = 1.

We show that p1b = 1. Assume p1b 6= 1 by contradiction. Lemma 1 implies p1b < 1,
which in turn leads to li,0 = l1 from Lemma 6. Hence, we have that

∫ 1

0
W0

(
1
p0

(1 + li,0)− li,0
)(

1 + l1
)
di < 1−X (1− ε) .

Because
∫ 1

0 li,0di = p0(1−X)
W0

− 1 by (1), the inequality can be written as

((1− p0) (1−X) +W0)
(
1 + l1

)
< 1−X (1− ε) . (25)

Then,

1−X (1− ε) ≤ W0
(
1 + l1

)
≤ ((1− p0) (1−X) +W0)

(
1 + l1

)
< 1−X (1− ε) .

The first inequality holds by Assumption 1, the second inequality is due to Lemma 1
and the last inequality is from (25). This is a contradiction and we have proved p1b = 1.

Lastly, we show p0 = 1. Using Lemma 1, assume p0 < 1 by contradiction. Then, by
(1) and Assumption 1,

∫ 1
0 (1 + li,0) di = p0(1−X)

W0
< 1−X

W0
≤
(
1 + l0

)
. Because li,0 ≤ l0 for

all i ∈ [0, 1], it should hold that li,0 < l0 for some i ∈ [0, 1]. Fix this i. Recalling that
p1b = p1g = 1, implying no liquidation at t = 1, we compute (10), the expected utility
of fund manager i. Some algebras give

U0 (li,0) = (α + β)W0

(
1
p0

(1 + li,0)− li,0
)
− αW0.

Because p0 < 1, from Lemma 8, li,0 = l0 is optimal. This is a contradiction, which
proves p0 = 1.

(i) ⇐: Because p0 = p1g = p1b, it holds that Wi,1b = Wi,1g = W0 ≥ W0 (1− s) ,
implying that there is no liquidation.

(ii) ⇒: Consider an equilibrium where some funds are liquidated. Let the i-th fund
be one of the liquidated funds. We will show that p1b < p0 < p1g = 1. From Lemma 4,
p1g = 1. Hence, it suffices to show that p1b < p0 < 1.

We compute his expected utility at time 0 defined in (10). From Lemma 3, fund i

is liquidated only in state b. Because Ui,1b = −C, the expected utility of the i-th fund
manager is expressed as:

U0 (li,0) = (1− q) (αmax (Wi,2g −W0, 0) + βWi,2g)− qC ≥ βW0,
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where the last inequality is from Lemma 10. The inequality implies Wi,2g > W0 because
otherwise the inequality does not hold. Furthermore, because p1g = 1 implies Wi,2g =
Wi,1g, we have that

W0 < Wi,2g = Wi,1g = W0

(
1
p0

(1 + li,0)− li,0
)
,

implying that

(1 + li,0)
(

1
p0
− 1

)
> 0.

Because li,0 ≥ −1,
p0 < 1. (26)

Furthermore, if p1b ≥ p0, no fund will face a loss in state b, contradicting the assumption
that the i-th fund is liquidated. Hence, it holds that

p1b < p0. (27)

From (26) and (27), we have that p1b < p0 < 1. With Lemma 4, this completes the
proof.

(ii) ⇐: This is implied by the contrapositive of (i) ⇒ . �

We need following lemmas to prove Theorems 3 and 4. Recall that l∗ =
p1b
p0
−(1−s)

1− p1b
p0

and fund manager i is not liquidated if li,0 ≤ l∗.

Lemma 11. Under Assumptions 1-2 and for a sufficiently small s or s = 0, any
equilibrium satisfies

max (Wi,2g −W0, 0) = Wi,2g −W0 for any li,0 ∈
[
−1, l0

]
and

max (Wi,2b −W0, 0) = Wi,2b −W0 for any li,0 ∈ [−1, l∗] .

Proof We prove the lemma in two parts by classifying equilibria into those without
any liquidation and those with some liquidation.

For the rest of the proof, we assume that

0 ≤ s <
1(

α+β
β+ C

W0

) (
1−q
q

) (
1+l0
1+l1

)
+ 1

, (28)

implying that
1 + l0(

β+ C
W0

α+β

)
q

1−q + 1 + l0

<
1 + l1

s
1−s + 1 + l1

. (29)
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Clearly, the RHS of (28) is positive.
First, consider an equilibrium where no fund is liquidated. Theorem 1 shows that

p0 = p1g = p1b = 1, implying Wi,2g = Wi,2b = W0 for any li,0 ∈
[
−1, l0

]
. Hence, the two

equations in the lemma are valid.
Second, consider an equilibrium where some funds are liquidated. Due to Lemma

3, those funds are liquidated only in state b. From Theorem 1, p0 < p1g = 1. Hence,
for any i ∈ [0, 1] and li,0 ∈

[
−1, l0

]
,

Wi,1g = W0

(
1
p0

(1 + li,0)− li,0
)

= W0

(
1
p0
− 1

)
(1 + li,0) +W0 ≥ W0,

proving the first equation in Lemma 11.
Turn to the second equation in the lemma. By assumption, some funds are liqui-

dated, and by Lemma 9, some funds survive in state b. Also, from Theorem 1, it holds
that p1b < p0 < p1g = 1. Take any i, j ∈ [0, 1] such that the i-th fund is liquidated
and the j-th fund survives in state b. Then, lj,0 ∈ [−1, l∗] and it suffices to show that
Wj,2b ≥ W0.

Because fund manager j survives in state b, Wj,1b ≥ (1− s)W0. Also from Lemma
6, lj,1b = l1 is the optimal choice and hence we need to prove that

(1− s)
(

1
p1b

(
1 + l1

)
− l1

)
≥ 1, (30)

which implies that Wj,2b = Wj,1b
(

1
p1b

(
1 + l1

)
− l1

)
≥ W0.

For the i-th fund manager which is liquidated, li,0 = l0 from Lemma 8. Furthermore,
Lemma 10 implies

U0 (li,0) = (1− q)
(

(α + β)W0

(
1
p0
− 1

)(
1 + l0

)
+ βW0

)
− qC ≥ βW0.

Rearranging the terms in the inequality, we have

p0 ≤
1 + l0(

β+ C
W0

α+β

)
q

(α+β)(1−q) + 1 + l0

. (31)

Then, combining (29), (31) and Theorem 1 yields

p1b <
1 + l1

s
1−s + 1 + l1

.

This implies (30) and the proof is completed. �
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Lemma 12. If
W0 < W 0 ≡

1−X (1− ε)
1 + l1

+ 1−X
1 + l0

, (32)

it holds that

1
1−X (1− ε) (1− h)W0

(
1 + l1

)
<

1
1−XhW0

(
1 + l0

)
< 1

for any h ∈
[
h, h

]
where h and h are given by

h ≡
1−X

1−X(1−ε)

(
1+l1
1+l0

)
1 + 1−X

1−X(1−ε)

(
1+l1
1+l0

) > 0 (33)

and
h ≡ 1−X

W0
(
1 + l0

) . (34)

Moreover, h < h.

Proof Note that

1
1−X (1− ε) (1− h)W0

(
1 + l1

)
<

1
1−XhW0

(
1 + l0

)
if and only if

h >

1−X
1−X(1−ε)

(
1+l1
1+l0

)
1 + 1−X

1−X(1−ε)

(
1+l1
1+l0

) = h.

Also, 1
1−XhW0

(
1 + l0

)
< 1 if and only if

h <
1−X

W0
(
1 + l0

) = h. (35)

Lastly, from (32),

W0 <
1−X (1− ε)

1 + l1
+ 1−X

1 + l0
,

implying

h =
1−X

1−X(1−ε)

(
1+l1
1+l0

)
1 + 1−X

1−X(1−ε)

(
1+l1
1+l0

) < 1−X
W0

(
1 + l0

) = h.

Hence, the interval of
(
h, h

)
is well-defined, which completes the proof. �
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Lemma 13. Assume that W0 < W 0 where W 0 is defined in (32). Then, it holds that

q ≡ min

(
1
W0

(
1−X(1−ε)

1+l1
+ 1−X

1+l0

)
− 1

) (
l0 + 1

)
(

1
W0

(
1−X(1−ε)

1+l1
+ 1−X

1+l0

)
− 1

) (
2 + l0 + l1

)
+

C
W0

+β
α+β

> 0. (36)

In addition, if q < q, the following holds:

q

 1
g (h)

(
1 + l1

)
− l1 +

C
W0

+ β

α + β

− (1− q)
(

1
f (h) − 1

)(
l0 + 1

)
< 0,

where f (h) = 1
1−XhW0

(
1 + l0

)
, g (h) = 1

1−X(1−ε) (1− h)W0
(
1 + l1

)
, and h is given in

(33).

Proof First, we show that q in (36) is strictly positive. Because W 0 < W 0 =
1−X(1−ε)

1+l1
+ 1−X

1+l0
from (32), it follows that

1
W0

(
1−X (1− ε)

1 + l1
+ 1−X

1 + l0

)
> 1, (37)

which implies q in (36) is strictly positive.
Next, turn to the latter inequality. Some algebras give

q

 1
f (h)

(
1 + l1

)
− l1 +

C
W0
− α

α + β

− (1− q)
(

1
g (h) − 1

)(
l0 + 1

)

=q
(λ− 1)

(
2 + l0 + l1

)
+

C
W0

+ β

α + β

+ (λ− 1)
(
l0 + 1

)

<q

(λ− 1)
(
2 + l0 + l1

)
+

C
W0

+ β

α + β

+ (λ− 1)
(
l0 + 1

)
= 0,

where λ = 1
W0

(
1−X(1−ε)

1+l1
+ 1−X

1+l0

)
> 1 and the last inequality and equality are from (37).

This completes the proof of the second claim in the lemma. �

Lemma 14. Suppose f , g and v be functions on (0, 1)× [0,∞) that satisfy

f (h, s) = 1
1−XW0

(
1 + hl0 + (1− h) v (h, s)

)
g (h, s) = 1

1−X (1− ε)W0 (1− h) (1− s)
(
1 + l1

)
and

v (h, s) =
g(h,s)
f(h,s) − (1− s)

1− g(h,s)
f(h,s)

.

If 0 < g (h0, 0) < f (h0, 0) < 1, then f (h, s) and g (h, s) are continuously differentiable
and 0 < g (h, s) < f (h, s) < 1 in a neighborhood of (h0, 0) .
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Proof It is obvious that g (h, s) is continuously differentiable. Plugging v (h, s) to
f (h, s) yields the equation,

f (h, s) = W0

1−X

(
1 + hl0 + (1− h) f (h, s) (1− s)− g (h, s)

g (h, s)− f (h, s)

)
.

Under the assumption that f (h, s) > g (h, s), f (h, s) has a unique solution,

f (h, s) =
B +

√
B2 − 4W0

1−Xh
(
1 + l0

)
g (h, s)

2 , (38)

where B = W0
1−X

(
(1− h) s+ h

(
1 + l0

))
+ g (h, s). (In fact, some algebras show that

B2 − 4W0
1−Xh

(
1 + l0

)
g (h, s) ≥ 0 for any s ≥ 0.) Hence, the expression (38) along

with the continuously differentiability of g (h, s) confirms that f (h, s) is continuously
differentiable in a neighborhood of (h0, 0). Also, the inequalities 0 < g (h, s) < f (h, s) <
1 follow from the continuity of f (h, s) and g (h, s) and the inequalities 0 < g (h0, 0) <
f (h0, 0) < 1. �

Lemma 15. Assume that s is sufficiently small. Given p0 and p1b, the expected utility
of the i-th fund manger at t = 0 can be written as

U (li,0) = (δ0 + δ1li,0) · 1 (li,0 ≤ l∗) + (γ0 + γ1li,0) · 1 (li,0 > l∗) , (39)

where l∗ is given in (12),

δ0 = W0

[
(1− q) 1

p0
+ q

(
1
p1b

+
(

1
p1b
− 1

)
l1

)
p1b

p0

]
, (40)

δ1 = W0

[
(1− q)

(
1
p0
− 1

)
+ q

(
1
p1b

+
(

1
p1b
− 1

)
l1

)(
p1b

p0
− 1

)]
, (41)

γ0 = W0

(1− q) 1
p0
− q

C
W0
− α

α + β

 and (42)

γ1 = W0 (1− q)
(

1
p0
− 1

)
. (43)

Proof Assume that s is sufficiently small so that Lemma 11 applies.
Note that (1− q)Ui,1g + qUi,1b is equivalent to U (li,0) , where

U (li,0) ≡ 1
α + β

((1− q)Ui,1g + qUi,1b + αW0) . (44)
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In addition, from that

Ui,1g = (α + β)Wi,2g − αW0,

Wi,2g = Wi,1g = W0

((
1
p0
− 1

)
li,0 + 1

p0

)
,

Ui,1b = ((α + β)Wi,2b − αW0) · 1 (li,0 ≤ l∗)− C · 1 (li,0 > l∗) ,

Wi,2b = Wi,1b

((
1
p1b
− 1

)
l1 + 1

p1b

)
and

Wi,1b=W0

((
p1b

p0
− 1

)
l1 + p1b

p0

)
,

some algebras show that (39) holds. �

Proof of Theorems 3 and 4 The proof strategy is as follows. First, the existence
of a crisis equilibrium will be proved when s = 0. Then, it will be shown that the claim
holds in a neighborhood of s = 0, or s ∈ [0, s) for a sufficiently small s > 0 which is to
be determined below.

For the rest of the proof, we assume that 0 < W0 ≤ W 0 where W 0 is given by (32).
Besides, we assume that 0 < q < q where q = min

(
1
2 ,

1+l1
2+l0+l1

, q
)

and q is given by (36).
Note that such q satisfies the conditions for Lemmas 2 and 13. Resorting to Lemma
3, we do not consider the liquidation in state g. Also, from Lemma 4, we take the fair
pricing p1g = 1 in state g as given and use the expression (11) for Ui,1g. For each case
of s = 0 and s > 0, we will verify p1g = 1 in a crisis equilibrium.

Set s = 0. Note that from Lemma 15, we consider the expected payoff of (39) as
the maximizing objective of fund managers. We show that a crisis equilibrium can be
supported by the bang-bang strategy profile in Definition 3 with l∗ = −1 and a properly
chosen h.

If the bang-bang strategy profile is implemented, the market clearing conditions (1)
and (3) allow us to view the prices as functions of h:

p0 (h) = 1
1−XhW0

(
1 + l0

)
(45)

and
p1b (h) = 1

1−X (1− ε) (1− h)W0
(
1 + l1

)
. (46)
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We will show that ∆ (h) = 0 for some h ∈ (0, 1), where ∆ (h) ≡ U (−1; p0 (h) , p1b (h))−
U
(
l0; p0 (h) , p1b (h)

)
and U(·) is defined in (39) and here we indicate dependence on

p0 (h) and p1b (h) explicitly. The bang-bang strategy profile with h0 such that ∆ (h0) = 0
will turn out to constitute a crisis equilibrium in the following steps.

Recall that h and h are defined in Lemma 12.
Step 1. 0 < p1b (h) < p0 (h) < 1 if h ∈

(
h, h

)
: Apply the definition of p0 (h) and

p1b (h) in (45) and (46), respectively, to Lemma 12.
Step 2. We have

∆ (h) = W0

q
 1
p1b (h)

(
1 + l1

)
− l1 +

C
W0
− α

α + β

− (1− q)
(

1
p0 (h) − 1

)(
l0 + 1

)
for h ∈ [0, 1]: Clear by (40)-(43).

Step 3. ∆ (h) < 0 < ∆
(
h
)
: In Lemma 13, f (h) = p1b (h) and g (h) = p0 (h). Thus,

the same lemma implies that ∆ (h) < 0. On the other hand, setting h = h and utilizing
Lemma 12 give

p0
(
h
)

= 1
1−XhW0

(
1 + l0

)
= 1 > 1

1−X (1− ε)
(
1− h

)
W0

(
1 + l1

)
= p1b

(
h
)
.

Then,

∆
(
h
)

=W0

q
 1
p1b

(
h
) (1 + l1

)
− l1 +

C
W0
− α

α + β

− (1− q)
 1
p0
(
h
) − 1

(l0 + 1
)

=W0q

 1
p1b

(
h
) − 1

(1 + l1
)

+ C

W0 (α + β) + β

α + β

 > 0. (47)

The second equality holds because p0
(
h
)

= 1
1−XhW0

(
1 + l0

)
= 1. To see the inequality,

note that
1 > 1

1−X (1− ε)
(
1− h

)
W0

(
1 + l1

)
= p1b

(
h
)

by Lemma 12.
Step 4. ∆ (h0) = 0 for some h0 ∈

(
h, h

)
and such h0 is unique: By Step 3 and the

continuity of ∆ (h), there exists h0 ∈
(
h, h

)
such that ∆ (h0) = 0. Furthermore, since

p0 (h) is strictly increasing in h and p1b (h) is strictly decreasing in h, Step 2 implies

∂∆ (h)
∂h

> 0 where h ∈
[
h, h

]
. (48)
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Thus, uniqueness is proved.
Step 5. The strategy profile is a crisis equilibrium: Set h = h0. Since ∆ (h0) = 0,

U (−1; p0 (h0) , p1b (h0)) = U
(
l0; p0 (h0) , p1b (h0)

)
. Note that p0 (h0) < 1 from Step 1

implies that γ1 > 0 from (43). Because l∗ = −1 for s = 0, U (li,0) = (γ0 + γ1li,0) ·
1 (li,0 > l∗) is strictly increasing in li,0 for li,0 ∈

(
−1, l0

]
. Thus, U (li,0) ≤ U (−1) =

U
(
l0
)

for any li,0 ∈
[
−1, l0

]
, showing that fund manager i does not have an incentive

to deviate. Finally, we show that the fair pricing can hold in state g with the bang-bang
strategy profile with h = h0. If the fair pricing holds in state g, the aggregate wealth in
state g is

∫ 1

0
Wi,1gdi = h0W0

(
1

p0 (h0)
(
1 + l0

)
− l0

)
+ (1− h0)W0 ≥ W0,

where the inequality is from p0 (h0) < 1 (Step 1). Hence, the fair price can be supported
by taking the uniform leverage l = 1∫ 1

0 Wi,1gdi
−1 < 1

W0
−1 ≤ l1 across all fund managers.

Therefore, the strategy profile is an equilibrium and Step 1 implies that 0 < p1b (h) <
p0 (h) < 1, which in turn shows that it is a crisis equilibrium by Theorem 1.

Next, we examine the existence of a crisis equilibrium when s > 0. We analyze a
crisis equilibrium around the neighborhood of s = 0 such that Lemmas 2 and 11 still
hold. From Lemma 11, we consider the payoff of (39).

For the ease of analysis, we classify the equilibria at s = 0 into two cases, δ1 > 0
and δ1 ≤ 0 where δ1 is given by (41).

First, we consider the case where δ1 ≤ 0 at (h, s) = (h0, 0). We will show that the
equilibrium strategy profile and prices for s = 0 are also an equilibrium for s > 0. For
s = 0, we have shown that the bang-bang strategy profile with h = h0 is an equilibrium.
Let p0 and p1b denote the equilibrium prices for s = 0.

We show that p0 and p1b clear the markets for a sufficiently small s > 0. Because (1)
does not involve s, p0 satisfies (1). Take s > 0 such that l∗ =

p1b
p0
−(1−s)

1− p1b
p0

= −1+ s
1− p1b

p0
< l0

for any s < s. Then, the h0 proportion liquidate in state b, which is the same as in
s = 0. Thus, p1b satisfies (3).

We show that U (−1) = U
(
l0
)
≥ U (li,0) for li,0 ∈

[
−1, l0

]
to claim the fund

managers do not have incentives to deviate. We use (39). The assumption δ1 ≤ 0
implies that U (−1) ≥ U (li,0) for li,0 ≤ l∗. Since p0 < 1, we have γ1 > 0, implying
that U

(
l0
)
≥ U (li,0) for li,0 ∈

(
l∗, l0

]
. The property U (−1) = U

(
l0
)

comes from the
construction of h0.

Therefore, if δ1 ≤ 0 at (h, s) = (h0, 0), there is a crisis equilibrium for s > 0.
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The second case is δ1 > 0 at (h, s) = (h0, 0). The proof idea is as follows. We
restrict our attention to the bang-bang strategy profile in Definition 3 with l∗ = l∗: the
h proportion of fund managers (indexed by i) take li,0 = l0 and liquidate in state b, and
the remaining 1 − h proportion (indexed by j) take (lj,0, lj,1 (b)) =

(
l∗, l1

)
. Like what

we did in the case s = 0, we define

∆ (h, s) = U (l∗; p0, p1b)− U
(
l0; p0, p1b

)
.

Then, we show hs satisfying ∆ (hs, s) = 0 exists and the suggested strategy profile with
h = hs yields a crisis equilibrium.

We express dependence of l∗, p0 and p1b on (h, s) explicitly. Denoting l∗ in (12) as
a function of prices gives

l∗ (h, s) =
p1b(h,s)
p0(h,s) − (1− s)

1− p1b(h,s)
p0(h,s)

. (49)

The prices satisfy the market clearing conditions (1) and (3):

p0 (h, s) = 1
1−XW0

(
1 + hl0 + (1− h) l∗ (h, s)

)
and (50)

p1b (h, s) = 1
1−X (1− ε) (1− h) (1− s)W0

(
1 + l1

)
. (51)

The equality (51) holds because, in state b, the (1− h) fund managers survive with
Wi,1b = W0

(
p1b

p0
(1 + l∗)− l∗

)
= (1− s)W0.

Then, we can write ∆ (h, s) as a function of (h, s) explicitly. Use (39)-(43) along
with the above expressions to write ∆ (h, s) as follows:

∆ (h, s)
=U (l∗ (h, s))− U

(
l0
)

= (δ0 + δ1l
∗ (h, s))−

(
γ0 + γ1l0

)
(52)

= (δ0 − γ0) + (δ1 − γ1) l∗ (h, s)− γ1
(
l0 − l∗ (h, s)

)
=W0q

(
1

p1b (h, s) +
(

1
p1b (h, s) − 1

)
l1

)(
p1b (h, s)
p0 (h, s) +

(
p1b (h, s)
p0 (h, s) − 1

)
l∗ (h, s)

)

+W0q

 C
W0
− α

α + β

−W0 (1− q)
(

1
p0 (h, s) − 1

)(
l0 − l∗ (h, s)

)
. (53)

The following steps show that there exists a crisis equilibrium.
Step 1. ∆ (h, s) and l∗ (h, s) are continuously differentiable and 0 < p1b (h, s) <

p0 (h, s) < 1 in a neighborhood of (h0, 0): We have shown that 0 < g (h0, 0) < f (h0, 0) <
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1 from a crisis equilibrium with s = 0. Lemma 14 implies p0 (h, s) and p1b (h, s) are
continuously differentiable with respect to (h, s) and 0 < p1b (h, s) < p0 (h, s) < 1 in a
neighborhood of (h0, 0). Thus, l∗ (h, s) is a continuously differentiable function of (h, s)
and so is ∆ (h, s).

Step 2. l∗ (h, s) ∈
[
−1, l0

]
in a neighborhood of (h0, 0): Note that the continuously

differentiability of p1b (h, s) and p0 (h, s) from Lemma 14 implies that ∂l∗(h,s)
∂s
|s=0 =

1
1− p1b(h,s)

p0(h,s)
> 0 when h is close to h0. Also, since l0 > −1, the continuity of l∗ (h, s) (Step

1) implies that −1 ≤ l∗ (h, s) < l0 in a neighborhood of (h0, 0).
Step 3. U (l∗) ≥ U (li,0) for li,0 ∈ [−1, l∗] in a neighborhood of (h0, 0): Note that

[−1, l∗] is non-empty by Step 2. We utilize the property that δ1 > 0 at (h0, 0). From the
expression of δ1 in (41), we find that δ1 is continuous in p0 and p1b if p0 > 0 and p1b > 0.
By the continuity of p0 (h, s) and p1b (h, s) in (h, s) around (h0, 0) , verified in Lemma
14, we can always find a neighborhood of (h0, 0) such that δ1 > 0. This implies U (l∗) ≥
U (li,0) for li,0 ∈ [−1, l∗] .

Step 4. There is s > 0 such that there exists a continuously differentiable function hs
of s such that ∆ (hs, s) = 0 for all s ∈ [0, s): By invoking the implicit function theorem,
we conclude that there exist a continuously differentiable function hs and s > 0 such
that

∆ (hs, s) = 0

for any s ∈ [0, s) .
Step 5. The suggested strategy profile constitutes a crisis equilibrium: Consider the

bang-bang strategy profile in Definition 3 with h = hs and l∗ = l∗. From Step 4, we
know that U (l∗) = U

(
l0
)
. Furthermore, Step 3 shows that U (l∗) ≥ U (li,0) for li,0 ≤ l∗.

Also, since p0 (hs, s) < 1 from p0 (h0, 0) < 1 and the continuity of p0 (h, s) in Lemma
14, we have γ1 > 0, implying that U

(
l0
)
> U (li,0) for li,0 ∈

(
l∗, l0

)
. Combining these

findings, we have U (l∗) = U
(
l0
)
≥ U (li,0) for li,0 ∈

[
−1, l0

]
, verifying that no fund

manager has an incentive to deviate from the bang-bang strategy profile. Finally, we
show that the fair pricing can hold with the bang-bang strategy profile with h = hs. If
the fair pricing holds in state g, the aggregate wealth in state g is
∫ 1

0
Wi,1gdi = h0W0

(
1

p0 (hs, s)
(
1 + l0

)
− l0

)
+(1− h0)W0

(
1

p0 (hs, s)
(1 + l∗)− l∗

)
≥ W0,

where the inequality is from p0 (hs, s) < 1 (Step 1). Hence, the fair price can be
supported by taking the uniform leverage l = 1∫ 1

0 Wi,1gdi
−1 < 1

W0
−1 ≤ l1 across all fund

managers. From Step 1, we have 0 < p1b (hs, s) < p0 (hs, s) < 1, implying that there
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exist liquidations by Theorem 1. Hence, the bang-bang strategy profile constitutes a
crisis equilibrium. �

Proof of Theorem 5 Theorem 2 guarantees the existence of a calm equilibrium.
Hence, it suffices to show a crisis equilibrium does not exist under when q is sufficiently
large.

Assume that a crisis equilibrium exists and set q is close to 1 to show contradiction
in the following steps.

Step 1. If no fund is liquidated in state b, p1b = 1: Set li,1 = −1+1/ W0
1−X(1−ε)

∫ 1
0

(
1
p0

(1 + li,0)− li,0
)
di <

l1, where the equality is from p0 < 1 and Assumption 1. With the given li,1, p1b = 1.
Step 2. There exists δ > 0 such that p0 > δ: Otherwise, p1b = 1 from Step 1.
Step 3. No fund is liquidated in state b: If fund i is liquidated, Ui,0 is close to −C

because q is close to 1 and p0 is bounded away from zero (Step 2).
Step 4. p1b = 1: Combine Steps 1 and 3.
Step 5. The theorem holds: Step 4 contradicts that a crisis equilibrium exists. �

The following lemma is needed for the proof of the remaining theorems.

Lemma 16. Assume s = 0. Let θ be any parameter in the model. Then, it holds that

∂∆ (h)
∂θ

+ ∂∆ (h)
∂h

dh

dθ
= 0,

where

∆ (h) = q

 1
p1b (h)

(
1 + l1

)
− l1 +

C
W0
− α

α + β

− (1− q)
(

1
p0 (h) − 1

)(
l0 + 1

)

p0 (h) =
W0h

(
1 + l0

)
1−X

p1b (h) =
W0 (1− h)

(
1 + l1

)
1−X (1− ε) .

and that
∂∆ (h)
∂h

= q
1−X (1− ε)
(1− h)2W0

+ (1− q) 1−X
h2W0

> 0. (54)

Proof In the proof of Theorem 3, it is shown that the bang-bang strategy profile
with h such that ∆ (h) = 0 constitutes a crisis equilibrium. From the implicit function
theorem, it holds that

∂∆ (h)
∂θ

+ ∂∆ (h)
∂h

dh

dθ
= 0.
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Also, from the chain rule, it follows that
∂∆ (h)
∂h

= −q 1
p1b (h)2

(
1 + l1

) ∂p1b (h)
∂h

+ (1− q) 1
p2

0 (h)
(
l0 + 1

) ∂p0 (h)
∂h

.

= q
1−X (1− ε)
(1− h)2W0

+ (1− q) 1−X
h2W0

> 0.

This completes the proof of the lemma. �

Lemma 17. Under Assumption 1, if q, s and W0 are sufficiently small, it holds that
dp0
dX

> 0 and dp1b

dX
> 0 in a crisis equilibrium.

Proof First, we prove the lemma at s = 0. Set s = 0. Also, assume that q is small
enough to satisfy

q < 1− h, (55)

where h is defined in (34). Note that the RHS of (55) is strictly positive. Also, recall
that h < h at s = 0 from the proof of Theorem 3. From Lemma 16, it holds that

∂∆ (h)
∂X

+ ∂∆ (h)
∂h

dh

dX
= 0. (56)

Some algebras show that
∂∆ (h)
∂X

= −q 1
p1b (h)2

(
1 + l1

) ∂p1b (h)
∂X

+ (1− q) 1
p2

0 (h)
(
l0 + 1

) ∂p0 (h)
∂X

= −q (1− ε)
W0 (1− h) + (1− q) 1

W0h
. (57)

We find that ∂∆(h)
∂X

> 0 because
∂∆ (h)
∂X

≥ −q 1
W0 (1− h) + (1− q) 1

W0h
= 1
W0

(
−q 1

(1− h) + (1− q) 1
h

)

≥ 1
W0

( −q
1− h

+ 1− q
h

)
= 1
hW0

(
1− q

1− h

)
> 0, (58)

where the first inequality is from (1− ε) ≤ 1, the second inequality is from h < h and
the last inequality is from (55).

Next, we show that − dh
dX

< h
1−X . By plugging (57) and (54) to (56) and rearranging

terms, we have that

− dh
dX

=
∂∆(h)
∂X
∂∆(h)
∂h

=
−q (1−ε)

(1−h) + (1− q) 1
h

q 1−X(1−ε)
(1−h)2 + (1− q) 1−X

h2

= h

1−X ·

−q (1−X)(1−ε)
h(1−h) + (1− q) 1−X

h2

q 1−X(1−ε)
(1−h)2 + (1− q) 1−X

h2

 <
h

1−X . (59)
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Finally, we determine the sign of dh
dX
, dp0
dX

and dp1b

dX
. From the inequalities of (54) and

(58), (56) implies that
dh

dX
< 0. (60)

Recall that p0 = W0(1+l0)h
1−X . Hence,

dp0

dX
= ∂p0

∂X
+ ∂p0

∂h

dh

dX
=
W0

(
1 + l0

)
h

(1−X)2 +
W0

(
1 + l0

)
1−X

dh

dX

=
W0

(
1 + l0

)
1−X

(
h

1−X + dh

dX

)
> 0, (61)

where the last inequality is from (59). Recall that p1b = W0(1+l1)(1−h)
1−X(1−ε) . Hence,

dp1b

dX
= ∂p1b

∂X
+ ∂p1b

∂h

dh

dX
=
W0

(
1 + l1

)
(1− h)

(1−X (1− ε))2 −
W0

(
1 + l1

)
1−X (1− ε)

dh

dX

=
W0

(
1 + l1

)
1−X (1− ε)

(
1− h− dh

dX

)
> 0, (62)

where the last inequality is from (60).
Because the economy is continuous, the inequalities of (60), (61) and (62) still hold

when s is sufficiently small. This completes the proof of the lemma. �

Lemma 18. Under Assumption 1, if q, s, ε and W0 are sufficiently small, it holds that
dp0
dW0
− dp0

dX
> 0 and dp1b

dW0
− dp1b

dX
> 0 in a crisis equilibrium.

Proof First, we prove the lemma at s = ε = 0. Set s = ε = 0. In addition, assume
that W0 is small enough to satisfy

1−X > W0. (63)

Utilizing Lemma 16, we have that

∂∆ (h)
∂W0

− ∂∆ (h)
∂X

+ ∂∆ (h)
∂h

(
dh

dW 0
− dh

dX

)
= 0. (64)

From (57) and (58) in the proof of Lemma 16, we have

∂∆ (h)
∂X

= − q

W0 (1− h) + 1− q
W0h

> 0. (65)
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Also, some algebras show that
∂∆ (h)
∂W0

= 1−X
W 2

0

(
− q

W0 (1− h) + 1− q
W0h

)
. (66)

From the expressions of (65) and (66), we have that
∂∆ (h)
∂W0

− ∂∆ (h)
∂X

>
∂∆ (h)
∂W0

− 1−X
W0

∂∆ (h)
∂X

= 0, (67)

where the first inequality is from (63) and (65). Next, we show that h−h W0
1−X +W0

dh
dW 0−

W0
dh
dX

> 0. Using Lemma 16, we find that after some algebras,

h− h W0

1−X +W0
dh

dW0
−W0

dh

dX
= h− h W0

1−X −W0

∂∆(h)
∂W0
∂∆(h)
∂h

+W0

∂∆(h)
∂X
∂∆(h)
∂h

=h
(

1− W0

1−X

) 2q 1−X
(1−h)2

q 1−X
(1−h)2 + (1− q) 1−X

h2

 > 0, (68)

where the last equality is from (63).
Finally, we determine the sign of dh

dW0
− dh

dX
, dp0
dW0
− dp0

dX
and dp1b

dW0
− dp1b

dX
. From the

inequalities of (54) and (67), (64) implies that
dh

dW 0
− dh

dX
< 0. (69)

Turn to dp0
dW0
− dp0

dX
. Recall that p0 = W0(1+l0)h

1−X . Hence, it holds that

dp0

dW0
− dp0

dX
= ∂p0

∂W0
− ∂p0

∂X
+ ∂p0

∂h

(
dh

dW 0
− dh

dX

)

=

(
1 + l0

)
h

1−X −
W0

(
1 + l0

)
h

(1−X)2 +
W0

(
1 + l0

)
1−X

(
dh

dW 0
− dh

dX

)

=

(
1 + l0

)
1−X

(
h− h W0

1−X +W0
dh

dW 0
−W0

dh

dX

)
> 0, (70)

where the last inequality is from (68).
Next, we examine dp1b

dW0
− dp1b

dX
. Recall that p1b = W0(1+l1)(1−h)

1−X . Hence,

dp1b

dW0
− dp1b

dX
= ∂p1b

∂W0
− ∂p1b

∂X
+ ∂p1b

∂h

(
dh

dW 0
− dh

dX

)

=

(
1 + l1

)
(1− h)

1−X −
W0

(
1 + l1

)
(1− h)

(1−X)2 −
W0

(
1 + l1

)
1−X

(
dh

dW 0
− dh

dX

)

=

(
1 + l1

)
(1− h)

1−X

(
1− W0

1−X

)
−
W0

(
1 + l1

)
1−X

(
dh

dW 0
− dh

dX

)
> 0, (71)
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where the last inequality is from (63) and (69).
Because the economy is continuous, the inequalities of (69), (70) and (71) still hold

when s and ε are sufficiently small. This completes the proof of the lemma. �

Proof of Theorem 6 The theorem directly follows from Lemmas 17 and 18. �

Proof of Theorem 7 First, we prove Theorem 7 at s = 0. Set s = 0. From Lemma
6, it holds that

∂∆ (h)
∂C

+ ∂∆ (h)
∂h

dh

dC
= 0. (72)

Note that

∂∆ (h)
∂C

= q

α + β
> 0. (73)

Next, we determine the sign of dh
dC
, dp0
dC

and dp1b

dC
. From the inequalities of (54) and

(73), (72) implies that
dh

dC
< 0. (74)

Recall that p0 = W0(1+l0)h
1−X . Hence,

dp0

dC
= ∂p0

∂h

dh

dC
=
W0

(
1 + l0

)
1−X

dh

dC
< 0, (75)

where the last inequality is from (74). Recall that p1b = W0(1+l1)(1−h)
1−X(1−ε) . Hence,

dp1b

dC
= ∂p1b

∂h

dh

dC
= −

W0
(
1 + l1

)
1−X (1− ε)

dh

dC
> 0, (76)

where the last inequality is from (74).
Because the economy is continuous, the inequalities of (74), (75) and (76) still hold

when s is sufficiently small. This completes the proof of the theorem. �
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