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Market efficiency and arbitrageurs

• Market efficiency

• Asset prices reflect all available information

• Arbitrageurs enhance efficiency

• If an asset is underpriced, arbitrageurs will buy the stock and the stock price

will rise

• Example of arbitrageurs: hedge funds

• Textbook argument

• An arbitrageur buys an infinite amount of underpriced stocks

• The stock price instantly rises to its fair value

• But, it is not so simple: Limits to arbitrage

• An arbitrageur cannot buy an infinite amount of assets
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This paper
• We build up a model in which

• There is wealth effect: If arbitrageurs are hit by severe losses during a

financial crisis, they reduce the positions and the asset price will drop more

• Higher efficiency leads to higher tail risk

• Higher efficiency leads to higher wealth effect

• Specifically:

• A measure of market efficiency: how likely (or how fast) an underpriced

asset recovers its fair value

• More likely (or faster) recovery is viewed as indicating more efficient markets

• Higher tail risk is viewed as indicating more vulnerable markets during crises

• Empirical evidence

• Across arbitrage strategies (slope and butterfly spreads) within fixed income

arbitrage

• Across hedge fund strategies (CB arbitrage, Merger arbitrage ...)
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Intuition of the results

• Wealth effect: If arbitrageurs are hit by severe losses during a financial

crisis, the asset price will drop more

• Say, a hedge fund starts with $100M and an asset is underpriced

• The fund takes leverage and invests $200M in the asset by borrowing

$100M (leverage ratio = debt/capital = 100%)

• But, suppose the asset price drops even more so that the portfolio value

drops to $150M (crisis)

• To keep the portfolio, the hedge fund’s leverage must be $100M/$50M =

200%

• This raises credit risk of the hedge fund and the lender will raise the interest

rate

• Leverage is now costlier and the hedge fund wants to reduce its leverage,

which reduces the asset demand and the price



5/1

Intuition of the results

• Higher efficiency leads to higher tail risk

• Higher efficiency: an underpriced asset is more likely to recover its fair value

from a shock

• Arbitrageurs want to invest more on this underpriced asset

• When the underpricing gets even more severe (tail event or crisis),

arbitragers lose more

• Arbitragers have to reduce their investment (wealth effect) and the price will

drop even further

• Higher efficiency leads to higher wealth effect

• Difference in prices between loss and non-loss cases becomes larger when

the market is more efficient
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Implication and contribution

• Trade-offs between normal-time efficiency and crisis-time stability

• Fast recovery from a small shock means higher efficiency during normal

times

• But it leads to vulnerability during crises

• Debate on hedge funds (as arbitrageurs); do they enhance the functioning

of financial markets?

• This paper: They may make the markets vulnerable during crises
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Outline
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Traded Assets

• There are one risky asset and risk-free cash in the market

• The supply of the risky asset is normalized to 1 (referred to as the asset)

• The one-period risk-free interest rate is normalized to 0 (viewed as cash)

• There are 4 periods, t = 0, 1, 2, 3

• The risky asset pays off V (cash value) at t = 3

• Only arbitrageurs know the true value V from t = 0

• No interim cash flow and hence the fair value of the risky asset is V always

• We are interested in the dynamics of the risky asset price Pt at t = 0, 1, 2, 3,

which are determined by market participants endogenously
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Market Participants

• Noise traders

• They trade for liquidity reasons not related to the asset’s fundamental value

• Their dollar amount demand for the risky asset is assumed to be V − Sx
• Sx ≥ 0 is a random demand shock (the only source of randomness in the

model)

• Thus, their demand (in quantity) is V−Sx
Px

• Px is the asset price at node x

• Arbitrageurs

• Exploit a potential mispricing caused by noise traders

• Future shock Sx is unknown to arbitrageurs but its distribution is known to

them

• Their demand for the risky asset is endogenous (to be discussed)
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Dynamics of noise trader shock

• Add another period and a crash state: 0 < S0 < Sm < Sb
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• q is prob of moderate state and ρ prob of bad state

• Transition prob is path-independent
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Dynamics of noise trader shock

• Setup by Shleifer and Vishny (1997): 0 < S0 < Sm
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• We have one more state and one more time period
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Dynamics of noise trader shock

• One more state Sb

• Separate extremely bad state (Sb) and moderate state (Sm)

• Sb occurs in a crisis, while 0 and Sm do in normal time. Relation between

crisis and normal time

• One more time period

• Impact of normal time on crisis may be studied

• Crises after no shock will be different from those after a moderate shock:

path-dependent

• Path-dependency is not due to transition prob

• Effect of normal time on crisis: the more efficient, the more vulnerable
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States and nodes

• States in each time
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• Nodes are history-dependent, i.e. 23|11 and 23|12 are two different nodes
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Arbitrageur

• Continuum of risk-neutral arbitragers

• No heterogeneity across arbitragers, hence we consider a representative

price-taking arbitrageur and restrict our attention to a symmetric equilibrium

• Payoff and strategy of arbitrageurs

• Start with capital W0 in t = 0

• Their objective is to maximize the expected final capital (t = 3), E [W3]

• At each node, they choose how much to invest in the risky asset

• Capital dynamics from node x to x′:

Wx′ =Wx

(
Px′

Px
(1 + ψx)− ψx (1 + φψx1ψx>0)

)
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Funding cost

• Arbitrageurs may borrow money to invest in the risky asset in each period

• The lender does not understand the arbitrageurs’ strategy. Thus, short-term

lending only

• The higher level of leverage leads to the higher funding rate (credit risk)

• ψx = (borrowing amount at node x)/Wx is the leverage at node x

• c(ψx) = r + φψx1ψx>0 with r and φ constants (WLOG, let r = 0)

�1 0
�

�

1

• Total funding cost: (leverage)*(funding rate)

• Total investment (i.e. demand) is smaller for smaller capital W
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Arbitrageurs’ optimal leverage
• At each node x, an arbitrageur maximizes the expected value of the fund

at t = 3,

Et [W3]

• When the asset is fair-valued (P = V ; e.g., node 11), investment in the

asset is not profitable

• When the asset is underpriced (P < V ; e.g., possibly nodes 12 and 23|12),

an arbitrageur takes positive leverage

• Need to solve recursively from t = 3: trade-off between arbitrage benefit

and funding cost

• E.g., optimal leverage at t = 2 is given by

ψx =

any number in [−1, 0] if Sx = 0

1
2φ

(
V
Px
− 1
)

otherwise
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Equilibrium

• Demand = Supply

• Supply is assumed to be 1

• Demand of noise traders: V−Sx
Px

• Demand of arbitrageurs: endogenously determined

• If arbitrageurs’ demand is large enough to cover the shock Sx (i.e., Sx/Px),

the asset will be fair-valued

• Equilibrium price process Px is determined
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Assumption
Assumption 1. It holds that W0 < S0 ≤ Sm < Sb < V , φ > 1

2

(
Sb

V−Sb

)2

and

W0

(
V

V−Sb
+ 1

2

)2

< Sm.

• Assumption 1 formalizes the interpretation of:

• limits to arbitrage (W0 < S0) at t = 0,

• moderate state (Sm between S0 and Sb) and

• extremely bad state (Sb > Sm)

• The other two inequalities in Assumption 1 guarantees:

Lemma 1. Under Assumption 1, 0 < Wx < Sm < Sb for all x.

• This implies that, without leverage, arbitrageurs may absorb the shock only

partially

• If φ (the funding cost ratio) were very small, arbitrageurs would take very

high leverage so that Wx = Sm and a crisis may be prevented. This is

neither realistic nor interesting.



19/1

Existence and uniqueness of equilibrium

Theorem 1. Suppose Assumption 1 holds. If q and ρ are sufficiently

small, there exists a unique equilibrium.

• Small q and ρ: We analyze almost efficient markets like modern financial

markets

• This unique equilibrium will be considered
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Outline
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Notations

• More efficient: smaller q

• More vulnerable: lower P23|11 and P23|12
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Theorems on wealth effect

Theorem 2. With Assumption 1 and sufficiently small q and ρ,

P23|11 > P23|12.

• Wealth effect: if arbitrageurs are hit by a loss (state 12), they have to

reduce their investment and the reduced demand lowers the price

• P23|11 − P23|12 measures the wealth effect

• P23|11: at node 11, no mispricing and arbitrageurs do not invest. Thus no

loss from node 11 to node 23|11

• P23|12: at node 12, underpriced asset. Arbitrageurs invest and get hit by a

loss at 23|12. Thus, capital as well as demand at node 23|12 is lower than

at 23|11
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Theorems on tail risk

Theorem 3. With Assumption 1 and sufficiently small q, ρ and W0, it

holds that
dP23|11
dq > 0 and

dP23|12
dq > 0.

• The more (less) efficient, the more (less) vulnerable

• If q is smaller (i.e., the asset is more likely to get recovered from a shock),

arbitragers want to bet more on the mispricing

• If the shock gets even worse, arbitrageurs are hit by larger losses and have to

reduce their bets

• Less demand and lower price
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Theorem on interaction

Theorem 4. With Assumption 1 and sufficiently small q, ρ and W0, it

holds that d
dq

(
P23|11 − P23|12

)
< 0.

• The more (less) efficient, the more (less) wealth effect

• P23|11 − P23|12: wealth effect

• P23|12 is affected more than P23|11 is
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Outline
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Fixed income arbitrage

• We use the U.S. interest rate swap market as a natural candidate for

testing the theoretical implications

• Data period: 07/23/1998-05/11/2017

• 13 tenors: 1, 2,· · · , 10, 15, 20, 30 years

• Sample Yield Curve
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Slope spreads strategy

• Consider a trading position with long on the long-end and short on the

shorter-end (2s10s)

• Roughly speaking, slope = (10 year yield) - (2 year yield)

• Duration match: neutral to parallel change

• Makes profit if the slope shrinks

• The other directional bet is also possible (i.e., makes profit if the slope

enlarges)

• Using 13 different tenors, we can construct 78 (= 13 · 12/2) different strategies

• We normalize the spread: mean=0 and variance=1 for each spread
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Time series of normalized slope spreads

• Consider 20s30s in 2006 and 2008, respectively

• Typical leverage: 5 to 15
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Heat map
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• Many hedge funds monitor z-scores of spreads
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Butterfly spread strategy

• Consider a trading position with long on the middle-leg and short on the

long-end and short-end

• E.g., 3s5s10s: long on 5 years, and short on 3 and 10 years

• Similar to the slope spread case

• Using 13 different tenors, we can construct 286 (= 13 · 12 · 11/ (3 · 2))

different strategies
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Two-step cross-sectional regressions

• Step 1: Efficiency measure from time series regression

• Normalize the process of a spread and obtain zi,t, and estimate the speed of

mean reversion δi

∆zi,t+1 = ai − δizi,t + εi,t = −δi (zi,t − (ai/δi)) + εi,t

• zi,t is normalized (mean 0 and std 1) so that smaller δi does not

mechanically imply higher long-run variance of zi,t

• Higher δi: more efficient market
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• Step 2: Cross-sectional regression

• Kurtosis, VaR (Value at Risk, p% worst case), Shortfall Risk

• Let Si denote one of those and run regressions of

Si = β0 + β1δi + εi

• For left tail, our model predicts β1 < 0
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VaR and Shortfall Risk
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Two-step cross-sectional regressions; daily

• 78 slope and 286 butterfly spreads

Daily

Dependent Variable p = 0.5% p = 1.0% p = 1.5%

β1 R2 β1 R2 β1 R2

Kurtosis 393.43 0.57 n.a. n.a.

(21.82)

VaR

Left -2.18 0.05 -0.70 0.01 -0.10 0.00

(-4.38) (-2.00) (-0.38)

Right 1.97 0.10 0.58 0.01 0.10 0.00

(6.29) (1.97) (0.37)

Expected

Shortfall

Left -6.62 0.26 -4.05 0.15 -2.72 0.10

(-11.20) (-8.08) (-6.32)

Right 6.09 0.47 3.58 0.26 2.57 0.17

(17.83) (11.32) (8.53)
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Two-step cross-sectional regressions; weekly

• 78 slope and 286 butterfly spreads

Weekly

Dependent Variable p = 0.5% p = 1.0% p = 1.5%

β1 R2 β1 R2 β1 R2

Kurtosis 359.67 0.68 n.a. n.a.

(27.97)

VaR

Left -1.60 0.04 -0.46 0.01 -0.09 0.00

(-3.98) (-1.59) (-0.40)

Right 0.98 0.04 0.16 0.00 -0.23 0.00

(3.81) (0.68) (-0.97)

Expected

Shortfall

Left -4.82 0.23 -2.63 0.11 -1.90 0.08

(-10.31) (-6.69) (-5.54)

Right 4.76 0.45 2.80 0.26 1.87 0.14

(17.36) (11.16) (7.77)
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Robustness check

Daily, p = 1.0%

Dependent Variable Slope Butterfly HP filter

β1 R2 β1 R2 β1 R2

Kurtosis 45.12 0.60 397.14 0.57 459.30 0.54

(10.73) (19.41) (20.61)

VaR

Left -8.53 0.13 -0.39 0.00 -0.38 0.01

(-3.35) (-1.06) (-1.78)

Right 7.45 0.07 0.50 0.01 0.08 0.00

(2.41) (1.55) (0.41)

Expected

Shortfall

Left -22.38 0.36 -3.59 0.14 -3.50 0.21

(-6.62) (-6.83) (-9.87)

Right 9.44 0.08 3.51 0.27 2.84 0.32

(2.53) (10.22) (12.93)

• (HP: Hodrick-Prescott, time-varying average)
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Wealth effect
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• P23|11 − P23|12 is measured by the tail range and tail volatility

• Tail range = (1% VaR) - (the worst)

• Tail volatility = conditional volatility on the 1% tail event



38/1

Two-step regressions; Wealth effect

• 78 slope and 286 butterfly spreads

Daily

Dependent p = 0.5% p = 1.0% p = 1.5%

Variable (yi) β1 R2 β1 R2 β1 R2

Tail

Range

Left 34.76 0.69 36.24 0.69 36.83 0.68

(28.30) (28.14) (27.69)

Right 40.52 0.68 41.91 0.71 42.38 0.71

(27.97) (29.57) (29.81)

Tail

Volatility

Left 8.02 0.68 6.39 0.70 5.42 0.66

(28.09) (29.13) (26.60)

Right 8.53 0.75 6.62 0.79 5.76 0.81

(32.63) (36.99) (39.64)

Non-Tail

Volatility

Left -0.01 0.00 -0.06 0.00 -0.09 0.01

(-0.15) (-1.02) (-1.57)

Right -0.14 0.01 -0.20 0.02 -0.22 0.02

(-1.71) (-2.51) (-2.97)



39/1

Quantile panel regressions

• Quantile panel regression

Qp (zi,t|δi) = γ0 + γ1δi,

• Qp: the p-th quantile of the normalized spread indexed by i (zi,t)

• δi: the mean reversion speed. The higher, the more efficient market

• For left tail, our model predicts γ1 < 0
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Quantile panel regressions

• With wealth effect

Qp

(
zi,t|1 (loss)i,t

)
= γ0 + γ11 (loss)i,t ,

• 1 (loss)i,t = 1 (zi,t−1 < zi,t−1−h < −z)
• 1 (loss)i,t = 1 if there was a loss in the previous day (or week), and 0

otherwise

• For left tail, our model predicts γ1 < 0

• Wealth effect: more severely underpriced when arbitrageurs are hit by losses
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• With interaction term

Qp

(
zi,t|δi,1 (loss)i,t

)
= γ0 + γ1δi + γ21 (loss)i,t + γ3δi1 (loss)i,t ,

• Consider the left tail

• Note that γ2 + γ3δi is the effect of 1 (loss)i,t, and is the wealth effect

• Our model predicts γ3 < 0

• The wealth effect becomes stronger when the market is more efficient
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Quantile panel regressions; baseline

• p = 1% quantile, daily spreads

Left Quantile Right Quantile

Panel A: Baseline

δ -2.61 -1.55 1.54 1.09

(-16.14) (-10.62) (10.39) (7.28)

1 (loss) -0.96 -0.59 0.76 0.47

(-51.13) (-32.15) (43.39) (24.62)

δ × 1 (loss) -33.44 21.94

(-64.19) (36.46)

Pseudo R2 0.0034 0.0652 0.0732 0.0016 0.0582 0.0631
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Quantile panel regressions

Left Quantile Right Quantile

Panel B: loss measure periods = 5

δ -1.58 1.16

(-10.43) (8.39)

1 (loss) -1.09 -0.65 0.86 0.57

(-50.45) (-28.61) (48.64) (24.46)

δ × 1 (loss) -38.09 21.27

(-86.21) (33.41)

Pseudo R2 0.0034 0.0817 0.0910 0.0016 0.0774 0.0826

Panel C: loss measure periods = 10

δ -1.52 1.19

(-10.39) (8.37)

1 (loss) -1.05 -0.72 0.90 0.60

(-51.64) (-30.59) (37.72) (25.07)

δ × 1 (loss) -28.23 21.36

(-41.17) (32.96)

Pseudo R2 0.0034 0.0769 0.0831 0.0016 0.0869 0.0917
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Quantile panel regressions; slope and butterfly

Left Quantile Right Quantile

Panel A: Using only 78 slope spreads

δ -10.67 -9.37 8.94 7.39

(-13.65) (-10.49) (7.59) (6.36)

1 (loss) -0.32 -0.25 0.37 0.22

(-30.01) (-14.87) (20.63) (11.66)

δ × 1 (loss) -5.73 42.15

(-2.76) (15.44)

Pseudo R2 0.0045 0.0277 0.0317 0.0052 0.0331 0.0375

Panel B: Using only 286 butterfly spreads

δ -1.55 -0.99 0.90 0.78

(-8.98) (-6.57) (5.56) (5.33)

1 (loss) -1.04 -0.71 0.81 0.55

(-43.13) (-26.37) (35.26) (21.94)

δ × 1 (loss) -26.55 17.01

(-43.94) (29.19)

Pseudo R2 0.0016 0.0691 0.0749 0.0006 0.0599 0.0634
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Quantile panel regressions; quantile thresholds

Left Quantile Right Quantile

Panel A: p = 0.5%

δ -5.09 -3.84 4.06 2.89

(-21.10) (-16.25) (20.96) (14.66)

1 (loss) -1.14 -0.57 0.76 0.52

(-33.40) (-14.00) (30.24) (22.95)

δ × 1 (loss) -42.77 16.69

(-45.92) (20.67)

Pseudo R2 0.0086 0.0703 0.0879 0.0062 0.0540 0.0624

Panel B: p = 1.5%

δ -1.47 -0.63 0.88 0.41

(-15.73) (-6.60) (7.19) (3.74)

1 (loss) -0.86 -0.57 0.70 0.47

(-79.97) (-42.83) (48.52) (28.17)

δ × 1 (loss) -26.76 19.76

(-83.58) (41.86)

Pseudo R2 0.0014 0.0595 0.0639 0.0006 0.0583 0.0618
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Quantile panel regressions; others

Left Quantile Right Quantile

Using Hodrick-Prescott filtered spreads

δ -0.50 -0.40 0.86 0.64

(-6.17) (-4.04) (10.64) (6.58)

1 (loss) -1.06 -0.62 0.71 0.55

(-56.12) (-36.54) (42.16) (28.83)

δ × 1 (loss) -23.63 7.17

(-64.45) (17.47)

Pseudo R2 0.0003 0.0654 0.0717 0.0010 0.0609 0.0634

Using weekly data

δ -4.20 -2.11 2.56 1.01

(-16.37) (-8.44) (11.11) (4.17)

1 (loss) -1.04 -0.26 0.88 0.23

(-29.85) (-5.92) (23.45) (5.70)

δ × 1 (loss) -30.80 24.40

(-38.51) (23.52)

Pseudo R2 0.0081 0.0751 0.0888 0.0041 0.0762 0.0860
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Hedge fund strategies

• Barclay Hedge Fund Index

• Monthly Returns over Jan/1997-Aug/2017

• 16 style indices: Convertible Bond Arbitrage, Distressed Securities,

Emerging Markets, Equity Long Bias, Equity Long/ Short, Equity Market

Neutral, European Equities, Event Driven, Fixed Income Arbitrage, Fund of

Funds, Global Macro, Healthcare & Bio-tec, Merger Arbitrage, Multi

Strategy, Pacific Rim, Equity Tech
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• The more efficient, the more vulnerable

• Higher prob of return>0: it is more likely for mispriced assets to recover its

fair value

• High prob of return>0 is

• negatively associated with skewness

• positively associated with kurtosis

• CB Arbitrage and Fixed Income Arbitrage depict the situation of “Picking

up Nickels in front of a Steamroller”
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Outline
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Conclusion

• We build up a model in which

• There is wealth effect

• Higher efficiency leads to higher tail risk

• Higher efficiency leads to higher wealth effect

• Empirical evidence

• Across arbitrage strategies (slope and butterfly spreads) within fixed income

arbitrage

• Across hedge fund strategies

• Future research: yield spread modeling

• Conventional affine or quadratic term structure models do not fit the

distribution of spreads among yields across tenors


