

Individual Behaviors

SEHYOUN AHN Norges Bank

SNU 2019/11/5

Standard disclaimers apply.

The Promise

- "The latter (HJB equation) is much better for numerical approximations"
- Somewhat hard to explain intuitively...
- Feel free to stop me any time, but read the codes in your own time again with the slides.

HJB Equations

$$\rho V(x) = \max_{a} \left[u(x,a) + f(x,a) \frac{\mathrm{d}V}{\mathrm{d}x} + \frac{g(x,a)^2}{2} \frac{\mathrm{d}^2 V}{\mathrm{d}x^2} \right]$$

HJB Equations

- HJB equations rarely have closed for solutions, so need to be solved numerically
- Discretize and solved the discretized system.
 - Need to know that the discretized solution converges to the true solution.

Barles-Souganidis

- There is a very general framework on discretization (Barles and Souganidis, 1991)¹
- A discretization converges to the unique continuous viscosity solution if the discretization satisfies
 - 1. stability
 - 2. consistency
 - 3. monotonicity
 - 4. strong uniqueness
- Most requires are automatic
- Only the monotonicity requires care
 - Diffusion term is also automatic for monotonicity
 - Drift terms are the one that requires care

¹Barles, G., & Souganidis, P. E. (1991). Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic analysis, 4(3), 271-283.

5/13

Barles-Souganidis: Monotonicity

- Intuition: Translation of the contraction property of value functions into discretization
 - Want to prevent
 - 1. Value function at savings of \$100 is not high enough because the value at \$200 is too high
 - 2. (\Rightarrow) increase value function at \$100
 - 3. Value function at 200 is not high enough because the value at 100 is too high
 - 4. (\Rightarrow) increase value function at \$200
 - 5. repeat
 - (⇒) Only allow the impact of the value functions at other points to move the discretization equation in the same direction²
 - In practice, one can follow "positive coefficient rule" of putting positive weights.
 - We will come back to this.

²Disclaimer: This is just an analogy/intuition, so is not perfect.

HJB Equations

- HJB equations rarely have closed for solutions, so need to be solved numerically
- Discretize and solved the discretized system.
 - Need to know that the discretized solution converges to the true solution.
 - Need a reasonable representation inside computers

- Approximate the system with finite number of grid points. $V(x_i)$ at $\{x_i\}$
- Approximate differential operators with the finite difference operators

$$\begin{aligned} \left. \frac{\mathrm{d}V}{\mathrm{d}x} \right|_{x_i} &= \frac{V(x_{i'}) - V(x_i)}{x_{i'} - x_i} \\ \left. \frac{\mathrm{d}^2 V}{\mathrm{d}x^2} \right|_{x_i} &= 2 \frac{V(x_{i'})}{(x_{i'} - x_i)(x_{i'} - x_{i''})} \\ &+ 2 \frac{V(x_i)}{(x_{i'} - x_i)(x_{i''} - x_i)} \\ &- 2 \frac{V(x_{i''})}{(x_{i''} - x_i)(x_{i'} - x_{i''})} \end{aligned}$$

where $x_{i'}$ and $x_{i''}$ are "nearby" points

HJB equation

$$\rho V(x) = \max_{a} \left[u(x,a) + f(x,a) \frac{\mathrm{d}V}{\mathrm{d}x} + \frac{g(x,a)^2}{2} \frac{\mathrm{d}^2 V}{\mathrm{d}x^2} \right] \qquad \forall x \in \Omega$$

turns into

$$\rho V(x_i) = \max_{a} \left[u(x_i, a) + f(x_i, a) \left. \frac{\mathrm{d}V}{\mathrm{d}x} \right|_{x_i} + \frac{g(x_i, a)^2}{2} \left. \frac{\mathrm{d}^2 V}{\mathrm{d}x^2} \right|_{x_i} \right]$$

$$\forall \{x_i\}$$

$$\rho V(x_i) = \max_{a} \left[u(x_i, a) + f(x_i, a) \left. \frac{\mathrm{d}V}{\mathrm{d}x} \right|_{x_i} + \frac{g(x_i, a)^2}{2} \left. \frac{\mathrm{d}^2 V}{\mathrm{d}x^2} \right|_{x_i} \right]$$
$$\forall \{x_i\}$$

- Recall: the discretization has to satisfy the requirements of Barles-Souganidis
- Only monotonicity requirement requires care

$$\rho V(x_i) = \max_{a} \left[u(x_i, a) + f(x_i, a) \left. \frac{\mathrm{d}V}{\mathrm{d}x} \right|_{x_i} + \frac{g(x_i, a)^2}{2} \left. \frac{\mathrm{d}^2 V}{\mathrm{d}x^2} \right|_{x_i} \right]$$
$$\forall \{x_i\}$$

- Note the optimal action of a^* depends on $\{V_i\}$
- Hence, the above equation is in fact a nasty non-linear equation.
- We usually solve it using iterative method
 - and we want each iteration to be fast

$$\rho V^{(n+1)}(x_i) = \left[u(x_i, a^*(V^{(n)})) + f(x_i, a^*(V^{(n)})) \frac{\mathrm{d}V^{(n+1)}}{\mathrm{d}x} \right|_{x_i} + \frac{g(x_i, a^*(V^{(n)}))^2}{2} \left. \frac{\mathrm{d}^2 V^{(n+1)}}{\mathrm{d}x^2} \right|_{x_i} \right]$$
$$\forall \{x_i\}$$

- \blacksquare i.e., use solve for the optimal action a^* given the current guess of $V^{(n)},$ and update to get $V^{(n+1)}$
- This is also good because the equation is linear in $V^{(n+1)}$, i.e., solving for $V^{(n+1)}$ is fast!

12 / 13

To control the speed of adjustment, we add a term that is zero in steady state

$$\rho V^{(n+1)}(x_i) = \left[u(x_i, a^*(V^{(n)})) + f(x_i, a^*(V^{(n)})) \frac{\mathrm{d}V^{(n+1)}}{\mathrm{d}x} \right|_{x_i} + \frac{g(x_i, a^*(V^{(n)}))^2}{2} \left. \frac{\mathrm{d}^2 V^{(n+1)}}{\mathrm{d}x^2} \right|_{x_i} \right] - \frac{V^{(n+1)}}{\Delta} + \frac{V^{(n)}}{\Delta} + \frac{V^{(n)}}{\Delta}$$

$$\forall \{x_i\}$$

which also has an intuitive motivation of "backward" time-stepping.

