

1
NORGES BANK

The Promise

■ "The latter (HJB equation) is much better for numerical approximations"

- Somewhat hard to explain intuitively...
- Feel free to stop me any time, but read the codes in your own time again with the slides.

HJB Equations

$$
\rho V(x)=\max _{a}\left[u(x, a)+f(x, a) \frac{\mathrm{d} V}{\mathrm{~d} x}+\frac{g(x, a)^{2}}{2} \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}\right]
$$

HJB Equations

- HJB equations rarely have closed for solutions, so need to be solved numerically
- Discretize and solved the discretized system.
- Need to know that the discretized solution converges to the true solution.

Barles-Souganidis

- There is a very general framework on discretization (Barles and Souganidis, 1991) ${ }^{1}$
- A discretization converges to the unique continuous viscosity solution if the discretization satisfies

1. stability
2. consistency
3. monotonicity
4. strong uniqueness

- Most requires are automatic
- Only the monotonicity requires care
- Diffusion term is also automatic for monotonicity
- Drift terms are the one that requires care
${ }^{1}$ Barles, G., \& Souganidis, P. E. (1991). Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic analysis, 4(3), 271-283.

Barles-Souganidis: Monotonicity

- Intuition: Translation of the contraction property of value functions into discretization
- Want to prevent

1. Value function at savings of $\$ 100$ is not high enough because the value at $\$ 200$ is too high
2. (\Rightarrow) increase value function at $\$ 100$
3. Value function at $\$ 200$ is not high enough because the value at $\$ 100$ is too high
4. (\Rightarrow) increase value function at $\$ 200$
5. repeat

- (\Rightarrow) Only allow the impact of the value functions at other points to move the discretization equation in the same direction ${ }^{2}$
- In practice, one can follow "positive coefficient rule" of putting positive weights.
- We will come back to this.

[^0]
HJB Equations

- HJB equations rarely have closed for solutions, so need to be solved numerically
- Discretize and solved the discretized system.
- Need to know that the discretized solution converges to the true solution.
- Need a reasonable representation inside computers

Finite Difference Discretization

- Approximate the system with finite number of grid points. $V\left(x_{i}\right)$ at $\left\{x_{i}\right\}$
- Approximate differential operators with the finite difference operators

$$
\begin{aligned}
\left.\frac{\mathrm{d} V}{\mathrm{~d} x}\right|_{x_{i}}= & \frac{V\left(x_{i^{\prime}}\right)-V\left(x_{i}\right)}{x_{i^{\prime}}-x_{i}} \\
\left.\frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}\right|_{x_{i}}= & 2 \frac{V\left(x_{i^{\prime}}\right)}{\left(x_{i^{\prime}}-x_{i}\right)\left(x_{i^{\prime}}-x_{i^{\prime \prime}}\right)} \\
& +2 \frac{V\left(x_{i}\right)}{\left(x_{i^{\prime}}-x_{i}\right)\left(x_{i^{\prime \prime}}-x_{i}\right)} \\
& -2 \frac{V\left(x_{i^{\prime \prime}}\right)}{\left(x_{i^{\prime \prime}}-x_{i}\right)\left(x_{i^{\prime}}-x_{i^{\prime \prime}}\right)}
\end{aligned}
$$

where $x_{i^{\prime}}$ and $x_{i^{\prime \prime}}$ are "nearby" points

Finite Difference Discretization

- HJB equation

$$
\rho V(x)=\max _{a}\left[u(x, a)+f(x, a) \frac{\mathrm{d} V}{\mathrm{~d} x}+\frac{g(x, a)^{2}}{2} \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}\right] \quad \forall x \in \Omega
$$

■ turns into

$$
\begin{aligned}
& \rho V\left(x_{i}\right)= \max _{a}\left[u\left(x_{i}, a\right)+\left.f\left(x_{i}, a\right) \frac{\mathrm{d} V}{\mathrm{~d} x}\right|_{x_{i}}+\left.\frac{g\left(x_{i}, a\right)^{2}}{2} \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}\right|_{x_{i}}\right] \\
& \forall\left\{x_{i}\right\}
\end{aligned}
$$

Finite Difference Discretization

$$
\begin{aligned}
\rho V\left(x_{i}\right)= & \max _{a}\left[u\left(x_{i}, a\right)+\left.f\left(x_{i}, a\right) \frac{\mathrm{d} V}{\mathrm{~d} x}\right|_{x_{i}}+\left.\frac{g\left(x_{i}, a\right)^{2}}{2} \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}\right|_{x_{i}}\right] \\
& \forall\left\{x_{i}\right\}
\end{aligned}
$$

- Recall: the discretization has to satisfy the requirements of Barles-Souganidis
- Only monotonicity requirement requires care

Finite Difference Discretization

$$
\begin{aligned}
\rho V\left(x_{i}\right)= & \max _{a}\left[u\left(x_{i}, a\right)+\left.f\left(x_{i}, a\right) \frac{\mathrm{d} V}{\mathrm{~d} x}\right|_{x_{i}}+\left.\frac{g\left(x_{i}, a\right)^{2}}{2} \frac{\mathrm{~d}^{2} V}{\mathrm{~d} x^{2}}\right|_{x_{i}}\right] \\
& \forall\left\{x_{i}\right\}
\end{aligned}
$$

- Note the optimal action of a^{*} depends on $\left\{V_{i}\right\}$
- Hence, the above equation is in fact a nasty non-linear equation.
- We usually solve it using iterative method
- and we want each iteration to be fast

Finite Difference Discretization

$$
\begin{aligned}
\rho V^{(n+1)}\left(x_{i}\right)= & {\left[u\left(x_{i}, a^{*}\left(V^{(n)}\right)\right)+\left.f\left(x_{i}, a^{*}\left(V^{(n)}\right)\right) \frac{\mathrm{d} V^{(n+1)}}{\mathrm{d} x}\right|_{x_{i}}\right.} \\
& \left.+\left.\frac{g\left(x_{i}, a^{*}\left(V^{(n)}\right)\right)^{2}}{2} \frac{\mathrm{~d}^{2} V^{(n+1)}}{\mathrm{d} x^{2}}\right|_{x_{i}}\right] \\
& \forall\left\{x_{i}\right\}
\end{aligned}
$$

■ i.e., use solve for the optimal action a^{*} given the current guess of $V^{(n)}$, and update to get $V^{(n+1)}$

- This is also good because the equation is linear in $V^{(n+1)}$, i.e., solving for $V^{(n+1)}$ is fast!

Finite Difference Discretization

To control the speed of adjustment, we add a term that is zero in steady state

$$
\begin{aligned}
\rho V^{(n+1)}\left(x_{i}\right)= & {\left[u\left(x_{i}, a^{*}\left(V^{(n)}\right)\right)+\left.f\left(x_{i}, a^{*}\left(V^{(n)}\right)\right) \frac{\mathrm{d} V^{(n+1)}}{\mathrm{d} x}\right|_{x_{i}}\right.} \\
& \left.+\left.\frac{g\left(x_{i}, a^{*}\left(V^{(n)}\right)\right)^{2}}{2} \frac{\mathrm{~d}^{2} V^{(n+1)}}{\mathrm{d} x^{2}}\right|_{x_{i}}\right] \\
& -\frac{V^{(n+1)}}{\Delta}+\frac{V^{(n)}}{\Delta} \\
& \forall\left\{x_{i}\right\}
\end{aligned}
$$

which also has an intuitive motivation of "backward" time-stepping.

[^0]: ${ }^{2}$ Disclaimer: This is just an analogy/intuition, so is not perfect.

