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Overview of Our Paper

� Heterogeneous agent models study interaction of macro +
inequality

� Not yet part of policymakers’ toolbox. Two excuses:
� Computational difficulties because distribution endogenous

� Perception that aggregate dynamics similar to representative
agent

These excuses less valid than you thought

1. Efficient and easy-to-use computational method
� Open source Matlab toolbox online now

2. Use methodology to illustrate interaction of macro +
inequality

� Match micro behavior =⇒ realistic aggregate C + Y
dynamics

� Aggregate shocks generate inequality dynamics
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Big Picture: Standard DSGE
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Plan For Today

1. Computational Methodology

� Simple Krusell-Smith model

� Linearizing heterogeneous agent models

� Dimensionality reduction

2. Applications

� Two-asset model

� Aggregate consumption dynamics

� Inequality dynamics
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Households

max
{cjt}t≥0

E0

∫ ∞
0

e−ρtu(cjt)dt such that

cjt + ȧjt = wtzjt + rtajt

zjt ∈ {z`, zh} Poisson with intensities λ`, λh

ajt ≥ 0

� cjt: consumption

� u: utility function, u′ > 0, u′′ < 0.

� ρ: discount rate

� rt : interest rate
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Production and Market Clearing

� Aggregate production function

Yt = eZtKα
t N

1−α
t with dZt = −νZt + σdWt

� Perfect competition in factor markets

wt = (1− α)
Yt
Nt
, rt = α

Yt
Kt
− δ

� Market clearing

Kt =

∫
agt(a, z)dadz,

Nt =

∫
zgt(a, z)dadz ≡ 1
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Equilibrium

Aggregate state: (gt, Zt) ⇒ absorb into time subscript t
� Recursive notation w.r.t. individual states only

� Et is expectation w.r.t. aggregate states only fully recursive

ρvt(a, z) = max
c

u(c) + ∂avt(a, z)(wtz + rta− c)

+ λz(vt(a, z
′)− vt(a, z)) +

1

dt
Et [dvt(a, z)] ,

(HJB)

dgt(a, z)

dt
=− ∂a[st(a, z)gt(a, z)]− λzgt(a, z) + λz′gt(a, z

′),

(KF)

wt = (1− α)eZtKα
t and rt = αeZtKα−1

t − δ, (P)

Kt =

∫
agt(a, z)dadz,

dZt = −νZtdt+ σdWt (Z)
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Extending Linearization to Heterogeneous
Agent Models

1. Compute non-linear approx. of non-stochastic steady state

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation
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Warm Up: Linearizing a Representative Agent
Model

� Representative agent RBC model

Et
[
dC−γt

]
= C−γt

(
αeZtKα−1

t − ρ− δ
)

dt

dKt =
(
eZtKα

t − δKt − Ct
)

dt

dZt = −ηZtdt+ σdWt

� Classification of variables

Ct = control variable

Kt = endogenous state variable

Zt = exogenous state variable
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Warm Up: Linearizing a Representative Agent
Model

� Linearized representative agent RBC model

Et

dĈt
dK̂t

dZt

 =

BCC BCK BCZ
BKC BKK BKZ

0 0 −η

ĈtK̂t

Zt

 dt

� Classification of variables

Ct = control variable

Kt = endogenous state variable

Zt = exogenous state variable
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Extending Linearization to Heterogeneous
Agent Models

1. Compute non-linear approx. of non-stochastic steady
state

� Finite difference method from Achdou et al. (2015)

� Steady state reduces to sparse matrix equations

� Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation
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Step 1: Compute Non-Stochastic Steady
State

ρv(a, z) = max
c

u(c) + ∂av(a, z)(wz + ra− c)

+ λz(v(a, z′)− v(a, z))
(HJB SS)

0 =− ∂a[s(a, z)g(a, z)]− λzg(a, z) + λz′g(a, z′) (KF SS)

w = (1− α)Kα, r = αKα−1 − δ,

K =

∫
ag(a, z)dadz

(P SS)
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Step 1: Compute Non-Stochastic Steady
State

ρv =u (v) + A (v;p)v (HJB SS)

0 =A (v;p)T g (KF SS)

p =F (g) (P SS)
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Linearizing Continuous Time Het Agent
Models

1. Compute non-linear approximation to non-stochastic steady
state

� Finite difference method from Achdou et al. (2015)

� Steady state reduces to sparse matrix equations

� Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady
state

� Automatic differentiation: exact numerical derivatives

� Efficient Matlab implementation for sparse systems

3. Solve linear stochastic differential equation
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Step 2: Linearize Discretized System

� Discretized system with aggregate shocks

ρvt = u (vt) + A (vt;pt)vt +
1

dt
Et[dvt]

dgt
dt

= A (vt;pt)
T gt

pt = F (gt;Zt)

dZt= −νZtdt+ σdWt

�
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� Discretized system with aggregate shocks

ρvt = u (vt) + A (vt;pt)vt +
1

dt
Et[dvt]

dgt
dt

= A (vt;pt)
T gt

pt = F (gt;Zt)

dZt= −νZtdt+ σdWt

� Write in general form

Et


dvt
dgt
0
dZt

 = f(vt,gt,pt, Zt)dt,


vt
gt
pt
Zt

 =


control

endog state
prices

exog state
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Step 2: Linearize Discretized System

� Discretized system with aggregate shocks

ρvt = u (vt) + A (vt;pt)vt +
1

dt
Et[dvt]

dgt
dt

= A (vt;pt)
T gt

pt = F (gt;Zt)

dZt= −νZtdt+ σdWt

� Linearize using automatic differentiation (code: @myAD)

Et


dv̂t
dĝt
0
dZt

 =


Bvv 0 Bvp 0
Bgv Bgg Bgp 0
0 Bpg −I BpZ

0 0 0 −ν



v̂t
ĝt
p̂t
Zt

 dt
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Linearizing Continuous Time Het Agent
Models
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Step 3: Solve Linear System

� Diagonalize + hope that number of stable eigenvalues =
number of state variables

� Set control variables ⊥ unstable eigenvectors =⇒ policy
function

v̂t = Dgĝt + DZẐt

� Feasible for N ≤ 5000 or so
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Linearization is Fast and Accurate

� Calibration: JEDC (2010) comparison project on
Krusell-Smith

� Size: 100 asset grid points =⇒ total system ≈ 400

� Speed: ≈ 0.25 seconds

� JEDC (2010) project: ≈ 7 minutes up to ≈ 46 hours

� Accuracy: Max difference in Kt from simulations using
individual policies vs. aggregate law of motion

Agg Shock σ 0.01% 0.1% 0.7% 1% 5%
DH Error Stat 0.000% 0.002% 0.053% 0.135% 3.347%

� JEDC (2010) project: most accurate alternative ≈ 0.16%
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Plan For Today
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Model-Free Reduction Method

Et


dv̂t
dĝt
0
dZt

 =


Bvv 0 Bvp 0
Bgv Bgg Bgp 0
0 Bpg −I BpZ

0 0 0 −ν



v̂t
ĝt
p̂t
Zt

 dt
� Dimensionality: 2 income types × M wealth grid points

=⇒ both vt and gt are N(= 2M)× 1 vectors

1. Value function: reduce using quadratic splines
� Will not discuss today

2. Distribution: reduce using model reduction tools
� Explain intuition in special cases

� Paper has detailed proofs
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Distribution Reduction by Projection

Or, what race cars and fighter jets can teach us about
distributional dynamics

include

 

 

 

Based on Stanford Computational and Mathematical Engineering
(CME) 345 “Model Reduction”
https://web.stanford.edu/group/frg/course work/CME345.html
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Distribution Reduction by Projection

� Key insight: households only need to forecast prices
� Krusell-Smith: guess moments to approx distribution, check

they forecast prices

� Our approach: have computer choose “moments”, guarantees
accuracy

� Distribution exactly reduces if there exists as basis
X = [x1, ...,xk] such that

gt = γ1tx1 + γ2tx2 + ...+ γktxk ≡ Xγt
� N -dimensional gt approximated with k << N -dimensional γt

� Model approximately reduces if instead gt ≈ Xγt

=⇒ Goal: Choose X to “approximate” IRFs of pt with small k

20 / 50
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Big Picture: HA-DSGE
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A Special Case: Exogenous Decision Rules

� Suppose given Dvg and DvZ in vt = Dvggt + DvZZt

dgt
dt

= Cgggt + CgZZt

pt = Bpggt + BpZZt

� Protoypical problem in model reduction literature
� Maps low-dimensional inputs (Zt) into low-dimensional

outputs (pt)

� High-dimensional intermediating variable (gt)

� To reduce distribution, need to

1. Find a good basis X

2. Given basis X, estimate coefficients γt
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Plan Of Attack

1. Exogenous decision rules: adapt existing results

� Start in deterministic model (Zt = 0 for all t)

dgt
dt

= Cgggt

pt = Bpggt

given initial g0

� Move to stochastic model

2. Endogenous decision rules
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Plan Of Attack

1. Exogenous decision rules: adapt existing results

� Start in deterministic model (Zt = 0 for all t)

dgt
dt

= Cgggt

pt = bpggt (a scalar)

given initial g0

� Move to stochastic model

2. Endogenous decision rules
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Estimating Coefficients Given Basis X
� Can write gt ≈ Xγt as a linear regression

gt = Xγt + εt, εt ∈ RN = residual
� gt = dependent variable

� X = [x1, ...,xk] contains k independent variables

� γt = coefficients to be estimated

� Estimate γt using the orthogonality condition XTεt = 0

γt = (XTX)−1︸ ︷︷ ︸
=I

XTgt

� Reduced system is

p̃t = bpgXγt

dγt
dt

= XTCggXγt
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How To Choose Basis X?

� Choose basis X to match transition path of pt

=⇒ match k-order Taylor expansion of pt using only γt

� Unreduced model:

pt = bpggt

dgt
dt

= Cgggt

� Reduced model:

p̃t = bpgXγt

dγt
dt

= XTCggXγt
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How To Choose Basis X?

� Choose basis X to match transition path of pt

=⇒ match k-order Taylor expansion of pt using only γt

� Unreduced model:
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How To Choose Basis X?

� Choose basis X to match transition path of pt

=⇒ match k-order Taylor expansion of pt using only γt

� Unreduced model:

pt ≈ bpg

[
I + Cggt+

1

2
C2
gg + ...

]
g0

� Reduced model:

p̃t ≈ bpgX

[
I + (XTCggX)t+

1

2
(XTCggX)2 + ...

]
γ0
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How To Choose Basis X?

� Choose basis X to match transition path of pt

=⇒ match k-order Taylor expansion of pt using only γt

� Claim: if X spans O(bpg,Cgg)
T, then path of reduced p̃t

matches path unreduced of pt up to order k

O(bpg,Cgg) :=


bpg

bpgCgg

bpgC
2
gg

...
bpgC

k−1
gg


� Why O(bpg,Cgg)?

pt ≈
[
1, t, 1

2 t
2, ..., 1

(k−1)! t
k−1
]
O(bpg,Cgg)g0
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� Choose basis X to match transition path of pt

=⇒ match k-order Taylor expansion of pt using only γt

� Claim: if X spans O(bpg,Cgg)
T, then path of reduced p̃t

matches path unreduced of pt up to order k (Arnoldi
iteration)

O(bpg,Cgg) :=


bpg

bpgCgg

bpgC
2
gg

...
bpgC

k−1
gg


� Why O(bpg,Cgg)?
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How To Choose Basis X In Stochastic Model?

� Choose basis X to match impulse response of pt to Zt shock

� Claim: If X spans order k observability matrix O(bpg,Cgg)
T,

then IRF of reduced p̃t matches IRF of unreduced pt up to
order k

� Intuition: Impulse response combines

1. Impact effect: do not reduce Zt =⇒ match exactly

2. Transition to steady state: role of O(bpg,Cgg)
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Extending To Endogenous Decision Rules

� Model reduction literature relies on reduction not affecting
dynamics

Cgg = Bgg + BgpBpg + BgvDvg

CgZ = BgpBpZ + BgvDvZ

� Violated with endogenous decision rules

� But literature about efficiently approximating the distribution
� Can inefficiently improve approximation by adding independent

basis vectors

� Solution: set X to span O(bpg,Cgg)
T assuming

Dvg = DvZ = 0

� If implied dynamics are inaccurate, then iterate
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Internal Consistency

� Key question: when is approximation accurate? I.e., how to
choose k?

� Answer 1: increase k until IRFs converge

� Answer 2: internal consistency check

1. Compute decisions from reduced model ṽt = Dvγγt + DvZZt

2. Simulate nonlinear dynamics of full distribution

p∗t = F(g∗t ;Zt)

dg∗t
dt

= A(ṽt,p
∗
t )g
∗
t

3. Compare to dynamics implied by reduced system p̃t

ε = max
i

max
t≥0
|log p̃it − log p∗it|
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The Reduced Linear System

� Summarizing, we approximate

v̂t ≈ Zηt,

ĝt ≈ Xγt,

where ηt is kv × 1, γt is kg × 1 with kv, kg << N

� Sufficient to keep track of these low-dimensional vectors:

Et

dηtdγt

dZt

 =

Z
′BvvZ Z′BvpBpgX Z′BvpBpZ

X′BgvZ X′(Bgg + BgpBpg)X X′BgpBpZ

0 0 −ν


ηtγt
Zt

 dt

� Then proceed as before
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Approximate Aggregation in KS Model
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� Comparison of full distribution vs. k = 1 approximation

=⇒ recovers Krusell & Smith’s “approximate aggregation”
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Approximate Aggregation in KS Model
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� Large-scale models in applications require k = 300

=⇒ no approximate aggregation
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Internal Consistency
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Nonlinearly Aggregated

Reduced Model Forecast

� Maximum deviation: 0.065%

� Maximum deviation in unreduced model: 0.049%
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Model Reduction Speeds Up Solution

w/o Reduction w/ Reduction
Steady State 0.082 sec 0.082 sec
Linearize 0.021 sec 0.021 sec
Reduction × 0.007 sec
Solve 0.14 sec 0.002 sec
Total 0.243 sec 0.112 sec
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Plan For Today

1. Computational Methodology

� Simple Krusell-Smith model

� Linearizing heterogeneous agent models

� Dimensionality reduction

2. Applications

� Two-asset model

� Aggregate consumption dynamics

� Inequality dynamics

34 / 50



Households

max
{cjt}t≥0

E0

∫ ∞
0

e−(ρ+ζ)tu(cjt)dt such that

cjt + ḃjt+djt + χ(djt, ajt) = rbt (bjt)bjt + wtzjt − T (wtzjt)

ȧjt = rat ajt + djt

zjt ∈ {z1, ..., zNz} Poisson with intensities λzz′

bjt ≥ −B × Zt and ajt ≥ 0

� bjt: liquid assets

� ajt: illiquid assets

� djt: illiquid deposits (≷ 0)

� χ(djt, ajt): transaction cost function

� rbt (bjt) = rbt if bjt ≥ 0, = rbt + κ if bjt < 0
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Kinked adjustment cost function χ(d, a)

χ(djt, ajt) = χ0|djt|+ χ1

∣∣∣∣djtajt
∣∣∣∣χ2

ajt
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Production and Market Clearing

� Aggregate production function with growth rate shocks

Yt = Kα
t (QtNt)

1−α

d logQt = Ztdt

dZt = −νZtdt+ σdWt

� Perfect competition in factor markets

wt = (1− α)
Yt
Nt
, rat = α

Yt
Kt
− δ

� Market clearing
� Illiquid assets: Kt =

∫
adGt(a, b, z)

� Liquid assets: B =
∫
bdGt(a, b, z)

� Labor market: Nt =
∫
zdGt(a, b, z) ≡ 1
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Parameterization

1. Distribution of income and wealth in micro data

� Exogenously fix subset of parameters to standard values

� Estimate labor productivity shocks from SSA data Details

� Choose transaction costs + discount rate to match wealth
distribution

2. Dynamics of income in macro data

Statistic Data Model

σ (∆ log Yt) 0.89% 0.88%

Corr(∆ log Yt,∆ log Yt−1) 0.37 0.36

d logQt = Ztdt, with dZt = −νZtdt+ σdWt
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Model matches key feature of U.S. wealth distribution

Data Model

Mean illiquid assets (rel to GDP) 3.000 3.000
Mean liquid assets (rel to GDP) 0.375 0.375
Poor hand-to-mouth 10.0% 10.5%
Wealthy hand-to-mouth 20.0% 17.2%
Borrowers 15.0% 13.5%
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Model generates high and heterogeneous
MPCs
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� Average quarterly MPC out of a $500 windfall: 23%
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Parameterization

1. Distribution of income and wealth in micro data

� Exogenously fix subset of parameters to standard values

� Estimate labor productivity shocks from SSA data Details

� Choose transaction costs + discount rate to match wealth
distribution

2. Dynamics of aggregate income in macro data

Statistic Data Model

σ (∆ log Yt) 0.89% 0.88%

Corr(∆ log Yt,∆ log Yt−1) 0.37 0.36

d logQt = Ztdt, with dZt = −νZtdt+ σdWt
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“Approximate Aggregation” Breaks Down
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Performance of the Method, Size ≈ 132, 000

kg = 300 kg = 150

Steady State 47.00 sec 47.00 sec
Derivatives 21.91 sec 21.91 sec
Dim reduction 258.80 sec 79.90 sec
Linear system 17.14 sec 12.66 sec
Simulate IRF 3.76 sec 2.12 sec
Total 348.61 sec 171.58 sec
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Plan For Today

1. Computational Methodology

� Simple Krusell-Smith model

� Linearizing heterogeneous agent models

� Dimensionality reduction

2. Applications

� Two-asset model

� Aggregate consumption dynamics

� Inequality dynamics
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Application 1: Inequality Matters for Agg C +
Y Dynamics

� Campbell-Mankiw Macro Annual ’89: how match C + Y
dynamics?

Data Models
Rep agent Two-Asset CM

Sensitivity to Income
IV(∆ logCt on ∆ log Yt 0.503 0.247 0.656 0.505

using ∆ log Yt−1)
Smoothness
σ(∆ logCt)
σ(∆ log Yt)

0.518 0.709 0.514 0.676
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Plan For Today

1. Computational Methodology

� Simple Krusell-Smith model

� Linearizing heterogeneous agent models

� Dimensionality reduction

2. Applications

� Two-asset model

� Aggregate consumption dynamics

� Inequality dynamics
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Application 2: Agg Shocks Matter for
Inequality Dynamics

� With Cobb-Douglas production, labor income inequality
exogenous

labor income = wt × zjt

� Modify production function to generate endogenous inequality

Yt =
[
µ(ZUt N

U
t )σ + (1− µ)

(
λKρ

t + (1− λ)(NS
t )ρ
)σ
ρ

] 1
σ

� NU
t : unskilled labor w/ low persistent productivity zjt

� NS
t : skilled labor w/ high persistent productivity zjt

� ZUt : unskilled-specific productivity shock

� Calibrate σ and ρ to generate capital-skill complementarity
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Unskilled-Specific Shock Increases Inequality...
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� Fluctuations in income inequality ≈ aggregate income
46 / 50



... And Generates Sharp Consumption Bust
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� Many low-skill households hand-to-mouth

=⇒ larger consumption drop than in rep agent model
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Macro With Inequality: No More Excuses!

1. Efficient and easy-to-use computational method

� Open source Matlab toolbox online now

2. Use methodology to illustrate interaction of macro +
inequality

� Match micro behavior =⇒ realistic aggregate C + Y
dynamics

� Aggregate shocks generate inequality dynamics

� Estimating models w/ micro data on distributions within reach

48 / 50



Instead: Fully Recursive Notation Back

w(g, Z) = (1− α)eZK(g)α, r(g, Z) = αeZK(g)α−1 − δ (P)

K(g) =

∫
ag(a, z)dadz (K)

ρV (a, z, g, Z) = max
c

u(c) + ∂aV (a, z, g, Z)[w(g, Z)z + r(g, Z)a− c]

+ λz[V (a, z′, g, Z)− V (a, z, g, Z)]

+∂ZV (a, z, g, Z)(−νZ) +
1

2
∂ZZV (a, z, g, Z)σ2

+

∫
δV (a, z, g, Z)

δg(a, z)
T [g, Z](a, z)dadz

(∞d HJB)

T [g, Z](a, z) = −∂a[s(a, z, g, Z)g(a, z)]− λzg(a, z) + λz′g(a, z′)
(KF operator)

s(a, z, g, Z) = w(g, Z)z + r(g, Z)a− c∗(a, z, g, Z)

� δV/δg(a, z): functional derivative of V wrt g at point (a, z)
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Labor Productivity Shocks Back

log zjt = z1,jt + z2,jt

dzi,jt = −βizi,jtdt+ εi,jtdNi,jt, where ε ∼ N(0, σ2
i ) for i = 1, 2

Moment Data Model Model
Estimated Discretized

Variance: annual log earns 0.70 0.70 0.74
Variance: 1yr change 0.23 0.23 0.21
Variance: 5yr change 0.46 0.46 0.49
Kurtosis: 1yr change 17.8 16.5 15.5
Kurtosis: 5yr change 11.6 12.1 13.2
Frac 1yr change < 10% 0.54 0.56 0.63
Frac 1yr change < 20% 0.71 0.67 0.71
Frac 1yr change < 50% 0.86 0.85 0.83
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Labor Productivity Shocks Back

log zjt = z1,jt + z2,jt

dzi,jt = −βizi,jtdt+ εi,jtdNi,jt, where ε ∼ N(0, σ2
i ) for i = 1, 2

Parameter Component Component
j = 1 j = 2

Arrival rate λj 0.080 0.007
Mean reversion βj 0.761 0.009
St. Deviation of innovations σj 1.74 1.53
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