Aggregate Shocks

SeHyoun Ahn Norges Bank

Benjamin Moll
Princeton University
Christian Wolf
Princeton University
Princtor

$5+1$

1. P

 1Standard disclaimers apply.

SNU 2019/11/5

Greg Kaplan University of Chicago

Thomas Winberry University of Chicago

NORGES BANK

Overview of Our Paper

- Heterogeneous agent models study interaction of macro + inequality

■ Not yet part of policymakers' toolbox. Two excuses:

- Computational difficulties because distribution endogenous
- Perception that aggregate dynamics similar to representative agent

These excuses less valid than you thought

1. Efficient and easy-to-use computational method

- Open source Matlab toolbox online now

2. Use methodology to illustrate interaction of macro + inequality

- Match micro behavior \Longrightarrow realistic aggregate $\mathrm{C}+\mathrm{Y}$ dynamics

Big Picture: Standard DSGE

Big Picture: Standard DSGE

Big Picture: HA-DSGE

Big Picture: HA-DSGE

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models (Reiter, Campbell, Dotsey-King-Wollman)
- Dimensionality reduction (model reduction in engineering)

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Households

$$
\begin{aligned}
\max _{\left\{c_{j t}\right\}_{t \geq 0}} & \mathbb{E}_{0} \int_{0}^{\infty} e^{-\rho t} u\left(c_{j t}\right) d t \quad \text { such that } \\
& c_{j t}+\dot{a}_{j t}=w_{t} z_{j t}+r_{t} a_{j t} \\
& z_{j t} \in\left\{z_{\ell}, z_{h}\right\} \text { Poisson with intensities } \lambda_{\ell}, \lambda_{h} \\
& a_{j t} \geq 0
\end{aligned}
$$

- $c_{j t}$: consumption
- u: utility function, $u^{\prime}>0, u^{\prime \prime}<0$.
- ρ : discount rate
- r_{t} : interest rate

Production and Market Clearing

- Aggregate production function

$$
Y_{t}=e^{Z_{t}} K_{t}^{\alpha} N_{t}^{1-\alpha} \text { with } d Z_{t}=-\nu Z_{t}+\sigma d W_{t}
$$

- Perfect competition in factor markets

$$
w_{t}=(1-\alpha) \frac{Y_{t}}{N_{t}}, \quad r_{t}=\alpha \frac{Y_{t}}{K_{t}}-\delta
$$

- Market clearing

$$
\begin{aligned}
K_{t} & =\int a g_{t}(a, z) d a d z \\
N_{t} & =\int z g_{t}(a, z) d a d z \equiv 1
\end{aligned}
$$

Equilibrium

Aggregate state: $\left(g_{t}, Z_{t}\right) \Rightarrow$ absorb into time subscript t

- Recursive notation w.r.t. individual states only

■ \mathbb{E}_{t} is expectation w.r.t. aggregate states only

Equilibrium

Aggregate state: $\left(g_{t}, Z_{t}\right) \Rightarrow$ absorb into time subscript t

- Recursive notation w.r.t. individual states only
- \mathbb{E}_{t} is expectation w.r.t. aggregate states only (fill reausive

$$
\begin{align*}
\rho v_{t}(a, z)= & \max _{c} u(c)+\partial_{a} v_{t}(a, z)\left(w_{t} z+r_{t} a-c\right) \\
& +\lambda_{z}\left(v_{t}\left(a, z^{\prime}\right)-v_{t}(a, z)\right)+\frac{1}{d t} \mathbb{E}_{t}\left[d v_{t}(a, z)\right] \tag{HJB}
\end{align*}
$$

$$
\begin{equation*}
\frac{\mathrm{d} g_{t}(a, z)}{\mathrm{d} t}=-\partial_{a}\left[s_{t}(a, z) g_{t}(a, z)\right]-\lambda_{z} g_{t}(a, z)+\lambda_{z^{\prime}} g_{t}\left(a, z^{\prime}\right) \tag{KF}
\end{equation*}
$$

$$
\begin{equation*}
w_{t}=(1-\alpha) e^{Z_{t}} K_{t}^{\alpha} \text { and } r_{t}=\alpha e^{Z_{t}} K_{t}^{\alpha-1}-\delta, \tag{P}
\end{equation*}
$$

$$
K_{t}=\int a g_{t}(a, z) d a d z
$$

$$
\begin{equation*}
d Z_{t}=-\nu Z_{t} d t+\sigma d W_{t} \tag{Z}
\end{equation*}
$$

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Extending Linearization to Heterogeneous Agent Models

1. Compute non-linear approx. of non-stochastic steady state
2. Compute first-order Taylor expansion around steady state
3. Solve linear stochastic differential equation

Warm Up: Linearizing a Representative Agent Model

- Representative agent RBC model

$$
\begin{aligned}
\mathbb{E}_{t}\left[\mathrm{~d} C_{t}^{-\gamma}\right] & =C_{t}^{-\gamma}\left(\alpha e^{Z_{t}} K_{t}^{\alpha-1}-\rho-\delta\right) \mathrm{d} t \\
\mathrm{~d} K_{t} & =\left(e^{Z_{t}} K_{t}^{\alpha}-\delta K_{t}-C_{t}\right) \mathrm{d} t \\
\mathrm{~d} Z_{t} & =-\eta Z_{t} \mathrm{~d} t+\sigma \mathrm{d} W_{t}
\end{aligned}
$$

- Classification of variables

$$
\begin{aligned}
C_{t} & =\text { control variable } \\
K_{t} & =\text { endogenous state variable } \\
Z_{t} & =\text { exogenous state variable }
\end{aligned}
$$

Warm Up: Linearizing a Representative Agent Model

- Linearized representative agent RBC model

$$
\mathbb{E}_{t}\left[\begin{array}{c}
\mathrm{d} \widehat{C}_{t} \\
\mathrm{~d} \widehat{K}_{t} \\
\mathrm{~d} Z_{t}
\end{array}\right]=\left[\begin{array}{ccc}
B_{C C} & B_{C K} & B_{C Z} \\
B_{K C} & B_{K K} & B_{K Z} \\
0 & 0 & -\eta
\end{array}\right]\left[\begin{array}{c}
\widehat{C}_{t} \\
\widehat{K}_{t} \\
Z_{t}
\end{array}\right] \mathrm{d} t
$$

- Classification of variables

$$
\begin{aligned}
C_{t} & =\text { control variable } \\
K_{t} & =\text { endogenous state variable } \\
Z_{t} & =\text { exogenous state variable }
\end{aligned}
$$

Extending Linearization to Heterogeneous Agent Models

1. Compute non-linear approx. of non-stochastic steady state
2. Compute first-order Taylor expansion around steady state
3. Solve linear stochastic differential equation

Extending Linearization to Heterogeneous Agent Models

1. Compute non-linear approx. of non-stochastic steady state

- Finite difference method from Achdou et al. (2015)
- Steady state reduces to sparse matrix equations
- Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state
3. Solve linear stochastic differential equation

Step 1: Compute Non-Stochastic Steady State

$$
\begin{align*}
\rho v(a, z)= & \max _{c} u(c)+\partial_{a} v(a, z)(w z+r a-c) \tag{HJBSS}\\
& +\lambda_{z}\left(v\left(a, z^{\prime}\right)-v(a, z)\right) \\
0= & -\partial_{a}[s(a, z) g(a, z)]-\lambda_{z} g(a, z)+\lambda_{z^{\prime}} g\left(a, z^{\prime}\right) \tag{KFSS}\\
w & =(1-\alpha) K^{\alpha}, \quad r=\alpha K^{\alpha-1}-\delta \\
K & =\int a g(a, z) d a d z
\end{align*}
$$

(P SS)

Step 1: Compute Non-Stochastic Steady State

$$
\left.\begin{array}{rl}
\rho v_{i, j}= & u\left(c_{i, j}\right)+\partial_{a} v_{i, j}\left(w z_{j}+r a_{i}-c_{i, j}\right) \\
& \quad+\lambda_{j}\left(v_{i,-j}-v_{i, j}\right), \text { with } c_{i, j}=u^{\prime-1}\left(\partial_{a} v_{i, j}\right) \\
0=- & \partial_{a}[s(a, z) g(a, z)]-\lambda_{z} g(a, z)+\lambda_{z^{\prime}} g\left(a, z^{\prime}\right)
\end{array}\right\} \begin{aligned}
& w=(1-\alpha) K^{\alpha}, \quad r=\alpha K^{\alpha-1}-\delta, \tag{KFSS}\\
& K=\int a g(a, z) d a d z
\end{aligned}
$$

(P SS)

Step 1: Compute Non-Stochastic Steady State

$$
\begin{align*}
\rho \mathbf{v} & =\mathbf{u}(\mathbf{v})+\mathbf{A}(\mathbf{v} ; \mathbf{p}) \mathbf{v} \tag{HJBSS}\\
0 & =-\partial_{a}[s(a, z) g(a, z)]-\lambda_{z} g(a, z)+\lambda_{z^{\prime}} g\left(a, z^{\prime}\right) \tag{KFSS}\\
& w=(1-\alpha) K^{\alpha}, \quad r=\alpha K^{\alpha-1}-\delta, \\
& K=\int a g(a, z) d a d z
\end{align*}
$$

(P SS)

Step 1: Compute Non-Stochastic Steady State

$$
\begin{align*}
\rho \mathbf{v} & =\mathbf{u}(\mathbf{v})+\mathbf{A}(\mathbf{v} ; \mathbf{p}) \mathbf{v} \tag{HJBSS}\\
0 & =-\partial_{a}[s(a, z) g(a, z)]-\lambda_{z} g(a, z)+\lambda_{z^{\prime}} g\left(a, z^{\prime}\right) \tag{KFSS}\\
& w=(1-\alpha) K^{\alpha}, \quad r=\alpha K^{\alpha-1}-\delta, \\
& K=\int a g(a, z) d a d z
\end{align*}
$$

(P SS)

Step 1: Compute Non-Stochastic Steady State

$$
\begin{aligned}
& \rho \mathbf{v}=\mathbf{u}(\mathbf{v})+\mathbf{A}(\mathbf{v} ; \mathbf{p}) \mathbf{v} \\
& \mathbf{0}=\mathbf{A}(\mathbf{v} ; \mathbf{p})^{\mathrm{T}} \mathbf{g} \\
& \quad w=(1-\alpha) K^{\alpha}, \quad r=\alpha K^{\alpha-1}-\delta, \\
& \\
& K=\int a g(a, z) d a d z
\end{aligned}
$$

(KF SS)
(P SS)

Step 1: Compute Non-Stochastic Steady

 State$$
\rho \mathbf{v}=\mathbf{u}(\mathbf{v})+\mathbf{A}(\mathbf{v} ; \mathbf{p}) \mathbf{v}
$$

$$
\mathbf{0}=\mathbf{A}(\mathbf{v} ; \mathbf{p})^{\mathrm{T}} \mathbf{g}
$$

$$
\mathbf{p}=\mathbf{F}(\mathbf{g})
$$

(HJB SS)
(KF SS)
(P SS)

Linearizing Continuous Time Het Agent Models

1. Compute non-linear approximation to non-stochastic steady state

- Finite difference method from Achdou et al. (2015)
- Steady state reduces to sparse matrix equations
- Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state
3. Solve linear stochastic differential equation

Linearizing Continuous Time Het Agent Models

1. Compute non-linear approximation to non-stochastic steady state

- Finite difference method from Achdou et al. (2015)
- Steady state reduces to sparse matrix equations
- Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

- Automatic differentiation: exact numerical derivatives
- Efficient Matlab implementation for sparse systems

3. Solve linear stochastic differential equation

Step 2: Linearize Discretized System

- Discretized system with aggregate shocks

$$
\begin{aligned}
\rho \mathbf{v}_{t} & =\mathbf{u}\left(\mathbf{v}_{t}\right)+\mathbf{A}\left(\mathbf{v}_{t} ; \mathbf{p}_{t}\right) \mathbf{v}_{t}+\frac{1}{d t} \mathbb{E}_{t}\left[d \mathbf{v}_{t}\right] \\
\frac{d \mathbf{g}_{t}}{d t} & =\mathbf{A}\left(\mathbf{v}_{t} ; \mathbf{p}_{t}\right)^{\mathrm{T}} \mathbf{g}_{t} \\
\mathbf{p}_{t} & =\mathbf{F}\left(\mathbf{g}_{\mathbf{t}} ; Z_{t}\right) \\
d Z_{t} & =-\nu Z_{t} d t+\sigma d W_{t}
\end{aligned}
$$

Step 2: Linearize Discretized System

- Discretized system with aggregate shocks

$$
\begin{aligned}
\rho \mathbf{v}_{t} & =\mathbf{u}\left(\mathbf{v}_{t}\right)+\mathbf{A}\left(\mathbf{v}_{t} ; \mathbf{p}_{t}\right) \mathbf{v}_{t}+\frac{1}{d t} \mathbb{E}_{t}\left[d \mathbf{v}_{t}\right] \\
\frac{d \mathbf{g}_{t}}{d t} & =\mathbf{A}\left(\mathbf{v}_{t} ; \mathbf{p}_{t}\right)^{\mathrm{T}} \mathbf{g}_{t} \\
\mathbf{p}_{t} & =\mathbf{F}\left(\mathbf{g}_{\mathbf{t}} ; Z_{t}\right) \\
d Z_{t} & =-\nu Z_{t} d t+\sigma d W_{t}
\end{aligned}
$$

- Write in general form

$$
\mathbb{E}_{t}\left[\begin{array}{c}
d \mathbf{v}_{t} \\
d \mathbf{g}_{t} \\
\mathbf{0} \\
d Z_{t}
\end{array}\right]=f\left(\mathbf{v}_{t}, \mathbf{g}_{t}, \mathbf{p}_{t}, Z_{t}\right) d t, \quad\left[\begin{array}{c}
\mathbf{v}_{t} \\
\mathbf{g}_{t} \\
\mathbf{p}_{t} \\
Z_{t}
\end{array}\right]=\left[\begin{array}{c}
\text { control } \\
\text { endog state } \\
\text { prices } \\
\text { exog state }
\end{array}\right]
$$

Step 2: Linearize Discretized System

- Discretized system with aggregate shocks

$$
\begin{aligned}
\rho \mathbf{v}_{t} & =\mathbf{u}\left(\mathbf{v}_{t}\right)+\mathbf{A}\left(\mathbf{v}_{t} ; \mathbf{p}_{t}\right) \mathbf{v}_{t}+\frac{1}{d t} \mathbb{E}_{t}\left[d \mathbf{v}_{t}\right] \\
\frac{d \mathbf{g}_{t}}{d t} & =\mathbf{A}\left(\mathbf{v}_{t} ; \mathbf{p}_{t}\right)^{\mathrm{T}} \mathbf{g}_{t} \\
\mathbf{p}_{t} & =\mathbf{F}\left(\mathbf{g}_{\mathbf{t}} ; Z_{t}\right) \\
d Z_{t} & =-\nu Z_{t} d t+\sigma d W_{t}
\end{aligned}
$$

- Linearize using automatic differentiation (code: @myAD)

$$
\mathbb{E}_{t}\left[\begin{array}{c}
d \widehat{\mathbf{v}}_{t} \\
d \widehat{\mathbf{g}}_{t} \\
\mathbf{0} \\
d Z_{t}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{B}_{v v} & \mathbf{0} & \mathbf{B}_{v p} & \mathbf{0} \\
\mathbf{B}_{g v} & \mathbf{B}_{g g} & \mathbf{B}_{g p} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}_{p g} & -\mathbf{I} & \mathbf{B}_{p Z} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & -\nu
\end{array}\right]\left[\begin{array}{c}
\widehat{\mathbf{v}}_{t} \\
\widehat{\mathbf{g}}_{t} \\
\widehat{\mathbf{p}}_{t} \\
Z_{t}
\end{array}\right] d t
$$

Linearizing Continuous Time Het Agent Models

1. Compute non-linear approximation to non-stochastic steady state

- Finite difference method from Achdou et al. (2015)
- Steady state reduces to sparse matrix equations
- Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

- Automatic Differentiation: exact numerical derivatives
- Efficient Matlab implementation for sparse systems

3. Solve linear stochastic differential equation

Linearizing Continuous Time Het Agent Models

1. Compute non-linear approximation to non-stochastic steady state

- Finite difference method from Achdou et al. (2015)
- Steady state reduces to sparse matrix equations
- Borrowing constraint absorbed into boundary conditions

2. Compute first-order Taylor expansion around steady state

- Automatic Differentiation: exact numerical derivatives
- Efficient Matlab implementation for sparse systems

3. Solve linear stochastic differential equation

- Moderately-sized systems \Longrightarrow standard methods OK

Step 3: Solve Linear System

- Diagonalize + hope that number of stable eigenvalues $=$ number of state variables
- Set control variables \perp unstable eigenvectors \Longrightarrow policy function

$$
\widehat{\mathbf{v}}_{t}=\mathbf{D}_{g} \widehat{\mathbf{g}}_{t}+\mathbf{D}_{Z} \widehat{Z}_{t}
$$

- Feasible for $N \leq 5000$ or so

Linearization is Fast and Accurate

■ Calibration: JEDC (2010) comparison project on Krusell-Smith

■ Size: 100 asset grid points \Longrightarrow total system ≈ 400

Linearization is Fast and Accurate

- Calibration: JEDC (2010) comparison project on Krusell-Smith

■ Size: 100 asset grid points \Longrightarrow total system ≈ 400
■ Speed: ≈ 0.25 seconds

- JEDC (2010) project: ≈ 7 minutes up to ≈ 46 hours

Linearization is Fast and Accurate

- Calibration: JEDC (2010) comparison project on Krusell-Smith

■ Size: 100 asset grid points \Longrightarrow total system ≈ 400

- Speed: ≈ 0.25 seconds
- JEDC (2010) project: ≈ 7 minutes up to ≈ 46 hours
- Accuracy: Max difference in K_{t} from simulations using individual policies vs. aggregate law of motion

Agg Shock σ	0.01%	0.1%	0.7%	1%	5%
DH Error Stat	0.000%	0.002%	0.053%	0.135%	3.347%

- JEDC (2010) project: most accurate alternative $\approx 0.16 \%$

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Model-Free Reduction Method

$$
\mathbb{E}_{t}\left[\begin{array}{c}
d \widehat{\mathbf{v}}_{t} \\
d \widehat{\mathbf{g}}_{t} \\
\mathbf{0} \\
d Z_{t}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{B}_{v v} & \mathbf{0} & \mathbf{B}_{v p} & \mathbf{0} \\
\mathbf{B}_{g v} & \mathbf{B}_{g g} & \mathbf{B}_{g p} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}_{p g} & -\mathbf{I} & \mathbf{B}_{p Z} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & -\nu
\end{array}\right]\left[\begin{array}{c}
\widehat{\mathbf{v}}_{t} \\
\widehat{\mathbf{g}}_{t} \\
\widehat{\mathbf{p}}_{t} \\
Z_{t}
\end{array}\right] d t
$$

- Dimensionality: 2 income types $\times M$ wealth grid points \Longrightarrow both \mathbf{v}_{t} and \mathbf{g}_{t} are $N(=2 M) \times 1$ vectors

Model-Free Reduction Method

$$
\mathbb{E}_{t}\left[\begin{array}{c}
d \widehat{\mathbf{v}}_{t} \\
d \widehat{\mathbf{g}}_{t} \\
\mathbf{0} \\
d Z_{t}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{B}_{v v} & \mathbf{0} & \mathbf{B}_{v p} & \mathbf{0} \\
\mathbf{B}_{g v} & \mathbf{B}_{g g} & \mathbf{B}_{g p} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}_{p g} & -\mathbf{I} & \mathbf{B}_{p Z} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & -\nu
\end{array}\right]\left[\begin{array}{c}
\widehat{\mathbf{v}}_{t} \\
\widehat{\mathbf{g}}_{t} \\
\widehat{\mathbf{p}}_{t} \\
Z_{t}
\end{array}\right] d t
$$

- Dimensionality: 2 income types $\times M$ wealth grid points \Longrightarrow both \mathbf{v}_{t} and \mathbf{g}_{t} are $N(=2 M) \times 1$ vectors

1. Value function: reduce using quadratic splines

- Will not discuss today

2. Distribution: reduce using model reduction tools

- Explain intuition in special cases
- Paper has detailed proofs

Distribution Reduction by Projection

Or, what race cars and fighter jets can teach us about distributional dynamics

Based on Stanford Computational and Mathematical Engineering (CME) 345 "Model Reduction"
https://web.stanford.edu/group/frg/course_work/CME345.html

Distribution Reduction by Projection

- Key insight: households only need to forecast prices
- Krusell-Smith: guess moments to approx distribution, check they forecast prices
- Our approach: have computer choose "moments", guarantees accuracy

Distribution Reduction by Projection

- Key insight: households only need to forecast prices
- Krusell-Smith: guess moments to approx distribution, check they forecast prices
- Our approach: have computer choose "moments", guarantees accuracy
- Distribution exactly reduces if there exists as basis $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right]$ such that

$$
\mathbf{g}_{t}=\gamma_{1 t} \mathbf{x}_{1}+\gamma_{2 t} \mathbf{x}_{2}+\ldots+\gamma_{k t} \mathbf{x}_{k} \equiv \mathbf{X} \gamma_{t}
$$

- N-dimensional \mathbf{g}_{t} approximated with $k \ll N$-dimensional γ_{t}
- Model approximately reduces if instead $\mathbf{g}_{t} \approx \mathbf{X} \gamma_{t}$

Distribution Reduction by Projection

■ Key insight: households only need to forecast prices

- Krusell-Smith: guess moments to approx distribution, check they forecast prices
- Our approach: have computer choose "moments", guarantees accuracy
- Distribution exactly reduces if there exists as basis $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right]$ such that

$$
\mathbf{g}_{t}=\gamma_{1 t} \mathbf{x}_{1}+\gamma_{2 t} \mathbf{x}_{2}+\ldots+\gamma_{k t} \mathbf{x}_{k} \equiv \mathbf{X} \gamma_{t}
$$

- N-dimensional \mathbf{g}_{t} approximated with $k \ll N$-dimensional γ_{t}

■ Model approximately reduces if instead $\mathbf{g}_{t} \approx \mathbf{X} \gamma_{t}$
\Longrightarrow Goal: Choose \mathbf{X} to "approximate" IRFs of \mathbf{p}_{t} with small k

Big Picture: HA-DSGE

A Special Case: Exogenous Decision Rules

■ Suppose given $\mathbf{D}_{v g}$ and $\mathbf{D}_{v Z}$ in $\mathbf{v}_{t}=\mathbf{D}_{v g} \mathbf{g}_{t}+\mathbf{D}_{v Z} Z_{t}$

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{g}_{t}}{\mathrm{~d} t} & =\mathbf{C}_{g g} \mathbf{g}_{t}+\mathbf{C}_{g Z} Z_{t} \\
\mathbf{p}_{t} & =\mathbf{B}_{p g} \mathbf{g}_{t}+\mathbf{B}_{p Z} Z_{t}
\end{aligned}
$$

A Special Case: Exogenous Decision Rules

■ Suppose given $\mathbf{D}_{v g}$ and $\mathbf{D}_{v Z}$ in $\mathbf{v}_{t}=\mathbf{D}_{v g} \mathbf{g}_{t}+\mathbf{D}_{v Z} Z_{t}$

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{g}_{t}}{\mathrm{~d} t} & =\mathbf{C}_{g g} \mathbf{g}_{t}+\mathbf{C}_{g Z} Z_{t} \\
\mathbf{p}_{t} & =\mathbf{B}_{p g} \mathbf{g}_{t}+\mathbf{B}_{p Z} Z_{t}
\end{aligned}
$$

■ Protoypical problem in model reduction literature

- Maps low-dimensional inputs $\left(Z_{t}\right)$ into low-dimensional outputs (\mathbf{p}_{t})
- High-dimensional intermediating variable (\mathbf{g}_{t})

A Special Case: Exogenous Decision Rules

- Suppose given $\mathbf{D}_{v g}$ and $\mathbf{D}_{v Z}$ in $\mathbf{v}_{t}=\mathbf{D}_{v g} \mathbf{g}_{t}+\mathbf{D}_{v Z} Z_{t}$

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{g}_{t}}{\mathrm{~d} t} & =\mathbf{C}_{g g} \mathbf{g}_{t}+\mathbf{C}_{g Z} Z_{t} \\
\mathbf{p}_{t} & =\mathbf{B}_{p g} \mathbf{g}_{t}+\mathbf{B}_{p Z} Z_{t}
\end{aligned}
$$

- Protoypical problem in model reduction literature
- Maps low-dimensional inputs $\left(Z_{t}\right)$ into low-dimensional outputs (\mathbf{p}_{t})
- High-dimensional intermediating variable (g_{t})
- To reduce distribution, need to

1. Find a good basis \mathbf{X}
2. Given basis \mathbf{X}, estimate coefficients γ_{t}

Plan Of Attack

1. Exogenous decision rules: adapt existing results

- Start in deterministic model $\left(Z_{t}=0\right.$ for all $\left.t\right)$

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{g}_{t}}{\mathrm{~d} t} & =\mathbf{C}_{g g} \mathbf{g}_{t} \\
\mathbf{p}_{t} & =\mathbf{B}_{p g} \mathbf{g}_{t}
\end{aligned}
$$

given initial \mathbf{g}_{0}

- Move to stochastic model

2. Endogenous decision rules

Plan Of Attack

1. Exogenous decision rules: adapt existing results

- Start in deterministic model $\left(Z_{t}=0\right.$ for all $\left.t\right)$

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{g}_{t}}{\mathrm{~d} t} & =\mathbf{C}_{g g} \mathbf{g}_{t} \\
p_{t} & =\mathrm{b}_{p g} \mathbf{g}_{t} \quad \text { (a scalar) }
\end{aligned}
$$

given initial \mathbf{g}_{0}

- Move to stochastic model

2. Endogenous decision rules

Estimating Coefficients Given Basis X

- Can write $\mathbf{g}_{t} \approx \mathbf{X} \gamma_{t}$ as a linear regression

$$
\mathbf{g}_{t}=\mathbf{X} \gamma_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \in \mathbb{R}^{N}=\text { residual }
$$

- $\mathbf{g}_{t}=$ dependent variable
- $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right]$ contains k independent variables
- $\gamma_{t}=$ coefficients to be estimated
- Estimate γ_{t} using the orthogonality condition $\mathbf{X}^{\mathrm{T}} \varepsilon_{t}=0$

$$
\gamma_{t}=\underbrace{\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}}_{=\mathbf{I}} \mathbf{X}^{\mathrm{T}} \mathbf{g}_{t}
$$

Estimating Coefficients Given Basis X

- Can write $\mathbf{g}_{t} \approx \mathbf{X} \gamma_{t}$ as a linear regression

$$
\mathbf{g}_{t}=\mathbf{X} \gamma_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \in \mathbb{R}^{N}=\text { residual }
$$

- $\mathbf{g}_{t}=$ dependent variable
- $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right]$ contains k independent variables
- $\gamma_{t}=$ coefficients to be estimated
- Estimate γ_{t} using the orthogonality condition $\mathbf{X}^{\mathrm{T}} \varepsilon_{t}=0$

$$
\gamma_{t}=\underbrace{\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}}_{=\mathbf{I}} \mathbf{X}^{\mathrm{T}} \mathbf{g}_{t}
$$

- Reduced system is

$$
\begin{aligned}
\widetilde{p}_{t} & =\mathbf{b}_{p g} \mathbf{X} \gamma_{t} \\
\frac{d \gamma_{t}}{d t} & =\mathbf{X}^{\mathrm{T}} \mathbf{C}_{g g} \mathbf{X} \gamma_{t}
\end{aligned}
$$

How To Choose Basis X?

- Choose basis \mathbf{X} to match transition path of p_{t}
\Longrightarrow match k-order Taylor expansion of p_{t} using only γ_{t}

How To Choose Basis X?

- Choose basis \mathbf{X} to match transition path of p_{t}
\Longrightarrow match k-order Taylor expansion of p_{t} using only γ_{t}
- Unreduced model:

$$
\begin{aligned}
p_{t} & =\mathbf{b}_{p g} \mathbf{g}_{t} \\
\frac{d \mathbf{g}_{t}}{d t} & =\mathbf{C}_{g g} \mathbf{g}_{t}
\end{aligned}
$$

- Reduced model:

$$
\begin{aligned}
\widetilde{p}_{t} & =\mathbf{b}_{p g} \mathbf{X} \gamma_{t} \\
\frac{d \gamma_{t}}{d t} & =\mathbf{X}^{\mathrm{T}} \mathbf{C}_{g g} \mathbf{X} \gamma_{t}
\end{aligned}
$$

How To Choose Basis X?

- Choose basis \mathbf{X} to match transition path of p_{t}
\Longrightarrow match k-order Taylor expansion of p_{t} using only γ_{t}
- Unreduced model:

$$
p_{t}=\mathbf{b}_{p g} e^{\mathbf{C}_{g g} t} \mathbf{g}_{0}
$$

- Reduced model:

$$
p_{t}=\mathbf{b}_{p g} \mathbf{X} e^{\mathbf{X}^{\mathrm{T}} \mathbf{C}_{g g} \mathbf{X} t} \mathbf{g}_{0}
$$

How To Choose Basis X?

- Choose basis \mathbf{X} to match transition path of p_{t}
\Longrightarrow match k-order Taylor expansion of p_{t} using only γ_{t}
- Unreduced model:

$$
p_{t} \approx \mathbf{b}_{p g}\left[\mathbf{I}+\mathbf{C}_{g g} t+\frac{1}{2} \mathbf{C}_{g g}^{2}+\ldots\right] \mathbf{g}_{0}
$$

- Reduced model:

$$
\widetilde{p}_{t} \approx \mathbf{b}_{p g} \mathbf{X}\left[\mathbf{I}+\left(\mathbf{X}^{\mathrm{T}} \mathbf{C}_{g g} \mathbf{X}\right) t+\frac{1}{2}\left(\mathbf{X}^{\mathrm{T}} \mathbf{C}_{g g} \mathbf{X}\right)^{2}+\ldots\right] \gamma_{0}
$$

How To Choose Basis X?

- Choose basis \mathbf{X} to match transition path of p_{t}
\Longrightarrow match k-order Taylor expansion of p_{t} using only γ_{t}
- Claim: if \mathbf{X} spans $\mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right)^{\mathrm{T}}$, then path of reduced \widetilde{p}_{t} matches path unreduced of p_{t} up to order k

$$
\mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right):=\left[\begin{array}{c}
\mathbf{b}_{p g} \\
\mathbf{b}_{p g} \mathbf{C}_{g g} \\
\mathbf{b}_{p g} \mathbf{C}_{g g}^{2} \\
\vdots \\
\mathbf{b}_{p g} \mathbf{C}_{g g}^{k-1}
\end{array}\right]
$$

- Why $\mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right)$?
$p_{t} \approx\left[1, t, \frac{1}{2} t^{2}, \ldots, \frac{1}{(k-1)!} t^{k-1}\right] \mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right) \mathbf{g}_{0}$

How To Choose Basis X?

- Choose basis \mathbf{X} to match transition path of p_{t}
\Longrightarrow match k-order Taylor expansion of p_{t} using only γ_{t}
- Claim: if \mathbf{X} spans $\mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right)^{\mathrm{T}}$, then path of reduced \widetilde{p}_{t} matches path unreduced of p_{t} up to order k (Arnoldi iteration)

$$
\mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right):=\left[\begin{array}{c}
\mathbf{b}_{p g} \\
\mathbf{b}_{p g} \mathbf{C}_{g g} \\
\mathbf{b}_{p g} \mathbf{C}_{g g}^{2} \\
\vdots \\
\mathbf{b}_{p g} \mathbf{C}_{g g}^{k-1}
\end{array}\right]
$$

\square Why $\mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right)$?
$p_{t} \approx\left[1, t, \frac{1}{2} t^{2}, \ldots, \frac{1}{(k-1) \mid} t^{k-1}\right] \mathcal{O}\left(\mathbf{b}_{p q}, \mathbf{C}_{q q}\right) \mathbf{g}_{0}$

How To Choose Basis X In Stochastic Model?

■ Choose basis \mathbf{X} to match impulse response of p_{t} to Z_{t} shock

- Claim: If \mathbf{X} spans order k observability matrix $\mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right)^{\mathrm{T}}$, then IRF of reduced \widetilde{p}_{t} matches IRF of unreduced p_{t} up to order k

How To Choose Basis X In Stochastic Model?

■ Choose basis \mathbf{X} to match impulse response of p_{t} to Z_{t} shock

- Claim: If \mathbf{X} spans order k observability matrix $\mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right)^{\mathrm{T}}$, then IRF of reduced \widetilde{p}_{t} matches IRF of unreduced p_{t} up to order k

■ Intuition: Impulse response combines

1. Impact effect: do not reduce $Z_{t} \Longrightarrow$ match exactly
2. Transition to steady state: role of $\mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right)$

Extending To Endogenous Decision Rules

■ Model reduction literature relies on reduction not affecting dynamics

$$
\begin{aligned}
\mathbf{C}_{g g} & =\mathbf{B}_{g g}+\mathbf{B}_{g p} \mathbf{B}_{p g}+\mathbf{B}_{g v} \mathbf{D}_{v g} \\
\mathbf{C}_{g Z} & =\mathbf{B}_{g p} \mathbf{B}_{p Z}+\mathbf{B}_{g v} \mathbf{D}_{v Z}
\end{aligned}
$$

- Violated with endogenous decision rules

Extending To Endogenous Decision Rules

- Model reduction literature relies on reduction not affecting dynamics

$$
\begin{aligned}
\mathbf{C}_{g g} & =\mathbf{B}_{g g}+\mathbf{B}_{g p} \mathbf{B}_{p g}+\mathbf{B}_{g v} \mathbf{D}_{v g} \\
\mathbf{C}_{g Z} & =\mathbf{B}_{g p} \mathbf{B}_{p Z}+\mathbf{B}_{g v} \mathbf{D}_{v Z}
\end{aligned}
$$

- Violated with endogenous decision rules
- But literature about efficiently approximating the distribution
- Can inefficiently improve approximation by adding independent basis vectors
- Solution: set \mathbf{X} to span $\mathcal{O}\left(\mathbf{b}_{p g}, \mathbf{C}_{g g}\right)^{\mathrm{T}}$ assuming $\mathbf{D}_{v g}=\mathbf{D}_{v Z}=0$
- If implied dynamics are inaccurate, then iterate

Internal Consistency

■ Key question: when is approximation accurate? I.e., how to choose k ?

Internal Consistency

- Key question: when is approximation accurate? I.e., how to choose k ?
- Answer 1: increase k until IRFs converge
- Answer 2: internal consistency check

1. Compute decisions from reduced model $\widetilde{\mathbf{v}}_{t}=\mathbf{D}_{v \gamma} \gamma_{t}+\mathbf{D}_{v Z} Z_{t}$
2. Simulate nonlinear dynamics of full distribution

$$
\begin{aligned}
\mathbf{p}_{t}^{*} & =\mathbf{F}\left(\mathbf{g}_{t}^{*} ; Z_{t}\right) \\
\frac{\mathrm{dg}_{t}^{*}}{\mathrm{~d} t} & =\mathbf{A}\left(\widetilde{\mathbf{v}}_{t}, \mathbf{p}_{t}^{*}\right) \mathbf{g}_{t}^{*}
\end{aligned}
$$

3. Compare to dynamics implied by reduced system $\widetilde{\mathbf{p}}_{t}$

$$
\epsilon=\max _{i} \max _{t \geq 0}\left|\log \widetilde{p}_{i t}-\log p_{i t}^{*}\right|
$$

The Reduced Linear System

- Summarizing, we approximate

$$
\begin{aligned}
& \widehat{\mathbf{v}}_{t} \approx \mathbf{Z} \eta_{t} \\
& \widehat{\mathbf{g}}_{t} \approx \mathbf{X} \gamma_{t}
\end{aligned}
$$

where η_{t} is $k_{v} \times 1, \gamma_{t}$ is $k_{g} \times 1$ with $k_{v}, k_{g} \ll N$

- Sufficient to keep track of these low-dimensional vectors:
$\mathbb{E}_{t}\left[\begin{array}{l}d \eta_{t} \\ d \gamma_{t} \\ d Z_{t}\end{array}\right]=\left[\begin{array}{ccc}\mathbf{Z}^{\prime} \mathbf{B}_{v v} \mathbf{Z} & \mathbf{Z}^{\prime} \mathbf{B}_{v p} \mathbf{B}_{p g} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{B}_{v p} \mathbf{B}_{p Z} \\ \mathbf{X}^{\prime} \mathbf{B}_{g v} \mathbf{Z} & \mathbf{X}^{\prime}\left(\mathbf{B}_{g g}+\mathbf{B}_{g p} \mathbf{B}_{p g}\right) \mathbf{X} & \mathbf{X}^{\prime} \mathbf{B}_{g p} \mathbf{B}_{p Z} \\ \mathbf{0} & \mathbf{0} & -\nu\end{array}\right]\left[\begin{array}{c}\eta_{t} \\ \gamma_{t} \\ Z_{t}\end{array}\right]$
- Then proceed as before

Approximate Aggregation in KS Model

- Comparison of full distribution vs. $k=1$ approximation
\Longrightarrow recovers Krusell \& Smith's "approximate aggregation"

Approximate Aggregation in KS Model

- Large-scale models in applications require $k=300$
\Longrightarrow no approximate aggregation

Internal Consistency

■ Maximum deviation: 0.065%

- Maximum deviation in unreduced model: 0.049%

Model Reduction Speeds Up Solution

	w/o Reduction	w/ Reduction
Steady State	0.082 sec	0.082 sec
Linearize	0.021 sec	0.021 sec
Reduction	\times	0.007 sec
Solve	0.14 sec	0.002 sec
Total	0.243 sec	0.112 sec

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Households

$$
\begin{aligned}
& \max _{\left\{c_{j t}\right\}_{t \geq 0}} \mathbb{E}_{0} \int_{0}^{\infty} e^{-(\rho+\zeta) t} u\left(c_{j t}\right) d t \quad \text { such that } \\
& c_{j t}+\dot{b}_{j t}+d_{j t}+\chi\left(d_{j t}, a_{j t}\right)=r_{t}^{b}\left(b_{j t}\right) b_{j t}+w_{t} z_{j t}-T\left(w_{t} z_{j t}\right) \\
& \dot{a}_{j t}=r_{t}^{a} a_{j t}+d_{j t} \\
& z_{j t} \in\left\{z_{1}, \ldots, z_{N_{z}}\right\} \text { Poisson with intensities } \lambda_{z z^{\prime}} \\
& b_{j t} \geq-\underline{B} \times Z_{t} \text { and } a_{j t} \geq 0
\end{aligned}
$$

- $b_{j t}$: liquid assets
- $a_{j t}$: illiquid assets
- $d_{j t}$: illiquid deposits $(\gtrless 0)$
- $\chi\left(d_{j t}, a_{j t}\right)$: transaction cost function

■ $r_{t}^{b}\left(b_{j t}\right)=r_{t}^{b}$ if $b_{j t} \geq 0,=r_{t}^{b}+\kappa$ if $b_{j t}<0$

Kinked adjustment cost function $\chi(d, a)$

Production and Market Clearing

- Aggregate production function with growth rate shocks

$$
\begin{aligned}
Y_{t} & =K_{t}^{\alpha}\left(Q_{t} N_{t}\right)^{1-\alpha} \\
d \log Q_{t} & =Z_{t} d t \\
d Z_{t} & =-\nu Z_{t} d t+\sigma d W_{t}
\end{aligned}
$$

- Perfect competition in factor markets

$$
w_{t}=(1-\alpha) \frac{Y_{t}}{N_{t}}, \quad r_{t}^{a}=\alpha \frac{Y_{t}}{K_{t}}-\delta
$$

■ Market clearing

- Illiquid assets: $K_{t}=\int a d G_{t}(a, b, z)$
- Liquid assets: $B=\int b d G_{t}(a, b, z)$
- Labor market: $N_{t}=\int z d G_{t}(a, b, z) \equiv 1$

Parameterization

1. Distribution of income and wealth in micro data

- Exogenously fix subset of parameters to standard values
- Estimate labor productivity shocks from SSA data *Details
- Choose transaction costs + discount rate to match wealth distribution

2. Dynamics of income in macro data

Statistic	Data	Model
$\sigma\left(\Delta \log Y_{t}\right)$	0.89%	0.88%
$\operatorname{Corr}\left(\Delta \log Y_{t}, \Delta \log Y_{t-1}\right)$	0.37	0.36
$d \log Q_{t}=Z_{t} d t$, with $d Z_{t}=-\nu Z_{t} d t+\sigma d W_{t}$		

Model matches key feature of U.S. wealth distribution

Data Model

	Data	Model
Mean illiquid assets (rel to GDP)	3.000	3.000
Mean liquid assets (rel to GDP)	0.375	0.375
Poor hand-to-mouth	10.0%	10.5%
Wealthy hand-to-mouth	20.0%	17.2%
Borrowers	15.0%	13.5%

Model generates high and heterogeneous MPCs

- Average quarterly MPC out of a $\$ 500$ windfall: 23%

Parameterization

1. Distribution of income and wealth in micro data

- Exogenously fix subset of parameters to standard values
- Estimate labor productivity shocks from SSA data Details
- Choose transaction costs + discount rate to match wealth distribution

2. Dynamics of aggregate income in macro data

Statistic	Data	Model
$\sigma\left(\Delta \log Y_{t}\right)$	0.89%	0.88%
$C \operatorname{corr}\left(\Delta \log Y_{t}, \Delta \log Y_{t-1}\right)$	0.37	0.36
$d \log Q_{t}=Z_{t} d t$, with $d Z_{t}=-\nu Z_{t} d t+\sigma d W_{t}$		

"Approximate Aggregation" Breaks Down

Performance of the Method, Size $\approx 132,000$

	$k_{g}=300$	$k_{g}=150$
Steady State	47.00 sec	47.00 sec
Derivatives	21.91 sec	21.91 sec
Dim reduction	258.80 sec	79.90 sec
Linear system	17.14 sec	12.66 sec
Simulate IRF	3.76 sec	2.12 sec
Total	$\mathbf{3 4 8 . 6 1} \mathbf{~ s e c}$	$\mathbf{1 7 1 . 5 8} \mathbf{~ s e c}$

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Application 1: Inequality Matters for Agg C + Y Dynamics

- Campbell-Mankiw Macro Annual '89: how match $\mathrm{C}+\mathrm{Y}$ dynamics?

	Data	Models	
		Rep agent	Two-Asset
Sensitivity to Income IV $\left(\Delta \log C_{t}\right.$ on $\Delta \log Y_{t}$ using $\left.\Delta \log Y_{t-1}\right)$	0.503	0.247	0.656
Smoothness $\frac{\sigma\left(\Delta \log C_{t}\right)}{\sigma\left(\Delta \log Y_{t}\right)}$	0.518	0.709	0.514

Application 1: Inequality Matters for Agg C + Y Dynamics

- Campbell-Mankiw Macro Annual '89: how match $\mathrm{C}+\mathrm{Y}$ dynamics?

	Data	Models		
Rep agent	Two-Asset	CM		
Sensitivity to Income $\mathrm{IV}\left(\Delta \log C_{t}\right.$ on $\Delta \log Y_{t}$ using $\left.\Delta \log Y_{t-1}\right)$	0.503	0.247	0.656	0.505
Smoothness $\frac{\sigma\left(\Delta \log C_{t}\right)}{\sigma\left(\Delta \log Y_{t}\right)}$	0.518	0.709	0.514	0.676

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Application 2: Agg Shocks Matter for Inequality Dynamics

- With Cobb-Douglas production, labor income inequality exogenous

$$
\text { labor income }=w_{t} \times z_{j t}
$$

- Modify production function to generate endogenous inequality

$$
Y_{t}=\left[\mu\left(Z_{t}^{U} N_{t}^{U}\right)^{\sigma}+(1-\mu)\left(\lambda K_{t}^{\rho}+(1-\lambda)\left(N_{t}^{S}\right)^{\rho}\right)^{\frac{\sigma}{\rho}}\right]^{\frac{1}{\sigma}}
$$

- N_{t}^{U} : unskilled labor w/ low persistent productivity $z_{j t}$
- N_{t}^{S} : skilled labor w/ high persistent productivity $z_{j t}$
- Z_{t}^{U} : unskilled-specific productivity shock
- Calibrate σ and ρ to generate capital-skill complementarity

Unskilled-Specific Shock Increases Inequality...

- Fluctuations in income inequality \approx aggregate income

... And Generates Sharp Consumption Bust

- Many low-skill households hand-to-mouth
\Longrightarrow larger consumption drop than in rep agent model

Macro With Inequality: No More Excuses!

1. Efficient and easy-to-use computational method

- Open source Matlab toolbox online now

2. Use methodology to illustrate interaction of macro + inequality

- Match micro behavior \Longrightarrow realistic aggregate $\mathrm{C}+\mathrm{Y}$ dynamics
- Aggregate shocks generate inequality dynamics
- Estimating models w/ micro data on distributions within reach

Instead: Fully Recursive Notation

$$
\begin{align*}
& w(g, Z)=(1-\alpha) e^{Z} K(g)^{\alpha}, \quad r(g, Z)=\alpha e^{Z} K(g)^{\alpha-1}-\delta \tag{P}\\
& K(g)=\int a g(a, z) d a d z \tag{K}\\
& \rho V(a, z, g, Z)=\max _{c} u(c)+\partial_{a} V(a, z, g, Z)[w(g, Z) z+r(g, Z) a-c] \\
&+\lambda_{z}\left[V\left(a, z^{\prime}, g, Z\right)-V(a, z, g, Z)\right] \\
&+\partial_{Z} V(a, z, g, Z)(-\nu Z)+\frac{1}{2} \partial_{Z Z} V(a, z, g, Z) \sigma^{2} \\
&+\int \frac{\delta V(a, z, g, Z)}{\delta g(a, z)} T[g, Z](a, z) d a d z
\end{align*}
$$

$T[g, Z](a, z)=-\partial_{a}[s(a, z, g, Z) g(a, z)]-\lambda_{z} g(a, z)+\lambda_{z^{\prime}} g\left(a, z^{\prime}\right)$
(KF operator)
$s(a, z, g, Z)=w(g, Z) z+r(g, Z) a-c^{*}(a, z, g, Z)$
■ $\delta V / \delta g(a, z)$: functional derivative of V wrt g at point (a, z)

Labor Productivity Shocks

$$
\begin{aligned}
\log z_{j t} & =z_{1, j t}+z_{2, j t} \\
d z_{i, j t} & =-\beta_{i} z_{i, j t} d t+\varepsilon_{i, j t} d N_{i, j t}, \text { where } \varepsilon \sim N\left(0, \sigma_{i}^{2}\right) \text { for } i=1,2
\end{aligned}
$$

Moment	Data	Model Estimated	Model Discretized
Variance: annual log earns	0.70	0.70	0.74
Variance: 1yr change	0.23	0.23	0.21
Variance: 5yr change	0.46	0.46	0.49
Kurtosis: 1yr change	17.8	16.5	15.5
Kurtosis: 5yr change	11.6	12.1	13.2
Frac 1yr change $<10 \%$	0.54	0.56	0.63
Frac 1yr change $<20 \%$	0.71	0.67	0.71
Frac 1yr change $<50 \%$	0.86	0.85	0.83

Labor Productivity Shocks

$$
\begin{aligned}
\log z_{j t} & =z_{1, j t}+z_{2, j t} \\
d z_{i, j t} & =-\beta_{i} z_{i, j t} d t+\varepsilon_{i, j t} d N_{i, j t}, \text { where } \varepsilon \sim N\left(0, \sigma_{i}^{2}\right) \text { for } i=1,2
\end{aligned}
$$

Parameter		Component	
	Component		
	λ_{j}	0.080	$j=2$
Arrival rate	β_{j}	0.761	0.007
Mean reversion		0.009	
St. Deviation of innovations	σ_{j}	1.74	1.53

