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Abstract

This study investigates the effects of individuals’ strategic sophistication, measured

by level-k type, on collective action in the context of social distancing during the

early stages of the COVID-19 pandemic. We build a weakest-link public goods game

with the private cost of social distancing, in which agents are heterogeneous in level-k

types. We find that players with higher level-k types are more likely to engage in social-

distancing behaviors. We test this hypothesis using large-scale nationally representative

survey data that measure level-k types through incentivized experiments. Our empirical

findings provide consistent evidence for the theoretical prediction, highlighting the

importance of understanding the role of level-k theory in real-world collective action

problems.
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1 Introduction

Standard equilibrium analyses of game theory assume that agents have equally unlimited

strategic sophistication. However, empirical evidence shows that individuals are heteroge-

neous in terms of their strategic sophistication levels (e.g., Alaoui and Penta 2016; Crawford

et al. 2013; Rabin 2013). The “level-k” theory, also known as the cognitive hierarchy the-

ory, provides a conceptual framework that reconciles the discrepancy between the canonical

model’s assumption of strategic sophistication and empirical evidence (e.g., Camerer et al.

2004a; Nagel 1995; Stahl and Wilson 1994). It describes the behavior of agents who best

respond based on their beliefs about others’ strategic sophistication levels.1 The level-k the-

ory has successfully explained a wide range of subjects’ boundedly rational behaviors in lab

experiments (e.g., Camerer et al. 2004a; Camerer et al. 2004b; Nagel 1995).

In addition to the empirical evidence obtained from controlled lab experiments, recent

studies document real-world examples of how strategically more sophisticated individuals

exhibit higher individual-level achievements in terms of education, economic outcomes, and

professional asset trading (e.g., Angrisani et al. 2022; Choi et al. 2022; Fe et al. 2022). Given

the strategic nature of level-k theory, it is crucial to understand how heterogeneous strategic

sophistication levels affect individuals’ behaviors in collective action settings because of social

welfare implications. However, to the best of our knowledge, no attempts have been made

to analyze the relationship between the theory of strategic sophistication and individuals’

collective action choices in a real-world setting.

We fill this gap in the literature by examining how individuals’ heterogeneous strategic

sophistication affects collective action measured by social-distancing behavior during the

COVID-19 pandemic.2 Previous studies on the determinants of social distancing behavior

1In a standard level-k model, each agent is defined as a level-k player with k ∈ N0. A level-k agent is
assumed to best respond to the belief that each of the other players is a level-(k − 1) player, assuming that
level-0 agents randomly choose an action.

2In the absence of vaccines or pharmaceutical treatments, social-distancing measures are the key strate-
gies to minimize the adverse health impact of COVID-19 (e.g., Fazio et al. 2021; Lammers et al. 2020).
Farboodi et al. (2021) also develop a theoretical framework to analyze how individuals balance the benefits
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(e.g., Brodeur et al. 2021; Campos-Mercade et al. 2021a; Fang et al. 2022; Muller and Rau

2021) have documented that the success of these measures critically depends on society-

wide cooperation, because an individual’s decision to comply with social-distancing mea-

sures could be affected by others. Unlike other diseases that are spread by physical contacts

(e.g., AIDS), COVID-19 is airborne and thus the probability of infection depends on oth-

ers’ compliance with social-distancing measures. As such, social distancing behaviors can be

strategically complementary: people are more likely to comply with costly social distancing

measures when they believe that others are also practicing them.

To capture this strategic situation, we first present a social-distancing game in which

agents with heterogeneous level-k types and the cost of social-distancing choice simulta-

neously decide whether to practice social-distancing behavior based on their beliefs about

other players’ behavior. The model describes a situation in which two agents were randomly

chosen from the population to play the weakest-link public goods game (Hirshleifer 1983;

Vicary 1990). As we are interested in modeling strategic social-distancing behaviors at the

early stage of the pandemic when there was no strong social-distancing enforcement yet, we

assume that level-0 agents are unlikely to take social-distancing decisions.3 Under some con-

ditions, we show that the likelihood of practicing costly social-distancing behavior strictly

increases as the level-k (i.e., the strategic sophistication level) increases.4

We test the theoretical prediction using nationally representative panel survey data of

older Singaporeans from the Singapore Life Panel (SLP), in which a measure of the level-

k type is identified through an online lab experiment provided by Choi et al. (2022). By

exploiting the longitudinal features of the data, we examine how an individual’s probability of

leaving home changed daily after the onset of the pandemic by level-k type, using a difference-

of socializing with the risks during pandemics. Their findings highlight the collective action problem caused
by the inefficiency of social distancing behavior in a laissez-faire equilibrium. Our model simplifies this dy-
namic problem and captures its strategic nature. Kang et al. (2022) address similar efficiency concerns in a
network context.

3In Section 2.3, both theoretical and empirical justifications are provided to support this assumption.
4This testable theoretical prediction also holds for the generalized cognitive hierarchy model (Chong

et al. 2016) as provided in Appendix A.
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in-differences (DID) model. Our DID estimates provide robust evidence that individuals with

higher level-k types are less likely to leave home daily after the onset of the pandemic; that

is, the probability of choosing social-distancing increases in the level-k type. Our results are

robust to controlling for other effects such as IQ scores, educational attainment, cognitive

empathy, and subjective risk preferences.

To examine the external validity of our baseline analysis, we use additional data from the

Korean Labor and Income Panel Survey (KLIPS), which covers a nationally representative

adult population in South Korea. We estimate the associations between individuals’ level-k

types and the probability of increasing outdoor activities, while controlling for demographic

and socio-economic characteristics, subjective risk preferences, and other measures of cogni-

tive abilities. We find consistent evidence that individuals with higher level-k types tend to

exhibit social-distancing behaviors during the pandemic by reducing their outdoor activities.

This study contributes to the related literature in two ways. First, to the best of our

knowledge, this study provides the first real-world evidence of the effects of strategic sophis-

tication on collective actions as measured by social-distancing behaviors during the COVID-

19 pandemic. Angrisani et al. (2022) show that professional traders’ profits are determined

by strategic sophistication rather than cognitive abilities or behavioral traits. Fe et al. (2022)

provide evidence of how childhood cognitive skills are associated with strategic sophistication

and adult outcomes. Choi et al. (2022) find that older individuals’ strategic thinking skills are

closely associated with labor market outcomes. Those previous studies have demonstrated

the importance of strategic thinking skills for individual-level outcomes. Our study extends

the literature by providing real-world evidence of the effects of strategic sophistication on

collective actions with significant externality in the context of the COVID-19 pandemic.5

Second, this study adds to the literature on the determinants of preventive health be-

haviors. Under the commonly accepted presumption that “an ounce of prevention is worth

a pound of cure,” both policymakers and researchers focused on understanding how to en-

5Koriyama and Ozkes (2021) investigate the relationship between strategic sophistication levels and
collective action in a controlled lab experiment setting.
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courage individuals’ preventive health behavior (e.g., Baicker et al. 2010; Hey and Patel

1983; Ward 2014). A growing number of studies have examined the relationship between

non-pecuniary factors and preventive health behaviors (Madrian 2014). For example, exist-

ing studies demonstrate how individuals’ risk preferences (Anderson and Mellor 2008), time

preferences (Courtemanche et al. 2015; Harrison et al. 2010), prosociality (Campos-Mercade

et al. 2021b), and misperception of their own health status (Arni et al. 2021) affect health-

related behaviors and outcomes such as smoking, alcohol consumption, exercise and body

mass index. In addition to these factors, an individual’s cognitive ability is an important

determinant of health-related behavior (Cawley and Ruhm 2011). Although the positive re-

lationship between education and health has been widely documented, there is little evidence

of the relationship between individuals’ strategic sophistication levels and health-related be-

haviors. We complement the literature by providing evidence that strategic sophistication is

an important determinant of individuals’ preventive health behaviors.

The remainder of this paper is organized as follows. Section 2 presents a theory of level-k

in social-distancing behavior. In Section 3 and Section 4, we provide the data and present the

empirical results, respectively. Section 5 presents our conclusions. All proofs of the theoretical

results, additional theoretical analyses, and robustness checks for the empirical analysis are

presented in the appendices.

2 Theoretical Framework

2.1 Setup

A public goods game. We consider a variant of the weakest-link public goods game à la

Hirshleifer (1983) with a voluntary provision of public goods, where agents are heterogeneous

in both their contribution costs and strategic sophistication levels. There are two players,

player 1 and player 2. Players choose simultaneously whether to contribute. Specifically, each

player plays either C or NC, where C represents “contribute” to the public good provision
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and NC denotes “do not contribute.” The cost of contribution is ci to player i. The game’s

payoff matrix is shown in Table 1 as a function of players’ actions and their contribution

costs. A more general game payoff is considered in Appendix B, and the results hold under

regular conditions.

Table 1: The payoff matrix of the public goods game

player 1

player 2
NC C

NC (0, 0) (0,−c2)
C (−c1, 0) (1− c1, 1− c2)

We assume that each player’s cost is random and privately known. It is drawn indepen-

dently and identically from the cumulative distribution F over [c, c] ⊂ R with c < 0 and

c > 1. F is continuous and increases strictly in [c, c]. We also require a unique c∗ such that

F (c) = c. All the above game environments are common knowledge among game players.

F (0) > 0 means that with a strictly positive probability, some agents have a negative

contribution cost; that is, they are voluntarily willing to contribute to the public good,

regardless of what the opponent player does. As such, it is the strictly dominant strategy to

play C. By contrast, F (1) < 1 means that, with a strictly positive probability, some agents

suffer from a high contribution cost that is strictly greater than 1. Thus, they never contribute

to the public good; that is, playing NC is their strictly dominant strategy. Moreover, with

a strictly positive probability, the costs of both players are (0, 1). In this case, the game

becomes a coordination game, and there are two pure-strategy Nash equilibria:(NC,NC)

and (C,C). In other words, for player i, there is no strictly dominant strategy and her best-

responding action depends on her belief about the other player’s action, and vice versa. This

is the point where the players’ heterogeneous strategic sophistication types come into play

in response to their opponents’ actions.6

6As a benchmark case, if there is no heterogeneity in their strategic sophistication and the agents are
fully rational, then there is a unique symmetric perfect Bayesian equilibrium, in which player i contributes to
the public good if and only if ci ≤ c∗, where c∗ is the unique cutoff cost with F (c∗) = c∗. In this benchmark
case, the probability of contribution is F (c∗), which is identical for all agents.
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We introduce agents’ heterogeneity in their strategic sophistication by adopting the stan-

dard level-k theory (Costa-Gomes et al. 2001; Costa-Gomes and Crawford 2006; Nagel 1995;

Stahl and Wilson 1994).7 We assume that the population is partitioned into types and that

each player is described as a level-k player with k ∈ N0. Each level-0 player is assumed to

be non-strategic, and the other level-k agents with k ≥ 1 are assumed to best respond to

the belief that the other player is a level-(k − 1) player.8 In the next subsection, we analyze

player 1’s behavior as a function of her strategic sophistication type (i.e., level-k) regarding

player 2’s expected action and her own contribution cost (i.e., c1) without loss of generality.

Discussions on the model. The previous two-person public goods game modeled strategic

interactions within a large population, similar to other games with incomplete information.

Two players were assumed to be randomly selected from the population, accounting for the

uncertainty in social distancing costs and strategic sophistication. Treating each other as

random draws avoids the need for an n-person game model. Hence, the proposed simple

two-person game captures key economic insights without adding additional complexity.

The model aims to describe the early phase of the COVID-19 pandemic, when there

were no government-imposed social-distancing rules (e.g., stay-at-home orders) yet. Thus,

individuals were required to exhibit social-distancing behavior voluntarily by reducing their

outdoor activities to prevent the spread of COVID-19. As a result, a collective action problem

has emerged.

We describe individuals’ social-distancing behaviors using the weakest-link public goods

game (Hirshleifer 1983). Several elements of the COVID-19 pandemic illustrate how the

weakest-link public goods game best describes an individual’s incentive structure during the

outbreak. First, COVID-19 has a relatively long incubation period and a high transmission

rate (Lewis 2022). In addition, a significant number of the infected were asymptomatic;

7Our results remain the same for the cognitive hierarchy model (Camerer et al. 2004a) and its generalized
version (Chong et al. 2016), with the same intuition as shown in Appendix A.

8Our results do not rely on this assumption. In Appendix A, we show that all the theoretical results hold
for the cognitive hierarchy model in which a level-k player best responds to all lower levels under a perceived
belief about the opponent’s levels.
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they were required to practice social-distancing behaviors and wear masks to protect others

(Nogrady 2020). To minimize the risk of infection and protect vulnerable populations in the

absence of vaccines, citizens are required to make sufficient social-distancing efforts (e.g.,

maintaining physical distance, avoiding large gatherings and crowded places, and limiting

non-essential travel). Therefore, social-distancing behaviors during the early phase of the

COVID-19 pandemic involved the weakest-link elements.

Our model address new strategic features of individual behavior during the pandemic.

For example, as noted by Agranov et al. (2021), vaccine adoption suffers from another collec-

tive action problem, free-riding incentives, and individuals’ adoption decisions are strategic

substitutes. By contrast, the main theoretical hypothesis of the current paper comes from

the feature of agents’ actions as strategic complements.

We finally provide a series of technical remarks about the assumptions on the common

cost distribution F . First, the continuity and strict monotonicity of F are frequently em-

ployed in collective action models with private costs (e.g., Palfrey and Rosenthal 1985). The

continuity assumption, in particular, is essential; if F is not continuous but right-continuous,

then for some agents’ beliefs, the cutoff cost may not be well-defined. Second, the assumption

of a unique fixed point is not necessary for our analysis. This assumption serves to simplify

our main and comparative static analyses. Alternatively, one could assume a finite number

of fixed points that satisfy the fixed point equation. Third, the common cost distribution

assumption can be relaxed. One might be interested in scenarios where agents have hetero-

geneous cost distributions depending on their strategic sophistication levels. For example,

strategic sophistication levels are positively related to higher education and labor market

supply (Choi et al. 2022; Fe et al. 2022). Hence, one may assume that the cost distribution

for lower sophistication levels first-order stochastically dominates that for higher sophisti-

cation levels. The main testable theoretical result, as shown in Proposition 2-(a), still holds

under this extension by Proposition 3.
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2.2 Analysis

We assume that a level-0 player plays C with probability π0 ∈ (0, 1).9 For example, π0

can be chosen as F (0) only if the level-0 agents with negative contribution costs choose C.

Similarly, π0 = F (1) is also possible if (C,C) is a focal point of the agents with a provision

cost of less than 1 during the COVID-19 pandemic; the agents whose social-distancing cost

outweighs the value of public goods take action NC.10

Other level-k players’ best-responding actions are characterized by their cutoff strategy,

which is optimal with respect to their beliefs about the opponent’s behavior. Let πk−1 be

level-(k − 1) player’s probability of playing C. Assuming that the other player is a level-

(k− 1), it is the best response for a level-k player to play C if and only if the provision cost

is less than or equal to πk−1. Thus, ck = πk−1 is the cutoff cost at which the player becomes

indifferent to the two actions. Moreover, from a level-(k + 1) player’s perspective, a level-k

player plays C with probability F (ck−1). Hence, a level-(k + 1) player plays C if and only if

c ≤ ck+1 = F (ck−1). Consequently, we can recursively define each level-k player’s cutoff cost

ck and the resulting probability of choosing C, πk and as follows:

Proposition 1 Let π0 ∈ (0, 1) be the probability that a level-0 player chooses action C.

Then, for any k ≥ 1, a level-k player plays a cutoff strategy with cutoff cost ck, where ck is

recursively defined as ck = πk−1 with πk−1 = π0 if k = 1 and πk−1 = F (ck−1) if k ≥ 2.

2.3 Strategic Sophistication and Contribution Behavior

We now examine the properties of players’ behaviors. We present (i) the monotonicity

of the cutoff strategies in the level-k type and the resulting monotonicity of contribution

9In a standard level-k model, level-0 players are assumed to choose an action uniformly at random over
the set of strategies (Arad and Rubinstein 2012; Chong et al. 2016). In our model, level-0 players can be
assumed to play C with probability π0 = 1

2 , regardless of their costs. Some studies (e.g., Chong et al. 2016)
rule out the possibility of choosing a strictly dominated action and impose an additional structure. In the
current model, any choice of π0 ∈ (F (0), F (1)) incorporates the restriction. In both cases, π0 can be greater
or smaller than c∗, and each premise in Proposition 2 holds.

10For instance, an agent who needs regular renal dialysis cannot stop visiting a hospital during the
pandemic. In our model, such an agent’s social-distancing cost is assumed to be strictly greater than 1, the
value of preventing the spread of the disease at the early stage of the pandemic.
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probability, and (ii) monotone comparative static results in a change in the cost function.

Monotonicity of the contribution probability. We find that the probability of choosing

action C is positively associated with agents’ strategic sophistication levels if the level-0

player’s likelihood of choosing action C is relatively low. Specifically, Figure 1 describes the

situation in which π0 is lower than π∗ = F (c∗). In the figure, the indifference line represents

the pairs of (c, π) in which an agent with contribution cost c with belief π is indifferent

between playing C and NC. Given this level-0 player’s behavior, the level-1 player’s cutoff

cost c1 is determined as c1 = π0. A level-2 player now believes that a level-1 player plays

C with probability π1 = F (c1). As such, the cutoff cost c2 is determined by c2 = F (c1).

As π0 < π∗, c1 is strictly smaller than c∗, which further implies that π1 < π∗ and c2 < c∗.

This implies that c1 < c2. In other words, when π0 is relatively low, strategic sophistication

generates a best-response dynamic in which a level-2 player’s cutoff cost c2 is strictly greater

than a level-1 player’s cutoff cost c1.

Figure 1: Illustration of increasing cutoff costs at strategic sophistication levels

c

indifference line

F (c)

c 0 1 c

F (0)

F (1)
1

π0

c1

π1 = F (c1)

c2

π2 = F (c2)

c3

π∗

c∗

•

Importantly, by the induction principle, the same increasing property emerges for higher

level-k types. Consequently, we obtain the property that the sequence of cutoff costs {ck}k≥1

strictly increases as the strategic sophistication parameter k increases.

The opposite decreasing dynamic arises when π0 is relatively high because π0 > π∗ =
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F (c∗). Note that from Proposition 1, for k ≥ 1, a level-k player’s cutoff cost ck satisfies

ck = F (πk−1), and each level-(k + 1) player believes that the opponent player plays C with

probability πk = F (ck). Thus, ck+1 = F (ck) < ck because F (c) < c for all c > c∗. Then, by

the induction principle, the sequence of cutoff costs {ck}k≥1 strictly decreases in the strategic

sophistication parameter k. Therefore, players are less likely to choose C as their strategic

sophistication level increases.

If π0 = π∗ = F (c∗), heterogeneous strategic sophistication does not play a role, as each

level-k player has a self-fulfilling belief about the opponent: ck = F (ck−1) = F (c∗) = π0 for

all k ≥ 1. Consequently, the sequence of cutoff costs {ck}k≥1 is constant in the level-k type,

and the probability of choosing C is π∗ = F (c∗).

The following proposition summarizes the discussion above.

Proposition 2 Let π0 be given and πk be a level-k player’s probability of choosing action C

for k ≥ 1. Then,

(a) if π0 < F (c∗), then πk is strictly increasing in k;

(b) if π0 > F (c∗), then πk is strictly decreasing in k; and

(c) if π0 = F (c∗), then πk is constant in k.

Each result in the proposition above is a testable hypothesis as a function of π0. In par-

ticular, in Section 3 and Section 4, we empirically test the increasing probability of choosing

action C by using large-scale population-representative data. Although Proposition 2 pro-

vides two directions of monotonicity, (a) and (b), the increasing property (a) is a more

reasonable hypothesis to test for several reasons. First, because our model considers the

situation in which individuals choose social distancing behavior at an early stage of the pan-

demic without an enforced order (e.g., lockdown), people may be uncertain about others’

behaviors. In this regard, theoretically, we can consider a situation in which level-1 players

consider the range of possible choices of π0 for level-0 players and choose an action that

is robust to this uncertainty.11 Formally, let P ⊆ [F (0), F (1)] be the set of beliefs about

11This theoretical argument is in line with that of Caballero and Simsek (2013). They examined banks’
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level-0 players’ behaviors excluding the strictly dominant strategies for sufficiently high- or

low-cost players. Following the maximin expected utility representation (Gilboa and Schmei-

dler 1989), it is the best response for a level-1 player with provision cost c1 to choose C if

minπ̃0∈P π̃0(1 − c1) + (1 − π̃0)(−c1) ≥ 0, and the equality holds if and only if π̃0 = F (0).

Thus, the cutoff cost for level-1 players is c1 = F (0) < c∗, which results in a best-response

dynamic consistent with (a).12

Second, in the context of social-distancing behavior at the early stage of the COVID-19

pandemic, the natural status-quo action is NC; that is, “behave as people did before the

pandemic.” Hence, at an early stage of the spread of the virus, at least for non-strategic

people, it is natural to expect them to behave as they did before the pandemic, and strategic

level-1 players best respond to their behaviors. Indeed, we found that, in our data, the

subjects identified as level-0 players did not exhibit statistically significant differences in

outdoor activity levels. In addition, benefiting from the panel structure of the data, we

test hypothesis (a) by including individual fixed effects and examine whether higher level-k

types are more likely to change their behaviors in line with social-distancing behavior, when

compared with their behaviors prior to the pandemic.

Notably, each result in Proposition 2-(a) does not predict the magnitude of the increase.

In particular, the magnitude of △πk = (πk−πk−1) > 0 for k ≥ 1 may fluctuate as k changes,

depending on the shape of the cost function. As we do not impose any further restrictions

on its shape, the proposition remains silent. We will return to this point in a later empirical

test result (Proposition 2-(a)).

In the next section, we empirically demonstrate that people are more likely to exhibit

social-distancing behavior as their strategic sophistication levels increase. Our empirical tests

include variables related to other-regarding and risk preferences. The level of public goods

provision is positively correlated with other-regarding preferences, such as altruism and trust.

strategies in financial crises, where banks are uncertain about the financial network of cross-exposures, and
financial crises stem from the endogenous complexity of the network structure. Thus, in their model, each
bank considers the possibility of multiple financial networks and chooses an action based on this uncertainty.

12The single crossing assumption of F with the 45◦ line is not necessary if we assume π0 = F (0).
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Moreover, strategic agents’ behaviors may be affected by their risk preferences. Hence, we

include these variables to account for the potential impact of these preferences and the co-

variance among them, along with the level-k types.13 Furthermore, we include other variables

representing individual demographics such as income, educational level, and gender, because

they are associated with strategic sophistication levels.14 We also examine whether these vari-

ables affect social distancing behavior after the outbreak of the COVID-19 pandemic, using

them as control variables and the variables interacting with a dummy variable indicating the

pandemic period.

Monotonicity in cost distribution. We discuss how players’ behaviors and the resulting

best-response dynamic respond to a change in cost distribution. For simplicity, consider two

cumulative distributions F and G, where G is under the first-order stochastic dominance of

F : G(c) > F (c) for all c ∈ (c, c). Thus, players’ costs from G are more likely to be lower than

those from F . As before, we assume that both F and G satisfy the assumption that there is

a unique cost at which the graph of a function intersects the 45◦ line. Let c∗F and c∗G be the

costs satisfying F (c∗F ) = c∗F and G(c∗G) = c∗G. Because G is under the first-order stochastic

dominance of F , we have c∗F < c∗G. Figure 2 illustrates the relationship and properties of F

and G.

We find that level-k players are more likely to play action C for all k ≥ 0 as the cost

distribution decreases in the first-order stochastic dominance sense. Figure 2 illustrates this

result. In this figure, a common value of π0 was selected to ensure that π0 < G(c∗G) <

F (c∗F ).
15 Thus, under both distributions, strategic sophistication generates increasing best-

response dynamics described by Proposition 2-(a). The red solid arrows denote the increasing

13During the COVID-19 pandemic, the adoption of social-distancing behavior could be influenced by
economic preferences and factors such as other-regarding preferences, risk preferences, and demographic
characteristics (e.g., Asri et al. 2021; Campos-Mercade et al. 2021a; Fang et al. 2022; Kim and Jung 2022;
Muller and Rau 2021).

14For example, Choi et al. (2022) report that strategic sophistication levels are positively correlated with
IQ scores and other-regarding preference measures. See Kagel and Roth (1995) and Kagel and Roth (2020)
for the comprehensive surveys.

15This assumption is for illustration purposes and not necessarily for obtaining any of our results.
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Figure 2: Illustration of impact of cost distribution shifting

c

indifference line

π0

F (c)

c 0 cc∗F

•

G(c)

c∗G

•

dynamics under distribution F , which has a first-order stochastic dominance over distribution

G. The blue dashed arrows illustrate the increasing dynamic under distribution G.

Under both distributions, the level-1 players’ cutoff costs are identical because π0 is

the same. However, their probability of choosing action C is strictly higher under G, and

level-1 players are more likely to incur lower costs under G. Given this feature, the level-2

players’ cutoff cost is strictly greater under distribution G than that under F , and thus the

probability of choosing C is strictly higher for G. The same logic applies to the other higher

level-k types.

There are two effects on the amount of increase: (i) direct and (ii) indirect. For example,

consider level-2 players’ probability of choosing C. For the direct effect, there are more level-2

players whose costs are lower than that under F . For the indirect effect, because more level-1

players play action C, the cutoff cost for level-2 players increases; consequently, more level-2

players play action C. Interestingly, because of the recursive structure, the indirect effect is

cumulative: for example, an increase in level-1 players’ likelihood of playing C affects level-3

players’ likelihood of playing C because level-2 players are more likely to play C.

If π0 is strictly greater than G(c∗G), the best-response dynamics decrease under both

distributions. However, because the graph of F is under G for any level-k type with k ≥ 1,
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the probability of choosing C under G is strictly higher than under F . Therefore, players

are more likely to play action C under the dominated distribution G. If π0 ∈ [F (c∗F ), G(c∗G)],

then the best-response dynamic under G increases in k but the dynamic under F decreases.

Thus, the cutoff cost under G is strictly higher than that under F for all k. Again, the

probability of choosing C under G is strictly higher than that under F for any level-k type

with k ≥ 1. Consequently, independent of the common choice of π0, a first-order stochastic

decrease in the cost distribution results in a higher probability of contribution for all level-k

types with k ≥ 1.

The following proposition summarizes this discussion.

Proposition 3 Suppose that F first-order stochastically dominates G. Let π0 be the proba-

bility of choosing C for level-0 players. Let πk(θ) be the probability of level-k players’ choosing

action C under the distribution θ ∈ {F,G}. Then, πk(G) ≥ πk(F ) for all k and the strict

inequality holds whenever k ≥ 1.

The above comparative static result provides an important policy implication. In the

early stages of a viral outbreak, governments and other organizations can help reduce social-

distancing costs by ensuring a steady supply of essential items such as food, water, and basic

medical supplies (e.g., face masks). By ensuring that people have access to basic necessities,

governments, and other organizations can help them comply with social distancing measures

(e.g., HLPE Steering Committee 2021; Ranney et al. 2020; WHO and UNICEF 2020). This

is a direct effect.

If people have different levels of strategic sophistication, then there is an indirect effect,

especially when those with the lowest level of strategic sophistication are unlikely to follow

the order of social-distancing behavior (i.e., π0 is low). The provision of necessities leads to

more effective social distancing for level-0 people, which in turn leads to more effective social

distancing for level-1 people, and so on. This virtuous cycle helps to reduce the spread of the

virus and ultimately leads to fewer people becoming sick or dying during the early stage of

the pandemic.
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Finally, we note that all theoretical results thus far (i.e., Propositions 1–3) hold for a

general payoff structure under regularity assumptions. See Appendix B for further details.

3 Experimental Design and Measurement

3.1 Measuring Level-k Types

In 2017, both the SLP and KLIPS, which are large-scale and nationally representative

surveys in Singapore and South Korea, respectively, jointly conducted identical survey ex-

periments to measure the degree of strategic sophistication.16 We use strategic sophistication

to measure an individual’s ability to engage in introspective thinking. It was measured us-

ing a five-person simultaneous-move game (the Line Game), which is a variant of the 11-20

money-request game (Arad and Rubinstein 2012) and is similar to that of Kneeland (2015).

Figure 3 illustrates a sample screenshot of the game.

Figure 3: Screenshot of Line Game in position B (source: Choi et al. (2022))

16For this experiment, the KLIPS invited a small randomly chosen sample (slightly fewer than 800) of
their baseline survey participants, and the SLP invited about 2,000 participants of their baseline survey
participants aged 50–65 years. Choi et al. (2022) originally designed and implemented this experiment to
estimate the role of strategic thinking skills in collective labor supply decisions. Much of the discussion on
strategic sophistication as a measure of strategic thinking skills is borrowed from their study.
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Players are assigned to each of the five positions (A, B, C, D, and E) in five rounds in

a randomized order. Players choose money requests simultaneously and independently. A

player in position A requests either S$10 (US$7.30) or S$50 (US$36.5) while players in any

other position request for either of these five options: S$10, S$20, S$30, S$40, or S$50.17

The payoff for a player in position A is the amount of money requested. The payoffs for the

players in other positions consist of two parts: each player receives (i) the amount of money

requested and (ii) an additional amount of S$100 if and only if the money requested is S$10,

which is strictly lower than the money requested by an opponent. The opponent of each

player is defined as the player who occupies a position to the left of the player in the line

network, as illustrated in Figure 4.18

Figure 4: Illustration of the neighboring structure in the Line Game

A B C D E

In the game, assuming full rationality, we can identify a unique Nash equilibrium by

applying an iterated deletion of strictly dominated strategies (Osborne 2003). First, S$10 is

the strictly dominated action in position A; thus, a player in position A must play S$50.

Second, given the action of the player in position A, it is a strictly dominated action for

the player in position B to choose any action other than S$40. Third, with the deletion of

strictly dominated actions of the player in position B, it is a strictly dominated action for the

player in position C to choose any action other than S$30. This iterative process continues,

resulting in choices of S$20 and S$10 by the players in positions D and E, respectively.

We now describe level-k players’ actions in the Line Game. The standard level-k model

assumes that level-0 players are not strategic but are assumed not to play any of the strictly

dominated strategies (Chong et al. 2016). Therefore, we first exclude agents who choose

17In the KLIPS, the corresponding five options were KRW 10,000, 20,000, 30,000, 40,000, and 50,000. S$1
and KRW 10,000 are equivalent to US$0.75 and US$7.79, respectively, as of Jun 18, 2023.

18The position A player is the opponent of the position B player. The position B player is the opponent of
the position C player. The position C player is the opponent of the position D player. The position D player
is the opponent of the position E player. However, the opponent relationship is asymmetric. For example,
the position B player is not player A’s opponent.
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S$10 in position A. Regardless of the actions in the other positions, playing S$10 returns a

strictly lower payoff than playing S$50 in position A. Approximately 22% and 31% of the

participants in the SLP and KLIPS, respectively, chose this strictly dominated action.19

When a level-0 player decides in position B, she is expected to play an action uniformly

at random because she does not give the best response to the opponent’s action in position

A. By contrast, a level-1 player is assumed to believe that the opponent is a level-0 player

with a probability of 1. Thus, she believes that the level-0 player plays S$50 in position A

and must choose action S$40 in position B. Moreover, any upper-level player also plays S$40

in position B, as they believe that their opponents play S$50 in position A. Therefore, if we

observe a subject not choosing S$40 in position B, this subject’s choice is rationalizable as a

level-0 player but not as a level-k player with k ≥ 1. As such, the first distinctive feature of

the level-0 player’s action vector in comparison to other players’ action vector is the choice

of S$40 in position B, as shown in Table 2.20

Table 2: Identification of level-k types

Level-0 Level-1 Level-2 Level-3 Level-4

A 50 50 50 50 50
B ̸= 40 40 40 40 40
C - ̸= 30 30 30 30
D - - ̸= 20 20 20
E - - - ̸= 10 10

We then apply the same identification method to the level-k types. For example, given

the level-1 players’ behavior in position B, the best response of level-2 players is to play

S$30 in position C. In addition, since level-1 and level-0 players play the same action in

positions A, level-2 players’ best response to level-1 players’ actions in position B is the same

as level-1 players’ actions in position B. Therefore, the first distinctive difference between

level-1 and level-2 players is the action in position C; that is, not playing S$30 in position C

19This reason for exclusion may be considered as the exclusion of subjects who incorrectly answered the
comprehension question. In Section C.2, we consider an alternative strategic sophistication measure that
includes these subjects. Our results and insights remain unchanged.

20This identification method captures only the upper bound of an individual’s higher-order rationality,
but it is frequently used in the related literature (e.g., Brandenburger et al. 2017; Choi et al. 2022).
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is rationalizable as a level-1 player but not as a level-k player with k ≥ 2. We continue using

the same logic to identify level-2 players as those who do not play S$20 in position D.

We observe that the classification of the level-k types in Table 2 closely aligns with the

higher order rationality (HOR) measurement described in Choi et al. (2022). Specifically, the

HOR order-k types correspond to our level-(k−1) types, provided that k ≥ 1. The remaining

subjects in the dataset who did not choose S$50 in position A are classified as the HOR order-

0 type in their paper. One may want to include those HOR order-0 type subjects as level-0

players and redefine the current level-k agents as level k+1 agents instead of k ≥ 0. Indeed,

in Appendix C, we find that our main results remain robust for this alternative measurement

of level-k. In addition, we consider another measurement constructed by Choi et al. (2022),

which deals with the expected payoff based on the subjects’ behaviors in the experiment.21

We find that our results remain robust. We also consider alternative measures of cognitive

ability to benchmark their effects on social-distancing behavior against those of the level-k

types, as currently defined. Specifically, we included the IQ score obtained from a non-verbal

abstract reasoning test22 and the score obtained in a cognitive empathy test called Reading

the Mind in the Eyes.23

Table 3 presents the summary statistics of the level-k types and other measures of cogni-

tive ability. Column (1) displays the descriptive statistics of the measured level-k types and

cognitive abilities of SLP. More than half the sample demonstrates a level-0. Level-1 accounts

for 13%, while level-2 and level-3 represent 7% and 3%, respectively. Interestingly, level-4

shows a significant increase, constituting 20% of the sample. Statistics for both the IQ and

cognitive empathy test scores are displayed in a standardized manner. Column (2) shows the

descriptive statistics for KLIPS. Level-0 constitutes approximately 67% of the total sample,

level-1 and level-2 account for 15% and 8% respectively, while level-3 and level-4 comprise

21This variable could be useful in measuring the subjects’ strategic sophistication levels as their best-
response ability with respect to the actual population.

22We use the Intelligence Structure Test (IST) to measure IQ (Beauducel et al. 2010).
23This test measures how well someone can understand and empathize with the thoughts and feelings of

others (Baron-Cohen et al. 1997).

19



3% and 7%, respectively. KLIPS data do not collect information on IQ scores but measure

cognitive empathy, as in the SLP.

Table 3: Summary statistics of level-k types and other measures of cognitive ability

Data: SLP KLIPS
(1) (2)

1[Level-k=0] 0.57 (0.50) 0.67 (0.47)
1[Level-k=1] 0.13 (0.33) 0.15 (0.36)
1[Level-k=2] 0.07 (0.26) 0.08 (0.27)
1[Level-k=3] 0.03 (0.18) 0.03 (0.17)
1[Level-k=4] 0.20 (0.40) 0.07 (0.26)
IQ score 0.01 (1.00) -
Cognitive empathy score 0.01 (1.00) 0.00 (1.00)
Observations 1,608 564

Data source: SLP wave 54 and KLIPS wave 18.
Notes: Standard deviations are in parentheses.

3.2 Data

We use SLP data for the baseline empirical analysis. It has been a monthly online panel

survey of nationally representative Singaporeans aged 50–70 years since its launch in July

2015. To measure individuals’ social-distancing behaviors, we use information about the

frequency of going out. The SLP asked whether individuals left home every day during the

last month of each quarter before 2020 (i.e., before the COVID-19 pandemic). After the

onset of the COVID-19 pandemic, the SLP asked this question monthly starting in April

2020. Thus, it allows us to examine the short-term dynamics of social-distancing behavior

before and after the COVID-19 pandemic while controlling for time-invariant, individual-

specific confounding factors by including individual-fixed effects in the empirical analysis.

To control for individuals’ time-varying characteristics, we include age, age squared, income,

and marital status in the regression analysis.

Column (1) in Table 4 presents the summary statistics of the control and dependent

variables in SLP. The proportion of respondents who reported going out every day during the

period was 72%, and rated their subjective risk aversion on a scale of 0 to 10 at an average

of 6.24. The participants had an average age of approximately 60.8 years, with females

accounting for 51% and married individuals representing approximately 82%. Additionally,
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approximately 47% of the participants had completed tertiary education, and the average

logarithm of their monthly household income was approximately S$9.49.

Table 4: Summary statistics of dependent and control variables

Datasets: SLP KLIPS
(1) (2)

1[leaving home daily] 0.72 (0.45) -
1[increased outdoor activity] - 0.19 (0.39)
Self-reported risk aversion 6.24 (2.44) 5.29 (2.04)
Age 60.8 (3.61) 47.0 (13.55)
1[female] 0.51 (0.50) 0.54 (0.50)
1[married] 0.82 (0.38) 0.81 (0.39)
1[completed tertiary education] 0.47 (0.50) 0.59 (0.49)
Log(household income) 9.49 (3.33) 8.69 (0.62)
Observations 1,608 564

Data source: SLP wave 54 and KLIPS wave 23.
Notes: Standard deviations are in parentheses.

The SLP data cover individuals with similar age groups (i.e., older individuals) who are at

a roughly similar level of risk from COVID-19 and thus share similar payoffs. Otherwise, the

payoffs would have been more dispersed if the age group had been extensive. However, we also

acknowledge that they are more vulnerable to COVID-19 and thus have a stronger incentive

to comply with social-distancing measures than younger individuals. This indicates that our

empirical findings based on SLP data may over-emphasize the role of strategic sophistication

levels.

To address this concern, we provide evidence of external validity using data from the

KLIPS. The KLIPS is a large-scale nationally representative, longitudinal survey of Korean

households that has been conducted annually since 1998. Unlike the SLP, the KLIPS col-

lected information on social-distancing behaviors only once in 2020. Thus, we cannot directly

compare respondents’ behaviors before and after the COVID-19 pandemic. Instead, we use

information on self-reported changes in the amount of time spent outdoors. The survey asked

about the extent to which the respondents changed the amount of time they spent on those

four activities in March 2020 compared to normal periods. We then calculate the average

of the changes in these four activities and create a dummy variable indicating whether the

21



average is greater than the median as a proxy for social-distancing behavior.24

Column (2) in Table 4 shows the summary statistics of the dependent and control vari-

ables of the KLIPS. KLIPS asked how much the respondents’ outdoor activities had changed

compared with that of before COVID-19.25 A value of 0.19 means that approximately 19% of

respondents increased their outdoor activities compared to before COVID-19. Risk aversion,

measured identically as SLP, had an average value of 5.29. On average, the respondents in

KLIPS were approximately 14 years younger than those in SLP, with an average age of 47.0.

Approximately 54% of the respondents were female and 81% were married. College educa-

tion was completed by 59% respondents, and the average logarithm of monthly household

income in KRW was approximately 8.69.

4 Social-Distancing Behavior by Level-k Types

4.1 Empirical Strategy

To study the effects of strategic sophistication on social-distancing behavior during the

COVID-19 pandemic, we compare the changes in individuals’ likelihood of leaving home

daily before and after the onset of COVID-19 by level-k type. Specifically, we estimate the

following DID model:

Yi,t = β0 + β1Si · COV ID-19t + ωi + δt +X ′
i,tλ+ εi,t,

where Yi,t is a measure of individual i’s social-distancing behavior (i.e., the likelihood of leav-

ing home daily) in year-month t. Si is our measure of level-k types. COV ID-19t is a dummy

variable indicating the COVID-19 period beginning February 2020 because the first case of

COVID-19 in Singapore was detected on January 23, 2020 (Wong et al. 2020). We control

for time-invariant individual characteristics and time-specific shocks by including individual

24Since both the SLP and the KLIPS implemented the experiment module to measure level-k types in
2017, we acknowledge a three-year time gap between the social-distancing measures and the level-k type
measures.

25We use the information on self-reported changes in the amount of time spent on outdoor activities such
as (i) watching movies, performances, and exhibitions in a theater, (ii) traveling, (iii) participating in offline
religious activities, and (iv) getting together with family members and friends.
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and year-month fixed effects, ωi and δt, respectively. Xi,t represents a vector of time-varying

individual characteristics such as age, age squared, marital status, and household income.

εi,t denotes the error term.

The coefficient estimate of interest is β1, which represents the effect of the individuals’

level-k types on their daily probability of leaving home. A negative sign indicates that those

with a higher level-k type are more likely to engage in social-distancing behavior (i.e., avoid

going out) during the COVID-19 period. For statistical inference, we calculate standard

errors clustered at the individual level.

In addition, we examine the dynamic effects of the level-k types on social-distancing be-

haviors during the pandemic for two reasons. First, to interpret β1 as the causal effect of

individuals’ strategic sophistication, the trends in home-leaving behavior should be parallel

to individuals’ level-k type in the absence of a pandemic (i.e., the parallel trend assump-

tion). As an indirect test to validate this assumption, we examine whether the trends of the

outcome variable are similar among those with different levels of level-k type prior to the

pandemic. Second, it is important for policymakers and researchers to understand dynamic

effects because it allows them to design more effective policies by anticipating how policies

might evolve and impact different aspects of society over time. By considering dynamic ef-

fects, policymakers can make more informed decisions, adapt to changing circumstances, and

achieve better outcomes for societies.

To estimate the dynamic behavioral response to the COVID-19 pandemic by level-k, we

modify the baseline regression equation by replacing the binary indicator of COV ID-19t

with four dummy variables that indicate six-month intervals: 1[Jan2019 ≤ t ≤ June2019],

1[July2019 ≤ t ≤ January2020], 1[February2020 ≤ t ≤ June2020], and 1[July2020 ≤ t ≤

January2021]).26 We then include the interaction terms between Si and the four dummy

variables. We denote the coefficient estimates of these interaction terms by β1,k (where

k = 1, 2, 3, 4). To test the “parallel pre-intervention trend assumption,” we closely exam-

26We use 1[Jan2019 ≤ t ≤ June2019] as the reference period.

23



ine whether β1,ks are close to zero and statistically insignificant during the pre-COVID-19

period. To demonstrate the persistence of behavioral responses by level-k type, we also

present how β1,ks evolve after the onset of COVID-19.

4.2 Baseline Results

Figure 5 demonstrates the dynamic effects of individuals’ strategic sophistication on the

probability of leaving home daily with 95% confidence intervals. The red vertical line rep-

resents the onset of COVID-19 in Singapore (January 2020). First, β1,ks values in the year

before the pandemic (i.e., between January 2019 and January 2020) are small in magnitude

and statistically insignificant. These results indicate that our empirical strategy satisfies the

parallel-trend assumption. Second, β1,ks estimated after the onset of the pandemic are nega-

tive and statistically significant at the 5% level. Graphical evidence indicates that individuals

with higher level-k types are more likely to reduce their likelihood of going out daily. In ad-

dition, this difference in behavioral responses to the COVID-19 pandemic by level-k type

appears to persist throughout the first year of the pandemic.

Figure 5: Dynamic effects of strategic sophistication on the probability of leaving home
daily during the COVID-19 pandemic

Data source: SLP waves 42–66.
Notes: The square dots represent the estimated β1,t coefficients, and caps represent their 95%
confidence intervals. The vertical dashed line represents the onset of the COVID-19 pandemic in
Singapore.
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Although Singapore never imposed full-scale lockdown measures, it enforced school and

business closures during the partial lockdown period in April and May 2020.27 If strategically

more sophisticated individuals were more likely to engage in office work, the lockdown could

have overemphasized our baseline estimates, because they could have worked from home.

This implies that β1,3 might have been over-estimated during the partial lockdown period.

However, the estimated β1,4 values remain negative and statistically significant at the 5%

level. This finding implies that the reduced probability of leaving home daily is less likely to

be driven by government restrictions.

We summarize the effects of COVID-19 on social-distancing behavior by level-k type in

Table 5. Column (1) shows that a one-level increase in the level-k type measure reduces the

probability of leaving home daily by 1.6 percentage points after the onset of the COVID-19

pandemic. This estimate is statistically significant at the 1% level.

Table 5: Effects of strategic sophistication on the probability of leaving home daily during
the COVID-19 pandemic

Dependent variable: 1[Leave home daily]
(1) (2) (3)

Level-k×COVID-19 -0.016∗∗∗ -0.016∗∗∗

(0.006) (0.006)
1[Level-k=1]×COVID-19 -0.014

(0.028)
1[Level-k=2 or 3]×COVID-19 -0.032

(0.032)
1[Level-k=4]×COVID-19 -0.067∗∗∗

(0.023)
Fixed effects Yes Yes Yes
Other controls Yes Yes Yes
Excluding partial lockdown period No Yes No
Observations 21,897 18,760 21,897
R-squared 0.590 0.611 0.590

Data source: SLP waves 42–66.
Notes: We include individual- and wave-fixed effects and age, age squared, marital status, and
household income as control variables in the regression analysis. In column (2), we exclude obser-
vations from waves 57 and 58 (April and May 2020) to isolate the effects of the partial lockdown
measure. Standard errors are clustered at the individual level and corrected for heteroskedasticity.
*** p < 0.01, ** p < 0.05, * p < 0.1.

Column (2) shows that the results remained similar after excluding data from the April

27See Kim et al. (2022) for the details of government-imposed lockdown measures in Singapore.
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and May 2020 waves (the partial lockdown period). This estimate indicates that a one-level

increase in level-k type reduces the probability of leaving home daily by 1.6 percentage points

during the pandemic. This estimate is statistically significant at the 1% level.

Column (3) examines the non-linear effects of individuals’ strategic sophistication by

estimating reductions in the probabilities of leaving home daily among those with level-1,

level-2 or 3, and level-4, compared to those with the level-0 type. These estimates indicate the

non-linear effects of an individual’s strategic sophistication. The degree of social-distancing

behavior increases with level-k. Specifically, in contrast to those with level-0 type, individuals

with level-1, 2 or 3, and 4 types decrease their probability of leaving home daily during the

COVID-19 pandemic by 1.4, 3.2, and 6.7 percentage points, respectively. The final estimate

is statistically significant at the 1% level.

In line with Proposition 2-(a), we also conduct a one-sided t-test to examine the mono-

tonicity of social distancing behavior by level-k type in Column (3). The differences in the

effects on social distancing behavior are statistically insignificant between level-1 individuals

and level-2 or 3 individuals (p-value = 0.320), and between level-2 or 3 individuals and level-4

individuals (p-value = 0.161). However, the difference between level-1 individuals and level-4

individuals is statistically significant at the 5% level (p-value = 0.048).

Our baseline analysis indicates that individuals’ behavioral responses during the COVID-

19 pandemic can differ according to their heterogeneous strategic sophistication levels un-

der the assumption that our level-k measure represents individuals’ strategic sophistication.

However, it is also possible that the level-k measures are associated with other cognitive abil-

ities or preferences of individuals. To examine whether our baseline estimates are biased by

capturing the effects of other cognitive abilities, we re-estimate the effects of COVID-19 on

social distancing behaviors by level-k types after accounting for the effects of other cognitive

abilities or preferences.

A recent study Xie et al. (2022) discovered a correlation between a fundamental cognitive

skill known as working memory and the extent to which individuals complied with social
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distancing measures during the COVID-19 pandemic. As these cognitive abilities can be

correlated with strategic sophistication levels, we include IQ scores based on non-verbal

abstract reasoning tests. Consistent with the findings of previous studies, Column (1) shows

that the estimated value of IQscore × COV ID-19t is -0.006 and is statistically significant

at the 1% level, implying that more intelligent individuals are more likely to reduce their

likelihood of leaving home daily. However, the effects of the level-k type remain robust after

controlling for the IQ scores. The estimate is -0.012 and is statistically significant at the 5%

level. This result indicates that strategic sophistication levels play an independent role in

affecting individuals’ social-distancing behaviors during the COVID-19 pandemic.

Several studies have documented disparities in the impact of COVID-19 across educa-

tional attainment levels (e.g., Case and Deaton 2021; Daly et al. 2020). Since educational

level can also be associated with strategic sophistication, we include educational attainment

as an additional control variable. Consistent with the findings of previous studies, Column

(2) demonstrates that individuals who have higher educational attainments (i.e., those who

completed tertiary education) are 7.4 percentage points more likely to practice social dis-

tancing behavior than those with lower levels of education. However, the coefficient value for

the interaction between level-k types and COV ID-19t remains statistically significant even

after accounting for the effects of education.

Additionally, cognitive empathy, which is the ability to recognize others’ mental states,

can positively influence social distancing behaviors (e.g., Pfattheicher et al. 2020; Xu and

Cheng 2021). As cognitive empathy might be related to strategic behavior, we control for

cognitive empathy test scores in the regression analysis. Consistent with the conjecture that

cognitive empathy test scores capture pro-social behavior, Column (3) indicates that those

with higher cognitive empathy test scores are more likely to comply with social-distancing be-

havior during the pandemic, although the estimate is statistically insignificant. Nonetheless,

the estimates of heterogeneous social-distancing behaviors by level-k type remain similar.

Individuals’ risk preferences can be an important factor in predicting their compliance
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Table 6: Effects of strategic sophistication on the probability of leaving home daily during the
COVID-19 pandemic while controlling for other cognitive skill measures and risk preference

Dependent variable: 1[Leave home daily]
(1) (2) (3) (4) (5)

Level-k×COVID-19 -0.012∗∗ -0.014∗∗ -0.014∗∗ -0.015∗∗∗ -0.011∗∗

(0.006) (0.006) (0.006) (0.006) (0.006)
IQ score×COVID-19 -0.006∗∗∗ -0.004∗

(0.002) (0.002)
Completed tertiary education×COVID-19 -0.074∗∗∗ -0.065∗∗∗

(0.018) (0.018)
Cognitive empathy×COVID-19 -0.009 -0.009

(0.009) (0.009)
Self-rated risk aversion×COVID-19 0.007∗∗ 0.005

(0.004) (0.004)
Fixed effects Yes Yes Yes Yes Yes
Other controls Yes Yes Yes Yes Yes
Observations 21,897 21,897 21,897 21,897 21,897
R-squared 0.593 0.594 0.593 0.593 0.594

Data source: SLP waves 42–66.
Notes: We include individual and monthly fixed effects and age, age squared, marital status, and
household income. Additionally, we include the interaction terms between COVID-19 with control
variables, namely age, gender, marital status, and household income in the regression analysis.
Standard errors are clustered at the individual level and corrected for heteroskedasticity. ***
p < 0.01, ** p < 0.05, * p < 0.1.

with social distancing measures or risk-avoiding behaviors during a pandemic (e.g., Chan

et al. 2020; Sheth and Wright 2020). Column (4) shows that our estimate of the effects of

level-k types is robust to including our self-rated risk aversion measure. However, we find

that risk-averse individuals are more likely to leave home daily during the pandemic. This

result may seem puzzling and counterintuitive; however, from a game-theoretic perspective,

it is not surprising. Note that the payoff matrix in our theoretical framework is a variant of

the Stag Hunt game. In a Stag Hunt game, there is a pure-strategy Nash equilibrium that

is risk-dominant (Harsanyi and Selten 1988). Experimental evidence shows that risk-averse

individuals are more likely to play the action for the risk-dominant Nash equilibrium (e.g.,

Dal Bó et al. 2021). In our game, the risk-dominant Nash equilibrium corresponds to strategy

profile (NC,NC). The results in Column (4) indicate that individuals behaved during the

pandemic, as predicted by the theory.

In Columns (1)–(4), we examine the pairwise relationships between level-k types and the

measures of other cognitive abilities and preferences. The result is similar when we examine
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their relationships jointly by including all four interaction terms in the regression analysis

in Column (5). If the two variables measure the same information but to varying degrees,

then including other measures of cognitive ability would either nullify the influence of level-

k or render the effects of both variables statistically insignificant. However, Table 6 shows

that the effect of level-k remains robust after we control for the effects of other measures

of individuals’ cognitive abilities and preferences. This result suggests that the level-k type

assesses distinct cognitive abilities, which can significantly influence an individual’s decision

to exhibit social-distancing behavior.

4.3 Additional Analysis Using the KLIPS Data

As stated in Section 3.2, a limitation of the SLP data is that they only cover relatively

older individuals. Because older individuals are more vulnerable to the coronavirus, our base-

line results may have over-emphasized the true effects of individuals’ strategic sophistication.

To address this limitation, we use data from the KLIPS, which represents the entire adult

population in South Korea and contains an identical set of cognitive ability measures such

as level-k types, the cognitive empathy test, and subjective risk preferences. Unfortunately,

the KLIPS does not provide information on IQ scores. Thus, we use backward induction

thinking ability as a proxy.28 However, we acknowledge that the sample size of the KLIPS

is smaller than that of the SLP, and we can only conduct a cross-sectional analysis, as the

outcome variable was asked once as part of the special COVID-19 module.

Table 7 shows consistent evidence that the level-k type is closely associated with social-

distancing behavior. In 2020, the respondents were asked whether they had increased, de-

creased, or not changed their outdoor activities during the pandemic. We construct a dummy

variable to measure whether participants increased their outdoor activities. Column (1) in-

dicates that a one-level increase in level-k type reduces the probability of increasing outdoor

activities by 3.4 percentage points, and the estimate is statistically significant at the 1%

level. We sequentially add more control variables to Columns (2)–(4) and find that the base-

28See Choi et al. (2022) for details.
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Table 7: Effects of strategic sophistication on the probability of outdoor activities during
the COVID-19 pandemic using the KLIPS data

Dependent variable: 1[Increased outdoor activities]
(1) (2) (3) (4) (5)

Level-k -0.034∗∗∗ -0.032∗∗∗ -0.032∗∗∗ -0.030∗∗∗

(0.011) (0.011) (0.011) (0.011)
1[Level-k=1] -0.068

(0.044)
1[Level-k=2 or 3] 0.002

(0.057)
1[Level-k=4] -0.153∗∗∗

(0.043)
Other controls 1 Yes Yes Yes Yes Yes
Other controls 2 No Yes Yes Yes Yes
Other controls 3 No No Yes Yes Yes
Other controls 4 No No No Yes Yes
Observations 564 564 564 564 564
R-squared 0.013 0.038 0.039 0.055 0.059

Data source: KLIPS, waves 20, and 23.
Notes: Other controls 1 includes age, age squared, marital status, and living with aged 0–6 years.
Other controls 2 includes female and college graduate and above. Other controls 3 includes house-
hold income. Other controls 4 includes cognitive empathy score and risk aversion. Standard errors
in parentheses are corrected for heteroskedasticity. *** p < 0.01, ** p < 0.05, * p < 0.1.

line estimate remains robust.29 As shown in Column (5), we consider non-linear effects and

find evidence consistent with that of SLP: the change in social-distancing behavior is mainly

driven by those with the highest level-k type. In summary, the results obtained from the SLP

sample provide consistent evidence that the restricted age range of the sample is unlikely to

cause an upward bias in our baseline analysis.

5 Conclusion

We study a real-world example of individuals’ interactions via the lens of level-k the-

ory in the context of social distancing behavior during the early stages of the COVID-19

pandemic. We build a two-person weakest-link public goods game with the private cost of

social-distancing actions. In the game, a player optimizes behavior based on their belief that

the other player’s strategic sophistication level (level-k type) is lower than their level. The

likelihood of a player displaying social-distancing behavior increases as the level-k type in-

29Table C1 reports full regression results.
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creases, under a reasonable assumption. We provide empirical evidence that our theoretical

hypothesis is consistent with data from nationally representative samples. Our main results

are robust to the alternative specifications for both theoretical and empirical analyses, and

provide novel evidence that level-k theory is useful for understanding individuals’ collective

action in real-world settings.

Our analysis implicitly assumes that the level-k type of an individual is stable; that is,

the level-k type identified in the economic experiment (i.e., the Line Game) is identical to the

level-k type in the social-distancing behavior game. This consistency problem of strategic

sophistication in level-k models has been recognized in the literature (e.g., Cooper et al.

2018; Georganas et al. 2015). Future research could investigate whether individuals’ strategic

sophistication level is stable across different types of games with real-world applications.
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A Proofs

Proof of Proposition 1

Proof. We prove the result for a generalized cognitive hierarchy model, because it contains

a standard level-k model as a special case. Each player is of type k (i.e., level-k), where k

represents the strategic sophistication level. A type k player believes that the opponent is

of type k′ ∈ {0, 1, . . . , k − 1} with probability Pk(k
′). For example, if Pk(k − 1) = 1 and

Pk(j) = 0 for all j < k − 1, then type k player is a level-k player in the main text. For the

generalized cognitive hierarchy model (Chong et al. 2016), we first let P : N0 → R be the

distribution of types, where P (k) is the probability that a randomly chosen player is of type

k ∈ N0. Then, for each k′ ∈ {0, . . . , k − 1}, Pk(k
′) can be defined as

Pk(k
′) =

P (k′)∑k−1
j=0 P (j)

.

Thus, Pk(j) is the conditional probability generated from P given the belief that the oppo-

nent’s cognitive type is at most k − 1. Note that for these two examples, the type 1 player

believes that the opponent is type 0 with a probability of 1.

For each type k with k ≥ 1, let πk be the probability of a type k player playing C. Let µk

be the expectation of a type k player regarding the probability of another player choosing

action C. With this modified notation, the statement in the proposition can be rewritten as

“Let π0 ∈ (0, 1) be the probability that a level-0 player chooses action C. For any k ≥ 1,

a level-k player plays a cutoff strategy with a cutoff cost ck, where ck is recursively defined

as ck = µk with µk = π0 if k = 1 and µk =
∑k−1

i=1 πiPk(i) if k ≥ 2.”

Because the proof is straightforward, we omitted it.

Proof of Proposition 2

Proof.

Proof of (a). Suppose that π0 < π∗. To demonstrate that πk is strictly increasing in k, it is
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sufficient to demonstrate that µk is also strictly increasing in k. In the following section, we

prove this using the induction principle.

First, it follows that:

µ1 = π0 < π0P2(0) + F (π0)P2(1) = µ2,

where the strict inequality follows the single-crossing assumption.

Suppose that µk < µk+1. To demonstrate that µk+1 < µk+2, we observe that µk+1 =∑k
i=0 πiPk+1(i) and µk+2 =

∑k+1
j=0 πjPk+2(j). Then, we find that

µk+1 − µk+2 =
k−1∑
i=0

πi (Pk+1(i)− Pk+2(i)) + πk (Pk+1(k)− Pk+2(k))− πk+1Pk+2(k + 1)

< πk

k∑
i=0

(Pk+1(i)− Pk+2(i))− πk+1Pk+2(k + 1)

= πk

(
1−

k∑
i=0

Pk+2(i)

)
− πk+1Pk+2(k + 1)

= (πk − πk+1)Pk+2(k + 1) < 0.

Therefore, this statement is proven.

Proof of (b). Suppose that π0 > π∗. The induction principle is used in the proof of (a).

Again, this suffices to demonstrate that µk strictly decreases in k. First, it follows that:

µ1 = π0 > π0P2(0) + F (π0)P2(1) = µ2,

where the strict inequality follows the single-crossing assumption.

Suppose that µk > µk+1. To demonstrate that µk+1 > µk+2, we observe that µk+1 =∑k
i=0 πiPk+1(i) and µk+2 =

∑k+1
j=0 πjPk+2(j). Then, we find that

µk+1 − µk+2 = π0 (Pk+1(0)− Pk+2(0)) +
k∑

i=1

πi (Pk+1(i)− Pk+2(i))− πk+1Pk+2(k + 1)

> π0

k∑
i=0

(Pk+1(i)− Pk+2(i))− πk+1Pk+2(k + 1)

= π0

(
1−

k∑
i=0

Pk+2(i)

)
− πk+1Pk+2(k + 1)
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= (π0 − πk+1)Pk+2(k + 1) > 0.

Therefore, this statement is proven.

Proof of (c). Suppose that π0 = π∗. Again, we use the principles of induction. It suffices to

show that µk is a constant. First, it directly follows because F (π∗) = π∗,

µ1 = π∗ = π∗P2(0) + F (π∗)P2(1) = µ2.

Suppose that µk = µk+1. To demonstrate that µk+1 = µk+2, we observe that µk+1 =∑k
i=0 πiPk+1(i) and µk+2 =

∑k+1
j=0 πjPk+2(j). Then, we find that

µk+1 − µk+2 = π∗ (Pk+1(0)− Pk+2(0)) +
k∑

i=1

π∗ (Pk+1(i)− Pk+2(i))− πk+1Pk+2(k + 1)

= π∗

(
1−

k∑
i=0

Pk+2(i)

)
− πk+1Pk+2(k + 1) = (π∗ − πk+1)Pk+2(k + 1) = 0.

Therefore, this statement is proven.

Proof of Proposition 3

Proof. We assume that F first-order stochastically dominates G. Let π0 be the probability

of choosing C for level-0 players. Let πk(θ) be the type k player’s probability of choosing

action C under the distribution θ ∈ {F,G}. Then, it would be sufficient to demonstrate that

µk(G) ≥ µk(F ) for all k, and that equality holds only for k = 1. First, we determine that

µ1(G) = π0 = µ1(F ).

We now show that µ2(G) > µ2(F ). To see why, we directly calculated the

µ2(G) = π0P2(0) +G(π0)P2(1) > π0P2(0) + F (π0)P2(1) = µ2(F ).

This strict inequality implies π2(G) > π2(F ).

Suppose µk(G) > µk(F ) and πk(G) > πk(F ). Then, it follows that

µk+1(G) =
k∑

i=0

πi(G)Pk+1(i) >
k−1∑
i=0

πi(F )Pk+1(i) = µk+1(F ),

This implies µk+1(G) > µk+1(F ). Therefore, this proposition is proven.
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B General Payoff Structure

In the main text, we consider a more general game payoff structure. Because the game

is symmetric, we focus on player 1’s payoff without loss of generality. We denote c as the

contribution cost for player 1. To normalize the payoffs, we assume that player 1 has zero

utility. Additionally, because player 1 benefits from player 2’s contribution, we let vL ≥ 0

represent utility when player 2 contributes but player 1 does not. When player 1 contributes

but player 2 does not, player 1 obtains a utility of vM ≥ vL. Evidently, the best scenario for

the agent is when both players contribute. In this case, we denote vH > vM as the utility of

the agent.30 Note that if vL = vM = 0, the payoff structure becomes identical to the payoff

matrix in Table 1 in the main text.

Table A1: The general payoff matrix

player 1

player 2
NC C

NC 0 vL
C vM − c vH − c

We assume vH ∈ (vL + vM , c). First, the assumption c > vH implies that when the

social distancing cost is significantly high, it is more beneficial to pursue free-riding utility:

vH − c < vL. For example, consider an individual requiring regular renal dialysis who cannot

discontinue hospital visits even during the pandemic. Second, if vH > vL + vM , then the

marginal (expected) benefit from contribution increases with the other player’s probability of

contribution (i.e., strategic complements).31 To see this, note that for a given belief π ∈ (0, 1)

and cost of contribution c, player plays C if and only if vM +π(vH − (vL+vM)) > c. The left-

hand side captures the marginal benefit from the contribution, and its partial derivative with

respect to π is strictly positive if the assumption holds. In the remainder of this analysis,let

30Wearing a mask alone significantly reduces the risk of infection compared to situations where a person
does not wear a mask while others do.

31For example, during the COVID-19 pandemic, it was generally better for both individuals to wear masks
together. This creates a barrier against respiratory droplets containing the virus, preventing their release
into the air or inhalation by others.
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△v = vH − (vL + vM).

Here, we show that the probability of choosing action C strictly increases in level-k type if

the level-0 player’s likelihood of choosing action C is relatively low (Proposition 2). Figure 6

describes the situation in which π0 is slightly greater than F (0). Given this level-0 player’s

behavior, the level-1 player’s cutoff cost c1 is determined as c1 = vM + π0△v. A level-2

player believes that the level-1 player plays C with probability π1 = F (vM + π0△v). The

corresponding cutoff cost c2 is c2 = vM +F (vM + π0△v)△v. Since π0 < π∗, we have c1 < c∗;

thus, we also have π1 < π∗ and c2 < c∗. Therefore, we obtain c1 < c2; when π0 is relatively

low, strategic sophistication generates a best-response dynamic in which a level-2 player’s

cutoff cost c2 is strictly greater than the level-1 player’s cutoff cost c1.

Figure 6: Illustration of increasing cutoff costs at strategic sophistication levels

c

−vM
△v

vM

indifference line

F (c)

c 0 c

F (0)

1

π∗

c∗

•

π0

c1

π1

c2

π2

As in the main text, by the induction principle, the same increasing property emerges for

higher level-k types. Consequently, we obtain the property that the sequence of cutoff costs

{ck}k≥1 strictly increase as the strategic sophistication parameter k increases. Finally, the
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probability of choosing action C increases as level k increases.

The opposite decreasing dynamic arises when π0 is relatively high because π0 > π∗ =

F (c∗). Furthermore, our previous analysis of how players’ behaviors and the resulting best-

response dynamics respond to a change in the cost distribution remain qualitatively the

same.
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C Additional Tables and Figures

C.1 Full Tables

Table C1: The full regression results of Table 7

Dependent variable: 1[Increased outdoor activities]
(1) (2) (3) (4) (5)

Level-k -0.034∗∗∗ -0.032∗∗∗ -0.032∗∗∗ -0.030∗∗∗

(0.011) (0.011) (0.011) (0.011)
1[Level-k=1] -0.068

(0.044)
1[Level-k=2 or 3] 0.002

(0.057)
1[Level-k=4] -0.153∗∗∗

(0.043)
Age -0.003 -0.002 -0.003 -0.002 -0.002

(0.009) (0.009) (0.009) (0.009) (0.009)
Age squared/1000 0.032 -0.007 0.002 -0.013 -0.011

(-0.091) (-0.091) (-0.091) (-0.094) (0.093)
Marital status -0.043 -0.034 -0.042 -0.043 -0.036

(0.067) (0.066) (0.068) (0.067) (0.066)
Living with children aged 0-6years -0.006 0.008 0.012 0.019 0.023

(0.053) (0.052) (0.053) (0.052) (0.052)
Female -0.061∗ -0.060∗ -0.067∗∗ -0.070∗∗

(0.034) (0.034) (0.034) (0.034)
College graudate and above -0.136∗∗∗ -0.140∗∗∗ -0.144∗∗∗ -0.145∗∗∗

(0.042) (0.042) (0.042) (0.042)
Household income 0.022 0.014 0.014

(0.026) (0.026) (0.026)
Cognitive empathy score -0.007 -0.006

(0.018) (0.018)
Risk aversion 0.024∗∗∗ 0.024∗∗∗

(0.008) (0.008)

Observations 564 564 564 564 564
R-squared 0.013 0.038 0.039 0.055 0.059

Data source: KLIPS, waves 18, 20, and 23. *** p < 0.01, ** p < 0.05, * p < 0.1.
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C.2 Robustness Checks by Alternative Measurement 1

Definition. The primary measurement considered in the main text excludes the subjects

who chose S$10 in position A. One way to measure the strategic sophistication is to include

those subjects as level-0 players and step up the other depth levels by one level. The new

measurement with this inclusion is identical to the HOR order in Choi et al. (2022). The

resulting level-k types consist of six levels, as Table C2 summarizes.

Table C2: Identification of level-k types

Level-0 Level-1 Level-2 Level-3 Level-4 Level-5

A ̸= 50 50 50 50 50 50
B - ̸= 40 40 40 40 40
C - - ̸= 30 30 30 30
D - - - ̸= 20 20 20
E - - - - ̸= 10 10

Results. We consider the same econometric model as in the main text and summarize

the effects of individuals’ strategic sophistication on social-distancing behavior during the

COVID-19 pandemic in Table C3. The results remain similar to those of the baseline analysis

when an alternative measure of strategic sophistication is used. Column (1) shows that a one-

level increase in the level-k type measure reduces the probability of leaving home daily by 1.8

percentage points after the onset of the COVID-19 pandemic. This estimate is statistically

significant at the 1% level. Because the average probability of leaving home daily among

individuals at level-0 is 22%, our estimate indicates that the likelihood would have been 13%

among those at level-5. Column (2) shows that after excluding data from the April and May

2020 waves (the partial lockdown period), a one-level increase in the level-k measure reduce

the probability of leaving home daily by 1.8 percentage points during the pandemic. This

finding is statistically significant at the 1% level.

In Column (3), we examine the non-linearity in the effects of strategic sophistication.

We estimate reductions in the probabilities of leaving home daily among those with level-1,

level-2 or 3, and level-4 or 5 compared with that of level-0. The estimates indicate the non-
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Table C3: Effects of strategic sophistication on the Probability of Leaving Home Daily
during the COVID-19 pandemic

Dependent variable: 1[Leave home daily]
(1) (2) (3)

Level-k×COVID-19 -0.018∗∗∗ -0.018∗∗∗

(0.005) (0.005)
1[Level-k=1]×COVID-19 -0.032∗

(0.019)
1[Level-k=2 or 3]×COVID-19 -0.053∗∗

(0.025)
1[Level-k=4 or 5]×COVID-19 -0.092∗∗∗

(0.024)
Fixed effects Yes Yes Yes
Other controls Yes Yes Yes
Including partial lockdown period Yes No Yes
Observations 28,244 24,195 28,244
R-squared 0.601 0.624 0.601

Data source: SLP waves 42-66.
Notes: We include individual and monthly fixed effects and age, age squared, marital status, and
household income in the regression analysis. In column (2), we exclude observations from waves
57 and 58 (April 2020 and May 2020) to isolate the effects of Circuit Breaker. Standard errors are
clustered at the individual level and corrected for heteroskedasticity. *** p < 0.01, ** p < 0.05, *
p < 0.1.

linear behavioral responses by level-k types. In particular, compared with level-0, individuals

with level-1, 2 or 3, and 4 or 5 types decrease the probability of leaving home daily during

the COVID-19 pandemic by 3.2, 5.3, and 9.2 percentage points, respectively. The estimates

are statistically significant at the 10%, 5% and 1% levels, respectively.

In Table C4, we examine whether our baseline results remain robust after accounting for

heterogeneous behavioral responses using measures of IQ scores, education level, cognitive

empathy, and risk preference. Column (1) shows that the estimated value of IQscores ×

COV ID-19t is -0.005 and is statistically significant at the 1% level. This result implies

that more intelligent individuals are more likely to reduce the likelihood of leaving their

homes daily. However, the heterogeneous behavioral response at level-k remains intact. The

estimate is -0.015 and is statistically significant at the 1% level. This indicates that strategic

sophistication plays an independent role in affecting individuals’ social-distancing behavior

during the COVID-19 pandemic.

The results are similar when adding the interaction terms of the measures of education
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Table C4: Effects of strategic sophistication on the probability of leaving home daily while
controlling for other cognitive skill measures, and risk averseness

Dependent variable: 1[Leave home daily]
(1) (2) (3) (4) (5)

Level-k×COVID-19 -0.015∗∗∗ -0.016∗∗∗ -0.016∗∗∗ -0.017∗∗∗ -0.014∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005)
IQ ×COVID-19 -0.005∗∗∗ -0.003

(0.002) (0.002)
Tertiary education×COVID-19 -0.067∗∗∗ -0.057∗∗∗

(0.016) (0.016)
Cognitive empathy×COVID-19 -0.009 -0.009

(0.008) (0.008)
Risk aversion×COVID-19 0.008∗∗∗ 0.006∗∗

(0.003) (0.003)
Fixed effects Yes Yes Yes Yes Yes
Other controls Yes Yes Yes Yes Yes
Observations 28,244 28,244 28,244 28,244 28,244
R-squared 0.603 0.604 0.603 0.604 0.604

Data source: SLP waves 42-66.
Notes: We include individual and monthly fixed effects and age, age squared, marital status, and
household income. Additionally, we include interaction terms between COVID-19 with control
variables, namely age, gender, marital status, and household income in the regression analysis.
Standard errors are clustered at the individual level and corrected for heteroskedasticity. ***
p < 0.01, ** p < 0.05, * p < 0.1.

level, cognitive empathy, and risk aversion to COV ID-19t in Columns (2), (3), and (4). The

estimates of heterogeneous social-distancing behaviors by level-k remain similar. Column

(2) demonstrates that individuals with higher education levels (i.e., completed tertiary ed-

ucation) are 6.7 percentage points more likely to practice distancing than those with lower

levels of education. In addition, Column (3) shows that the estimate of the interaction term

between cognitive empathy and COV ID-19t is negative, but statistically insignificant. Mean-

while, we find that more risk-averse individuals are more likely to leave home daily during

the pandemic, as shown in Column (4). These results are similar when all four additional

interaction terms are included in the regression analysis in Column (5). This suggests that

the level-k type independently and significantly influences an individual’s decision to exhibit

social-distancing behavior.
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C.3 Robustness Check by Alternative Measurement 2

Definition. We also consider another measure of strategic sophistication. As an alternative

way to measure how well an individual performs in a Line Game, we calculate the expected

payoffs (in S$) based on the subjects’ actual choices in the experiment. Specifically, a subject’s

expected payoff is calculated based on her choice matched with the empirical distribution of

her opponent’s choices observed in our data following Choi et al. (2022). First, we calculate

the empirical choice distribution for each position from the SLP data. Second, for a given

subject, we match a subject’s choice in each position with the empirical choice distribution

of the opponent’s position. Finally, we compute the average expected payoffs for all five

positions.

Results. Table C5 presents results that are qualitatively similar to the baseline analysis.

Column (1) shows that an S$1 increase in the expected payoff decreases the likelihood of

leaving home daily by 0.04 percentage points. As the standard deviation of the expected

payoffs is S$55.17, the estimate indicates that the probability of leaving home daily reduces

by 2.21 percentage points when the expected payoff increases by one SD.32 This estimate is

statistically significant at the 5% level. The results remain robust when data from the partial

lockdown period are excluded.

32The mean of the expected payoff is S$276.4.
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Table C5: Effects of the strategic sophistication on the probability of leaving home daily
during the COVID-19 pandemic using expected payoff of the Line Game as an alternative
measurement

Dependent variable: 1[Leave home daily]
(1) (2)

Expected payoffs×COVID-19 -0.0004∗∗ -0.0004∗∗

(0.0002) (0.0002)

Including partial lockdown period Yes No
Observations 21,897 18,760
R-squared 0.590 0.611

Data source: SLP waves 42–66.
Notes: We include individual and monthly fixed effects and age, age squared, and marital status
in the regression analysis. In column (2), we exclude observations from waves 57 and 58 (April
and May 2020) to isolate the effects of the partial lockdown (called the Circuit Breaker). Standard
errors are clustered at the individual level and corrected for heteroskedasticity. *** p < 0.01, **
p < 0.05, * p < 0.1.
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