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Introduction

• Estimated dynamic stochastic general equilibrium (DSGE) models are now widely used for

• empirical research in macroeconomics;

• quantitative policy analysis and prediction at central banks.

• This mini course will focus on

• econometric methods to conduct quantitative analysis with DSGE models;

• We will start with a prototypical New Keynesian DSGE model...
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Overview

1 A small-scale DSGE model: specification, steady states, log-linearization, first-order
approximation to equilibrium dynamics, state-space representation.

2 Statistical inference: frequentist versus Bayesian; use the Kalman filter to evaluate
likelihood function.

3 Frequentist inference: maximum likelihood, simulated minimum distance approaches,
GMM

4 Bayesian inference: priors, posteriors, Metropolis-Hastings algorithm, post-processing
draws.

5 Applications to monetary and fiscal policy analysis.
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Prototypical Applications to Monetary and Fiscal Policy Analysis

1 What is the optimal target inflation rate?

2 Was high inflation and output volatility in the 1970s due to loose monetary policy?

3 Effects of the zero lower bound on nominal interest rates on monetary policy.

4 How large are government spending multipliers?
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A Small-Scale New Keynesian DSGE Model

The model consists of

• households;

• final goods producing firms;

• intermediate goods producing firms;

• central bank and fiscal authority;

• exogenous shock processes
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Households

• Households maximize

Eτ

[ ∞∑
t=τ

β(t−τ)

{
lnCt −

φt
1 + ν

L1+ν
t

}]
• subject to the constraints:

PtCt + Bt+1 ≤ PtWtLt + Πt + Rt−1Bt − Tt + Ωt .

• In a nutshell:
• household cares about the future: intertemporal optimization
• household likes consumption
• household does not like to work...
• there is a budget constraint: can’t spend more than you earn and borrow; have to pay taxes;
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Households: First-Order Conditions

• Households maximize

Eτ

[ ∞∑
t=τ

β(t−τ)

{
lnCt −

φt
1 + ν

L1+ν
t

}]
• subject to the constraints:

PtCt + Bt+1 ≤ PtWtLt + Πt + Rt−1Bt − Tt + Ωt .

• Introduce Lagrange multiplier µt for budget constraint.

• Lagrangian

L = Eτ
[ ∞∑

t=τ

β(t−τ)

{
lnCt −

φt
1 + ν

L1+ν
t

−µt

(
PtCt + Bt+1 −

[
PtWtLt + Πt + Rt−1Bt − Tt + Ωt

])}]
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Households: First-Order Conditions

• First-order condition for Ct :

1

Ct
= µtPt

• First-order condition for Bt+1:

µt = βEt [µt+1Rt ]

• Combine to consumption Euler equation (define πt+1 = Pt+1/Pt):

1

Ct
= βEt

[
1

Ct+1

Rt

πt+1

]
• Labor supply – first-order condition for Lt :

φtL
ν
t = µtPtWt =

Wt

Ct
.
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A Small-Scale New Keynesian DSGE Model

• households;

• final goods producing firms;

• intermediate goods producing firms;

• central bank and fiscal authority;

• exogenous shock processes
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Final Goods Production

• Production: (these guys just buy and combine intermediate goods)

Yt =

[∫ 1

0

Yt(i)
1

1+λt di

]1+λt

• Profits

YtPt −
∫

Yt(i)Pt(i)di =

[∫ 1

0

Yt(i)
1

1+λt di

]1+λt

Pt −
∫

Yt(i)Pt(i)di .

• Take prices as given and maximize profits by choosing optimal inputs Yt(i):

Pt(i) = PtY
λt/(1+λt)
t Yt(i)

−λt/(1+λt) =⇒ Yt(i) =

(
Pt(i)

Pt

)− 1+λt
λt

Yt

• Free entry leads to zero profits:

YtPt =

∫
Yt(i)Pt(i)di =⇒ Pt =

[∫ 1

0

Pt(i)
− 1
λt di

]−λt

.

• Aggregate inflation is defined as πt = Pt/Pt−1.
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A Small-Scale New Keynesian DSGE Model

• households;

• final goods producing firms;

• intermediate goods producing firms;

• central bank and fiscal authority;

• exogenous shock processes
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Intermediate Goods Production

• Production (these guys hire to produce something):

Yt(i) = max

{
AtLt(i)−F , 0

}
.

• Firms are monopolistically competitive; face downward sloping demand curve:

Yt(i) =

(
Pt(i)

Pt

)− 1+λt
λt

Yt .

• Firms set prices to maximize profits, but there is a friction:
• firms can only re-optimize their prices with probability 1− ζp;
• remaining 1− ι firms adjust their prices by π̄

• Once prices are set, firms have to produce whatever quantity is demanded.
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Intermediate Goods Production

• Define the real marginal costs of producing a unit Yit as

MCt =
Wt

At

• Decision problem (βsΞt+s|t is today’s value of a future dollar)

max
P̃t(i)

Et

{ ∞∑
s=0

ζspβ
sΞt+s|tYt+s(i)

[
P̃t(i)π̄

s − Pt+sMCt+s

]}

s.t. Yt+s(i) =

(
P̃t(i)π̄

s

Pt+s

)− 1+λt
λt

Yt+s

• Differentiate with respect to P̃t(i) to obtain first-order condition for optimal price.
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A Small-Scale New Keynesian DSGE Model

• households;

• final goods producing firms;

• intermediate goods producing firms;

• central bank and fiscal authority;

• exogenous shock processes
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Monetary Policy

• We did not specify a money demand equation, but we could. It would depend on the
nominal interest rate. The higher Rt , the lower the demand for money.

• Central bank prints enough money so that demand is satisfied at interest rate implied by
monetary policy rule:

Rt = R1−ρR
∗,t RρRt−1 exp{σRεR,t}, R∗,t = (rπ∗)

(
πt
π∗

)ψ1
(

Yt

γYt−1

)ψ2

• r is equilibrium real rate.

• π∗ is target inflation rate.

• εR,t is exogenous monetary policy shock. Interpretation?
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Fiscal Policy

• For now, it’s passive and not very interesting.

• Budget constraint:

PtGt + Rt−1Bt + Mt = Tt + Bt + Mt+1

• Lump-sum taxes/transfer balance the budget in every period. Seigniorage does not
matter.

• Government spending is exogenous. Re-scale:

Gt =

(
1− 1

gt

)
Yt .
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A Small-Scale New Keynesian DSGE Model

• households;

• final goods producing firms;

• intermediate goods producing firms;

• central bank and fiscal authority;

• exogenous shock processes.
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Exogenous shock processes

• Total factor productivity At .

• Preference / labor demand shifter φt .

• Mark-up shock λt .

• Monetary policy shock εR,t .

• Government spending shock gt .

• We will specify exogenous laws of motions for these processes, e.g.,

ln gt = (1− ρg ) ln g∗ + ρg ln gt−1 + σg εg ,t , εg ,t ∼ N(0, 1).
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A Small-Scale New Keynesian DSGE Model

So far:

• households;

• final goods producing firms;

• intermediate goods producing firms;

• central bank and fiscal authority;

• exogenous shock processes.

What’s left to do?

• derive aggregate resource constraint;

• derive evolution of price dispersion;

• complete markets assumption;
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Model Solution

• After deriving the equilibrium conditions of the model, we now need to solve for the
dynamics of the endogenous variables.

• System of nonlinear expectational difference equations;

• Find solution(s) of system of expectational difference equations:

• global (nonlinear) approximation methods;

• local approximation near steady state.

• We will focus on log-linear approximations around the steady state.

• Many more details in FVRRS.
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Our Goal: State-space Representation of DSGE Model

• ny × 1 vector of observables:

yt = M ′y [log(Xt/Xt−1), log lsht , log πt , logRt ]
′.

• ns × 1 vector of econometric state variables st

st = [φt , λt , zt , εR,t , x̂t−1]′

• DSGE model parameters:

θ = [β, γ, λ, π∗, ζp, ν, ρφ, ρλ, ρz , σφ, σλ, σz , σR ]′.

• Measurement equation:

yt = Ψ0(θ) + Ψ1(θ)st .

• State-transition equation:

st = Φ1(θ)st−1 + Φε(θ)εt , εt = [εφ,t , ελ,t , εz,t , εR,t ]
′
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Our Goal: State-Space Representation of DSGE Model

State-space representation:

yt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φε(θ)εt

System matrices:

Ψ0(θ) = M′y


log γ

log(lsh)
log π∗

log(π∗γ/β)

 , xφ = −
κpψp/β

1 − ψpρφ

, xλ = −
κpψp/β

1 − ψpρλ

, xz =
ρzψp

1 − ψpρz
, xεR

= −ψpσR

Ψ1(θ) = M′y



xφ xλ xz + 1 xεR
−1

1 + (1 + ν)xφ (1 + ν)xλ (1 + ν)xz (1 + ν)xεR
0

κp
1−βρφ

(1 + (1 + ν)xφ)
κp

1−βρλ
(1 + (1 + ν)xλ)

κp
1−βρz

(1 + ν)xz +κp (1 + ν)xεR
0

κp/β
1−βρφ

(1 + (1 + ν)xφ)
κp/β

1−βρλ
(1 + (1 + ν)xλ)

κp/β
1−βρz

(1 + ν)xz (κp (1 + ν)xεR
/β + σR ) 0



Φ1(θ) =


ρφ 0 0 0 0

0 ρλ 0 0 0
0 0 ρz 0 0
0 0 0 0 0
xφ xλ xz xεR

0

 , Φε(θ) =


σφ 0 0 0

0 σλ 0 0
0 0 σz 0
0 0 0 1
0 0 0 0



M′y is an ny × 4 selection matrix that selects rows of Ψ0 and Ψ1.
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Steady State

Shut down aggregate uncertainty: set all shock standard deviations σ· = 0.

• Technology:

lnAt = ln γ + lnAt−1 + zt , zt = ρzzt−1 + σzεz,t .

Set σz = 0: lnA∗t = γt.

• Preferences:

lnφt = (1− ρφ)lnφ+ ρφ lnφt−1 + σφεφ,t .

• Mark-up:

lnλt = (1− ρλ)lnλ+ ρλ lnλt−1 + σλελ,t .

• Government Spending:

ln gt = (1− ρg )ln g∗ + ρg ln gt−1 + σg εg ,t
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Steady State

• Problem: this economy grows... which does not lead to a steady state.

• Solution: detrend model variables by At .

• Model has steady state in terms of detrended variables.
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Example: Detrend Households’ Euler Equation

• Recall:

1

Ct
= βEt

[
1

Ct+1

Rt

πt+1

]
• Rewrite:

At

Ct
= βEt

[
At+1

Ct+1

At

At+1

Rt

πt+1

]
=⇒ 1

ct
= βEt

[
1

ct+1

1

γezt+1

Rt

πt+1

]
• Steady state:

R = π
γ

β
= πr .
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Local Approximation Around Steady State

• We will now approximate the equilibrium dynamics of the model.

• Taylor series expansion around around the steady state.
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What is a Log-Linear Approximation?

• Consider Cobb-Douglas production function: Yt = ZtK
α
t H

1−α
t .

• Linearization around Y∗, Z∗, K∗, H∗:

Yt − Y∗ = Kα
∗ H

1−α
∗ (Zt − Z∗) + αZ∗K

α−1
∗ H1−α

∗ (Kt − K∗)

+(1− α)Z∗K
α
∗ H
−α
∗ (Ht − K∗)

• Log-linearization: Let f (x) = f (ev ) and linearize with respect to v :

f (ev ) ≈ f (ev∗) + ev∗ f ′(ev∗)(v − v∗).

Thus:

f (x) ≈ f (x∗) + x∗f
′(x∗)(ln x/x∗) = f (x∗) + f ′(x∗)x̂

• Cobb-Douglas production function:

Ỹt = Ẑt + αK̂t + (1− α)Ĥt
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Let’s Try the Log-linearizations

• Euler Equation:

1

ct
= βEt

[
1

ct+1

1

γezt+1

Rt

πt+1

]
.

• Log-linearized:

−ĉt = Et

[
−ĉt+1−zt+1 +R̂t−π̂t+1

]
=⇒ ĉt = Et [ĉt+1]−(R̂t−E[π̂t+1])+Et [zt+1].

• Labor Supply:

φtL
ν
t =

wt

ct
.

• Log-linearized:

φ̂t + νL̂t = ŵt − ĉt
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Combining Bits and Pieces

• Notation: write xt instead of yt for output.

• Assume: π = π̄ = π∗, ψ1 = 1/β, ψ2 = 0, ρR = 0.

• Linear rational expectations (LRE) system:

ĉt = Et+1[ĉt+1]−
(
R̂t − Et [π̂t+1]

)
+ Et [zt+1]

π̂t = βEt [π̂t+1] + κp
(
l̂sht + λt)

R̂t =
1

β
π̂t + σRεR,t

l̂sht = (1 + ν)ĉt + νĝt + φt

x̂t = ĉt + ĝt

ĝt = ρg ĝt−1 + σg εg ,t

φt = ρφφt−1 + σφεφ,t

λt = ρλλt−1 + σλελ,t

zt = ρzzt−1 + σzεz,t

Frank Schorfheide DSGE Modeling and Statistical Inference



How Can One Solve LRE Systems? A Simple Example

Simple model:

yt =
1

θ
Et [yt+1] + εt , εt ∼ iid(0, 1), θ ∈ Θ = [0, 2].

Sims (2002) Method: Introduce conditional expectation ξt = Et [yt+1] and forecast error
ηt = yt − ξt−1:

ξt = θξt−1 − θεt + θηt .

Nonexplosive solutions:

• Determinacy: θ > 1. The only stable solution:

ξt = 0, ηt = εt =⇒ yt = εt

• Indeterminacy: θ ≤ 1 the stability requirement imposes no restrictions on forecast error:

ηt = M̃εt + ζt =⇒ yt = θyt−1 + M̃εt + ζt − θεt−1
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Solving the LRE System

• A simplified version of our DSGE model can be solved “by hand.”

• More realistic models need to be solved numerically.

• The numerical solution can be expressed as a VAR(1) in terms of suitably chosen model
variables st :

st = Φ1(θ)st−1 + Φε(θ)εt .

• Many solution techniques are available for LRE models, e.g., Blanchard and Kahn (1980),
King and Watson (1998), Uhlig (1999), Anderson (2000), Klein (2000), Christiano (2002).
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Linking Model Variables and Observables

• To confront the model with data, one has to account for the presence of the model-implied
stochastic trend in aggregate output and to add the steady states to all model variables.

• Measurement equations:

log(Xt/Xt−1) = x̂t − x̂t−1 + zt + log γ

log(lsht) = l̂sht + log(lsh)

log πt = π̂t + log π∗

logRt = R̂t + log(π∗γ/β).
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State-space Representation of DSGE Model

• ny × 1 vector of observables:

yt = M ′y [log(Xt/Xt−1), log lsht , log πt , logRt ]
′.

• ns × 1 vector of econometric state variables st

st = [φt , λt , zt , εR,t , x̂t−1]′

• DSGE model parameters:

θ = [β, γ, λ, π∗, ζp, ν, ρφ, ρλ, ρz , σφ, σλ, σz , σR ]′.

• Measurement equation:

yt = Ψ0(θ) + Ψ1(θ)st .

• State-transition equation:

st = Φ1(θ)st−1 + Φε(θ)εt , εt = [εφ,t , ελ,t , εz,t , εR,t ]
′
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State-Space Representation of DSGE Model

State-space representation:

yt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φε(θ)εt

System matrices:

Ψ0(θ) = M′y


log γ

log(lsh)
log π∗

log(π∗γ/β)

 , xφ = −
κpψp/β

1 − ψpρφ

, xλ = −
κpψp/β

1 − ψpρλ

, xz =
ρzψp

1 − ψpρz
, xεR

= −ψpσR

Ψ1(θ) = M′y



xφ xλ xz + 1 xεR
−1

1 + (1 + ν)xφ (1 + ν)xλ (1 + ν)xz (1 + ν)xεR
0

κp
1−βρφ

(1 + (1 + ν)xφ)
κp

1−βρλ
(1 + (1 + ν)xλ)

κp
1−βρz

(1 + ν)xz +κp (1 + ν)xεR
0

κp/β
1−βρφ

(1 + (1 + ν)xφ)
κp/β

1−βρλ
(1 + (1 + ν)xλ)

κp/β
1−βρz

(1 + ν)xz (κp (1 + ν)xεR
/β + σR ) 0



Φ1(θ) =


ρφ 0 0 0 0

0 ρλ 0 0 0
0 0 ρz 0 0
0 0 0 0 0
xφ xλ xz xεR

0

 , Φε(θ) =


σφ 0 0 0

0 σλ 0 0
0 0 σz 0
0 0 0 1
0 0 0 0



M′y is an ny × 4 selection matrix that selects rows of Ψ0 and Ψ1.
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Statistical Inference

• Simulation: pick values for parameter vector θ =⇒ simulate data Y sim(θ) and determine
its properties.

• Statistical inference:

• observed data Y obs =⇒ determine suitable values for parameter vector θ.

• Basic Idea: choose θ such that Y sim(θ) look like Y obs .

• Goals: estimates θ̂ as well as measures of uncertainty associated with these estimates.
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Statistical Inference

• Frequentist:
• pre-experimental perspective;
• condition on “true” but unknown θ0;
• treat data Y as random;
• study behavior of estimators and decision rules under repeated sampling.

• Bayesian:
• post-experimental perspective;
• condition on observed sample Y ;
• treat parameter θ as unknown and random;
• derive estimators and decision rules that minimize expected loss (averaging over θ)

conditional on observed Y .
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Frequentist Inference

DSGE model (M1) is assumed to be correctly specified, i.e. we believe the probabilistic
structure is rich enough to assign high probability to the salient features of macroeconomic
time series.

• Desirable to let the model-implied probability distribution p(Y |θ0,M1) determine the
choice of the objective function for estimators and test statistics to obtain a statistical
procedure that is efficient (meaning that the estimator is close to θ0 with high probability
in repeated sampling).

• Maximum likelihood (ML) estimator

θ̂ml = argmaxθ∈Θ log p(Y |θ,M1).

• Minimize discrepancy between sample statistics m̂T (Y ) and model-implied population
statistics E[m̂T (Y )|θ,M1]:

θ̂md = argminθ∈Θ QT (θ|Y ) =
∥∥m̂T (Y )− E[m̂T (Y )|θ,M1]

∥∥
WT
,
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Bayesian Inference

DSGE model (M1) is assumed to be correctly specified, i.e. we believe the probabilistic
structure is rich enough to assign high probability to the salient features of macroeconomic
time series.

• Initial state of knowledge summarized in prior distribution p(θ).

• Update in view of data Y to obtain posterior distribution p(θ|Y ):

p(θ|Y ,M1) =
p(Y |θ,M1)p(θ|M1)

p(Y |M1)
, p(Y |M1) =

∫
p(Y |θ,M1)p(θ|M1)dθ.

• Make decisions that minimize posterior expected loss:

δ∗ = argminδ∈D

∫
L
(
h(θ), δ

)
p(θ|Y ,M1)dθ.

• Place probabilities on competing models and update:

π1,T

π2,T
=
π1,0

π2,0

p(Y |M1)

p(Y |M2)
.
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Model Misspecification is a Concern

2

subspace generated by the 

DSGE model restrictions  

Prior for misspecification 

parameters : Shape of contours 

determined by Kullback-Leibler 

distance.

(  ): Cross-equation 

restriction for given value 

of

1

(  )+
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Frequentist Inference

DSGE model (M1) is assumed to be misspecified or incompletely specified.

• Example: suppose our DSGE model only has a monetary policy shock. Then,

1

κp(1 + ν)xεR/β + σR
R̂t −

1

κp(1 + ν)xεR
π̂t = 0,

which is clearly violated in the data.

• Need reference model M0, e.g., VAR, under which to evaluate sampling distribution of Y .

• Concept of “true” value is no longer sensible =⇒ pseudo-optimal parameter value:

θ0(Q,W ) = argminθ∈Θ Q(θ|M0),

where

Q(θ|M0) =
∥∥E[m̂T (Y )|M0]− E[m̂(Y )|θ,M1]

∥∥
W
.
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Bayesian Inference

DSGE model (M1) is assumed to be misspecified or incompletely specified.

• Derive posterior distributions under a more flexible reference model M0, e.g., VAR. Then
choose θ to minimize discrepancy between implications of M0 and DSGE model M1.

• Use DSGE model M1 to generate a prior distribution for a more flexible reference model
M0.

• Rather than using posterior probabilities to select among or average across two DSGE
models, one can form a prediction pool, which is essentially a linear combination of two
predictive densities:

λp(yt |Y1:t−1,M1) + (1− λ)p(yt |Y1:t−1,M2).

The weight λ ∈ [0, 1] can be determined based on

T∏
t=1

[λp(yt |Y1:t−1,M1) + (1− λ)p(yt |Y1:t−1,M2)] .
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