Bayesian Inference

Frank Schorfheide Professor of Economics, University of Pennsylvania

September 14, 2021

- Ingredients of Bayesian Analysis:
 - Likelihood function $p(Y|\theta)$
 - Prior density $p(\theta)$
 - Marginal data density $p(Y) = \int p(Y|\theta) p(\theta) d\theta$
- Bayes Theorem:

$$p(\theta|Y) = rac{p(Y| heta)p(heta)}{p(Y)} \propto p(Y| heta)p(heta)$$

• Implementation: usually by generating a sequence of draws (not necessarily iid) from posterior

 $\theta^i \sim p(\theta|Y), \quad i=1,\ldots,N$

• Algorithms: direct sampling, accept/reject sampling, importance sampling, Markov chain Monte Carlo sampling, sequential Monte Carlo sampling...

- We previously discussed the evaluation of the likelihood function: given a parameter heta
 - solve the DSGE model to obtain the state-space representation;
 - use the Kalman filter to evaluate the likelihood function.
- Let's talk a bit about prior distributions.

- Ideally: probabilistic representation of our knowledge/beliefs before observing sample Y.
- More realistically: choice of prior as well as model are influenced by some observations. Try to keep influence small or adjust measures of uncertainty.
- Views about role of priors:
 - **1** keep them "uninformative" (???) so that posterior inherits shape of likelihood function;
 - 2 use them to regularize the likelihood function;
 - \bigcirc incorporate information from sources other than Y;

Prior Elicitation for DSGE Models

- Group parameters:
 - steady-state related parameters
 - parameters assoc with exogenous shocks
 - parameters assoc with internal propagation
- Non-sample information $p(\theta|\mathcal{X}^0)$:
 - pre-sample information
 - micro-level information
- To guide the prior for θ , you can ask: what are its implications for observables Y?

Name	Domain		Prior			
		Density	Para (1)	Para (2)		
Steady-State-Related Parameters $ heta_{(ss)}$						
100(1/eta-1)	\mathbb{R}^+	Gamma	0.50	0.50		
$100\log\pi^*$	\mathbb{R}^+	Gamma	1.00	0.50		
$100\log\gamma$	\mathbb{R}	Normal	0.75	0.50		
λ	\mathbb{R}^+	Gamma	0.20	0.20		
Endogenous Propagation Parameters $ heta_{(endo)}$						
ζ_{p}	[0, 1]	Beta	0.70	0.15		
1/(1+ u)	\mathbb{R}^+	Gamma	1.50	0.75		

Notes: Marginal prior distributions for each DSGE model parameter. Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support for the Uniform distribution; *s* and ν for the Inverse Gamma distribution, where $p_{\mathcal{IG}}(\sigma|\nu, s) \propto \sigma^{-\nu-1} e^{-\nu s^2/2\sigma^2}$. The joint prior distribution of θ is truncated at the boundary of the determinacy region.

Name	Domain	Prior				
		Density	Para (1)	Para (2)		
	Exogenous Shock Parameters $\theta_{(exo)}$					
ρ_{ϕ}	[0, 1)	Uniform	0.00	1.00		
$ ho_{\lambda}$	[0, 1)	Uniform	0.00	1.00		
$ ho_z$	[0, 1)	Uniform	0.00	1.00		
$100\sigma_{\phi}$	\mathbb{R}^+	InvGamma	2.00	4.00		
$100\sigma_{\lambda}$	\mathbb{R}^+	InvGamma	0.50	4.00		
$100\sigma_z$	\mathbb{R}^+	InvGamma	2.00	4.00		
$100\sigma_r$	\mathbb{R}^+	InvGamma	0.50	4.00		

Notes: Marginal prior distributions for each DSGE model parameter. Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse Gamma distribution, where $p_{\mathcal{IG}}(\sigma|\nu, s) \propto \sigma^{-\nu-1} e^{-\nu s^2/2\sigma^2}$. The joint prior distribution of θ is truncated at the boundary of the determinacy region.

- We will focus on Markov chain Monte Carlo (MCMC) algorithms that generate draws
 {θⁱ}^N_{i=1} from posterior distributions of parameters.
- Draws can then be transformed into objects of interest, $h(\theta^i)$, and under suitable conditions a Monte Carlo average of the form

$$ar{h}_{\mathcal{N}} = rac{1}{\mathcal{N}}\sum_{i=1}^{\mathcal{N}}h(heta^i) pprox \mathbb{E}_{\pi}[h] = \int h(heta) p(heta|Y) d heta.$$

• Strong law of large numbers (SLLN), central limit theorem (CLT)...

- Main idea: create a sequence of serially correlated draws such that the distribution of θ^i converges to the posterior distribution $p(\theta|Y)$.
- Some Intuition: suppose we generate draws from the process

$$heta^i =
ho heta^{i-1} + \sqrt{1-
ho^2} \epsilon^i, \quad \epsilon^i \sim N(0,1), \quad heta^0 = 0.$$

Then,

- The θ^i draws are serially correlated.
- Provided $|\rho| < 1$, the effect of the initialization $\theta^0 = 0$ will die out eventually, and $\theta^i \approx N(0, 1)$.
- $\frac{1}{N} \sum_{i=1}^{N} \theta^i \xrightarrow{p} \mathbb{E}[\theta] = 0.$
- The closer ρ to zero, the more accurate the Monte Carlo approximation.

Generic Metropolis-Hastings Algorithm

For i = 1 to N:

- **1** Draw ϑ from a density $q(\vartheta|\theta^{i-1})$.
- **2** Set $\theta^i = \vartheta$ with probability

$$\alpha(\vartheta|\theta^{i-1}) = \min\left\{1, \ \frac{p(Y|\vartheta)p(\vartheta)/q(\vartheta|\theta^{i-1})}{p(Y|\theta^{i-1})p(\theta^{i-1})/q(\theta^{i-1}|\vartheta)}\right\}$$

and $\theta^i = \theta^{i-1}$ otherwise.

Note that

$$\frac{p(\vartheta|Y)}{p(\theta|Y)} = \frac{p(Y|\vartheta)p(\vartheta)/p(Y)}{p(Y|\theta)p(\theta)/p(Y)} = \frac{p(Y|\vartheta)p(\vartheta)}{p(Y|\theta)p(\theta)}$$

We draw θ^i conditional on a parameter draw θ^{i-1} : leads to Markov transition kernel $\mathcal{K}(\theta|\tilde{\theta})$.

Benchmark Random-Walk Metropolis-Hastings (RWMH) Algorithm for DSGE Models

- Initialization:
 - **1** Use a numerical optimization routine to maximize the log posterior, which up to a constant is given by $\ln p(Y|\theta) + \ln p(\theta)$. Denote the posterior mode by $\hat{\theta}$.
 - 2 Let $\hat{\Sigma}$ be the inverse of the (negative) Hessian computed at the posterior mode $\hat{\theta}$, which can be computed numerically.
 - **3** Draw $\theta^{\dot{0}}$ from $N(\hat{\theta}, c_0^2 \hat{\Sigma})$ or directly specify a starting value.
- Main Algorithm For $i = 1, \ldots, N$:
 - **1** Draw ϑ from the proposal distribution $N(\theta^{i-1}, c^2 \hat{\Sigma})$.
 - **2** Set $\theta^i = \vartheta$ with probability

$$\alpha(\vartheta|\theta^{i-1}) = \min \left\{1, \frac{p(Y|\vartheta)p(\vartheta)}{p(Y|\theta^{i-1})p(\theta^{i-1})}\right\}$$

and $\theta^i = \theta^{i-1}$ otherwise.

- Initialization steps can be modified as needed for particular application.
- If numerical optimization does not work well, one could let $\hat{\Sigma}$ be a diagonal matrix with prior variances on the diagonal.
- Or, $\hat{\Sigma}$ could be based on a preliminary run of a posterior sampler.
- It is good practice to run multiple chains based on different starting values.

- Generate a single sample of size T = 80 from the stylized DSGE model.
- Combine likelihood and prior to form posterior.
- Draws from this posterior distribution are generated using the RWMH algorithm.
- Chain is initialized with a draw from the prior distribution.
- The covariance matrix $\hat{\Sigma}$ is based on the negative inverse Hessian at the mode. The scaling constant *c* is set equal to 0.075, which leads to an acceptance rate for proposed draws of 0.55.

Parameter Draws from MH Algorithm

Notes: The posterior is based on a simulated sample of observations of size T = 80. The top panel shows the sequence of parameter draws and the bottom panel shows recursive means.

Parameter Draws from MH Algorithm

Notes: The posterior is based on a simulated sample of observations of size T = 80. The top panel shows the sequence of parameter draws and the bottom panel shows recursive means.

Prior and Posterior Densities

Notes: The dashed lines represent the prior densities, whereas the solid lines correspond to the posterior densities of ζ_p and σ_{ϕ} . The posterior is based on a simulated sample of observations of size T = 80. We generate N = 37,500 draws from the posterior and drop the first $N_0 = 7,500$ draws.

- Algorithm generates a Markov transition kernel K(θ|θ̃): it takes a draw θⁱ⁻¹ and uses some randomization to turn it into a draw θⁱ.
- Important invariance property: if θ^{i-1} is from posterior $p(\theta|Y)$, then θ^i 's distribution will also be $p(\theta|Y)$.
- Contraction property: if θ^{i-1} is from some distribution $\pi_{i-1}(\theta)$, then the discrepancy between the "true" posterior and

$$\pi_i(heta) = \int \mathcal{K}(heta| ilde{ heta}) \pi_{i-1}(ilde{ heta}) d ilde{ heta}$$

is smaller than the discrepancy between $\pi_{i-1}(\theta)$ and $p(\theta|Y)$.

Example: Convergence

• Define the Monte Carlo estimate

$$ar{h}_N = rac{1}{N}\sum_{i=1}^N h(heta^i).$$

• Deduce from CLT

$$\sqrt{N}(\bar{h}_N - \mathbb{E}_{\pi}[h]) \Longrightarrow N(0, \Omega(h)), \quad \Omega(h) = \mathbb{V}_{\pi}[h] + \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq i} COV[h(\theta^i), h(\theta^j)]$$

where $\Omega(h)$ is the long-run covariance matrix.

• In turn, the asymptotic inefficiency factor is given by

$$\mathsf{InEff}_{\infty} = rac{\Omega(h)}{\mathbb{V}_{\pi}[h]}.$$

DSGE Model Estimation: Effect of Scaling Constant c

Notes: Results are based on $N_{run} = 50$ independent Markov chains. The acceptance rate (average across multiple chains), HAC-based estimate of $\text{InEff}_{\infty}[\bar{\tau}]$ (average across multiple chains), and $\text{InEff}_{N}[\bar{\tau}]$ are shown as a function of the scaling constant c.

DSGE Model Estimation: Acceptance Rate $\hat{\alpha}$ versus Inaccuracy InEff_N

Notes: InEff_N[$\bar{\tau}$] versus the acceptance rate $\hat{\alpha}$.

Challenges Due to Irregular Posteriors

Notes: Intersections of the solid lines indicate parameter values that were used to generate the data from which the posteriors are constructed.

- In high-dimensional parameter spaces the RWMH algorithm generates highly persistent Markov chains which imply slow convergence of Monte Carlo averages (poor MCMC approximation).
- Potential Remedy:
 - Partition $\theta = [\theta_1, \ldots, \theta_K].$
 - Iterate over conditional posteriors $p(\theta_k | Y, \theta_{<-k>})$.
- To reduce persistence of the chain, try to find partitions such that parameters are strongly correlated within blocks and weakly correlated across blocks or use random blocking.

Autocorrelation Function of τ^i

Notes: The autocorrelation functions are computed based on a single run of each algorithm.

Inefficiency Factor $InEff_N[\bar{\tau}]$

Notes: The small sample inefficiency factors are computed based on $N_{run} = 50$ independent runs of each algorithm.

Algorithm	Run Time	Acceptance	Tuning
	[hh:mm:ss]	Rate	Constants
1-Block RWMH-I	00:01:13	0.28	c = 0.015
1-Block RWMH-V	00:01:13	0.37	c = 0.400
3-Block RWMH-I	00:03:38	0.40	c = 0.070
3-Block RWMH-V	00:03:36	0.43	c = 1.200

Notes: In each run we generate N = 100,000 draws. We report the fastest run time and the average acceptance rate across $N_{run} = 50$ independent Markov chains.

$\textit{iid-equivalent draws per second} = \frac{\textit{N}}{\textit{Run Time [seconds]}} \cdot \frac{1}{\textit{InEff}_N}.$

- 1-Block RWMH-V: 7.76
- 3-Block RWMH-V: 5.65
- 3-Block RWMH-I: 0.14
- 1-Block RWMH-I: 0.04

What Can We Do With Our Posterior Draws?

- Store them on our harddrive!
- Convert them into objects of interest:
 - impulse response functions;
 - government spending multipliers;
 - welfare effects of target inflation rate changes;
 - forecasts;
 - (...)

Parameter Transformations: Impulse Responses

Notes: The figure depicts pointwise posterior means and 90% credible bands. The responses of output are in percent relative to the initial level, whereas the responses of inflation and interest rates are in annualized percentages.

Bayesian Inference – Decision Making

• The posterior expected loss of decision $\delta(\cdot)$:

$$\rho(\delta(\cdot)|Y) = \int_{\Theta} L(\theta, \delta(Y)) p(\theta|Y) d\theta.$$

• Bayes decision minimizes the posterior expected loss:

 $\delta^*(Y) = \operatorname{argmin}_d \rho(\delta(\cdot)|Y).$

• Approximate $hoig(\delta(\cdot)|Yig)$ by a Monte Carlo average

$$ar{
ho}_Nig(\delta(\cdot)|Yig) = rac{1}{N}\sum_{i=1}^N Lig(heta^i,\delta(\cdot)ig).$$

• Then compute

$$\delta_N^*(Y) = \operatorname{argmin}_d \bar{\rho}_N(\delta(\cdot)|Y).$$

- Point estimation:
 - Quadratic loss: posterior mean
 - Absolute error loss: posterior median
- Interval/Set estimation $\mathbb{P}_{\pi}\{\theta \in C(Y)\} = 1 \alpha$:
 - highest posterior density sets
 - equal-tail-probability intervals

Posterior Model Odds and Marginal Data Densities

• Posterior model probabilities can be computed as follows:

$$\pi_{i,T} = \frac{\pi_{i,0} p(Y|\mathcal{M}_i)}{\sum_j \pi_{j,0} p(Y|\mathcal{M}_j)}, \quad j = 1, \dots, 2,$$
(1)

where

$$p(Y|\mathcal{M}) = \int p(Y|\theta, \mathcal{M}) p(\theta|\mathcal{M}) d\theta$$
(2)

Note:

$$\ln p(Y_{1:T}|\mathcal{M}) = \sum_{t=1}^{T} \ln \int p(y_t|\theta, Y_{1:t-1}, \mathcal{M}) p(\theta|Y_{1:t-1}, \mathcal{M}) d\theta$$

Posterior odds and Bayes Factor

 $\frac{\pi_{1,T}}{\pi_{2,T}} = \underbrace{\frac{\pi_{1,0}}{\pi_{2,0}}}_{Prior Odds} \times \underbrace{\frac{p(Y|\mathcal{M}_1)}{p(Y|\mathcal{M}_2)}}_{Bayes Factor}$

• Consider the following identity:

$$\frac{1}{p(Y)} = \int \frac{f(\theta)}{p(Y|\theta)p(\theta)} p(\theta|Y) d\theta,$$

where $\int f(\theta) d\theta = 1$.

• Conditional on the choice of $f(\theta)$ an obvious estimator is

$$\hat{p}_G(Y) = \left[rac{1}{N}\sum_{i=1}^N rac{f(heta^i)}{p(Y| heta^i)p(heta^i)}
ight]^{-1},$$

where θ^i is drawn from the posterior $p(\theta|Y)$.

• Geweke (1999): $f(\theta) = \tau^{-1} (2\pi)^{-d/2} |V_{\theta}|^{-1/2} \exp\left[-0.5(\theta - \bar{\theta})' V_{\theta}^{-1}(\theta - \bar{\theta})\right]$

$$imes \left\{ (heta - ar heta)' V_ heta^{-1}(heta - ar heta) \leq F_{\chi^2_d}^{-1}(au)
ight\}.$$