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Bayesian Inference

• Ingredients of Bayesian Analysis:

• Likelihood function p(Y |θ)

• Prior density p(θ)

• Marginal data density p(Y ) =
∫
p(Y |θ)p(θ)dθ

• Bayes Theorem:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
∝ p(Y |θ)p(θ)

• Implementation: usually by generating a sequence of draws (not necessarily iid) from
posterior

θi ∼ p(θ|Y ), i = 1, . . . ,N

• Algorithms: direct sampling, accept/reject sampling, importance sampling, Markov chain
Monte Carlo sampling, sequential Monte Carlo sampling...
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Bayesian Inference for DSGE Models

• We previously discussed the evaluation of the likelihood function: given a parameter θ

• solve the DSGE model to obtain the state-space representation;

• use the Kalman filter to evaluate the likelihood function.

• Let’s talk a bit about prior distributions.
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Prior Distributions

• Ideally: probabilistic representation of our knowledge/beliefs before observing sample Y .

• More realistically: choice of prior as well as model are influenced by some observations.
Try to keep influence small or adjust measures of uncertainty.

• Views about role of priors:

1 keep them “uninformative” (???) so that posterior inherits shape of likelihood function;

2 use them to regularize the likelihood function;

3 incorporate information from sources other than Y ;
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Prior Elicitation for DSGE Models

• Group parameters:

• steady-state related parameters

• parameters assoc with exogenous shocks

• parameters assoc with internal propagation

• Non-sample information p(θ|X 0):

• pre-sample information

• micro-level information

• To guide the prior for θ, you can ask: what are its implications for observables Y ?
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Prior Distribution

Name Domain Prior
Density Para (1) Para (2)

Steady-State-Related Parameters θ(ss)

100(1/β − 1) R+ Gamma 0.50 0.50
100 log π∗ R+ Gamma 1.00 0.50
100 log γ R Normal 0.75 0.50
λ R+ Gamma 0.20 0.20

Endogenous Propagation Parameters θ(endo)

ζp [0, 1] Beta 0.70 0.15
1/(1 + ν) R+ Gamma 1.50 0.75

Notes: Marginal prior distributions for each DSGE model parameter. Para (1) and Para (2) list the means and

the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support

for the Uniform distribution; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The joint prior distribution of θ is truncated at the boundary of the determinacy region.
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Prior Distribution

Name Domain Prior
Density Para (1) Para (2)

Exogenous Shock Parameters θ(exo)

ρφ [0, 1) Uniform 0.00 1.00
ρλ [0, 1) Uniform 0.00 1.00
ρz [0, 1) Uniform 0.00 1.00
100σφ R+ InvGamma 2.00 4.00
100σλ R+ InvGamma 0.50 4.00
100σz R+ InvGamma 2.00 4.00
100σr R+ InvGamma 0.50 4.00

Notes: Marginal prior distributions for each DSGE model parameter. Para (1) and Para (2) list the means and

the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower bound of the support

for the Uniform distribution; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The joint prior distribution of θ is truncated at the boundary of the determinacy region.
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Draws from Posterior

• We will focus on Markov chain Monte Carlo (MCMC) algorithms that generate draws
{θi}Ni=1 from posterior distributions of parameters.

• Draws can then be transformed into objects of interest, h(θi ), and under suitable
conditions a Monte Carlo average of the form

h̄N =
1

N

N∑
i=1

h(θi ) ≈ Eπ[h] =

∫
h(θ)p(θ|Y )dθ.

• Strong law of large numbers (SLLN), central limit theorem (CLT)...
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Markov Chain Monte Carlo (MCMC)

• Main idea: create a sequence of serially correlated draws such that the distribution of θi

converges to the posterior distribution p(θ|Y ).

• Some Intuition: suppose we generate draws from the process

θi = ρθi−1 +
√

1− ρ2εi , εi ∼ N(0, 1), θ0 = 0.

Then,
• The θi draws are serially correlated.
• Provided |ρ| < 1, the effect of the initialization θ0 = 0 will die out eventually, and
θi ≈ N(0, 1).

• 1
N

∑N
i=1 θ

i p−→ E[θ] = 0.
• The closer ρ to zero, the more accurate the Monte Carlo approximation.
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Generic Metropolis-Hastings Algorithm

For i = 1 to N:

1 Draw ϑ from a density q(ϑ|θi−1).

2 Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p(Y |θi−1)p(θi−1)/q(θi−1|ϑ)

}
and θi = θi−1 otherwise.

Note that

p(ϑ|Y )

p(θ|Y )
=

p(Y |ϑ)p(ϑ)/p(Y )

p(Y |θ)p(θ)/p(Y )
=

p(Y |ϑ)p(ϑ)

p(Y |θ)p(θ)

We draw θi conditional on a parameter draw θi−1: leads to Markov transition kernel K (θ|θ̃).
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Benchmark Random-Walk Metropolis-Hastings (RWMH) Algorithm for
DSGE Models

• Initialization:

1 Use a numerical optimization routine to maximize the log posterior, which up to a constant
is given by ln p(Y |θ) + ln p(θ). Denote the posterior mode by θ̂.

2 Let Σ̂ be the inverse of the (negative) Hessian computed at the posterior mode θ̂, which can
be computed numerically.

3 Draw θ0 from N(θ̂, c2
0 Σ̂) or directly specify a starting value.

• Main Algorithm – For i = 1, . . . ,N:

1 Draw ϑ from the proposal distribution N(θi−1, c2Σ̂).
2 Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p(Y |ϑ)p(ϑ)

p(Y |θi−1)p(θi−1)

}
and θi = θi−1 otherwise.
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Benchmark RWMH Algorithm for DSGE Models

• Initialization steps can be modified as needed for particular application.

• If numerical optimization does not work well, one could let Σ̂ be a diagonal matrix with
prior variances on the diagonal.

• Or, Σ̂ could be based on a preliminary run of a posterior sampler.

• It is good practice to run multiple chains based on different starting values.
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Numerical Illustration

• Generate a single sample of size T = 80 from the stylized DSGE model.

• Combine likelihood and prior to form posterior.

• Draws from this posterior distribution are generated using the RWMH algorithm.

• Chain is initialized with a draw from the prior distribution.

• The covariance matrix Σ̂ is based on the negative inverse Hessian at the mode. The
scaling constant c is set equal to 0.075, which leads to an acceptance rate for proposed
draws of 0.55.
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Parameter Draws from MH Algorithm

ζ ip Draws σi
φ Draws

Notes: The posterior is based on a simulated sample of observations of size T = 80. The top panel shows the

sequence of parameter draws and the bottom panel shows recursive means.
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Parameter Draws from MH Algorithm

Recursive Mean 1
N−N0

∑N
i=N0+1 ζ

i
p Recursive Mean 1

N−N0

∑N
i=N0+1 σ

i
φ

Notes: The posterior is based on a simulated sample of observations of size T = 80. The top panel shows the

sequence of parameter draws and the bottom panel shows recursive means.
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Prior and Posterior Densities

Posterior ζp Posterior σφ

Notes: The dashed lines represent the prior densities, whereas the solid lines correspond to the posterior

densities of ζp and σφ. The posterior is based on a simulated sample of observations of size T = 80. We

generate N = 37, 500 draws from the posterior and drop the first N0 = 7, 500 draws.

Frank Schorfheide Bayesian Inference



Why Does it Work?

• Algorithm generates a Markov transition kernel K (θ|θ̃): it takes a draw θi−1 and uses
some randomization to turn it into a draw θi .

• Important invariance property: if θi−1 is from posterior p(θ|Y ), then θi ’s distribution will
also be p(θ|Y ).

• Contraction property: if θi−1 is from some distribution πi−1(θ), then the discrepancy
between the “true” posterior and

πi (θ) =

∫
K (θ|θ̃)πi−1(θ̃)d θ̃

is smaller than the discrepancy between πi−1(θ) and p(θ|Y ).

Frank Schorfheide Bayesian Inference



Example: Convergence

• Define the Monte Carlo estimate

h̄N =
1

N

N∑
i=1

h(θi ).

• Deduce from CLT

√
N(h̄N−Eπ[h]) =⇒ N

(
0,Ω(h)

)
, Ω(h) = Vπ[h]+ lim

N−→∞

1

N

N∑
i=1

∑
j 6=i

COV
[
h(θi ), h(θj)

]
where Ω(h) is the long-run covariance matrix.

• In turn, the asymptotic inefficiency factor is given by

InEff∞ =
Ω(h)

Vπ[h]
.
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DSGE Model Estimation: Effect of Scaling Constant c

0.0

0.5

1.0 Acceptance Rate α̂

100

102

104 InEff∞

0.0 0.5 1.0 1.5 2.0
100
102
104
106

c

InEffN

Notes: Results are based on Nrun = 50 independent Markov chains. The acceptance rate
(average across multiple chains), HAC-based estimate of InEff∞[τ̄ ] (average across multiple
chains), and InEffN [τ̄ ] are shown as a function of the scaling constant c .
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DSGE Model Estimation: Acceptance Rate α̂ versus Inaccuracy InEffN
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Notes: InEffN [τ̄ ] versus the acceptance rate α̂.
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Challenges Due to Irregular Posteriors

Local Identification Problem Global Identification Problem
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Notes: Intersections of the solid lines indicate parameter values that were used to generate the
data from which the posteriors are constructed.
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Improvements to MCMC: Blocking

• In high-dimensional parameter spaces the RWMH algorithm generates highly persistent
Markov chains which imply slow convergence of Monte Carlo averages (poor MCMC
approximation).

• Potential Remedy:

• Partition θ = [θ1, . . . , θK ].

• Iterate over conditional posteriors p(θk |Y , θ<−k>).

• To reduce persistence of the chain, try to find partitions such that parameters are strongly
correlated within blocks and weakly correlated across blocks or use random blocking.
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Autocorrelation Function of τ i
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1-Block RWMH-V
1-Block RWMH-I

3-Block RWMH-V
3-Block RWMH-I

3-Block MAL
3-Block Newton MH

Notes: The autocorrelation functions are computed based on a single run of each algorithm.
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Inefficiency Factor InEffN [τ̄ ]
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Notes: The small sample inefficiency factors are computed based on Nrun = 50 independent
runs of each algorithm.
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Run Times and Tuning Constants for MH Algorithms

Algorithm Run Time Acceptance Tuning
[hh:mm:ss] Rate Constants

1-Block RWMH-I 00:01:13 0.28 c = 0.015
1-Block RWMH-V 00:01:13 0.37 c = 0.400
3-Block RWMH-I 00:03:38 0.40 c = 0.070
3-Block RWMH-V 00:03:36 0.43 c = 1.200

Notes: In each run we generate N = 100, 000 draws. We report the fastest run time and the
average acceptance rate across Nrun = 50 independent Markov chains.
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IID Equivalent Draws Per Second

iid-equivalent draws per second =
N

Run Time [seconds]
· 1

InEffN
.

• 1-Block RWMH-V: 7.76

• 3-Block RWMH-V: 5.65

• 3-Block RWMH-I: 0.14

• 1-Block RWMH-I: 0.04
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What Can We Do With Our Posterior Draws?

• Store them on our harddrive!

• Convert them into objects of interest:

• impulse response functions;

• government spending multipliers;

• welfare effects of target inflation rate changes;

• forecasts;

• (...)
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Parameter Transformations: Impulse Responses
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Notes: The figure depicts pointwise posterior means and 90% credible bands. The responses of
output are in percent relative to the initial level, whereas the responses of inflation and interest
rates are in annualized percentages.
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Bayesian Inference – Decision Making

• The posterior expected loss of decision δ(·):

ρ
(
δ(·)|Y

)
=

∫
Θ

L
(
θ, δ(Y )

)
p(θ|Y )dθ.

• Bayes decision minimizes the posterior expected loss:

δ∗(Y ) = argmind ρ
(
δ(·)|Y

)
.

• Approximate ρ
(
δ(·)|Y

)
by a Monte Carlo average

ρ̄N
(
δ(·)|Y

)
=

1

N

N∑
i=1

L
(
θi , δ(·)

)
.

• Then compute

δ∗N(Y ) = argmind ρ̄N
(
δ(·)|Y

)
.
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Bayesian Inference

• Point estimation:

• Quadratic loss: posterior mean

• Absolute error loss: posterior median

• Interval/Set estimation Pπ{θ ∈ C (Y )} = 1− α:

• highest posterior density sets

• equal-tail-probability intervals
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Posterior Model Odds and Marginal Data Densities

• Posterior model probabilities can be computed as follows:

πi,T =
πi,0p(Y |Mi )∑
j πj,0p(Y |Mj)

, j = 1, . . . , 2, (1)

• where

p(Y |M) =

∫
p(Y |θ,M)p(θ|M)dθ (2)

• Note:

ln p(Y1:T |M) =
T∑
t=1

ln

∫
p(yt |θ,Y1:t−1,M)p(θ|Y1:t−1,M)dθ

• Posterior odds and Bayes Factor

π1,T

π2,T
=

π1,0

π2,0︸︷︷︸
Prior Odds

× p(Y |M1)

p(Y |M2)︸ ︷︷ ︸
Bayes Factor

(3)
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Computation of Marginal Data Densities: Modified Harmonic Mean

• Consider the following identity:

1

p(Y )
=

∫
f (θ)

p(Y |θ)p(θ)
p(θ|Y )dθ,

where
∫
f (θ)dθ = 1.

• Conditional on the choice of f (θ) an obvious estimator is

p̂G (Y ) =

[
1

N

N∑
i=1

f (θi )

p(Y |θi )p(θi )

]−1

,

where θi is drawn from the posterior p(θ|Y ).

• Geweke (1999):

f (θ) = τ−1(2π)−d/2|Vθ|−1/2 exp
[
−0.5(θ − θ̄)′V−1

θ (θ − θ̄)
]

×
{

(θ − θ̄)′V−1
θ (θ − θ̄) ≤ F−1

χ2
d

(τ)
}
.
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