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Mean Switching Model

The basic mean model with regime switching is given by

(yt − µt) = γ(yt−1 − µt−1) + ut

with
µt = µ(st),

where

I (st) is a state process specifying a binary state of regime

I st = 0 and 1 are referred respectively to as low and high mean
regimes

in the model.



Volatility Switching Model

The basic volatility model with regime switching is given by

yt = σtut

with
σt = σ(st),

where

I (st) is a state process specifying a binary state of regime

I st = 0 and 1 are referred respectively to as low and high
volatility regimes

in the model.



Conventional Regime Switching Model

The state process (st) is assumed to be entirely independent of
other parts of the underlying model, and specified as a two state
markov chain.

Therefore, the two transition probabilities

a = P{st = 0|st−1 = 0}
b = P{st = 1|st−1 = 1},

completely specify the state process (st).



Shortcomings

The standard markov switching models have the following
shortcomings.

I The regime switching is strictly exogenous, being completely
independent from observed time series

I The state process (st) is strictly stationary and does not allow
for persistency

I The computation becomes too complicated as the number of
states increases

I The state process (st) itself takes discrete values and cannot
be directly related to other relevant economic variables

All these shortcomings seriously limit the applicability and
usefulness of the standard markov switching models.
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A New Approach to Regime Switching

Chang, Choi and Park (2017), A New Approach to Model Regime
Switching, Journal of Econometrics, 196, 127-143.

Present a regime switching model whose regime is determined by
an endogenous autoregressive latent factor.

A simple estimation and factor extraction method using a modified
markov switching filter is developed.

Provide a strong evidence on endogenous regime switching in all
economic models commonly analyzed by regime switching models.

The presence of endogeneity allows us to more effectively extract
the information revealed by the observed time series on the
unobserved states.



New Regime Switching Model

Specify a model

yt = mt + σtut

= m(xt, yt−1, . . . , yt−k, st, . . . , st−k) + σ(xt, st, . . . , st−k)ut

= m(xt, yt−1, . . . , yt−k, wt, . . . , wt−k) + σ(xt, wt, . . . , wt−k)ut

where

I covariate (xt) is exogenous,

I state process (st) is driven by st = 1{wt ≥ τ},
I latent factor (wt) is specified as wt = αwt−1 + vt,

and (
ut
vt+1

)
=d N

((
0
0

)
,

(
1 ρ
ρ 1

))
with endogeneity parameter ρ.



New Mean Switching Model

The mean model with autoregressive latent factor is given by

γ(L)(yt − µt) = ut

where γ(z) = 1− γ1z − · · · − γkzk is a k−th order polynomial,
µt = µ(st), st = 1{wt ≥ τ}, wt = αwt−1 + vt and(

ut
vt+1

)
=d N

((
0
0

)
,

(
1 ρ
ρ 1

))

Again a shock (ut) at time t affects the regime at time t+ 1, and
the regime switching becomes endogenous. The endogeneity
parameter ρ represents the reversion of mean in our mean model.



Mean Reversion

In the new model, the mean reversion of the observed time series
(yt) occurs in two different levels.

First level: If the lag polynomial γ(z) satisfies the stationarity
condition, the observed time series (yt) reverts to the state
dependent mean (µt).

Second level: If the endogeneity parameter ρ < 0, the state
dependent mean (µt) moves to offset the effect of a shock to the
observed time series (yt). When ρ > 0, on the other hand, the
movement of (µt) at the second level would entail an unstabilizing
effect on (yt).



New Volatility Switching Model

The volatility model with autoregressive latent factor is given by

yt = σtut

where σt = σ(st) = σ(wt), st = 1{wt ≥ τ}, wt = αwt−1 + vt and(
ut
vt+1

)
=d N

((
0
0

)
,

(
1 ρ
ρ 1

))

A shock (ut) at time t affects the regime at time t+ 1, and the
regime switching becomes endogenous. The endogeneity
parameter ρ, which is expected to be negative, represents the
leverage effect in our volatility model.



Advantages

The new regime switching models have the following advantages.

I The regime switching is endogenous and systematically
affected by the observed time series

I The state process (st) is allowed to be nonstationary as well
as stationary

I The latent factor (wt) has continuous values and, once
extracted, can be directly related to many other relevant
economic variables taking continuous values

I Easily extended to models with multiple regimes

These advantages greatly improve the applicability and usefulness
of markov switching models.



Relationship with Conventional Switching Model

I The new model reduces to the conventional markov switching
model when the underlying autoregressive latent factor is
stationary and exogenous, i.e., independent of the model
innovation.

I Assume ρ = 0, and obtain transition probabilities of (st). In
our approach, they are given as functions of the autoregressive
coefficient α of the latent factor and the level τ of threshold.

I Note that

P
{
st = 0

∣∣wt−1

}
= P

{
wt < τ

∣∣wt−1

}
= Φ(τ − αwt−1)

P
{
st = 1

∣∣wt−1

}
= P

{
wt ≥ τ

∣∣wt−1

}
= 1− Φ(τ − αwt−1)

from wt = αwt−1 + vt and vt ∼ N(0, 1).



Transition of Stationary State Process

For |α| < 1, transition probabilities of state process (st) from low
state to low state a(α, τ) and high state to high state b(α, τ) are
given by

a(α, τ) = P{st = 0|st−1 = 0}

=

∫ τ
√

1−α2

−∞
Φ

(
τ − αx√

1− α2

)
ϕ(x)dx

Φ
(
τ
√

1− α2
)

b(α, τ) = P{st = 1|st−1 = 1}

= 1−

∫ ∞
τ
√

1−α2

Φ

(
τ − αx√

1− α2

)
ϕ(x)dx

1− Φ
(
τ
√

1− α2
) .



Transition Probability Contours in (α, τ)-Plane

The contours of a(α, τ) and b(α, τ) are presented for the levels from 0.05 to
0.95 in the increment of 0.05, upward for a(α, τ) and downward for b(α, τ).
Hence the bottom line in the left panel is the contour of a(α, τ) = 0.05, and
the top line on the right panel represents the contour of b(α, τ) = 0.05.



One to One Correspondence Between (α, τ) and (a, b)

We set a(α, τ) = 0.796 and b(α, τ) = 0.901, the transition probabilities we
obtain from our estimates from the Hamilton’s model, and plot their contours
in the (α, τ)-plane.



Equivalence

If
ρ = 0 and |α| < 1,

the new endogenous regime switching model becomes identical to
the conventional markov switching model.

I In this case, the transition probability in the new model
depends only on α and τ

I For each combination of (α, τ), we can find the unique
combination of transition probabilities
(a, b) = (P{st = 0|st−1 = 0},P{st = 1|st−1 = 1}), and vise
versa. Thus, we may always find a regime switching model
with an autoregressive latent factor that is observationally
equivalent to any given conventional markov switching model.

I However, our approach produces an important by-product
that is not available from the conventional approach: an
extracted time series of the latent factor.



Maximum Likelihood Estimation

I The new endogenous model can be estimated by ML method.
The log-likelihood function is given as

`(y1, . . . , yn) = log p(y1) +

n∑
t=2

log p(yt|Ft−1)

where Ft = σ
(
xt, (ys)s≤t

)
, i.e., the information given by

xt, y1, . . . , yt for each t = 1, . . . , n.

I Of course, the log-likelihood function includes a vector of
unknown parameters θ ∈ Θ, say, which specifies conditional
mean and volatility functions of the state dependent variable
(yt). It is, however, suppressed for the sake of brevity.

I For the mean and volatility models, θ consists of state
dependent mean and volatility parameters, (µ, µ̄), (σ, σ̄), τ ,
α, ρ, and (γ1, . . . , γk).



On to New Filter

To estimate the general switching model by the maximum
likelihood method, we need to develop a filter. The conventional
markov switching filter is no longer applicable, since the state
process (st) for the new model is not a markov chain unless ρ = 0.

To develop the modified markov switching filter that can be used
to estimate the new model, define

Φρ(x) = Φ
(
x/
√

1− ρ2
)
,

We show in the next slide that the bivariate process (st, yt) on
{0, 1} × R is a (k + 1)-st order markov process.



Markov Structure of Endogenous State Process

The bivariate process (st, yt) on {0, 1} × R is a (k + 1)-st order
markov process, whose transition density with respect to the
product of the counting and Lebesgue measure is given by

p(st, yt|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= p(yt|st, . . . , st−k, yt−1, . . . , yt−k)p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1),

where
p(yt|st, . . . , st−k, yt−1, . . . , yt−k) = N

(
mt, σ

2
t

)
and

p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= (1− st)ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

+ st
[
1− ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

]
,

The transition probability ωρ of the endogenous state process (st)
to low state is given in the next slides, separately for the cases with
|ρ| < 1 and |ρ| = 1



Transition Probability to Low State ωρ for |ρ| < 1

I If |α| < 1,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

=

[
(1−st−1)

∫ τ
√

1−α2

−∞
+st−1

∫ ∞
τ
√

1−α2

]
Φρ

(
τ−ρyt−1−mt−1

σt−1
− αx√

1− α2

)
ϕ(x)dx

(1− st−1)Φ(τ
√

1− α2) + st−1

[
1− Φ(τ

√
1− α2)

] ,

I If α = 1,

for t = 1, ωρ(s0) = Φ(τ) with P{s0 = 0} = 1 and P{s0 = 1} = 1 respectively
when τ > 0 and τ ≤ 0 and, for t ≥ 2,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

=

[
(1−st−1)

∫ τ/
√
t−1

−∞
+st−1

∫ ∞
τ/
√
t−1

]
Φρ

(
τ−ρyt−1−mt−1

σt−1
−x
√
t− 1

)
ϕ(x)dx

(1− st−1)Φ(τ/
√
t− 1) + st−1

[
1− Φ(τ/

√
t− 1)

] ,

with Φρ(x) = Φ
(
x/
√

1− ρ2
)
.



Important Remarks

I The transition probability of the state process (st) at time t
from time t− 1 depends upon yt−1 and other lags as well as
st−1 and other lags

I The state process (st) alone is therefore not Markov

I However, the state process augmented with the observed time
series (st, yt) becomes a Markov process

I If ρ = 0, (st) reduces to a Markov process independent of (yt)
as in the conventional Markov switching model, with the
transition obtained earlier.

which highlights the differences between the new and conventional
Markov switching models.



Modified Markov Switching Filter

To develop the modified Markov switching filter, we write

p(yt|Ft−1) =
∑
st

· · ·
∑
st−k

p(yt|st, . . . , st−k,Ft−1)p(st, . . . , st−k|Ft−1).

Since

p(yt|st, . . . , st−k, yt−1, . . . , yt−k) = N
(
mt, σ

2
t

)
,

it suffices to have p(st, . . . , st−k|Ft−1) to compute the
log-likelihood function. This is done by the repeated
implementations of the prediction and updating steps, as in the
usual Kalman filter.



Prediction Step

For the prediction step, we note that

p(st, . . . , st−k|Ft−1)

=
∑
st−k−1

p(st|st−1, . . . , st−k−1,Ft−1)p(st−1, . . . , st−k−1|Ft−1),

and

p(st|st−1, . . . , st−k−1,Ft−1)

= p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1).



Prediction Step - Continued

The transition probability of state is given as

p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= (1− st)ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

+ st
[
1− ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

]
,

where, in turn, if |α| < 1,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

=

[
(1−st−1)

∫ τ
√

1−α2

−∞
+st−1

∫ ∞
τ
√

1−α2

]
Φρ

(
τ−ρyt−1−mt−1

σt−1
− αx√

1− α2

)
ϕ(x)dx

(1− st−1)Φ(τ
√

1− α2) + st−1

[
1− Φ(τ

√
1− α2)

] ,

Therefore, p(st, . . . , st−k|Ft−1) can be readily computed, once
p(st−1, . . . , st−k−1|Ft−1) obtained from the previous updating step.



Updating Step

Finally, for the updating step, we have

p(st, . . . , st−k|Ft) = p(st, . . . , st−k|yt,Ft−1)

=
p(yt|st, . . . , st−k,Ft−1)p(st, . . . , st−k|Ft−1)

p(yt|Ft−1)
,

where p(yt|st, . . . , st−k,Ft−1) = p(yt|st, . . . , st−k, yt−1, . . . , yt−k).

We may readily obtain p(st, . . . , st−k|Ft) from
p(st, . . . , st−k|Ft−1) and p(yt|Ft−1) from previous prediction step.



Extraction of Latent Factor

From prediction step, we have

p(st, ..., st−k|Ft−1) =
∑

st−k−1

p(st|st−1, ..., st−k−1,Ft−1)p(st−1, ..., st−k−1|Ft−1),

p(wt, . . . , st−k|Ft−1) =
∑

st−k−1

p(wt|st−1, ..., st−k−1,Ft−1)p(st−1, ..., st−k−1|Ft−1).

From updating step, we get

p(st, ..., st−k|Ft) =
p(yt|st, ..., st−k,Ft−1)p(st, ..., st−k|Ft−1)

p(yt|Ft−1)
,

p(wt, st−1, ..., st−k|Ft) =
p(yt|wt, st−1, ..., st−k,Ft−1)p(wt, st−1, ..., st−k|Ft−1)

p(yt|Ft−1)
.



Extraction of Latent Factor

When |α| < 1 and |ρ| < 1, we can show

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

=

(
1− Φ

(√
1−ρ2+α2ρ2

1−ρ2

(
τ − α(wt−ρut−1)

1−ρ2+α2ρ2

)))
1− Φ

(
τ
√

1− α2
) N

(
ρut−1,

1− ρ2 + α2ρ2

1− α2

)

p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1)

=
Φ
(√

1−ρ2+α2ρ2

1−ρ2

(
τ − α(wt−ρut−1)

1−ρ2+α2ρ2

))
Φ
(
τ
√

1− α2
) N

(
ρut−1,

1− ρ2 + α2ρ2

1− α2

)
.



Extraction of Latent Factor

By marginalizing, we can obtain

p (wt|Ft) =
∑
st−1

· · ·
∑
st−k

p (wt, st−1, ..., st−k|Ft) .

which yields the inferred factor

E (wt|Ft) =

∫
wtp (wt|Ft)dwt.

We may easily extract the inferred factor, once the maximum
likelihood estimates of p(wt|Ft), 1 ≤ t ≤ n, are available.



GDP Growth Rates

We use

I Seasonally adjusted quarterly real US GDP for two sample
periods: 1952-1984 and 1984-2012

I GDP growth rates are obtained as the first differences of their
logs

to fit the mean model

γ(L) (yt − µ(st)) = σut

where γ(z) = 1− γ1z − γ2z
2 − γ3z

3 − γ4z
4.



US Real GDP Growth Rates



Estimation Result: GDP Growth Rate Model

Sample Periods 1952-1984 1984-2012

Endogeneity Ignored Allowed Ignored Allowed

µ -0.165 -0.083 -0.854 -0.756
(0.219) (0.161) (0.298) (0.318)

µ 1.144 1.212 0.710 0.705
(0.113) (0.095) (0.092) (0.085)

γ1 0.068 0.147 0.154 0.169
(0.123) (0.104) (0.105) (0.106)

γ2 -0.015 0.044 0.350 0.340
(0.112) (0.096) (0.105) (0.104)

γ3 -0.175 -0.260 -0.077 0.133
(0.108) (0.090) (0.106) (0.104)

γ4 -0.097 -0.067 0.043 0.049
(0.104) (0.095) (0.103) (0.115)

σ 0.794 0.784 0.455 0.453
(0.065) (0.057) (0.034) (0.032)

ρ -0.923 1.000
(0.151) (0.001)

log-likelihood -173.420 -169.824 -80.584 -76.443
p-value 0.007 0.004



Transition Probability Comparison



Transition Probability Comparison



Transition Probability Comparison



NBER Recession Period and Latent Factor: 1952-1984



Recession Probabilities: 1952-1984



Stock Return Volatility

We use

I Monthly CRSP returns for 1926/01 - 2012/12 (1,044 obs.)

I One-month T-bill rates used to obtain excess returns

I Demeaned excess returns

to fit the volatility model

yt = σ(st)ut,

where
σ(st) = σ(1− st) + σ̄st

and
st = 1{wt ≥ τ}.



Estimation Result: Monthly Volatility Model

Sample Periods 1926-2012 1990-2012

Endogeneity Ignored Allowed Ignored Allowed

σ = σ(st) when st = 0 0.0385 0.0380 0.0223 0.0251
(0.0010) (0.0011) (0.0018) (0.0041)

σ = σ(st) when st = 1 0.1154 0.1153 0.0505 0.0554
(0.0087) (0.0090) (0.0030) (0.0082)

ρ -0.9698 -1.0000
(0.0847) (0.0059)

log-likelihood 1742.28 1747.98 507.70 511.28
p-value (LR test for ρ = 0) 0.001 0.007



Transition Probability Comparison



Transition Probability Comparison



Transition Probability Comparison



Transition Probability Comparison



Extracted Latent Factor from Volatility Model and VIX



High Volatility Probabilities: 1990-2012
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Monetary and Fiscal Policy Interactions

Chang and Kwak (2016), Endogenous Monetary-Fiscal Regime
Change in the United States.

I Policy interaction is crucial for the determination of price
level. However, empirical research so far has focused on policy
variables interactions.

I We use a new endogenous regime switching methodology to
allow for the policy regime interactions.

I We characterize the monetary and fiscal policy regimes using
the extracted latent factor from endogenous monetary and
fiscal regime switching models.

I We analyze policy interactions using the extracted latent
factors.



Policy Interactions

Monetary and fiscal regimes jointly accomplish the tasks of

I determining inflation/price level

I stabilizing government debt
I Leeper (1991), Woodford (1995), Sims (2013)

Conventional view (Regime M)

I MP aggressively adjusts the policy interest rate in response to
inflation, and FP passively adjusts taxes and spending to
ensure that debt returns to steady state

I Monetarist/ new Keynesian outcomes

Alternative view (Regime F)

I FP actively determines inflation by making primary surpluses
insensitive to debt, and MP passively maintains real value of
debt by permitting the necessary change in the current and
future price level to occur

I Fiscal theory of the price level



Policy Interactions and Policy Parameters

Consider stylized monetary policy rule

MP: it = ac + aππt + umt

where it is nominal interest rate, πt inflation, and fiscal policy rule

FP: τt = βc + βbbt−1 + βggt + uft

where τt is tax revenues, bt−1 real market value of outstanding
government debt, and gt government purchases. Let r denote net
real interest rate.

I Regime M: aπ > 1 and βb > r (Active MP/Passive FP) MP
actively controls inflation and FP passively stabilizes debt.

I Regime F: 0 ≤ aπ < 1 and βb < r (Passive MP/Active FP)
FP actively determines the price level and MP passively
stabilizes debt.



Empirical Approaches in Policy Interactions

I Dynamic patterns of correlation among policy variables
I King and Plosser (1985), Melitz (2000), Muscatelli et al.

(2002), Kliem et al. (2015)
I Correlation among policy variables can tell us nothing about

interaction between policy regimes

I Exogenous regime switching policy rules in DSGE models
I Davig and Leeper (2006), Ballabriga and Martinez-Mongay

(2002) Gonzalez-Astudillo (2013), Bianchi and Ilut (2014)
I Exogenous regime change is silent about a mechanism which

connects changes in macroeconomic environment to switches
in policy regimes



New Approach to Regime Switching Policy Rules

Consider the policy rule equation

yt = x′tβst + ut,

where

I yt: policy instrument, xt: policy target variables,
βst : state dependent policy parameters

I ut: policy disturbance representing multitude of all other
factors such as policy shocks and other policy concerns that
affect the policy making but are not measured by the policy
target variables xt. Not regarded as an exogenous shock.

E
[
ut
∣∣st, xt,Gt−1

]
= 0

I Gt−1 is the information available at time t− 1 to the policy
makers



Policy Regime and Latent Policy Factor

I st is a state variable at t driven by the latent factor wt as

st = 1{wt ≥ τ},

I wt is a latent policy factor representing the internal
information set used by a policy maker.

wt = αwt−1 + vt,

I vt and ut−1 are jointly i.i.d. normal with unit variance and
cov (ut−1, vt) = ρ.

I Policy choice of βst depends on previous ut−1 and on an
exogenous component realized at t.



Regime Switching Policy Rules

I Endogenous regime switching policy rule

βst = arg min
β

E
[
(yt − x′tβ)2

∣∣ st, xt,Gt−1

]
,

I Gt−1 is the information available at time t− 1 to the policy
makers, which includes entire history of policy instrument y,
policy target variables x, and state variable s up to time t− 1.

I βst minimizes MSE loss incurred by ut conditionally on st and
xt and all other information in Gt−1. State dependent policy
choice βst naturally entails the policy rule which is well
formulated as a regression satisfying usual ortho. condition.

I Conventional regime switching policy rule

βst = arg min
β

E
[
(yt − x′tβ)2

∣∣ st, xt,Ft−1

]
,

I Ft−1 only includes policy instrument y and policy target x
observed at time t− 1, excluding all other past policy rules
and disturbances.



Monetary-Fiscal Regime Changes in the US

Data: Quarterly, 1949:1 - 2014:2 (262 obs)

Monetary Policy (MP)

I Nominal interest rate (i)

I Inflation rate (π)

Fiscal Policy (FP)

I All fiscal variables are for the federal government only

I Tax-output ratio (τ)

I Debt-output ratio (b)

I Government spending-output ratio (g)



MP: Regime Switching in Policy Parameters

Consider a regime switching monetary policy (MP)

it = ac(s
m
t ) + aπ(smt )πt + σmumt

I ac, aπ are state dependent MP parameters

aj(s
m
t ) = aj,0(1− smt ) + aj,1s

m
t , for j = c, π

I smt is a state in MP at t determined by the latent factor wmt as

smt = 1{wmt ≥ ψm}
I The latent MP factor wmt is interpreted as internal information

of monetary policy makers, and generated endogenously as

wmt = αmw
m
t−1 + vmt

and (
umt
vmt+1

)
= N

( (
0
0

)
,

(
1 ρm
ρm 1

) )



Endogeneity of Latent Policy Factor

I The latent MP factor is generated endogenously with
cov (umt−1, vt) = ρ.

I The monetary policy shock umt reflects the multitude of
factors that influence policy’s choices of the interest rate it
that are not embedded in πt. For example, if news contained
in commodity prices portends higher future inflation, but not
higher current inflation πt, then umt will be positive, and the
interest rate it will be higher than the current inflation πt
alone would predict.

I The correlation ρ between the current policy disturbance umt
and the future associated latent policy regime smt+1 is
estimated. The value of smt+1 in turn influences the likelihood
that the policy rule parameters ac(s

m
t+1) and aπ(smt+1) will take

on distinct values associated with Regime M or Regime F.



MP: Estimation Results

Parameter Estimate S.E

αm 0.985 (0.009)
ψm -0.964. (2.320)
ρm 0.999 (0.025)

ac(s
m
t = 0) 0.441 (0.245)

ac(s
m
t = 1) 2.572 (0.257)

aπ(smt = 0) 0.654 (0.059)
aπ(smt = 1) 1.044 (0.060)

σm 1.302 (0.059)

log-likelihood -456.309

p-value(LR test for ρm = 0) 0.00000217

umt > 0⇒ wmt+1 ↑: More likely to have active MP in future

Average interest rate by regime: 6.11 (Active), 2.43 (Passive)
Average inflation rate by regime: 3.39 (Active), 3.02 (Passive)



MP: Estimated State Distribution

Red: T-bill rate, Black: Inflation rate, Shaded: Passive MP



FP: Regime Switching in Policy Parameters

Consider a regime switching fiscal policy (FP)

τt = βc(s
f
t ) + βb(s

f
t )bt−1 + βg(s

f
t )gt + σfuft

I βc, βb, βg are state dependent FP parameters

βj(s
f
t ) = βj,0(1− sft ) + βj,1s

f
t , forj = c, b, g

I sft is a state in FP at t driven by the latent factor wft as

sft = 1{wft ≥ ψf}

I The latent FP factor wft is interpreted as internal information
of fiscal policy makers, and generated endogenously as

wft = αfw
f
t−1 + vft

and (
uft
vft+1

)
= N

( (
0
0

)
,

(
1 ρf
ρf 1

) )



FP: Estimation Results

Parameter Estimate S.E

αf 0.972 (0.020)
ψf -0.546 (1.243)
ρf 0.999 (0.001)

βc(s
f
t = 0) -0.028 (0.010)

βc(s
f
t = 1) 0.012 (0.006)

βb(s
f
t = 0) -0.033 (0.001)

βb(s
f
t = 1) 0.056 (0.011)

βg(s
f
t = 0) 1.025 (0.091)

βg(s
f
t = 1) 0.599 (0.053)
σf 0.014 (0.001)

log-likelihood 727.71

p-value(LR test for ρf = 0) 0.0002

uft > 0⇒ wft+1 ↑: More likely to have passive FP in future

Average tax/GDP ratio by regime: 0.06 (Active), 0.1 (Passive)
Average debt/GDP ratio by regime: 0.38 (Active), 0.34 (Passive)



FP: Estimated State Distribution

Green: Tax/GDP, Blue: Govt. spending/GDP,
Orange: Debt/GDP, Shaded: Active FP



Extracted Monetary and Fiscal Policy Factors

Solid blue: MP Factor, Dashed green: FP Factor, Correlation=0.48
Policy factors usually move together to deliver one active and one passive
policy with some exceptions



Policy Interactions

To investigate whether a change in MP regime induces a change in
FP regime that delivers a unique equilibrium (and vice versa), we
analyze policy interactions using extracted policy regime factors.

I Extracted policy regime factors: proxies of internal
information of policy authorities in determination of policy
regimes

I Endogenous evolution of regime: monetary policy’s choice
of its rule may influence fiscal policy’s choice of its rule (and
vice versa)



Analyses with Extracted Policy Factors

I TVC-VAR on the extracted monetary and fiscal policy factors
to investigate the dynamic interactions of the policy regimes.
Estimated by the classical kernel method in Giraitis et al.
(2014)

I SVAR on two policy factors and key macro variables to
analyze effects of macroeconomic shocks on regime factors
and vice versa

I Adaptive LASSO to link policy factors to macroeconomy

I FAVAR à la Bernanke, Boivin and Eliasz (2005) to analyze
effects of policy shocks to key macroeconomic variables based
in the VAR on the five leading factors from PCA on 129
variables including our two extracted policy factors



TVC-VAR Estimation

We consider a TVC-VAR model given by

yt = Ψtyt−1 + ηt

where yt = (wmt , w
f
t )′, Ψt is 2× 2 matrix of coefficient processes,

and ηt = (ηmt , η
f
t )′ is the noise with Eηtη

′
s = 0, t 6= s,

t = 1, 2, . . . n.

The TVC Ψt is estimated as

Ψ̂t =

(
n∑
s=1

kt,sysy
′
s−1

)(
n∑
s=1

kt,sys−1y
′
s−1

)−1

with the weights kt,s = K((t− s)/HΨ) are given by the kernel
function K, and the bandwidth parameter HΨ.



Response of MP Regime to MP Regime

Passive MP below the surface, Active MP above the surface



MP Regime to MP Regime on Selected Years

1955:1, 1982:1, 2008:1, 2013:1 from top to bottom



Response of FP Regime to MP Regime

Active FP below the surface, Passive FP above the surface



FP Regime to MP Regime on Selected Years

1955:1, 1982:1, 2008:1, 2013:1 from top to bottom



Policy Factors to MP Regime on Selected Years

1955:1, 1982:1, 2008:1, 2013:1 from top to bottom rows



Response of FP Regime to FP Regime

Active FP below the surface, Passive FP above the surface



FP Regime to FP Regime on Selected Years

1955:1, 1982:1, 2008:1, 2013:1 from top to bottom row



Response of MP Regime to FP Regime

Active MP above the surface, Passive MP below the surface



MP Regime to FP Regime on Selected Years

1955:1, 1982:1, 2008:1, 2013:1 from top to bottom row



Policy Factors to FP Regime on Selected Years

1955:1, 1982:1, 2008:1, 2013:1 from top to bottom rows



Response of ELFs on Selected Horizons

Top: 5 quarters from the initial shock
Bottom: 10 quarters from the initial shock



SVAR on Policy and Non-Policy Sector Variables

I To analyze effects of macroeconomic shocks on regime factors,
we take a SVAR approach based on the structural form

p∑
s=0

Asyt−s = εt

I yt is a vector of observed time series and εt is a vector of i.i.d
structural disturbances that are exogenous to the model.

I Non-policy sector: real GDP, CPI, long term interest rate,
commodity price index

I Policy sector: MP and FP factors

I Non-policy and policy sector disturbances of the economy

εt =

[
εNt
εPt

]
where εNt and εPt are the vectors of non-policy and policy
sector disturbances.



Policy Factors to Macro Shocks

Structural Shocks

Variables εY εCPI εR10 εCP εMP εFP
MP 31.3 1.5 3.8 4.3 55.4 3.6

FP 31.1 1.7 8.6 11.1 12.9 34.7

IRFs of Policy factors to macro shocks (above) and contributions
of structural shocks (%) to the variance of policy factors (below)



Linking Policy Factors to Macroeconomy

Which macro variables are correlated with the dynamics of policy
regime factors?

Adaptive LASSO is used to select effective macro variables.

The adaptive LASSO is a solution of least squares problems with
weighted l1 penalty

β̂L = argmin
β
‖y −Xβ ‖2 +λ

N∑
i=1

|βi|/|β̂i|,

where λ is a nonnegative regularization parameter, N = dim(X),
and |β̂i| is the adaptive weight based on the OLS or ridge β̂i. BIC
is used for model selection.



Selected Macroeconomic Variables for MP Factor

Series Est.Coeff s.e

Debt/GDP ratio 2.03 0.349
10YTCR 1.79 0.758

Bank prime loan rate 1.33 0.534
Index of consumer expectations 1.19 0.262

Total loans and leases 1.11 0.445
Average weekly hours:manufacturing 0.93 0.395

NAPM new orders index -1.02 0.304
Privately owned housing starts -2.05 0.465



Selected Macroeconomic Variables for FP Factor

Series Est.Coeff s.e

Debt/GDP ratio 2.53 0.387
Output gap 1.29 0.217

Bank prime loan rate 0.80 0.376
Average hourly earing:manufacurng 0.69 0.176
Total consumer credit outstanding 0.41 0.173

Privately owned housing starts -1.41 0.334
Net interest payment/Govt.outlays -1.46 0.302

10YTCR-FFR -2.20 0.511



Effects of Policy Factors on Macroeconomy

We analyze effects of policy regimes on key macroeconomic
variables based on FAVAR à la Bernanke, Boivin and Eliasz (2005).

Observation equation:

Xt = ΛCt + et = ΛfFt + ΛwWt + et

where Wt represents policy regime factors, Ft five leading principal
components from 129 macro variables, and et an error term.

Transition equation:(
Ft
Wt

)
= Φ1

(
Ft−1

Wt−1

)
+ . . .+ Φp

(
Ft−5

Wt−5

)
+ vt

where vt an i.i.d error term.



Responses of Policy Regimes to MP Regime



Responses of Macrovariables to MP Regime



Explanatory Power of MP Regime

Table: Contributions of MP Regime Shocks (%) to the Variance of
Variables

Variables Variance Decomposition

MP Factor 48.9
FP Factor 5.2

GDP 5.4
Unemployment 10.1

PPI 12.2
Total loans 10.1

Debt/GDP ratio 20.8
Int.payment/Govt.outlays ratio 51.6

10YTR 19.3
Housing Starts 8.4



Responses of Policy Regimes to FP Regime



Responses of Macrovariables to FP Regime



Explanatory Power of FP Regime

Table: Contributions of FP Regime Shocks (%) to the Variance of
Variables

Variables Variance Decomposition

FP Factor 64.3
MP Factor 4.6

GDP 4.2
Unemployment 6.0

PPI 8.5
Total loans 4.0

Debt/GDP ratio 8.6
Int.payment/Govt.outlays ratio 3.4

10YTR 7.9
Housing Starts 7.0



Counterfactual IRFs of ELFs to MP Regime

Black solid: Original responses (AM → PF)
Black dashed: No FP response (AM → No Response in FP)
Red star-dashed: Opposite FP regime response (AM → AF)



IRFs of Macrovariables to MP Regime

Black solid: Original responses (AM → PF)
Black dashed: No FP response (AM → No Response in FP)
Red star-dashed: Opposite FP response (AM → AF)



Counterfactual IRFs of ELFs to FP Regime

Black solid: Original responses (PF → AM)
Black dashed: No MP response (PF → No Response in MP)
Red star-dashed: Opposite MP response (PF → PM)



IRFs of Macrovariables to FP Regime

Black solid: Original responses (PF → AM)
Black dashed: No MP response (PF → No Response in MP)
Red star-dashed: Opposite MP response (PF → PM)
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