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Abstract

This paper considers identi�cation and estimation of the Quantile Treatment E�ect

on the Treated (QTT) under a straightforward distributional extension of the most

commonly invoked Mean Di�erence in Di�erences assumption used for identifying the

Average Treatment E�ect on the Treated (ATT). Identi�cation of the QTT is more

complicated than the ATT though because it depends on the unknown dependence

between the change in untreated potential outcomes and the initial level of untreated

potential outcomes for the treated group. To address this issue, we introduce a new

Copula Stability Assumption that says that the missing dependence is constant over

time. Under this assumption and when panel data is available, the missing dependence

can be recovered, and the QTT is identi�ed. Second, we allow for identi�cation to

hold only after conditioning on covariates and provide very simple estimators based on

propensity score re-weighting for this case. We compare the performance of our method

to existing methods for estimating QTTs using Lalonde (1986)'s job training dataset.

Using this dataset, we �nd the performance of our method compares favorably to the

performance of existing methods.
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1 Introduction

Although most research using program evaluation techniques focuses on estimating the

average e�ect of participating in a program or treatment, in some cases a researcher may

be interested in understanding the distributional impacts of treatment participation. For

example, for two labor market policies with the same mean impact, policymakers are likely

to prefer a policy that tends to increase income in the lower tail of the income distribution to

one that tends to increase income in the middle or upper tail of the income distribution. In

contrast to the standard linear model, the treatment e�ects literature explicitly recognizes

that the e�ect of treatment can be heterogeneous across di�erent individuals (Heckman

and Robb, 1985; Heckman, Smith, and Clements, 1997). Recently, many methods have been

developed that identify distributional treatment e�ect parameters under common identifying

assumptions such as selection on observables (Firpo, 2007), access to a an instrumental

variable (Abadie, Angrist, and Imbens, 2002; Chernozhukov and Hansen, 2005; Carneiro

and Lee, 2009; Frölich and Melly, 2013), or access to repeated observations over time (Athey

and Imbens, 2006; Bonhomme and Sauder, 2011; Chernozhukov, Fernández-Val, Hahn, and

Newey, 2013; Jun, Lee, and Shin, 2016). This paper focuses on identifying and estimating

a particular distributional treatment e�ect parameter called the Quantile Treatment E�ect

on the Treated (QTT) using a Di�erence in Di�erences assumption for identi�cation.

Empirical researchers commonly employ Di�erence in Di�erences assumptions to credibly

identify the Average Treatment E�ect on the Treated (ATT) (early examples include Card,

1990; Card and Krueger, 1994). Despite the prevalence of DID methods in applied work,

there has been very little empirical work studying the distributional e�ects of a treatment

with identi�cation that exploits have access to repeated observations over time (Recent excep-

tions include Meyer, Viscusi, and Durbin, 1995; Finkelstein and McKnight, 2008; Pomeranz,

2015; Havnes and Mogstad, 2015).

The �rst contribution of the current paper is to provide identi�cation and estimation

results for the QTT under a straightforward extension of the most common Mean Di�erence

in Di�erences Assumption (Heckman and Robb, 1985; Heckman, Ichimura, Smith, and Todd,

1998; Abadie, 2005). In particular, we strengthen the assumption of mean independence

between (i) the change in untreated potential outcomes over time and (ii) whether or not

an individual is treated to full independence. We call this assumption the Distributional

Di�erence in Di�erences Assumption.

For empirical researchers, methods developed under the Distributional Di�erence in Dif-

ferences Assumption are valuable precisely because the identifying assumptions are straight-

forward extensions of the Mean Di�erence in Di�erences assumptions that are frequently

2



employed in applied work. This means that almost all of the intuition for applying a Dif-

ference in Di�erences method for the ATT will carry over to identifying the QTT using our

method.

Although applying a Mean Di�erence in Di�erences assumption leads straightforwardly

to identi�cation of the ATT, using the Distributional Di�erence in Di�erences Assumption to

identify the QTT faces some additional challenges. The reason for the di�erence is that Mean

Di�erence in Di�erences exploits the linearity of the expectation operator. In fact, with only

two periods of data (which can be either repeated cross sections or panel) and under the

same Distributional Di�erence in Di�erences assumption considered in the current paper,

the QTT is known to be partially identi�ed (Fan and Yu, 2012) without further assumptions.

In practice, these bounds tend to be quite wide. Lack of point identi�cation occurs because

the dependence between (i) the distribution of the change in untreated outcomes for the

treated group and (ii) the initial level of untreated potential outcomes for the treated group

is unknown. For identifying the ATT, knowledge of this dependence is not required and

point identi�cation results can be obtained.

To move from partial identi�cation back to point identi�cation, we introduce a new

assumption which we call the Copula Stability Assumption. This assumption says that the

copula, which captures the unknown dependence mentioned above, does not change over

time. To give an example, consider the case where the outcome of interest is earnings. The

Copula Stability Assumption says that if we observe in the past that the largest earnings

increases tended to go to those with the highest earnings, then, in the present (and in the

absence of treatment), the largest earnings increase would have gone to those with the highest

earnings. Importantly, this does not place any restrictions on the marginal distributions of

outcomes over time allowing, for example, the outcomes to be non-stationary. There are

two additional requirements for invoking this assumption relative to the Mean Di�erence in

Di�erences Assumption: (i) access to panel data (repeated cross sections is not enough) and

(ii) access to at least three periods of data (rather than at least two periods of data) where

two of the periods must be pre-treatment periods and the third period is post-treatment. We

show that the additional requirements that the Copula Stability Assumption places on the

type of model that is consistent with the Distributional Di�erence in Di�erences Assumption

are small.

The second contribution of the paper is to extend the results to the case where the

identifying assumptions hold conditional on covariates. There are several reasons why this

is an important contribution. First, we show that, for many models where an unconditional

Mean Di�erence in Di�erences assumption holds, the Distributional Di�erence in Di�erences

Assumption is likely to require conditioning on covariates. Second, conditional on covariates
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versions of our assumptions can allow the path of untreated potential outcomes to depend

on observed characteristics.

Having simple identi�cation results when identi�cation holds conditional on some co-

variates stands in contrast to the existing methods for estimating QTTs. The methods are

either (i) unavailable or at least computationally challenging when the researcher desires to

make the identifying assumptions conditional on covariates or (ii) require strong parametric

assumptions on the relationship between the covariates and outcomes. Because the ATT

can be obtained by integrating the QTT and is available under weaker assumptions, a re-

searcher's primary interest in studying the QTT is likely to be in the shape of the QTT

rather than the location of the QTT. In this regard, the parametric assumptions required by

other methods to accommodate covariates may be restrictive because nonlinearities or mis-

speci�cation of the parametric model could easily be confused with the shape of the QTT.

This di�erence between our method and other methods appears to be fundamental. To our

knowledge, there is no work on nonparametrically allowing for conditioning on covariates

in alternative methods; and, at the least, doing so would be computationally challenging.

Moreover, a similar propensity score re-weighting technique to the one used in the current

paper does not appear to be available for existing methods.

Based on our identi�cation results, estimation of the QTT is straightforward and com-

putationally fast. Without covariates, estimating the QTT relies only on estimating un-

conditional moments, empirical distribution functions, and empirical quantiles. When the

identifying assumptions require conditioning on covariates, we estimate the propensity score

in a �rst step, but second step estimation is simple and fast. We show that our estimate of the

QTT converges to a Gaussian process at the parametric rate
√
n even when the propensity

score is estimated nonparametrically. This result allows us to conduct uniform inference over

a range of quantiles and can test, for example, whether the distribution of treated potential

outcomes stochastically dominates the distribution of untreated potential outcomes.

We conclude the paper by comparing the performance of our method with alternative

estimators of the QTT: the Quantile Di�erence in Di�erences model, the Change in Changes

model, and a model based on selection on observables (Firpo, 2007) in an application to

estimating the QTT of participating in a job training program using a well known dataset

from LaLonde, (1986). This dataset contains an experimental component where individuals

were randomly assigned to a job training program and an observational component from

the Panel Study of Income Dynamics (PSID). It has been used extensively in the literature

to measure how well various observational econometric techniques perform in estimating

various treatment e�ect parameters.

The outline of the paper is as follows. Section 2 provides some background on the
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notation and setup most commonly used in the treatment e�ects literature and discusses

the various distributional treatment e�ect parameters estimated in this paper. Section 3

considers the main challenges for identi�cation of the QTT while allowing for time-invariant

unobserved heterogeneity. Section 4 provides our main identi�cation result in the case where

the Distributional Di�erence in Di�erences assumption holds with no covariates. Section 5

extends this result to the case with covariates and provides a propensity score re-weighting

procedure to make estimation more feasible. Section 6 details our estimation strategy and

the asymptotic properties of our estimation procedure. Section 7 compares our method to

existing methods for estimating QTTs. Section 8 provides additional evidence on our Copula

Stability Assumption. Section 9 contains the job training application. Section 10 concludes.

Identi�cation and estimation under a conditional Copula Stability Assumption is included

in Appendix A. All the proofs are included in Appendix B.

2 Background

The setup and notation used in this paper is common in the statistics and econometrics

literature. We focus on the case of a binary treatment. Let Dt = 1 if an individual is treated

at time t (we suppress an individual subscript i throughout to minimize notation). We

consider a panel data case where the researcher has access to at least three periods of data

for all agents in the sample. We also focus, as is common in the Di�erence in Di�erences

literature, on the case where no one receives treatment before the �nal period which simpli�es

the exposition; a similar result for a subpopulation of the treated group could be obtained

with little modi�cation in the more general case. The researcher observes outcomes Yt, Yt−1,

and Yt−2 for each individual in each time period. The researcher also possibly observes

some covariates X which, as is common in the Di�erence in Di�erences setup, we assume are

constant over time. This assumption could also be relaxed with appropriate strict exogeneity

conditions.

Following the treatment e�ects literature, we assume that individuals have potential

outcomes in the treated or untreated state: Y1t and Y0t, respectively. The fundamental

problem is that exactly one (never both) of these outcomes is observed for a particular

individual. Using the above notation, the observed outcome Yt can be expressed as follows:

Yt = DtY1t + (1−Dt)Y0t

For any particular individual, the unobserved potential outcome is called the counterfac-

tual. The individual's treatment e�ect, Y1t − Y0t is therefore never available because only
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one of the potential outcomes is observed for a particular individual. Instead, the literature

has focused on identifying and estimating various functionals of treatment e�ects and the

assumptions needed to identify them. We discuss some of these treatment e�ect parameters

next.

In cases where (i) the e�ect of a treatment is thought to be heterogeneous across indi-

viduals and (ii) understanding this heterogeneity is of interest to the researcher, estimating

distributional treatment e�ects such as quantile treatment e�ects is likely to be impor-

tant. Comparing the distribution of observed outcomes to a counterfactual distribution of

untreated potential outcomes is a very important ingredient for evaluating the e�ect of a

program or policy (Sen, 1997; Carneiro, Hansen, and Heckman, 2001) and provides more

information than the average e�ect of the program alone. For example, a policy maker may

be in favor of implementing a job training program that increases the lower tail of the dis-

tribution of earnings while decreasing the upper tail of the distribution of earnings even if

the average e�ect of the program is zero.

For a random variable X, the τ -quantile, xτ , of X is de�ned as

xτ = G−1
X (τ) ≡ inf{x : FX(x) ≥ τ} (1)

An example is the 0.5-quantile � the median.1 Researchers interested in program evaluation

may be interested in other quantiles as well. In the case of the job training program, re-

searchers may be interested in the e�ect of job training on low income individuals. In this

case, they may study the 0.05 or 0.1-quantile. Similarly, researchers studying the e�ect of a

policy on high earners may look at the 0.95-quantile.

Let FY1t(y) and FY0t(y) denote the distributions of Y1t and Y0t, respectively. Then, the

Quantile Treatment E�ect on the Treated (QTT)2 is de�ned as

QTT(τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ) (2)

The QTT is the parameter studied in this paper. Di�erence in Di�erences methods are

useful for studying treatment e�ect parameters for the treated group because they make

use of observing untreated outcomes for the treated group in a time period before they

become treated. Di�erence in Di�erences methods for the average e�ect of participating

in a treatment also identify the Average Treatment E�ect on the Treated, not the average

treatment e�ect for the population at large.

1In this paper, we study Quantile Treatment E�ects. A related topic is quantile regression. See Koenker,
(2005).

2Quantile Treatment E�ects were �rst studied by Doksum, (1974) and Lehmann, (1974)
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3 Identi�cation Challenges

The most common nonparametric assumption used to identify the ATT in Di�erence in

Di�erences models is the following:

Assumption 3.1 (Mean Di�erence in Di�erences).

E[∆Y0t|Dt = 1] = E[∆Y0t|Dt = 0]

This is the �parallel trends� assumptions common in applied research. It states that,

on average, the unobserved change in untreated potential outcomes for the treated group

is equal to the observed change in untreated outcomes for the untreated group. To study

the QTT, Assumption 3.1 needs to be strengthened because the QTT depends on the entire

distribution of untreated outcomes for the treated group rather than only the mean of this

distribution.

The next assumption strengthens Assumption 3.1 and this is the assumption maintained

throughout the paper.

Distributional Di�erence in Di�erences Assumption.

∆Y0t ⊥⊥ Dt

The Distributional Di�erence in Di�erences Assumption says that the distribution of the

change in potential untreated outcomes does not depend on whether or not the individual

belongs to the treatment or the control group. Intuitively, it generalizes the idea of �par-

allel trends� holding on average to the entire distribution. In applied work, the validity

of using a Di�erence in Di�erences approach to estimate the ATT hinges on whether the

unobserved trend for the treated group can be replaced with the observed trend for the un-

treated group. This is exactly the same sort of thought experiment that needs to be satis�ed

for the Distributional Di�erence in Di�erences Assumption to hold. Being able to invoke

a standard assumption to identify the QTT stands in contrast to the existing literature on

identifying the QTT in similar models which generally require less familiar assumptions on

the relationship between observed and unobserved outcomes.

Using statistical results on the distribution of the sum of two known marginal distribu-

tions, Fan and Yu, (2012) show that this assumption is not strong enough to point identify

the counterfactual distribution FY0t|Dt=1(y), but it does partially identify it. In practice,

these bound tend to be very wide � too wide to be useful in most applications.
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4 Main Results: Identifying QTT in Di�erence in Di�er-

ences Models

The main theoretical contribution of this paper is to impose a Distributional Di�erence

in Di�erences Assumption plus additional data requirements and an additional assumption

that may be plausible in many applications to identify the QTT. The additional data re-

quirement is that the researcher has access to at least three periods of panel data with two

periods preceding the period where individuals may �rst be treated. This data requirement

is stronger than is typical in most Di�erence in Di�erences setups which usually only require

two periods of repeated cross-sections (or panel) data. The additional assumption is that

the dependence � that is, the copula � between (i) the distribution of (∆Y0t|Dt = 1) (the

change in the untreated potential outcomes for the treated group) and (ii) the distribution

of (Y0t−1|Dt = 1) (the initial untreated outcome for the treated group) is stable over time.

This assumption says that if, in the past, the largest increases in outcomes tend to go to

those at the top of the distribution, then in the present, the largest increases in outcomes

will tend to go to those who start out at the top of the distribution. It does not restrict what

the distribution of the change in outcomes over time is nor does it restrict the distribution

of outcomes in the previous period; instead, it restricts the dependence between these two

marginal distributions. We discuss this assumption in more detail and show how it can be

used to point identify the QTT below.

Intuitively, the reason why a restriction on the dependence between the distribution

of (∆Y0t|Dt = 1) and (Y0t−1|Dt = 1) is useful is the following. If the joint distribution

(∆Y0t, Y0t−1|Dt = 1) were known, then FY0t|Dt=1(y) (the distribution of interest) could be

derived from it. The marginal distributions F∆Y0t|Dt=1(∆) (through the Distributional Dif-

ference in Di�erences assumption) and FY0t−1|Dt=1(y′) (from the data) are both identi�ed.

However, because observations are observed separately for untreated and treated individu-

als, even though each of these marginal distributions are identi�ed from the data, the joint

distribution is not identi�ed. Since, from Sklar's Theorem (Sklar, 1959), joint distributions

can be expressed as the copula function (capturing the dependence) of the two marginal

distributions, the only piece of information that is missing is the copula.3 We use the idea

that the dependence is the same between period t and period (t− 1). With this additional

information, F∆Y0t,Yt−1|Dt=1(∆, y′) is identi�ed and therefore the counterfactual distribution

of untreated potential outcomes for the treated group, FY0t|Dt=1(y) is identi�ed.

The time invariance of the dependence between F∆Y0t|Dt=1(∆) and FY0t−1|Dt=1(y) can

3For a continuous distribution, the copula representation is unique. Joe, (1997), Nelsen, (2007), and Joe,
(2015) are useful references for more details on copulas.
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be expressed in the following way. Let F∆Y0t,Y0t−1|Dt=1(∆, y) be the joint distribution of

(∆Y0t|Dt = 1) and (Y0t−1|Dt = 1). By Sklar's Theorem

F∆Y0t,Y0t−1|Dt=1(∆y, y) = C∆Y0t,Y0t−1|Dt=1

(
F∆Y0t|Dt=1(∆), FY0t−1|Dt=1(y)

)
where C∆Y0t,Y0t−1|Dt=1(·, ·) is a copula function.4 Next, we state the second main assumption

which replaces the unknown copula with copula for the same outcomes but in the previous

period which is identi�ed because no one is treated in the periods before t.

Copula Stability Assumption.

C∆Y0t,Y0t−1|Dt=1(·, ·) = C∆Y0t−1,Y0t−2|Dt=1(·, ·)

The Copula Stability Assumption says that the dependence between the marginal dis-

tributions F∆Y0t|Dt=1(∆y) and FY0t−1|Dt=1(y) is the same as the dependence between the

distributions F∆Y0t−1|Dt=1(∆y) and FY0t−2|Dt=1(y). It is important to note that this assump-

tion does not require any particular dependence structure, such as independence or perfect

positive dependence, between the marginal distributions; rather, it requires that whatever

the dependence structure is in the past, one can recover it and reuse it in the current period.

It also does not require choosing any parametric copula. However, it may be helpful to con-

sider a simple, more parametric example. If the copula of the distribution of (∆Y0t−1|Dt = 1)

and the distribution of (Y0t−2|Dt = 1) is Gaussian with parameter ρ, the Copula Stability

Assumption says that the copula continues to be Gaussian with parameter ρ in period t

but the marginal distributions are allowed to change in unrestricted ways. Likewise, if the

copula is Archimedean, the Copula Stability Assumption requires the generator function to

be constant over time but the marginal distributions can change in unrestricted ways.

One of the key insights of this paper is that, in some particular situations such as the panel

data case considered in the paper, we are able to observe the historical dependence between

the marginal distributions. There are many applications in economics where the missing

piece of information for identi�cation is the dependence between two marginal distributions.

In those cases, previous research has resorted to (i) assuming some dependence structure

such as independence or perfect positive dependence or (ii) varying the copula function over

some or all possible dependence structures to recover bounds on the joint distribution of

interest. To our knowledge, we are the �rst to use historical observed outcomes to obtain

a historical dependence structure and then assume that the dependence structure is stable

over time.
4The bounds in Fan and Yu, (2012) arise by replacing the unknown copula function C∆Y0t,Y0t−1|Dt=1(·, ·)

with those that make the upper bound the largest and lower bound the smallest.
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Before presenting the identi�cation result, we need some additional assumptions.

Assumption 4.1. Let ∆Yt|Dt=0 denote the support of the change in untreated outcomes

for the untreated group. Let ∆Yt−1|Dt=1, Yt−1|Dt=1, and Yt−2|Dt=1 denote the support of the

change in untreated outcomes for the treated group in period (t− 1), the support of untreated

outcomes for the treated group in period (t−1), and the support of untreated outcomes for the

treated group in period (t−2), respectively. We assume that ∆Yt|Dt=0, ∆Yt−1|Dt=1, Yt−1|Dt=1,

and Yt−2|Dt=1 are compact. Also, each of the random variables ∆Yt for the untreated group

and ∆Yt−1, Yt−1, and Yt−2 for the treated group are continuously distributed on their support

with densities that are bounded from above and bounded away from 0.

Assumption 4.2. The observed data (Ydt,i, Yt−1,i, Yt−2,i, Xi, Dit) are independently and iden-

tically distributed.

Assumption 4.1 says that outcomes are continuously distributed. Copulas are unique on

the range of their marginal distributions; thus, continuously distributed outcomes guarantee

that the copula is unique. However, for the CSA, one could weaken this assumption to

Range(F∆Y0t|Dt=1) ⊆ Range(F∆Yt−1|Dt=1) and Range(FYt−1|Dt=1) ⊆ Range(FYt−2|Dt=1) and

still obtain point identi�cation. On the other hand, although neither our DDID Assumption

nor the standard mean DID Assumption explicitly require continuously distributed out-

comes, it should be noted that standard limited dependent variable models with unobserved

heterogeneity would not generally satisfy either of these DID assumptions. Assumption 4.2

could potentially be relaxed in several ways. More periods of data could be available � our

method requires at least three periods of data, but more periods could be incorporated in a

straightforward way. Also, our setup could allow for some individuals to be treated in earlier

periods than the last one though our results would continue to go through for the group

of individuals that are �rst treated in the last period; considering the case where no one is

treated before the last period is standard DID setup. Assumption 4.2 also says that other

covariates X are time invariant. This assumption can be relaxed by focusing on the subset

of individuals whose covariates do not change over time. Appendix A also discusses the

possibility of including time varying covariates though they must enter our model is a more

restrictive way than time invariant covariates. Essentially, the problem with time varying

covariates is that that one cannot separate individuals changing ranks in the distribution of

outcomes over time due to changes in covariates or due to unobservables. Finally, we assume

that we observe treatment status for each individual; however, in many DID applications,

treatments may be de�ned by location and individuals may move between treatment regimes

over time (Lee and Kang, 2006) though we do not consider this complication.

10



Theorem 1. Under the Distributional Di�erence in Di�erences Assumption, the Copula

Stability Assumption, and Assumptions 4.1 and 4.2

FY0t|Dt=1(y)

= E
[
1{F−1

∆Yt|Dt=0(F∆Yt−1|Dt=1(∆Yt−1)) ≤ y − F−1
Yt−1|Dt=1(FYt−2|Dt=1(Yt−2))}|Dt = 1

]
(3)

and

QTT(τ) = F−1
Yt|Dt=1(τ)− F−1

Y0t|Dt=1(τ)

which is identi�ed

Theorem 1 is the main identi�cation result of the paper. It says that the counterfactual

distribution of untreated outcomes for the treated group is identi�ed. To provide some

intuition, we provide a short outline of the proof. First, notice that P(Y0t ≤ y|Dt = 1) =

E[1{∆Y0t + Y0t−1 ≤ y}|Dt = 1]5 But ∆Y0t is not observed for the treated group because Y0t

is not observed. The Copula Stability Assumption e�ectively allows us to look at observed

outcomes in the previous periods for the treated group and �adjust� them forward. Finally,

the Distributional Di�erence in Di�erences Assumption allows us to replace F−1
∆Y0t|Dt=1(·)

with F−1
∆Y0t|Dt=0(·) which is just the quantiles of the distribution of the change in (observed)

untreated outcomes for the untreated group.

5 Allowing for covariates

In our view, the key reason that there has been little use of distributional methods with

panel data is that existing work has focused primarily on the case without conditioning on

other covariates.6 This section extends the previous results to the case where a Conditional

DDID assumption holds.

Conditional Distributional Di�erence in Di�erences Assumption.

∆Y0t ⊥⊥ Dt|X

5Adding and subtracting Y0t−1 is also the �rst step for showing that the Mean Di�erence in Di�erences
Assumption identi�es E[Y0t|Dt = 1]; the problem is much easier in the mean case though due to the linearity
of expectations and no indicator function.

6Recent work such as Melly and Santangelo, (2015) and Callaway, Li, and Oka, (2016) has begun relaxing
this restriction.
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This assumption says that, after conditioning on covariates X, the distribution of the

change in untreated potential outcomes for the treated group is equal to the change in

untreated potential outcomes for the untreated group. The next example shows that having

the conditional DDID assumption may be important even in cases where an unconditional

mean DID assumption holds and would identify the ATT

Example 1. Consider the following model

Yit = q(Uit, Dit, Xi) + Ci

with (Uit, Uit−1), (Uit−1, Uit−2)|X,C,D ∼ FU1,U2 where FU1,U2 is a bivariate distribution with

uniform marginals, C is time invariant unobserved heterogeneity that may be correlated with

observables, and q(τ, d, x) is strictly increasing in τ for all (d, x) ∈ {0, 1} × X .
In this model,

• The Unconditional Mean Di�erence in Di�erences Assumption holds

• The Unconditional Distributional Di�erence in Di�erences Assumption does not hold

• The Conditional Distributional Di�erence in Di�erences Assumption holds

• The Unconditional Copula Stability Assumption holds

Example 1 is a Skorohod representation for panel quantile regression while allowing for

serial correlation among U . This model allows the e�ect of covariates to be di�erent at

di�erent parts of the conditional distribution. For example, if Y is wages, it is well known

that the e�ect of education is di�erent at di�erent parts of the conditional distribution. One

su�cient condition for the unconditional DDID assumption is that X has only a location

e�ect on outcomes. Another su�cient condition is that the distribution of X is the same

for the treated and untreated groups. Neither of these conditions seems likely to hold in

the types of applications where a researcher is interested in understanding the distributional

e�ect of a program or policy.

Example 1 is a leading case for using distributional methods to understand heterogeneity

in the e�ect of a treatment, and the main conclusion to be reached from this example is

that even when an unconditional mean DID assumption holds, one is likely to need to

condition on covariates to justify the DDID assumption. On the other hand, in this model,

the unconditional CSA continues to hold.7

7Appendix A discusses the possibility of using the conditional DDID assumption along with a conditional
CSA. Identi�cation continues to go through in this case. The advantage of this approach is that it could
be used in the case where the trend in outcomes depends on covariates. This could be important in many
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By invoking the Conditional Distributional Di�erence in Di�erences Assumption rather

than the Distributional Di�erence in Di�erences Assumption, it is important to note that,

for the purpose of identi�cation, the only part of Theorem 1 that needs to be adjusted

is the identi�cation of F∆Y0t|Dt=1(∆). Under the Distributional Di�erence in Di�erences

Assumption, this distribution could be replaced directly by F∆Yt|Dt=0(∆); however, now

we utilize a propensity score re-weighting technique to replace this distribution with another

object (discussed more below). Importantly, all other objects in Theorem 1 can be handled in

exactly the same way as they were previously. Particularly, the Copula Stability Assumption

continues to hold without needing any adjustment such as conditioning on X.

With covariates, we also require an additional standard assumption for identi�cation.

Assumption 5.1. p ≡ P (Dt = 1) > 0 and p(x) ≡ P (Dt = 1|X = x) < 1.

The �rst part of this assumption says that there is some positive probability that indi-

viduals are treated. The second part says that for an individual with any possible value of

covariates x, there is some positive probability that he will be treated and a positive prob-

ability he will not be treated. This is a standard overlap assumption used in the treatment

e�ects literature.

Theorem 2. Under the Conditional Distributional Di�erence in Di�erences Assumption,

the Copula Stability Assumption, and Assumptions 4.1, 4.2 and 5.1

FY0t|Dt=1(y)

= E
[
1{F−1p

∆Y0t|Dt=1(F∆Yt−1|Dt=1(∆Yt−1)) ≤ y − F−1
Yt−1|Dt=1(FYt−2|Dt=1(Yt−2))}|Dt = 1

]
where

F p
∆Y0t|Dt=1(∆) = E

[
1−Dt

p

p(X)

1− p(X)
1{∆Yt ≤ ∆}

]
(4)

and

QTT(τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ)

which is identi�ed

This result is very similar to the main identi�cation result in Theorem 1. The only

di�erence is that F∆Y0t|Dt=1(·) is no longer identi�ed by the distribution of untreated potential

applications; for example, suppose that the outcome of interest is wages, the trend in wages may be di�erent
for individuals with di�erent education levels. The cost of this approach is that nonparametric estimation
would be very challenging in many applications.
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outcomes for the untreated group; instead, it is replaced by the re-weighted distribution in

Equation 4. Equation 4 can be understood in the following way. It is a weighted average

of the distribution of the change in outcomes experienced by the untreated group. The
p(X)

1− p(X)
term weights up untreated observations that have covariates that make them more

likely to be treated. Equation 4 is almost exactly identical to the re-weighting estimators

given in Hirano, Imbens, and Ridder, (2003), Abadie, (2005), and Firpo, (2007); the only

di�erence is the term 1{∆Yt ≤ ∆} in our case is given by Yt, ∆Yt, and 1{Yt ≤ y} in each of

the other cases, respectively.

6 Estimation

In this section, we outline the estimation procedure. Then, we provide results on consis-

tency and asymptotic normality of the estimators.

We estimate

ˆQTT(τ) = F̂
−1

Y1t|Dt=1(τ)− F̂
−1

Y0t|Dt=1(τ)

The �rst term is estimated directly from the data by inverting the estimated empirical

distribution of observed outcomes for the treated group.

F̂
−1

Y1t|Dt=1(τ) = inf{y : F̂Yt|Dt=1(y) ≥ τ}

We estimate counterfactual quantiles by

F̂
−1

Y0t|Dt=1(τ) = inf{y : F̂Y0t|Dt=1(y) ≥ τ}

where

F̂Y0t|Dt=1(y) =
1

nT

∑
i∈T

1{F̂
−1

∆Yt|Dt=0(F̂∆Yt−1|Dt=1(∆Yit−1)) ≤ y − F̂
−1

Yt−1|Dt=1(F̂Yt−2|Dt=1(Yit−2))}

which follows from the identi�cation result in Theorem 1 and where distribution functions

are estimated by empirical distribution functions and quantile functions are estimated by

inverting empirical distribution functions.

The �nal issue is estimating F−1
∆Y0t|Dt=1(ν) when identi�cation depends on covariates.

Using the identi�cation result in Theorem 2, we can easily construct an estimator of the

distribution function

14



F̂∆Y0t|Dt=1(∆) =
1

n

n∑
i=1

(1−Dit)

p

p̂(Xi)

(1− p̂(Xi))
1{∆Yt,i ≤ ∆}

/
1

n

n∑
i=1

(1−Dit)

p

p̂(Xi)

(1− p̂(Xi))

where the last term in the denominator ensures that F̂∆Y0t|Dt=1 is a distribution function

and is asymptotically negligible. One can invert this distribution to obtain its quantiles.

When identi�cation depends on covariates X, then there must be a �rst step estimation

of the propensity score. We consider the case where the propensity score is estimated non-

parametrically and show that, even though the propensity score itself converges at a slower

rate, our estimator of the QTT converges at the parametric
√
n rate. Also, simpler para-

metric estimators of the propensity score such as logit or probit can be used instead. All of

our main results continue to go though � particularly, the empirical bootstrap can still be

used for inference when the propensity score is estimated either parametrically under some

mild regularity conditions.

6.1 Inference

This section considers the asymptotic properties of the estimator. First, it focuses on the

case with no covariates and then extends the results to the case where the Distributional

Di�erence in Di�erences Assumption holds conditional on covariates. The proofs for each of

the results in this section are given in the Appendix.

6.1.1 No Covariates Case

This section shows that our estimator of the QTT obeys a functional central limit the-

orem. In order to show this, the key step is to show that the counterfactual distribution of

untreated potential outcomes for the treated group is Hadamard Di�erentiable.

We denote empirical processes by

ĜX(x) =
√
n(F̂X(x)− FX(x))

Next, let Ỹit = F−1
∆Yt|Dt=0(F∆Yt−1|Dt=1(∆Yit−1)) + F−1

Yt−1|Dt=1(FYt−2|Dt=1(Yit−2)); these are

pseudo-observations if each distribution and quantile function were known. Let F̃Y0t|Dt=1(y) =
1
nT

∑
i∈T 1{Ỹit ≤ y}. Then, de�ne

G̃Y0t|Dt=1(y) =
√
n(F̃Y0t|Dt=1(y)− FY0t|Dt=1(y))

15



As a �rst step, we establish a functional central limit theorem for the empirical processes

of each of the terms used in our identi�cation result.

Proposition 1. Under the Distributional Di�erence in Di�erences Assumption, Copula Sta-

bility Assumption, and Assumptions 4.1 and 4.2

(Ĝ∆Yt|Dt=0, Ĝ∆Yt−1|Dt=1, G̃Y0t|Dt=1, ĜYt|Dt=1, ĜYt−1|Dt=1, ĜYt−2|Dt=1) (W1,W2,V0,V1,W3,W4)

in the space S = l∞(∆Yt|Dt=0)×l∞(∆Yt−1|Dt=1)×l∞(Y0t|Dt=1)×l∞(Yt|Dt=1)×l∞(Yt−1|Dt=1)×
l∞(Yt−2|Dt=1) where (W1,W2,V0,V1,W3,W4) is a tight Gaussian process with mean 0 and

block diagonal covariance matrix V (y, y′) = diag(V1(y, y′), V2(y, y′)) where

V1(y, y′) =
(
F∆Yt|Dt=0(y1 ∧ y′1)− F∆Yt|Dt=0(y1)F∆Yt|Dt=0(y′1)

)
/(1− p)

and

V2(y, y′) = E[ψ(y)ψ(y′)′]

for y = (y1, y2, y3, y4, y5, y6) ∈ S and y′ = (y′1, y
′
2, y
′
3, y
′
4, y
′
5, y
′
6) ∈ S and

ψ(y) = 1/
√
p


1{∆Yt−1 ≤ y2} − F∆Yt−1|Dt=1(y2)

1{Ỹt ≤ y3} − FỸt|Dt=1(y3)

1{Yt ≤ y4} − FYt|Dt=1(y4)

1{Yt−1 ≤ y5} − FYt−1|Dt=1(y5)

1{Yt−2 ≤ y6} − FYt−2|Dt=1(y6)


The next result establishes the joint limiting distribution of observed treated outcomes

and counterfactual untreated potential outcomes for the treated group.

Proposition 2. Let Ĝ0(y) =
√
n(F̂Y0t|Dt=1(y)−FY0t|Dt=1(y)) and let Ĝ1(y) =

√
n(F̂Yt|Dt=1(y)−

FYt|Dt=1(y)). Under Assumptions Distributional Di�erence in Di�erences Assumption, Cop-

ula Stability Assumption, and Assumptions 4.1 and 4.2

(Ĝ0, Ĝ1) (G0,G1)

where G0 and G1 are tight Gaussian processes with mean 0 with almost surely uniformly

continuous paths on the space Yt|Dt=1 × Y0t|Dt=1 given by

G1 = V1
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and

G0 = V0 +

∫ {
W1 ◦ F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)− F∆Yt|Dt=0

(
y −

W4 −W3 ◦ F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)

fYt−1|Dt=1 ◦ F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)

)

−W2 ◦ F−1
∆Yt−1|Dt=1 ◦ F∆Yt|Dt=0(y − F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v))
}
K(y, v) dFYt−2|Dt=1(v)

where

K(y, v) =
f∆Yt−1|Yt−2,Dt=1(F−1

∆Yt−1|Dt=1 ◦ F∆Yt|Dt=0(y − F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)))

f∆Yt−1|Dt=1 ◦ F−1
∆Yt−1|Dt=1 ◦ F∆Yt|Dt=0 ◦ (y − F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v))

The key step in showing Proposition 2 is establishing the Hadamard Di�erentiability of

the counterfactual distribution of untreated potential outcomes for the treated group. Here,

V0 is the variance that would obtain if each distribution and quantile function were known.

The second term comes from having to estimate each of these distribution and quantile

functions in a �rst step. With Proposition 2 in hand, our main result for the QTT follows

straightforwardly by the Hadamard Di�erentiability of quantiles.

Theorem 3. Suppose FY0t|Dt=1 admits a positive continuous density fY0t|Dt=1 on an interval

[a, b] containing an ε-enlargement of the set {F−1
Y0t|Dt=1(τ) : τ ∈ T } in Y0t|Dt=1 with T ⊂

(0, 1). Under the Distributional Di�erence in Di�erences Assumption, the Copula Stability

Assumption, and Assumptions 4.1 and 4.2

√
n( ˆQTT (τ)−QTT (τ)) Ḡ1(τ)− Ḡ0(τ)

where (Ḡ0(τ), Ḡ0(τ)) is a stochastic process in the metric space (l∞(T ))2 with

Ḡ0(τ) =
G0(F−1

Y0t|Dt=1(τ))

fY0t|Dt=1(F−1
Y0t|Dt=1(τ))

and Ḡ1(τ) =
G1(F−1

Yt|Dt=1(τ))

fYt|Dt=1(F−1
Yt|Dt=1(τ))

Estimating the asymptotic variance of our estimator is likely to be quite complicated

particularly due to the presence of density functions which would require smoothing and

choosing some tuning parameters. Instead, we conduct inference using the nonparametric

bootstrap.

Algorithm 1. Let B be the number of bootstrap iterations. For b = 1, . . . , B,

1. Draw a sample of size n with replacement from the original data
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2. Compute

ˆQTT
b
(τ) = F̂

−1b

Yt|Dt=1(τ)− F̂
−1b

Y0t|Dt=1(τ)

where

F̂
b

Y0t|Dt=1(y) =
1

nbT

∑
i∈T

1{F̂
−1b

∆Yt|Dt=0(F̂
b

∆Yt−1|Dt=1(∆Y b
it−1)) ≤ y − F̂

−1b

Yt−1|Dt=1(F̂
b

Yt−2|Dt=1(Y b
it−2))}

and the superscript b indicates that the distribution or quantile function is computed

using the bootstrap data.

3. Compute Ib = supτ∈T

∣∣∣ ˆQTT
b
(τ)− ˆQTT (τ)

∣∣∣
Then, a (1− α) con�dence band is given by

ˆQTT (τ)− cB1−α/
√
n ≤ QTT (τ) ≤ ˆQTT (τ) + cB1−α/

√
n

where cB1−α is the (1− α) quantile of {Ib}Bb=1.

The next result shows the validity of the nonparametric bootstrap for our procedure.

Theorem 4. Under the Distributional Di�erence in Di�erences Assumption, Copula Stabil-

ity Assumption, and Assumptions 4.1 and 4.2,

√
n
(

ˆQTT
∗
(τ)− ˆQTT (τ)

)
 ∗ Ḡ0(τ)− Ḡ1(τ)

where (Ḡ0, Ḡ1) are as in Theorem 3 and  ∗ indicates weak convergence in probability under

the bootstrap law (Giné and Zinn, 1990)

Theorem 4 follows because our estimate of the QTT is Donsker and by Van Der Vaart

and Wellner, (1996, Theorem 3.6.1)

6.1.2 Distributional Di�erence in Di�erences Assumption holds conditional on

covariates

This section develops the asymptotic properties of our estimator in the case where the

Distributional Di�erence in Di�erences Assumption holds conditional on covariates and con-

sider the case where the propensity score is estimated nonparametrically by using series logit

methods. Following Hirano, Imbens, and Ridder, (2003), we make the following assumptions

on the propensity score
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Assumption 6.1. E[1{∆Y0t ≤ y}|X,Dt = 0] is continuously di�erentiable for all x ∈ X .

Assumption 6.2. (Distribution of X)

(i) The support X of X is a Cartesian product of compact intervals; that is, X =∏r
j=1[xlj, xuj] where r is the dimension of X and xlj and xuj are the smallest and largest

values in the support of the j-th dimension of X.

(ii) The density of X, fX(·), is bounded away from 0 on X .

Assumption 6.3. (Assumptions on the propensity score)

(i) p(x) is continuously di�erentiable of order s ≥ 7r where r is the dimension of X.

(ii) There exist p and p̄ such that 0 < p ≤ p(x) ≤ p̄ < 1.

Assumption 6.4. (Series Logit Estimator)

For nonparametric estimation of the propensity score, p(x is estimated by series logit

where the power series of the order K = nν for some 1
4(s/r−1)

< ν < 1
9
.

Remark. Assumptions Assumptions 6.1 to 6.4 are standard assumptions in the literature

which depends on �rst step estimation of the propensity score. Hirano, Imbens, and Ridder,

(2003) developed the properties of the series logit estimator under the same set of assump-

tions. Similar assumptions have been used in, for example, Firpo, (2007) and Donald and

Hsu, (2014). Assumption 6.2 says that X is continuously distributed though our setup

can easily handle discrete covariates as well by splitting the sample based on the discrete

covariates. Assumption 6.3(i) is a standard assumption on di�erentiability of the propen-

sity score and guarantees the existence of ν that satis�es the conditions of Assumption 6.4.

Assumption 6.3(ii) is a standard overlap condition.

Proposition 3. Let Ĝp
∆Y0t|Dt=1(∆) =

√
n
(

F̂
p

∆Y0t|Dt=1(∆)− Fp∆Y0t|Dt=1(∆)
)
where FpY0t|Dt=1(∆)

is given in Equation (4). Let Ỹ p
it = F−1p

∆Y0t|Dt=1(F∆Yt−1|Dt=1(∆Yit−1))+F−1
Yt−1|Dt=1(FYt−2|Dt=1(Yit−2)),

let F̃
p

Y0t|Dt=1(y) = 1
nT

∑
i∈T 1{Ỹ

p
it ≤ y}, and let G̃p

Y0t|Dt=1(y) =
(

F̃
p

Y0t|Dt=1(y)− FY0t|Dt=1(y)
)
.

Under the Conditional Distributional Di�erence in Di�erences Assumption, the Copula Sta-

bility Assumption, Assumptions 4.1, 4.2, 5.1 and 6.1 to 6.4

(Ĝp
∆Y0t|Dt=1, Ĝ∆Yt−1|Dt=1, G̃

p
Y0t|Dt=1, ĜYt|Dt=1, ĜYt−1|Dt=1, ĜYt−2|Dt=1) (Wp

1,W
p
2,V

p
0,V

p
1,W

p
3,W

p
4)

in the space S = l∞(∆Yt|Dt=0)×l∞(∆Yt−1|Dt=1)×l∞(Y0t|Dt=1)×l∞(Yt|Dt=1)×l∞(Yt−1|Dt=1)×
l∞(Yt−2|Dt=1) where (Wp

1,W
p
2,V

p
0,V

p
1,W

p
3,W

p
4) is a tight Gaussian process with mean 0 and

covariance V (y, y′) = E[ψp(y)ψp(y′)′] for y = (y1, y2, y3, y4, y5, y6) ∈ S and y′ = (y′1, y
′
2, y
′
3, y
′
4, y
′
5, y
′
6) ∈
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S and with ψp(y) given by

ψp(y) =



1{∆Y≤y1|X}
p(1−p(X))

(D − p(X)) + 1−D
p

p(X)
1−p(X)

1{∆Yt ≤ y1} − Fp∆Y0t|Dt=1(y1)
D
p
1{∆Yt−1 ≤ y2} − F∆Yt−1|Dt=1(y2)
D
p
1{Ỹt ≤ y3} − FỸt|Dt=1(y3)

D
p
1{Yt ≤ y4} − FYt|Dt=1(y4)

D
p
1{Yt−1 ≤ y5} − FYt−1|Dt=1(y5)

D
p
1{Yt−2 ≤ y6} − FYt−2|Dt=1(y6)


The next result establishes an analogous result to Proposition 2 for the case where iden-

ti�cation depends on covariates.

Proposition 4. Let Ĝp
0(y) =

√
n(F̂

p

Y0t|Dt=1(y)−FpY0t|Dt=1(y)) and let Ĝp
1(y) =

√
n(F̂Yt|Dt=1(y)−

FYt|Dt=1(y)). Under the Conditional Distributional Di�erence in Di�erences Assumption,

Copula Stability Assumption, and Assumptions 4.1, 4.2, 5.1 and 6.1 to 6.4

(Ĝp
0, Ĝ

p
1) (Gp

0,G
p
1)

where Gp
0 and Gp

1 are tight Gaussian processes with mean 0 with almost surely uniformly

continuous paths on the space Y0t|Dt=1 × Yt|Dt=1 given by

Gp
1 = Vp

1

and

Gp
0 = Vp

0 +

∫ {
Wp

1 ◦ F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)− F p

∆Yt|Dt=1

(
y −

Wp
4 −Wp

3 ◦ F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)

fYt−1|Dt=1 ◦ F−1
Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)

)

−Wp
2 ◦ F−1

∆Yt−1|Dt=1 ◦ F
p
∆Yt|Dt=1(y − F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v))
}
K(y, v) dFYt−2|Dt=1(v)

where

K(y, v) =
f∆Yt−1|Yt−2,Dt=1(F−1

∆Yt−1|Dt=1 ◦ F
p
∆Yt|Dt=1(y − F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v)))

f∆Yt−1|Dt=1 ◦ F−1
∆Yt−1|Dt=1 ◦ F

p
∆Yt|Dt=1 ◦ (y − F−1

Yt−1|Dt=1 ◦ FYt−2|Dt=1(v))

Theorem 5. Suppose FY0t|Dt=1 admits a positive continuous density fY0t|Dt=1 on an inter-

val [a, b] containing an ε-enlargement of the set {F−1p
Y0t|Dt=1(τ) : τ ∈ T } in Y0t|Dt=1 with

T ⊂ (0, 1). Under the Conditional Distributional Di�erence in Di�erences Assumption, the
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Copula Stability Assumption, and Assumptions 4.1, 4.2, 5.1 and 6.1 to 6.4

√
n( ˆQTT

p
(τ)−QTT p(τ)) Ḡp

1(τ)− Ḡp
0(τ)

where (Ḡp
0(τ), Ḡp

0(τ)) is a stochastic process in the metric space (l∞(T ))2 with

Ḡp
0(τ) =

Gp
0(F−1

Y0t|Dt=1(τ))

fY0t|Dt=1(F−1
Y0t|Dt=1(τ))

and Ḡp
1(τ) =

Gp
1(F−1

Yt|Dt=1(τ))

fYt|Dt=1(F−1
Yt|Dt=1(τ))

Finally, we show that the empirical bootstrap can be used to construct asymptotically

valid con�dence bands. The steps for the bootstrap are the same as in Algorithm 1 � only

the F∆Y0t|Dt=1(∆) should be calculated using the result on re-weighting rather than replacing

it directly with F∆Yt|Dt=0(∆). The same series terms used to estimate the propensity score

can be reused in each bootstrap iteration. Theorem 6 follows essentially using the same

arguments as in Chen, Linton, and Van Keilegom, (2003).

Theorem 6. Under the Conditional Distributional Di�erence in Di�erences Assumption,

Copula Stability Assumption, and Assumptions 4.1, 4.2, 5.1 and 6.1 to 6.4,

√
n
(

ˆQTT
p∗

(τ)− ˆQTT
p
(τ)
)
 ∗ Ḡp

1(τ)− Ḡp
0(τ)

where (Ḡp
0, Ḡ

p
1) are as in Theorem 5.

7 Comparison with Existing Methods

Our method is related to the work on quantile regression with panel data (Koenker, 2004;

Abrevaya and Dahl, 2008; Lamarche, 2010; Canay, 2011; Rosen, 2012; Galvao, Lamarche,

and Lima, 2013; Chen, 2015) though our method is distinct in several ways. First, because

we do not impose a parametric model, our method allows for the e�ect of treatment to vary

across individuals with di�erent covariates in an unspeci�ed way. Second, our method is

consistent under �xed-T asymptotics while the papers mentioned above generally require

T →∞.8 Third, we focus on an unconditional QTT whereas the quantile treatment e�ects

identi�ed in these models are conditional � both on covariates and on unobserved hetero-

geneity. This means that the results from our method should be interpreted in the same

way as the di�erence between treated and untreated quantiles if individuals were randomly

8The two exceptions are Abrevaya and Dahl, (2008) which uses a correlated random e�ects structure
to obtain identi�cation without T → ∞ and Rosen, (2012) which deals with partial identi�cation under
quantile restrictions.
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assigned to treatment. See Frölich and Melly, (2013) for a good discussion of the di�erence

between conditional and unconditional quantile treatment e�ects. On the other hand, our

method only applies to the case where the researcher is interested only in the e�ect of a bi-

nary treatment; quantile regression methods can can deliver estimates for multiple, possibly

continuous variables.

Because we focus on nonparametric identifying assumptions, the current paper is also

related to the literature on nonseparable panel data models (Altonji and Matzkin, 2005;

Evdokimov, 2010; Bester and Hansen, 2012; Graham and Powell, 2012; Hoderlein and White,

2012; Chernozhukov, Fernández-Val, Hahn, and Newey, 2013). The most similar of these

is Chernozhukov, Fernández-Val, Hahn, and Newey, (2013) which considers a nonseparable

model and, similarly to our paper, obtains point identi�cation for observations that are

observed in both treated and untreated states. Relative to Chernozhukov, Fernández-Val,

Hahn, and Newey, (2013), we exploit having access to a control group much more � their

approach either does not use the control group or uses it to adjust the mean and variance

only � and our setup is compatible with more complicated distributional shifts in outcomes

over time such as the top of the income distribution increasing more than the bottom of the

income distribution.

Perhaps the most similar work to ours is Athey and Imbens, (2006). Their Change in

Changes model identi�es the QTT for models that are monotone is a scalar unobservable.

They assume that the distribution of unobservables does not change over time (though the

distribution of unobservables can be di�erent for the treated group and untreated group) but

allow for the return to unobservables to change over time. However, even a mean Di�erence in

Di�erences Assumption does not hold in general in their model. Interestingly, one model that

satis�es the Change in Changes model and our setup is when untreated potential outcomes

at period s are generated by Y0is = Ci+Vis+θs for s = t, t−1, t−2 where Ci is an individual

speci�c �xed e�ect, θs is a time �xed e�ect and Vis is an idiosyncratic error term such that

Vs|C ∼ FV for all s.

8 Evidence on the Validity of the Copula Stability As-

sumption

In order to assess the validity of the Copula Stability Assumption, we �rst provide some

general empirical evidence testing whether or not the dependence between the change in

outcomes and the initial level of outcomes is constant over time. In order to do this, we

use bi-annual earnings data from the National Longitudinal Study of Youths and estimate
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Spearman's Rho � a common dependence measure Nelsen, (2007) � for each year. Spearman's

Rho is bounded between -1 and 1. If Spearman's Rho is constant over time, this provides

evidence in favor of the CSA. Spearman's Rho �uctuating over time would indicate that the

CSA is violated.

Figure 1 plots our estimates of the Spearman's Rho for each even year from 1992 to 2012

using a sample of 2,283 NLSY participants with positive earnings in each period. Standard

errors are calculated using the block bootstrap. Spearman's Rho is essentially constant

across all periods and close to 0.

Second, in a particular application, neither the Distributional Di�erence in Di�erences

Assumption nor the Copula Stability Assumption are directly testable; however, the applied

researcher can provide some additional tests to provide some evidence that the assumptions

are more or less likely to hold.

The Copula Stability Assumption would be violated if the relationship between the change

in untreated potential outcomes and the initial untreated potential outcome is changing over

time. This is an untestable assumption. However, in the spirit of pre-testing in Di�erence in

Di�erences models, with four periods of data, one could use the �rst two periods to construct

the copula function for the third period; then one could compute the actual copula function

for the third period using the data and check if they are the same. This would provide some

evidence that the copula function is stable over time.

For an applied researcher looking for a simpler test, another idea would be to simply

test whether a dependence measure, such as Spearman's Rho or Kendall's Tau is constant

over time. With only three periods, another pseudo-test would be to test whether or not the

Copula Stability Assumption holds for the untreated group.

Additionally, the Distributional Di�erence in Di�erences Assumption is untestable though

a type of pre-testing can also be done for this assumption. Using data from the previous

period, the researcher can estimate both of the following distributions: F∆Yt−1|Dt=1(∆) and

F∆Yt−1|Dt=0(∆). Then, one can check if the distributions are equal using, for example, a

Kolmogorov-Smirno� type test. This procedure does not provide a test that the Distri-

butional Di�erence in Di�erences Assumption is valid, but when the assumption holds in

the previous period, it does provide some evidence that that the assumption is valid in the

period under consideration. Unlike the pre-test for the Copula Stability Assumption men-

tioned above, this pre-test of the Distributional Di�erence in Di�erences Assumption does

not require access to additional data because three periods of data are already required to

implement the method.

23



9 Empirical Exercise: Quantile Treatment E�ects of a

Job Training Program on Subsequent Wages

In this section, we use a well known dataset from LaLonde, (1986) that consists of (i) data

from randomly assigning job training program applicants to a job training program and (ii) a

second dataset consisting of observational data consisting of some individuals who are treated

and some who are not treated. This dataset has been widely used in the program evaluation

literature. Having access to both a randomized control and an observational control group

is a powerful tool for evaluating the performance of observational methods in estimating the

e�ect of treatment. The original contribution of LaLonde, (1986) is that many typically

used methods (least squares regression, Di�erence in Di�erences, and the Heckman selection

model) did not perform very well in estimating the average e�ect of participation in the job

training program. An important subsequent literature argued that observational methods

can e�ectively estimate the e�ect of a job training program, but the results are sensitive

to the implementation (Heckman and Hotz, 1989; Heckman, Ichimura, and Todd, 1997;

Heckman, Ichimura, Smith, and Todd, 1998; Dehejia and Wahba, 1999; Smith and Todd,

2005). Finally, Firpo, (2007) has used this dataset to study the quantile treatment e�ects of

participating in the job training program under the selection on observables assumption.

One limitation of the dataset for estimating quantile treatment e�ects is that the 185

treated observations form only a moderately sized dataset. A second well known issue is

that properly evaluating the training program, even with appropriate methods, may not be

possible using the Lalonde dataset because control observations do not come from the same

local labor markets and surveys for the control group do not use the same questionnaire

(Heckman, Ichimura, and Todd, 1997) though some of these issues may be alleviated using

Di�erence in Di�erences methods.

In the rest of this section, we implement the procedure outlined in this paper, and compare

the resulting QTT estimates to those from the randomized experiment and the various other

procedures available to estimate quantile treatment e�ects.

9.1 Data

The job training data is from the National Supported Work (NSW) Demonstration.

The program consisted of providing extensive training to individuals who were unemployed

(or working very few hours) immediately prior to participating in the program. Detailed de-

scriptions of the program are available in Hollister, Kemper, and Maynard, (1984), LaLonde,

(1986), and Smith and Todd, (2005). Our analysis focuses on the all-male subset used in
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Dehejia and Wahba, (1999). This subset has been the most frequently studied. In particular,

Firpo, (2007) uses this subset. Importantly for applying the method presented in this paper,

this subset contains data on participant earnings in 1974, 1975, and 1978.9

The experimental portion of the dataset contains 445 observations. Of these, 185 indi-

viduals are randomly assigned to participate in the job training program. The observational

control group comes from the Panel Study of Income Dynamics (PSID). There are 2490

observations in the PSID sample. Estimates using the observational data combine the 185

treated observations for the job training program with the 2490 untreated observations from

the PSID sample. The PSID sample is a random sample from the U.S. population that is

likely to be dissimilar to the treated group in many observed and unobserved ways. For this

reason, conditioning on observed factors that a�ect whether or not an individual participates

in the job training program and using a method that adjusts for unobserved di�erences be-

tween the treated and control groups are likely to be important steps to take to correctly

understand the e�ects of the job training program.

Summary statistics for earnings by treatment status (treated, randomized controls, ob-

servational controls) are presented in Table 1. Average earnings are very similar between the

treated group and the randomized control group in the two years prior to treatment. After

treatment, average earnings are about $1700 higher for the treated group than the control

group indicating that treatment has, on average, a positive e�ect on earnings. Average earn-

ings for the observational control group are well above the earnings of the treated group in

all periods (including the after treatment period).

For the available covariates, no large di�erences exist between the treated group and

the randomized control group. The largest normalized di�erence is for high school degree

status. The treated group is about 13% more likely to have a high school degree. There

are large di�erences between the treated group and the observational control group. The

observational control group is much less likely to have been unemployed in either of the past

two years. They are older, more educated, more likely to be married, and less likely to be a

minority. These large di�erences between the two groups are likely to explain much of the

large di�erences in earnings outcomes.

9.2 Results

The PanelQTT identi�cation results require the underlying distributions to be continu-

ous. However, because participants in the job training program were very likely to have no

earnings during the period of study due to high rates of unemployment, we estimated the

9Dehejia and Wahba, (1999) showed that conditioning on two periods of lagged earning was important for
correctly estimating the average treatment e�ect on the treated using propensity score matching techniques.
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e�ect of job training only for τ = (0.7, 0.8, 0.9). This strategy is similar to Buchinsky, (1994,

Footnote 22) though we must focus on higher quantiles than in that paper. We plan future

work on developing identi�cation or partial identi�cation strategies when the outcomes have

a mixed continuous and discrete distribution.

Main Results Table 2 provides estimates of the 0.7-, 0.8-, and 0.9-QTT using the

method of this paper (which we hereafter term PanelQTT), the conditional independence

(CI) method (Firpo, 2007), the Change in Changes method (Athey and Imbens, 2006),

and the Quantile Di�erence in Di�erences (QDiD) method. It also compares the resulting

estimates using each of these methods with the experimental results.

For each type of estimation, results are presented using three sets of covariates: (i) the

�rst row includes age, education, black dummy variable, Hispanic dummy variable, married

dummy variable, and no high school degree dummy variable (call this COV below) � this

represents the set of covariates that are likely to be available with cross sectional data; (ii)

the second row includes the same covariates plus two dummy variables indicating whether or

not the individual was unemployed in 1974 or 1975 (call this UNEM below) � this represents

the set of covariates that may be available with panel data or when the dataset contains

some retrospective questions; and (iii) the third row includes no covariates (call this NO

COV below) � including this set of covariates allows us to judge the relative importance

of adjust for both observable di�erences across individuals and time invariant unobserved

di�erences across individuals.

The PanelQTTmethod and the CI method admit estimation based on a �rst step estimate

of the propensity score. For both of these methods, we estimate parametric versions of

the propensity score using the three speci�cations mentioned above. Additionally, we also

include an additional set of results based on nonparametric estimate of the propensity score

using a series logit method. In practice, the PanelQTT method and the CI method use

slightly di�erent series logit estimates. For the PanelQTT method, we select the number of

approximating terms using a cross-validation method. We use only covariates available from

the UNEM covariate set as it would not be appropriate to condition on lags of the dependent

variable. We do condition on lags of unemployment. For the CI method, we use the series

logit speci�cation used in Firpo, (2007). The key di�erence between the two is that the CI

method can condition on lags of the dependent variable real earnings in addition to all the

other available covariates.

For CiC and QDiD, propensity score re-weighting techniques are not available. One

could potentially attempt to nonparametrically implement these estimators, but the resulting

estimators are likely to be quite computationally challenging. Instead, we follow the idea
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of Athey and Imbens, (2006) and residualize the earnings outcome by regressing earnings

on a dummy variable indicating whether or not the observations belongs to one of the

four groups: (treated, 1978), (untreated, 1978), (treated, 1975), (untreated, 1975) and the

available covariates. The residuals remove the e�ect of the covariates but not the group

(See Athey and Imbens, (2006) for more details). Then, we perform each method on the

residualized outcome. We discuss the estimation results for each method in turn.

The �rst section of Table 2 reports estimates of the QTT using the PanelQTT method.

The �rst row provides results where the propensity score is estimated nonparametrically

using series logit. The estimated QTT is positive and statistically signi�cant at each of the

0.7, 0.8, and 0.9-quantiles though the estimates tend to be larger than the experimental

results. These estimates are statistically di�erent from the experimental results at the 0.8

and 0.9-quantiles. These results also indicate that the QTT is increasing at larger quantiles

which is in line with the experimental results. The second row provides results using the COV

conditioning set. In our view, this speci�cation is likely to be what an empirical researcher

would estimate given the available data and if he were to use the PanelQTT method. Out

of all 16 method-covariate set estimates presented in Table 2, the QTTs come closest to

matching the experimental results using the PanelQTT method and the COV conditioning

set. When using the UNEM conditioning set, the estimates of the QTT are very similar to

the nonparametric speci�cation. Finally, the NO COV conditioning set tends to perform the

most poorly. The QTT is estimated to be close to zero at each quantile and is statistically

di�erent from the experimental results for the 0.7 and 0.9-quantile.

The second section presents results using cross sectional data. The results in the �rst

row come from estimating the propensity score nonparametrically using series logit where the

conditioning set can include lags of the dependent variable real earnings. If we had imposed

linearity (and momentarily ignoring the nonparametric estimation of the propensity score),

the di�erence between the CI and the PanelQTT model is that the CI model would include

lags of the dependent variable but no �xed e�ect while the PanelQTT model would include a

�xed e�ect but no lags of the dependent variable. Just as in the case of the linear model, the

choice of which model to use depends on the application and the decision of the researcher.

Not surprisingly then, the results that include dynamics under the CI assumption are much

better than those that do not include dynamics. The results are, in fact, quite similar to the

results using the PanelQTT method with the propensity score estimated nonparametrically;

particularly, the estimated e�ect have the right sign but tend to be overestimated. The

results in the second row come from conditioning on the COV conditioning set. The COV

conditioning set contain only the values of the covariates that would be available in a strictly

cross sectional dataset. These results are very poor. The QTTs are estimated to be large
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and negative indicating that participating in the job training program tended to strongly

decrease earnings. In fact, the CI procedure using purely cross sectional data performs much

worse than any of the other methods that take into account having multiple periods of data

(notably, this includes speci�cations that include no covariates at all). The third speci�ca-

tions uses the UNEM conditioning set, and the performance is similar to the nonparametric

estimation of the propensity score. Finally, the fourth row considers estimates that invoke

CI without the need to condition on covariates. This assumption is highly unlikely to be true

as individuals in the treated group di�er in many observed ways from untreated individuals.

This method would attribute higher earnings among untreated individuals to not being in

the job training program despite the fact that they tended to have much larger earnings

before anyone entered job training as well as more education and more experience.

The �nal two sections of Table 2 provide results using CiC and QDiD. We brie�y sum-

marize these results. Broadly speaking, each of these methods, regardless of conditioning

set, performs better than invoking the CI assumption using covariates that are available

only in the same period as the outcome (CI-COV results). Between the methods, the QDiD

method performs slightly better than the CiC model. Comparing the results of these three

models to the results from the PanelQTT method, the PanelQTT method performs slightly

better than the CiC model. With the COV speci�cation, it performs evenly with the QDiD

method. With the UNEM speci�cation, it performs slightly worse than the QDiD method.

10 Conclusion

This paper has considered identi�cation and estimation of the QTT under a distributional

extension of the most common Mean Di�erence in Di�erences Assumption used to identify

the ATT. Even under this Distributional Di�erence in Di�erences Assumption, the QTT is

still only partially identi�ed because it depends on the unknown dependence between the

change in untreated potential outcomes and the initial level of untreated potential outcomes

for the treated group. We introduced the Copula Stability Assumption which says that the

missing dependence is constant over time. Under this assumption and when panel data is

available, the QTT is point identi�ed. We show that the Copula Stability Assumption is

likely to hold in exactly the type of models that are typically estimated using Di�erence in

Di�erences techniques.

In many applications it is important to invoke identifying assumptions that hold only

after conditioning on some covariates. We developed very simple estimators of the QTT

using propensity score re-weighting. In an application where we compare the results using

several available methods to estimate the QTT on observational data to results obtained
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from an experiment, we �nd that our method performs at least as well as other available

methods.

In ongoing work, we are using similar ideas about the time invariance of a copula function

to study the joint distribution of treated and untreated potential outcomes when panel data

is available. Also, we are working on using the same type of assumption to identify the QTT

in more complicated situations such as when outcomes are censored or in dynamic panel

data models. The idea of a time invariant copula may also be valuable in other areas of

microeconometric research especially when a researcher has access to panel data.
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A Identi�cation and Estimation under a Conditional CSA

Our main results dealt with the case where the Distributional Di�erence in Di�erences
Assumption held conditional on covariates, but the Copula Stability Assumption held un-
conditionally. We showed that this combination of assumptions is likely to hold in the most
common type of model where empirical researchers use Di�erence in Di�erences to identify
the ATT. We also provided some empirical evidence in favor of the Unconditional Copula
Stability Assumption.

However, in some applications, a researcher may wish to make the Copula Stability
Assumption hold after conditioning on covariates. This assumption says that the copula be-
tween the change in untreated potential outcomes and the initial level of untreated potential
outcomes does not change over time after conditioning on some covariates X.

Conditional Copula Stability Assumption.

C∆Y0t,Y0t−1|X,Dt=1(·, ·|x) = C∆Y0t−1,Y0t−2|X,Dt=1(·, ·|x)

Importantly, the QTT continues to be identi�ed under the Conditional Copula Stability
Assumption.

Proposition 5. Assume that, for all x ∈ X , ∆Yt for the untreated group, ∆Yt−1, Yt−1,
and Yt−2 for the treated group are continuously distributed conditional on x. Under the
Conditional Distributional Di�erence in Di�erences Assumption, the Conditional Copula
Stability Assumption, and Assumption 4.2

P(Y0t ≤ y|X = x,Dt = 1)

= E
[
1{F−1

∆Y0t|X,Dt=0(F∆Y0t−1|X,Dt=1(∆Y0t−1|x))

≤ y − F−1
Y0t−1|X,Dt=1(FY0t−2|X,Dt=1(Y0t−2|x))}|X = x,Dt = 1

]
and

QTT(τ ;x) = F−1
Y1t|X,Dt=1(τ |x)− F−1

Y0t|X,Dt=1(τ |x)

which is identi�ed, and

P(Y0t ≤ y|Dt = 1) =

∫
X

P(Y0t ≤ y|X = x,Dt = 1) dF(x|Dt = 1)

and

QTT(τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ)

which is identi�ed.

There are several advantages to this approach. First, under the Conditional Copula
Stability Assumption, the path of untreated potential outcomes can depend on the covariates.
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This could be important in applications where the return to some covariate � for example, the
return to education � changes over time. Conditional Di�erence in Di�erences assumptions
for the ATT (Heckman, Ichimura, Smith, and Todd, 1998; Abadie, 2005) allow for this
pattern. Second, under the Conditional Copula Stability Assumption, it is possible to allow
for time varying covariates; however, the e�ect of time varying covariates must be a location-
shift. Finally, under the Conditional Copula Stability Assumption, one can obtain estimates
of conditional quantile treatment e�ects.

On the other hand, there are some costs associated with the Conditional Copula Stabil-
ity Assumption. Primarily, estimation becomes potentially much more challenging. Non-
parametric estimation would require estimating �ve conditional distribution functions and
conditional quantile functions which is likely to be quite challenging in practice. One could
replace nonparametric estimation by assuming a parametric model for each conditional quan-
tile function though parametric assumptions are unattractive in our model because it is not
clear how misspeci�cation in any of the �rst step conditional distribution/quantile functions
would a�ect our estimates of the QTT.

In ongoing work (Callaway, Li, and Oka, 2016), we consider a conditional copula assump-
tion in a related model. Those results are likely to go through with minor adaptations to the
current model. Melly and Santangelo, (2015) use parametric quantile regressions to estimate
a conditional version of the Change in Changes model (Athey and Imbens, 2006); Wüthrich,
(2015) uses a similar approach to estimate quantile treatment e�ects with endogeneity. One
could also adapt those types of results to our setup in a straightforward way.

B Proofs

B.1 Identi�cation

B.1.1 Identi�cation without covariates

In this section, we prove Theorem 1. Namely, we show that the counterfactual distribution
of untreated outcome FY0t|Dt=1(y) is identi�ed. First, we state two well known results without
proof used below that come directly from Sklar's Theorem.

Lemma B.1. The joint density in terms of the copula pdf

f(x, y) = c(FX(x), FY (y))fX(x)fY (y)

Lemma B.2. The copula pdf in terms of the joint density

c(u, v) = f(F−1
X (u), F−1

Y (u))
1

fX(F−1
X (u))

1

fY (F−1
Y (u))

Proof of Theorem 1. To minimize notation, let ϕt(·, ·) = ϕ∆Y0t,Y0t−1|Dt=1(·, ·) be the joint pdf
of the change in untreated potential outcome and the initial untreated potential outcome for
the treated group, and let ϕt−1(·, ·) = ϕ∆Y0t−1,Y0t−2|Dt=1(·, ·) be the joint pdf in the previous
period. Similarly, let ct(·, ·) = c∆Y0t,Y0t−1|Dt=0(·, ·) and ct−1(·, ·) = c∆Y0t−1,Y0t−2(·, ·) be the
copula pdfs for the change in untreated potential outcomes and initial level of untreated
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outcomes for the treated group at period t and t− 1, respectively. Then,

P (Y0t ≤ y|Dt = 1) = P (∆Y0t + Y0t−1 ≤ y|Dt = 1)

= E[1{∆Y0t ≤ y − Y0t−1}|Dt = 1)

=

∫
Yt−1|Dt=1

∫
∆Yt|Dt=1

1{∆y0t ≤ y − y0t−1}ϕt(∆y0t, y0t−1|Dt = 1)d∆y0tdy0t−1

=

∫
Yt−1|Dt=1

∫
∆Yt|Dt=1

1{∆y0t ≤ y − y0t−1} (5)

× ct(F∆Y0t|Dt=1(∆y0t), FY0t−1|Dt=1(y0t−1))

× f∆Y0t|Dt=1(∆y0t)fY0t−1|Dt=1(y0t−1)d∆y0tdy0t−1

=

∫
Yt−1|Dt=1

∫
∆Yt|Dt=1

1{∆y0t ≤ y − y0t−1} (6)

× ct−1(F∆Y0t|Dt=1(∆y0t), FY0t−1|Dt=1(y0t−1))

× f∆Y0t|Dt=1(∆y0t)fY0t−1|Dt=1(y0t−1)d∆y0tdy0t−1

=

∫
Yt−1|Dt=1

∫
∆Yt|Dt=1

1{∆y0t ≤ y − y0t−1} (7)

× ϕt−1

{
F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=1(∆y0t)), F
−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y0t−1))

}
×

f∆Y0t|Dt=1(∆y0t)

f∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=1(∆y0t)))

×
fY0t−1|Dt=1(y0t−1)

fY0t−2|Dt=1(F−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y0t−1)))

d∆y0tdy0t−1

Equation 5 rewrites the joint distribution in terms of the copula pdf using Lemma B.1;
Equation 6 uses the copula stability assumption; Equation 7 rewrites the copula pdf as the
joint distribution (now in period t− 1) using Lemma B.2.

Now, make a change of variables: u = F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=1(∆y0t)) and v = F−1

Y0t−2|Dt=1(FY0t−1|Dt=1(y0t−1)).
This implies the following:

1. ∆y0t = F−1
∆Y0t|Dt=1(F∆Y0t−1|Dt=1(u))

2. y0t−1 = F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(v))

3. d∆y0t =
f∆Y0t−1|Dt=1(u)

f∆Y0t|Dt=1(F−1
∆Y0t|Dt=1(F∆Y0t−1|Dt=1(u)))

du

4. dy0t−1 =
fY0t−2|Dt=1(v)

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(v)))

dv
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Plugging in (1)-(4) in Equation 7 and noticing that the substitutions for d∆y0t and dy0t−1

cancel out the fractional terms in the third and fourth lines of Equation 7 implies

Equation 7 =

∫
Yt−2|Dt=1

∫
∆Yt−1|Dt=1

1{F−1
∆Y0t|Dt=1(F∆Y0t−1|Dt=1(u)) ≤ y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(v))}

(8)

× ϕt−1 (u, v) dudv

= E
[
1{F−1

∆Y0t|Dt=1(F∆Y0t−1|Dt=1(∆Y0t−1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}|Dt = 1

]
(9)

= E
[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}|Dt = 1

]
(10)

where Equation 8 follows from the discussion above, Equation 9 follows by the de�nition
of expectation, and Equation 10 follows from the Distributional Di�erence in Di�erences
Assumption.

B.1.2 Identi�cation with covariates

In this section, we prove Theorem 2.

Proof. All of the results from the proof of Theorem 1 are still valid. Therefore, all that needs
to be shown is that Equation 4 holds. Notice,

P(∆Y0t ≤ ∆y|Dt = 1) =
P(∆Y0t ≤ ∆y,Dt = 1)

p

= E

[
P(∆Y0t ≤ ∆y,Dt = 1|X)

p

]

= E

[
p(X)

p
P(∆Y0t ≤ ∆y|X,Dt = 1)

]

= E

[
p(X)

p
P(∆Y0t ≤ ∆y|X,Dt = 0)

]
(11)

= E

[
p(X)

p
E[(1−Dt)1{∆Yt ≤ ∆y)}|X,Dt = 0]

]
(12)

= E

[
p(X)

p(1− p(X))
E[(1−Dt)1{∆Yt ≤ ∆y)}|X]

]

= E

[
1−Dt

1− p(X)

p(X)

p
1{∆Yt ≤ ∆y}

]
(13)
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where Equation 11 holds by Conditional Distributional Di�erence in Di�erences Assumption.
Equation 12 holds by replacing P (·) with E(1{·}) and then multiplying by (1 −Dt) which
is permitted because the expectation conditions on Dt = 0. Additionally, conditioning on
Dt = 0 allows us to replace the potential outcome ∆Y0t with the actual outcome ∆Yt because
∆Yt is the observed change in potential untreated outcomes for the untreated group. Finally,
Equation 13 simply applies the Law of Iterated Expectations to conclude the proof.

B.2 Proof of the results in Example 1

The nonseparable model Yit = q(Uit, Xi, Dit) + Ci can be equivalently written in terms
of potential outcomes:

Y1it = q1(Uit, Xi) + Ci

Y0it = q0(Uit, Xi) + Ci

Unconditional Mean Di�erence in Di�erences Holds

E[Y0t|D = d] =

∫
q0(u, x) + c dFUt,X,C|D=d(u, x, c)

=

∫
q0(u, x) + c dFUt dFX,C|D=d(u, x, c)

=

∫
q0(u, x) + c dFUt−1 dFX,C|D=d(u, x, c)

=

∫
q0(u, x) + c dFUt−1,X,C|D=d(u, x, c)

= E[Y0t−1|D = d]

which implies that for the treated group and untreated group the average change in untreated
potential outcomes is 0.

Conditional Di�erence in Di�erences Holds

P(∆Y0t ≤ ∆|X = x,D = 1) =

∫
1{q0(u, x)− q0(ũ, x) ≤ ∆} dFUt,Ut−1|X,D=1(u, ũ)

=

∫
1{q0(u, x)− q0(ũ, x) ≤ ∆} dFUt,Ut−1|X,D=0(u, ũ)

= P(∆Y0t ≤ ∆|X = x,D = 0)

where the second equality holds because (Ut, Ut−1) ⊥⊥ (X,D).

Unconditional Distributional Di�erence in Di�erences Does Not Hold

P(∆Y0t ≤ ∆|D = 1) = E[P(∆Y0t ≤ ∆|X,D = 1)|D = 1]

= E[P(∆Y0t ≤ ∆|X,D = 0)|D = 1]
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where the second equality holds by the result for the Conditional Distributional Di�erence
in Di�erences Assumption holding. The last quantity is, in general, not equal to P(∆Y0t ≤
∆|D = 0) because the distribution of X can be di�erent across the two groups.

Unconditional Copula Stability Holds

P(∆Y0t ≤ ∆, Y0t−1 ≤ y|D = 1) = P(q0(Uit, Xi)− q0(Uit−1, Xi) ≤ ∆, q0(Uit−1, Xi) ≤ y|D = 1)

= P(q0(Uit−1, Xi)− q0(Uit−2, Xi) ≤ ∆, q0(Uit−2, Xi) ≤ y|D = 1)

= P(∆Y0t−1 ≤ ∆, Y0t−2 ≤ y|D = 1)

which implies that the CSA holds.

B.3 Asymptotic Normality

In this section, we derive the asymptotic distribution of our estimator of the QTT.
First, we introduce some notation. First, to conserve on notation, let F∆t = F∆Yt|Dt=0,
F∆t−1 = F∆Yt−1|Dt=1, FYt−1 = FYt−1|Dt=1, and FYt−2 = FYt−2|Dt=1. Let

φn(F ) =
1

nT

∑
i∈T

1{F−1
∆t(F∆t−1(∆Yit−1)) ≤ y − F−1

Yt−1
(FYt−2(Yit−2))}

and

φ0(F ) = E
[
1{F−1

∆t(F∆t−1(∆Yt−1)) ≤ y − F−1
Yt−1

(FYt−2(Yt−2))}
∣∣∣Dt = 1

]
Let F0 = (F10, F20, F30, F40) where Fj0, for j = 1, . . . , 4, are distribution functions; we

assume that F10 and F20 have common, compact support U ⊂ R and that F30 and F40 have
common, compact support V ⊂ R. We also suppose that each Fj0 has a density function
fj0 that are uniformly bounded away from 0 and ∞ on their supports. Let (U2, V4) be two
random variables on U × V with joint distribution FU2,V4 . We assume that U2 ∼ F20 and
that V4 ∼ F40 and that the conditional distribution FU2|V4 has a continuous density function
fU2|V4 that is uniformly bounded from 0 and ∞. As a �rst step, we establish the Hadamard
Di�erentiability of φ0(F ). We do this in several steps. First, we use the following result due
to Callaway, Li, and Oka, (2016)

Lemma B.3. Let D = C(V)2 and de�ne the map Ψ : DΨ ⊂ D 7→ l∞(V) as

Ψ(F ) ≡ F−1
3 ◦ F4

where DΨ ≡ E × E where E is the set of all distribution functions with strictly positive,
bounded densities. Then, the map Ψ is Hadamard Di�erentiable at (F30, F40) tangentially to
D with derivative at (F30, F40) in ψ ≡ (ψ1, ψ2) ∈ D

Ψ′(F30,F40)(ψ) =
γ2 − γ1 ◦ F−1

30 ◦ F40

f30 ◦ F−1
30 ◦ F40
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Lemma B.4. Let A = C(U)× l∞(V). De�ne the map Λ : AΛ 7→ E with AΛ ≡ E×DΨ where
DΨ is given in Lemma B.3, given by

Λ(Γ)(y) = Γ1(y − Γ2)

Then, the map Λ is Hadamard di�erentiable at (F10, F
−1
30 ◦F40) tangentially to A with deriva-

tive in α ≡ (α1, α2) ∈ A given by

Λ′
(F10,F

−1
30 ◦F40)

(α)(y) = α1 ◦ F−1
30 ◦ F40 + F10(y − α2)

Proof. Let Λ1 : AΛ 7→ AΛ given by Λ1(Ξ) = (Ξ1, · − Ξ2). Lemma 3.9.25 of Van Der Vaart
and Wellner, (1996) implies that the map Λ1 is Hadamard di�erentiable at Ξ tangentially to
A with derivative in ξ = (ξ1, ξ2) ∈ A given by

Λ′1,Ξ(ξ) = (ξ1,−ξ2)

Let Λ2 : AΛ 7→ E given by Λ2(Υ) = Υ1 ◦ Υ2. Lemma 3.9.27 of Van Der Vaart and Wellner,
(1996) implies that Λ2 is Hadamard di�erentiable at Υ tangentially to A with derivative at
Υ in υ = (υ1, υ2) ∈ A given by

Λ′2,Υ(υ) = υ1 ◦Υ2 + Υ′1,Υ2
◦ υ2

By the chain rule for Hadamard di�erentiable maps

Λ′
(F10,F

−1
30 ◦F40)

(α) = Λ′
2,(F10,F

−1
30 ◦F40)

◦ Λ′
1,(F10,F

−1
30 ◦F40)

(α)

for α ∈ A.

Lemma B.5. Let B = C(U)2. De�ne the map Φ : BΦ ⊂ B 7→ l∞(U) with DΦ := E × DΛ

given by

Φ(Ω) = Ω−1
1 ◦ Ω2

Then, the map Φ is Hadamard di�erentiable at (F20, F10(· − F−1
30 ◦ F40)) tangentially to B

with derivative at (F20, F10(· − F−1
30 ◦ F40)) in ω := (ω1, ω2) ∈ B given by

Φ′
(F20,F10(·−F−1

30 ◦F40))
(ω) =

ω2 − ω1 ◦ F−1
20 ◦ F10 ◦ (· − F−1

30 ◦ F40)

f20 ◦ F−1
20 ◦ F10 ◦ (· − F−1

30 ◦ F40)

Proof. The proof follows by the same argument as in Lemma B.3.

Lemma B.6. Let D = C(U)2 × C(V)2 and let Y be a compact subset of R. Let φ : Dφ ⊂
D 7→ l∞(Y) be given by

φ(F )(y) = P(F−1
1 (F2(V2)) + F−1

3 (F4(V4)) ≤ y)

for F = (F1, F2, F3, F4) ∈ Dφ where Dφ = E4 where E is the set of all distribution functions
with strictly positive and bounded densities. Then, the map φ is Hadamard Di�erentiable at
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F0 tangentially to D with derivative in γ = (γ1, γ2, γ3, γ4) ∈ D given by

φ′F0
(γ)(y) = π′

F−1
20 ◦F10(y−F−1

30 ◦F40)
◦ Φ′

(F20,F10(y−F−1
30 ◦F40))

(γ2,Λ
′
(F10,F

−1
30 ◦F40)

(γ1,Ψ
′
(F30,F40)(γ3, γ4))

Proof. First, notice that

φ(F )(y) = P(V2 ≤ F−1
2 ◦ F1(y − F−1

3 ◦ F4(V4)))

= P(V2 ≤ Φ(F2,Λ(F1,Ψ(F3, F4)(V4)(y)))

De�ne the map π : Dπ 7→ l∞(Y) where Dπ is the set of all functions F−1
2 (F1(· − F−1

3 (F4)))
for (F1, F

−1
2 , F−1

3 , F4) ∈ E× E− × E− × E as

π(χ)(y) =

∫
FV2|V4(χ(v4)(y)|v4) dFV4(v4)

Then, for F ∈ D and y ∈ Y , φ = π ◦ Φ ◦ Λ ◦Ψ
Using the same arguments as in Callaway, Li, and Oka, (2016, Lemma A2), π is Hadamard

di�erentiable at χ ∈ Dπ tangentially to D with derivative at χ in ζ ∈ D given by

π′χ(ζ)(y) =

∫
ζ(v4)fV2|V4(χ(v4)|v4) dFV4(v4) (14)

By the chain rule for Hadamard di�erentiable functions (cf. Van Der Vaart and Wellner,
(1996, Lemma 3.9.3)),

φ′F0
(γ) = π′

F−1
20 ◦F10(·−F−1

30 ◦F40)
◦ Φ′

(F20,F10(·−F−1
30 ◦F40))

(γ2,Λ
′
(F10,F

−1
30 ◦F40)

(γ1,Ψ
′
(F30,F40)(γ3, γ4))

Plugging in the results from Lemmas B.3 to B.5 and Equation (14) implies

φ′F0
(γ) =

∫ γ1 ◦ F−1
30 ◦ F40(v4)− F10

(
· − γ4−γ3◦F−1

30 ◦F40(v4)

f30◦F−1
30 ◦F40(v4)

)
− γ2 ◦ F−1

20 ◦ F10(y − F−1
30 ◦ F40(v4))

f20 ◦ F−1
20 ◦ F10 ◦ (y − F−1

30 ◦ F40(v4))

× fV2|V4(F−1
20 ◦ F10(· − F−1

30 ◦ F40(v4)) dFV4(v4)

Next, let

vn(F ) =
√
n(φn(F )− φ0(F ))

Lemma B.7.

sup
y∈Y
|vn(F̂ )(y)− vn(F0)(y)| p−→ 0

Proof. Because Y is a compact set, we can show that |vn(F̂ )(y) − vn(F̂ )(y)| p−→ 0 for all
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y ∈ Y . Notice that, for any y ∈ Y ,

vn(F̂)(y)− vn(F0)(y) =
√
n(φn(F̂∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1,FYt−1 ,FYt−2)(y))

−
√
n(φn(F∆t,F∆t−1,FYt−1 ,FYt−2)(y)− φ0(F∆t,F∆t−1,FYt−1 ,FYt−2)(y))

Then, adding and subtracting the following terms:

φn(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)

φn(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)

φn(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)

implies

vn(F̂)(y)− vn(F0)(y)

=
√
n
{
φn(F̂∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φn(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)

−
(
φ0(F̂∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)

)}
(15)

+
√
n
{
φn(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φn(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)

−
(
φ0(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)

)}
(16)

+
√
n
{
φn(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φn(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)

−
(
φ0(F∆t,F∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)

)}
(17)

+
√
n
{
φn(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)− φn(F∆t,F∆t−1,FYt−1 ,FYt−2)(y)

−
(
φ0(F∆t,F∆t−1,FYt−1 , F̂Yt−2)(y)− φ0(F∆t,F∆t−1,FYt−1 ,FYt−2)(y)

)}
(18)

Each of the above terms converges to 0. We show below that this holds for Equation 15
while omitting the proof for the other terms � the arguments are essentially identical for
each one.

Proof.

√
n
{
φn(F̂∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φn(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)

−
(
φ0(F̂∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)− φ0(F∆t, F̂∆t−1, F̂Yt−1 , F̂Yt−2)(y)

)}
=
√
n

{(
1

n

n∑
i=1

1{F̂−1
1 (F̂2(V1i)) ≤ y − F̂−1

3 (F̂4(V2i))} −
1

n

n∑
i=1

1{F−1
1 (F̂2(V1)) ≤ y − F̂−1

3 (F̂4(V2i))}

)
−
(

E
[
1{F̂−1

1 (F̂2(V1)) ≤ y − F̂−1
3 (F̂4(V2))}

]
− E

[
1{F−1

1 (F̂2(V1)) ≤ y − F̂−1
3 (F̂4(V2))}

])}
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To show the result for Equation 15, Lemmas B.8.A, B.8.B and B.17 show that, for any y ∈
Y ,
√
n(φn(F̂1, F̂2, F̂3, F̂4)− φn(F1, F̂2, F̂3, F̂4)) and

√
n(φ0(F̂1, F̂2, F̂3, F̂4)− φ0(F1, F̂2, F̂3, F̂4))

are asymptotically equivalent which implies the result.

Lemma B.8.A. Let µ̂(y) = 1
nT

∑
i∈T F̂∆t(y−F−1

Yt−1
(FYt−2(Yit−2)))−F∆t(y−F−1

Yt−1
(FYt−2(Yit−2))).

Then, for all y ∈ Y
√
n
(
φn(F̂1, F̂2, F̂3, F̂4)(y)− φn(F1, F̂2, F̂3, F̂4)(y)− µ̂(y)

)
= op(1)

Proof.

√
n
(
φn(F̂1, F̂2, F̂3, F̂4)(y)− φn(F1, F̂2, F̂3, F̂4)(y)− µ̂(y)

)
=
√
n

{
1

n

n∑
i=1

[
1{F̂−1

1 (F̂2(V1i)) ≤ y − F̂−1
3 (F̂4(V2i))} − 1{F−1

1 (F̂2(V1i)) ≤ y − F̂−1
3 (F̂4(V2i))}

−
(
F̂1(y − F−1

3 (F4(V2i)))]− F1(y − F−1
3 (F4(V2i)))

)]}
≤ sup

v∈V2

√
n

∣∣∣∣∣ 1n
n∑
i=1

[
1{F̂−1

1 (F̂2(V1i)) ≤ y − F̂−1
3 (F̂4(v2))} − 1{F−1

1 (F̂2(V1i)) ≤ y − F̂−1
3 (F̂4(v2))}

−
(
F̂1(y − F−1

3 (F4(v2)))]− F1(y − F−1
3 (F4(v2)))

)]∣∣∣
= sup

v∈V2

√
n

∣∣∣∣∣ 1n
n∑
i=1

[
1{V1i ≤ F̂−1

2 (F̂1(y − F̂−1
3 (F̂4(v2))))} − 1{V1i ≤ F̂−1

2 (F1(y − F̂−1
3 (F̂4(v2))))}

−
(
F̂1(y − F−1

3 (F4(v2)))]− F1(y − F−1
3 (F4(v2)))

)]∣∣∣+ op(1)

= sup
v∈V2

√
n
∣∣∣F̂1(y − F̂−1

3 (F̂4(v2)))− F1(y − F̂−1
3 (F̂4(v2)))

−
(
F̂1(y − F−1

3 (F4(v2)))− F1(y − F−1
3 (F4(v2)))

)∣∣∣+ op(1)

= op(1)

Lemma B.8.B. Let µ(y) = E[F̂1(y−F−1
3 (F4(V2)))]−E[F1(y−F−1

3 (F4(V2)))]. Then, for all
y ∈ Y,

√
n
(
φ0(F̂1, F̂2, F̂3, F̂4)(y)− φ0(F1, F̂2, F̂3, F̂4)(y)− µ(y)

)
= op(1)
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Proof.

√
n
(
φ0(F̂1, F̂2, F̂3, F̂4)(y)− φ0(F1, F̂2, F̂3, F̂4)(y)− µ(y)

)
=
√
n
{

E
[
1{F̂−1

1 (F̂2(V1)) ≤ y − F̂−1
3 (F̂4(V2))}

]
− E

[
1{F−1

1 (F̂2(V1)) ≤ y − F̂−1
3 (F̂4(V2))}

]
−
(

E[F̂1(y − F−1
3 (F4(V2)))]− E[F1(y − F−1

3 (F4(V2)))]
)}

=
√
n
{

E
[
1{V1 ≤ F̂−1

2 (F̂1(y − F̂−1
3 (F̂4(V2))))}

]
− E

[
1{V1 ≤ F̂−1

2 (F1(y − F̂−1
3 (F̂4(V2))))}

]
−
(

E[F̂1(y − F−1
3 (F4(V2)))]− E[F1(y − F−1

3 (F4(V2)))]
)}

+ op(1)

≤ sup
v2∈V2

|F2(F̂−1
2 (F̂1(y − F̂−1

3 (F̂4(v2)))))− F2(F̂−1
2 (F̂1(y − F̂−1

3 (F̂4(v2)))))

−
(
F̂1(y − F−1

3 (F4(v2)))− F1(y − F−1
3 (F4(v2)))

)
+ op(1)

= sup
v2∈V2

|F̂1(y − F̂−1
3 (F̂4(v2)))− F̂1(y − F̂−1

3 (F̂4(v2)))

−
(
F̂1(y − F−1

3 (F4(v2)))− F1(y − F−1
3 (F4(v2)))

)
+ op(1)

= op(1)

Proof of Proposition 2 First, notice that

√
n(F̂Y0t|D=1(y)− FY0t|D=1(y)) =

√
n(φn(F̂ )− φ0(F0))

=
√
n(φn(F̂ )− φ0(F̂ ))−

√
n(φ0(F̂ )− φ0(F0))

=
√
n(φn(F0)− φ0(F0))− φ′F0

√
n(F̂ − F0) + op(1)

where the last equality holds by Lemmas B.6 and B.7. Then, the result holds by Proposition 1
and an application of the functional central limit theorem.

Proof of Theorem 3 Under the conditions stated in Theorem 3, the result follows
from the Hadamard di�erentiability of the quantile map (Van Der Vaart and Wellner, 1996,
Lemma 3.9.23(ii)) and by Proposition 2.

Proof of Theorem 4 The result holds because our estimate of the QTT is Donsker and
by Theorem 3.6.1 in Van Der Vaart and Wellner, (1996).

Asymptotic Normality of propensity score reweighted estimator Let F0 = (F̃∆Y0t|D=1,

F∆Y0t|D=1, FY0t−1|D=1, FY0t−2|D=1) and F̂ = ( ˆ̃F∆Y0t|D=1, F̂∆Y0t|D=1, F̂Y0t−1|D=1, F̂Y0t−2|D=1).
For W = (D,X,∆Y ), let

ϕ(W,∆) =
1{∆Y ≤ ∆|X}
p(1− p0(X))

(D − p0(X)) +
1−D
p

p0(X)

1− p0(X)
1{∆Yt ≤ ∆}
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Lemma B.9. Let K = {ϕ(W,∆)|∆ ∈ ∆Y}. K is a Donsker class.

Proof. Let K1 = {1{∆Y≤∆|X}
p(1−p0(X))

(D − p0(X))|∆ ∈ ∆Y}. K1 is Donsker by Donald and Hsu,

(2014, Lemma A.2). Let K2 = {1−D
p

p0(X)
1−p0(X)

1{∆Yt ≤ ∆}|∆ ∈ ∆Y}. K2 is Donsker because

1{∆Yt ≤ ∆}|∆ ∈ ∆Y} is Donsker, and 1−D
p

p0(X)
1−p0(X)

is a uniformly bounded and measurable

function so that we can apply Van Der Vaart and Wellner, (1996, Example 2.10.10). Then,
the result holds by Van Der Vaart and Wellner, (1996, Example 2.10.7).

Lemma B.10. Let F∆Y0t|D=1(∆, p̄) = E
[

1−Dt

p
p̄(X)

1−p̄(X)
1{∆Yt ≤ ∆}

]
denote the propensity

score reweighted distribution of the change in untreated potential outcomes for the treated
group for a particular propensity score p̄. Then, the pathwise derivative Γ(p0)(p̂− p0) exists
and is given by

Γ(∆, p0)(p̂− p0) = E

[
1−Dt

p

1{∆Yt ≤ ∆}
(1− p0(X))2

(p̂(X)− p0(X))

]
Proof.

F∆Y0t|D=1(∆, p0 + t(p̄− p0))− F∆Y0t|D=1(∆, p0)

t

= E

[
1−Dt

p
1{∆Yt ≤ ∆}

(
p0(X) + t(p̄(X)− p0(X))

1− p0(X)− t(p̄(X)− p0(X))
− p0(X)

1− p0(X)

)]/
t

= E

[
1−Dt

p
1{∆Yt ≤ ∆} (p̄(X)− p0(X))

(1− p0(X))2 − t(p̄(X)− p0(X)) + p0(X)t(p̄(X)− p0(X))

]
→ E

[
1−Dt

p
1{∆Yt ≤ ∆}(p̄(X)− p0(X))

(1− p0(X))2

]
as t→ 0

Lemma B.11. Under the Conditional Distributional Di�erence in Di�erences Assumption,
the Copula Stability Assumption, Assumptions 4.1, 4.2, 5.1 and 6.1 to 6.4,

|F∆Y0t|D=1(∆, p̂)− F∆Y0t|D=1(∆, p0)− Γ(∆, p0)(p̂− p0)|∞ = op(1)

Proof.

|F∆Y0t|D=1(∆, p̂)− F∆Y0t|D=1(∆, p0)− Γ(∆, p0)(p̂− p0)|∞

≤
∣∣∣∣E [1−Dt

p

(
p̂(X)

1− p̂(X)
− p0(X)

1− p0(X)
− (p̂(X)− p0(X)

(1− p0(X))2

)]∣∣∣∣
=

∣∣∣∣E [1−Dt

p

(
(p̂(X)− p0(X))2

(1− p̂(X))(1− p0(X))2

)]∣∣∣∣
≤ C sup

x∈X
|p̂(x)− p0(x)|2 → 0

where the last line holds because p is bounded away from 0 and 1, p0(x) is uniformly bounded
away from 1, and p̂(x) converges uniformly to p0(x). Then, the result holds because under
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Assumptions 6.1 to 6.4, supx∈X |p̂(x) − p0(x)| = op(n
−1/4) (Hirano, Imbens, and Ridder,

2003).

Lemma B.12. Under the Conditional Distributional Di�erence in Di�erences Assumption,
the Copula Stability Assumption, Assumptions 4.1, 4.2, 5.1 and 6.1 to 6.4

sup
∆∈∆Y

∣∣∣∣∣√n
(

(F̂∆Y0t|D=1(∆; p̂)− F∆Y0t|D=1(∆; p0))− 1

n

n∑
i=1

ϕ(Wi,∆)

)∣∣∣∣∣ = op(1)

Proof. For any y ∈ Y ,
√
n(F̂∆Y0t|D=1(∆; p̂)− F∆Y0t|D=1(∆; p0))

=
√
n
(
F̂∆Y0t|D=1(∆; p̂)− F̂∆Y0t|D=1(∆; p0)

)
+
√
n(F̂∆Y0t|D=1(∆; p0)− F∆Y0t|D=1(∆; p0))

=
√
n
(
F∆Y0t|D=1(∆; p̂)− F∆Y0t|D=1(∆; p0)

)
+
√
n(F̂∆Y0t|D=1(∆; p0)− F∆Y0t|D=1(∆; p0)) + op(1)

=
√
nΓ(δ, p0)(p̂− p0) +

√
n(F̂∆Y0t|D=1(∆; p0)− F∆Y0t|D=1(∆; p0)) + op(1)

=
1√
n

n∑
i=1

E[1{∆Yt ≤ ∆}|X = Xi, Dt = 0]

p(1− p0(Xi))
(Di − p0(Xi))

+
√
n(F̂∆Y0t|D=1(∆; p0)− F∆Y0t|D=1(∆; p0)) + op(1)

=
1√
n

n∑
i=1

ϕ(Wi,∆)− F∆Y0t|D=1(∆; p0) + op(1)

where the second equality holds from Vaart and Wellner, (2007) under Assumptions 6.1
to 6.4 and under Lemmas B.9 to B.11. The third equality holds Lemmas B.10 and B.11.
The last equality holds under Assumptions 6.1 to 6.4 and using the results on the series logit
estimator in Hirano, Imbens, and Ridder, (2003).

Proof of Proposition 3 For the counterfactual distribution of untreated potential out-
comes for the treated group,

√
n(F̂Y0t|D=1(y)− FY0t|D=1(y)) =

√
n(φn(F0)− φ0(F0)) + φ′F0

√
n(F̂ − F0) + op(1)

which follows from an argument similar to Lemma B.6 for the �rst term (where we now
also use the result in Lemma B.18); Lemma B.7 continues to hold and also because of the
Donsker result in Lemma B.9.

Proof of Theorem 5 The result follows under the conditions stated in the theorem,
by the Hadamard di�erentiability of the quantile map (Van Der Vaart and Wellner, 1996,
Lemma 3.9.23(ii)) and by Proposition 3.

Lemma B.13. Under the Conditional Distributional Di�erence in Di�erences Assumption,
the Copula Stability Assumption, Assumptions 4.1, 4.2, 5.1 and 6.1 to 6.4. For any ∆ ∈
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∆Y0t|Dt=1,

√
n
(

F̂
∗
∆Y0t|Dt=1(∆; p̂∗)− F̂∆Y0t|Dt=1(∆; p̂)

)
=
√
n
(

F̂
∗
∆Y0t|Dt=1(∆; p0)− F̂∆Y0t|Dt=1(∆; p0) + Γ(∆, p̂)(p̂∗ − p̂)

)
+ op(1)

Proof.

√
n
(

F̂
∗
∆Y0t|Dt=1(∆; p̂∗)− F̂∆Y0t|Dt=1(∆; p̂)

)
=
√
n
{(

F̂
∗
∆Y0t|Dt=1(∆; p̂∗)− F̂∆Y0t|Dt=1(∆; p̂∗)

)
−
√
n
(

F̂∆Y0t|Dt=1(∆; p0)− F̂∆Y0t|Dt=1(∆; p0)
)}

+
√
n
(

F̂
∗
∆Y0t|Dt=1(∆; p0)− F̂∆Y0t|Dt=1(∆; p0) + Γ(∆, p̂)(p̂∗ − p̂)

)
+
√
n
{(

F̂∆Y0t|Dt=1(∆; p̂∗)− F∆Y0t|Dt=1(∆; p̂∗)
)

−
√
n
(

F̂∆Y0t|Dt=1(∆; p̂)− F∆Y0t|Dt=1(∆; p̂)
)}

+
√
n
(
F∆Y0t|Dt=1(∆; p̂∗)− F∆Y0t|Dt=1(∆; p̂)− Γ(∆, p̂)(p̂∗ − p̂)

)
The �rst, third, and fourth terms in the �rst equality converge uniformly to 0. These hold
by Lemma B.9, by arguments similar to those in Lemma B.11 and because supx∈X |p̂∗(x)−
p̂(x)| = op(n

−1/4) which holds under our conditions on the propensity score. This implies
the result.

Lemma B.14. Let Ĝ∗X(x) =
√
n
(

F̂
∗
X(x)− F̂X(x)

)
and let

G̃p
Y0t|Dt=1(∆) =

√
n
(

F̂
p∗
∆Y0t|Dt=1(∆)− F̂

p

∆Y0t|Dt=1(∆)
)
. Under the Conditional Distributional

Di�erence in Di�erences Assumption, the Copula Stability Assumption, Assumptions 4.1,
4.2, 5.1 and 6.1 to 6.4.

(Ĝp
∆Y0t|Dt=1, Ĝ∆Yt−1|Dt=1, G̃

p
Y0t|Dt=1, ĜYt|Dt=1, ĜYt−1|Dt=1, ĜYt−2|Dt=1) ∗ (Wp

1,W
p
2,V

p
0,V

p
1,W

p
3,W

p
4)

where (Wp
1,W

p
2,V

p
0,V

p
1,W

p
3,W

p
4) is the tight Gaussian process given in Proposition 3.

Proof. The result follows from Lemma B.13 and by Van Der Vaart and Wellner, (1996,
Theorem 3.6.1).

Proof of Theorem 6 The result from Lemma B.14, by the Hadamard Di�erentiability
of our estimator of the QTT, and by the Delta method for the bootstrap (Van Der Vaart
and Wellner, 1996, Theorem 3.9.11).
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B.4 Additional Auxiliary Results

Lemma B.15. Assume Y is continuously distributed. Then,

√
n

(
1

n

n∑
i=1

1{F̂Y (Xi) ≤ q} − 1

n

n∑
i=1

1{Xi ≤ F̂−1
Y (q)}

)
p−→ 0

Proof. Because Y is continuously distributed,

1

n

n∑
i=1

(
1{F̂Y (Xi) ≤ q} − 1{Xi ≤ F̂−1

Y (q)}
)

=

{
0 if q ∈ Range(F̂Y )

− 1
n

otherwise

which implies the result.

Lemma B.16. Assume Y and Z are continuously distributed. Then,

√
n

(
1

n

n∑
i=1

1{F̂−1
Z (F̂Y (Xi)) ≤ z} − 1

n

n∑
i=1

1{Xi ≤ F̂−1
Y (F̂Z(z))}

)
p−→ 0

Proof. F̂−1
Z (F̂Y (Xi)) ≤ z ⇔ F̂Y (Xi) ≤ F̂Z(z) which holds by Van der Vaart, (2000, Lemma

21.1(i)). Then, an application of Lemma B.15 implies the result.

Lemma B.17.

√
n

{
1

n

n∑
i=1

FY (Zi)− E[FY (Z)]−

(
1

n

n∑
i=1

F̂Y (Zi)− E[F̂Y (Z)]

)}
= op(1) (19)

Proof. The result follows since Equation (19) is equal to

√
n

∫
Z

∫
Y
1{y ≤ z} d(F̂Y − FY )(y) d(F̂Z − FZ)(z)

which converges to 0.

Lemma B.18.

√
n

(
1

n

∑
i=1

1{F̂∆Y0t|Dt=1(Xi) ≤ q} − 1

n

n∑
i=1

1{Xi ≤ F̂−1
∆Y0t|Dt=1(q)}

)
p−→ 0

Proof. This follows because∣∣∣∣∣ 1n
n∑
i=1

(
1{F̂∆Y0t|Dt=1(Xi) ≤ q} − 1{Xi ≤ F̂−1

∆Y0t|Dt=1(q)}
)∣∣∣∣∣ ≤ C

n

where C is an arbitrary constant and the result holds because the di�erence is equal to 0 if

q ∈ Range(F̂∆Y0t|Dt=1) and is less than or equal to 1
np
×max

{
p̂(Xi)

1−p̂(Xi)

}
which is less than or
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equal to C
n
because p̂(·) is bounded away from 0 and 1 with probability 1 and p is greater

than 0. This implies the �rst part. The main result holds by exactly the same reasoning as
Lemma B.16.
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C Tables

Table 1: Summary Statistics

Treated Randomized Observational
mean sd mean sd nd mean sd nd

RE 1978 6.35 7.87 4.55 5.48 0.19 21.55 15.56 − 0.87
RE 1975 1.53 3.22 1.27 3.10 0.06 19.06 13.60 − 1.25
RE 1974 2.10 4.89 2.11 5.69 0.00 19.43 13.41 − 1.21
Age 25.82 7.16 25.05 7.06 0.08 34.85 10.44 − 0.71
Education 10.35 2.01 10.09 1.61 0.10 12.12 3.08 − 0.48
Black 0.84 0.36 0.83 0.38 0.03 0.25 0.43 1.05
Hispanic 0.06 0.24 0.11 0.31 − 0.12 0.03 0.18 0.09
Married 0.19 0.39 0.15 0.36 0.07 0.87 0.34 − 1.30
No Degree 0.71 0.46 0.83 0.37 − 0.21 0.31 0.46 0.62
Unemployed in 1975 0.60 0.49 0.68 0.47 − 0.13 0.10 0.30 0.87
Unemployed in 1974 0.71 0.46 0.75 0.43 − 0.07 0.09 0.28 1.16
Notes: RE are real earnings in a given year in thousands of dollars. ND denotes the nor-
malized di�erence between the Treated group and the Randomized group or Observational
group, respectively.
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Table 2: QTT Estimates for Job Training Program

0.7 Di� 0.8 Di� 0.9 Di�

PanelQTT Method

PanelQTT SL 3.21∗ 1.40 5.80∗ 3.53∗ 7.25∗ 4.05∗

(1.35) (1.34) (1.11) (1.23) (2.40) (1.75)

PanelQTT Cov 1.46 −0.34 2.59∗ 0.32 2.45 −0.74
(1.44) (1.22) (1.22) (1.43) (2.28) (1.51)

PanelQTT UNEM 3.32∗ 1.51 5.80∗ 3.53∗ 7.92∗ 4.72∗

(1.43) (1.37) (1.17) (1.24) (2.15) (1.54)

PanelQTT No Cov −0.77 −2.57∗ 0.58 −1.69 −0.25 −3.45∗
(1.27) (0.98) (0.99) (1.10) (2.09) (1.24)

Conditional Independence Method

CI SL 4.52∗ 2.71∗ 6.03∗ 3.76∗ 4.98 1.78
(1.47) (1.19) (1.92) (1.84) (4.00) (3.25)

CI Cov −5.13∗ −6.93∗ −6.97∗ −9.25∗ −10.54∗ −13.74∗
(1.23) (1.14) (1.40) (1.48) (2.64) (2.02)

CI UNEM 3.45∗ 1.64 5.14∗ 2.87 4.24 1.04
(1.40) (1.22) (1.54) (1.53) (3.22) (2.48)

CI No Cov −19.19∗ −20.99∗ −20.86∗ −23.14∗ −23.87∗ −27.07∗
(0.89) (0.75) (0.92) (1.08) (1.92) (1.12)

Change in Changes

CiC Cov 3.74∗ 1.94 4.32∗ 2.04 5.03∗ 1.84
(0.88) (1.01) (1.02) (1.23) (1.54) (1.76)

CiC UNEM 0.37 −1.44 1.84 −0.43 2.09 −1.10
(1.31) (1.35) (1.43) (1.45) (2.02) (1.96)

CiC No Cov 8.16∗ 6.36∗ 9.83∗ 7.56∗ 10.07∗ 6.87∗

(0.80) (0.60) (1.04) (1.08) (2.57) (1.97)

Quantile D-i-D

QDiD Cov 2.18∗ 0.37 2.85∗ 0.58 2.45 −0.75
(0.71) (0.91) (0.97) (1.23) (1.59) (1.77)

QDiD UNEM 1.10 −0.70 2.66∗ 0.39 2.35 −0.84
(1.13) (1.21) (1.26) (1.34) (1.87) (1.92)

QDiD No Cov 4.21∗ 2.41∗ 4.65∗ 2.38∗ 4.90∗ 1.70
(0.97) (0.87) (1.09) (1.04) (2.05) (1.31)

Experimental 1.80 2.27∗ 3.20

(0.93) (1.13) (2.04)

Notes: This table provides estimates of the QTT for τ = c(0.7, 0.8, 0.9) using a variety of methods on the observational
dataset. The reported estimates are in real terms and in 1000s of dollars. The columns labeled `Di�' provide the
di�erence between the estimated QTT and the QTT obtained from the experimental portion of the dataset. The
columns identify the method (PanelQTT, CI, CiC, or QDiD) and the set of covariates ((i) SL: Series Logit estimates
of the propensity score (these speci�cations are slightly di�erent as the CI method can condition on lags of real
earnings while the PanelQTT does not include lags of real earnings as covariates; more details of method in text) (ii)
COV: Age, Education, Black dummy, Hispanic dummy, Married dummy, and No HS Degree dummy; (iii) UNEM: all
covariates in COV plus Unemployed in 1975 dummy and Unemployed in 1974 dummy (iv) NO COV: no covariates).
The PanelQTT model and the CI model use propensity score re-weighting techniques based on the covariate set. The
CiC and QDiD method �residualize� (as outlined in the text) the outcomes based on the covariate set; the estimates
come from using the no covariate method on the �residualized� outcome. Standard errors are produced using 100
bootstrap iterations. The signi�cance level is 5%.
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D Figures

Figure 1: NLSY Dependence between Change and Initial Level of Annual Income
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This �gure reports Spearman's Rho (a summary measure of the copula) for the Change in
Annual Income and the Initial Annual Income using a sample of 2,283 individuals in the
National Longitudinal Study of Youths who have positive income in every even year from
1990-2012. Con�dence intervals are obtained using the block bootstrap.
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