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ABSTRACT 

We analyze the manipulability of competitive equilibrium allocation rules for the 

simplest many-to-many extension of Shapley and Shubik’s (1972) assignment game. 

First, we show that if an agent has a quota of one, then she does not have an incentive to 

manipulate any competitive equilibrium rule that gives her her most preferred 

competitive equilibrium payoff when she reports truthfully. In particular, this result 

extends to the one-to-many (respectively, many-to-one) models the Non-Manipulability 

Theorem of the buyers (respectively, sellers), proven by Demange (1982), Leonard 

(1983), and Demange and Gale (1985) for the assignment game. Second, we prove a 

“General Manipulability Theorem” that implies and generalizes two “folk theorems” for 

the assignment game, the Manipulability Theorem and the General Impossibility 

Theorem, never proven before. For the one-to-one case, this result provides a sort of 

converse of the Non-Manipulability Theorem. 
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1 INTRODUCTION 

We study two-sided matching markets where a finite number of sellers (or 

workers) meet a finite number of buyers (or firms). Each seller owns and is willing to 

sell a set of objects, and each buyer wants to buy several objects, up to her quota, from 

various sellers. Both types of agents derive utility from money and objects, and their 

utility functions are additively separable. The objects sold by each particular seller are 

identical, but sellers are heterogeneous, in the sense that the sellers’ object types are 

different from a buyer’s point of view. Buyers are also heterogeneous in terms of 

preferences because a buyer’s willingness to pay for an object may be different from 

that of another buyer. 

The many-to-many two-sided matching model that we analyze was proposed and 

studied in Sotomayor (1992), (1999), and (2007) and it was called the multiple-partners 

assignment game. It is the simplest generalization of the assignment game (Shapley and 

Shubik, 1972), a model where each seller owns and is willing to sell only one object, 

and each buyer wants to buy one object at most.4 

We call our market the buyer-seller market. Roughly speaking, a competitive 

equilibrium in a buyer-seller market is a vector of prices, one for each object, and an 

allocation of objects to buyers such that the demand of every buyer is satisfied, the 

number of a seller’s objects allocated is not larger than his supply and the prices of 

unsold objects are their valuation for the sellers. The set of equilibrium prices is non-

empty and is a complete lattice whose extreme points are the minimum and the 

maximum equilibrium prices, which are called buyer-optimal and seller-optimal 

equilibrium prices, respectively.5, 6 

Given a set of buyers and sellers with their respective quotas, a competitive 

equilibrium rule is a function that selects a unique competitive equilibrium allocation 

for every market. When a competitive equilibrium rule is adopted, information about the 

valuation of the agents is required. Therefore, the rule induces a strategic game. In this 

                                                            

4 Crawford and Knoer (1981) studied the linear model where the utility of the seller depends on the 
identity of the buyer. Kelso and Crawford (1982) extended the analysis to many-to-one matching models. 
5 The competitive one-to-one market was proposed in Gale (1960), who proved the existence of 
equilibrium prices in this market. Shapley and Shubik (1972) showed that the set of equilibrium prices 
form a complete lattice whose extreme points are the minimum and the maximum equilibrium prices. 
Sotomayor (2007) introduced the concept of a competitive equilibrium payoff for the multiple-partners 
assignment game and extended the previous results for this environment. She also proved that the set of 
competitive equilibrium payoffs is a subset of the set of stable payoffs and may be smaller than this set. 
6 Our results are established for the competitive market game. For the assignment game, they can easily 
be transferred to the cooperative model because the core coincides with the set of competitive equilibrium 
payoffs (Shapley and Shubik, 1972). 
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paper, we study the agents’ incentives to report truthfully when a competitive 

equilibrium rule is used. 

The first important result in the literature concerning agents’ incentives is the Non-

Manipulability Theorem for the assignment game, proposed by Demange (1982) and 

Leonard (1983). These authors proved that if the buyer-optimal (or seller-optimal) 

competitive equilibrium rule is used, then no buyer (or seller) can profit by misstating 

her (or his) true valuations.7  

The room for manipulation is large for agents who can buy or sell several objects 

and we show that the Non-Manipulability Theorem does not extend to the (many-to-

many) buyer-seller markets. However, we prove that an agent with a quota of one never 

has an incentive to manipulate any competitive equilibrium rule that yields her/his most 

preferred competitive equilibrium payoff when s/he reports truthfully. Moreover, we 

show that the buyer-optimal (respectively, seller-optimal) competitive equilibrium rule 

for a one-to-many (respectively, many-to-one) buyer-seller market is not only individual 

strategy-proof but also group strategy-proof for the buyers (respectively, sellers).  

The second important result in the literature is the Impossibility Theorem (Roth and 

Sotomayor, 1990). It provides an assignment game with one seller and n > 1 buyers 

where, under any competitive equilibrium rule, there is an agent who has an incentive to 

misrepresent her/his valuation. Demange and Gale (1985) presented several examples of 

assignment markets where a competitive equilibrium rule that yields the optimal 

competitive equilibrium for one side of the market provides incentives to an agent 

belonging to the other side to misrepresent her/his valuation. The main feature of all the 

examples is that the markets have more than one vector of equilibrium prices. 

It was believed that the phenomena observed in the previous examples can extend 

to any assignment market with more than one vector of equilibrium prices. Along the 

years, this belief has supported two “folk theorems” for the assignment game, which 

have never been proven in the literature. For the more general buyer-seller markets that 

we analyze, the two theorems can be expressed as follows. The Manipulability Theorem 

states that if the buyer-optimal (respectively, seller-optimal) competitive equilibrium 

rule is used in a market with more than one vector of equilibrium prices, then there is a 

                                                            

7 Demange and Gale (1985) extended the Non-Manipulability Theorem to a one-to-one buyer-seller 
model where the utilities are continuous in money, but are not necessarily linear. They also extended it to 
any competitive equilibrium rule that maps the market defined by the true valuations to the buyer-optimal 
(or seller-optimal) competitive equilibrium for this market. Under the assumption that there are no 
monetary transfers between buyers (respectively, sellers), these authors proved that such a rule is 
collectively non-manipulable by the buyers (respectively, sellers).  
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seller (respectively, buyer) who can profitably misrepresent his (respectively, her) 

valuations. The General Impossibility Theorem asserts that if a market has more than 

one vector of equilibrium prices, then every competitive equilibrium rule can be 

manipulated by some agent. 

We provide the proofs and formal statements of the two theorems, extended to the 

many-to-many buyer-seller market, aiming to fill this gap in the literature. Indeed, we 

give a simple proof of a stronger and more General Manipulability Theorem: Any agent 

who does not receive her/his optimal competitive equilibrium payoff under a 

competitive rule can profitably misrepresent her/his valuations, assuming the others tell 

the truth.  

Our theorems allow the following necessary and sufficient condition to be stated: 

an agent with a quota of one cannot manipulate a rule in a market if and only if the rule 

gives to her/him her/his most preferred equilibrium payoff. In particular, for the 

assignment game, if a competitive equilibrium rule is strategy-proof for the buyers 

(respectively, sellers), then the rule maps the profile of true valuations to the buyer-

optimal (respectively, seller-optimal) competitive equilibrium price. This result is 

mathematically unusual because it provides a way of concluding that a competitive 

equilibrium rule is, for example, strategy-proof for the buyers, based only on the direct 

examination of the agents’ payoffs obtained by the profile of true valuations.  

Miyake (1998) considers the buyer-optimal mechanism in the assignment game as 

a multi-item generalization of Vickrey’s second price auction. In a framework where the 

sellers’ valuations are fixed and known, he shows that the honest strategy profile is not 

a Nash equilibrium for the buyers, for any competitive equilibrium rule other than the 

buyer-optimal one. We strengthen Miyake’s (1998) result because we also take into 

account the sellers’ incentives and extend the result to many-to-many markets. Also, we 

provide a simpler proof. In a general one-to-many buyer-seller model with (a finite set 

of) contracts, Hatfield and Milgrom (2005) show that the buyer-optimal competitive 

equilibrium is strategy-proof for the buyers and Sakai (2011) shows that it is the unique 

equilibrium rule that is strategy-proof for the buyers. 

Demange and Gale (1985) consider the strategic equilibrium of the game induced 

by the buyer-optimal competitive equilibrium rule if the buyers play their sincere 

strategies and the sellers can only manipulate their valuations. Sotomayor (2000) 

analyzes the case in which the rule produces a competitive equilibrium payoff and there 

is no restriction on the strategies selected by the agents. Related results are proven for 
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the marriage market in Roth and Sotomayor (1990). Sotomayor (2012) proves a 

manipulability theorem and an impossibility theorem for the college admission market.8  

Several authors have studied the manipulability of envy-free allocation rules in fair 

allocation models, where a finite number of bundles are assigned to a finite number of 

agents. Although the notions of equilibrium in the assignment game and envy-free in 

the fair allocation models are different (in particular, there are no sellers in the second 

model), the agents’ incentives to manipulate are similar to those of the buyers in the 

assignment game. Sun and Yang (2003), Andersson and Svensson (2008), and Svensson 

(2009) characterize the set of envy-free and coalitionally strategy-proof allocation rules 

when a bundle of objects and a limited budget have to be distributed among agents. Any 

such rule fixes a maximal compensation for each object, and as a function of the 

preferences reported by the agents, a “maximal” (in the sense that it distributes the 

largest amount of money) envy-free allocation is chosen respecting the fixed 

compensations for any object. Andersson, Ehlers, and Svensson (2014) and Fujinaka 

and Wakayama (2015) have independently found some properties concerning the 

manipulation of envy-free allocation rules in the one-to-one fair allocation model that 

have a similar flavor as the properties that we provide for equilibrium rules in the many-

to-many matching problem. In particular, they show a result in the same spirit as our 

General Manipulability Theorem: any individual can manipulate an envy-free allocation 

rule if it does not guarantee him the best outcome in the set of envy-free allocations. 

Finally, the concern about buyers’ manipulation of their true willingness to pay is 

also present in the auction literature. In the English auction, which leads to the 

minimum equilibrium prices, buyers do not have an incentive to misrepresent their 

preferences when they all have a unit demand (Leonard, 1983, and Demange, Gale, and 

Sotomayor, 1986), or all the units auctioned are homogeneous and buyers have 

decreasing marginal utilities (Ausubel, 2004). On the other hand, Gul and Stacchetti 

(2000), building on the work of Kelso and Crawford (1982), provide a generalization of 

the English auction to situations where each buyer may wish to acquire several 

heterogeneous objects (and their preferences satisfy the gross substitutes condition). 

They show that a truthful revelation of preferences cannot be guaranteed in general.  

 

 

                                                            

8 For some analyses of the consequences of manipulation in the marriage and the college admission 
models, see Roth (1985), Kojima and Pathak (2009), Ma (2010), and Jaramillo, Kayi, and Klijn (2013). 
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2-THE FRAMEWORK AND PRELIMINARIES 

A market  M  involves two finite and disjoint sets of agents,  B  and  S, which can 

be thought of as being buyers and sellers, respectively. Set  B  has  m  buyers and set  S  

has  n  sellers. Each seller  sk  owns  t(sk)  identical objects, and we also denote  sk  the 

type of the objects owned by that seller. Each buyer  bj  has a quota  t(bj), representing 

the maximum number of objects she is allowed to acquire. No buyer is interested in 

acquiring more than one item from a given seller. We denote by  tB  and  tS  the array of 

numbers  t(bj)’s  and  t(sk)’s, respectively.9 

The value of an object  sk  is  rk  0  for seller  sk  and  ajk  0  for buyer  bj. The 

value  ajk  does not depend on the other objects that buyer  bj  acquires or on the other 

buyers acquiring objects of type  sk. Thus, if buyer  bj  purchases an object  sk  at price  

pk  rk, then her individual payoff in this transaction is  ujk = ajk  pk  and that of seller  

sk  is  vjk = pk  rk. We denote by  aj  the vector of the values of ajk’s; the valuation 

matrix of the buyers and the valuation vector of the sellers are denoted by  a  and  r,  

respectively. A trade is acceptable to seller  sk  and buyer  bj  if the potential gain from 

the trade between the two agents is non-negative, that is,  ajk  rk  0. 

For notational simplicity, a dummy buyer  b0  is available as well as a dummy seller  

s0  who owns “dummy objects”  s0  whose valuation and price is zero, that is,  r0 = p0 = 

0. The valuations of the dummy object are  aj0 = 0  and the dummy buyer’s valuations 

are  a0k = rk  for all  bj  B  and  sk  S. The quotas of the dummy agents are enough to 

guaranty that the real agents in the market can buy from, or sell to them as many objects 

as they need.  

A feasible matching assigns each object to one buyer (possibly the dummy buyer) 

so that each non-dummy buyer  bj  is assigned to an allowable set of objects for her, that 

is, a set with  t(bj)  objects that contains at most one object of the same seller (although 

it may include several dummy objects). If a seller’s object is assigned to a buyer, we say 

that both agents are matched. If an object is allocated to the dummy buyer, we say that it 

is left unsold. Formally,10 

                                                            

9 The situation where there is no restriction on the number of objects a buyer can acquire is a particular 
case of our model, by making the quota of every buyer equal to the total number of objects. However, the 
quota makes sense in many situations. Consider, for example, a market with three sellers,  s1,  s2  and  s3. 
Seller  sk  owns a number of cars of type  k,  for k = 1, 2, 3. Suppose that buyer  bj  has in hand an offer 
from a client who will purchase two cars, at most, of different types at the price of  ajk  for  k = 1, 2, 3,   
should he obtain them in the market.  Since buyer  bj  knows that he can earn  ajk  by reselling the car of 
type  k, he will not buy at a higher price. And his quota is obviously  2. 
10 For any set  A  BS, we use the notation  A  for the sum over all elements in  A. 
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Definition 2.1. A matching for  M  is identified with a matrix  x = (xjk)  of non-negative 

numbers, defined for all pairs  (bj, sk)  BxS  such that  xjk  {0, 1}  if bj  Bb0  and   

sk  Ss0. Under this identification,  xjk > 0  if and only if  bj  and  sk  are matched to 

each other. A matching  x  for  M  is feasible if it satisfies (i)  B xjk = t(sk)  for all          

sk  Ss0, (ii)  S xjk = t(bj)  for all  bj  Bb0  and (iii)  ajk  rk  0  if  xjk = 1. 

 

Given a feasible matching  x, we denote by  C(bj, x)  the bj’s  allowable set of 

objects allocated to  bj  at  x  and by  C(sk, x)  the set of buyers assigned to  sk  at  x. 

Also, we denote  a(a, r)jk  ajk  rk  if  ajk  rk  0  and  a(a, r)jk  0  otherwise.  

A feasible matching that maximizes total returns, in the sense that it generates the 

maximum surplus in the market  M, is called an optimal matching.  

 

Definition 2.2. A matching  x  for  M  is optimal if (i) it is feasible and                            

(ii)  BxS a(a, r)jk xjk   BxS a(a, r)jk x´jk  for all feasible matchings  x´. 

 

A feasible price vector  p  for market  M  is a function of  S  to  R  (the set of real 

numbers) that associates a price  pk  rk  to each  sk  S  (with  p0 = r0 = 0). A feasible 

allocation for  M  is a pair  (p, x), where  p  is a feasible price vector and  x  is a feasible 

matching.  

Given the feasible allocation  (p, x), the arrays of  bj’s  individual payoffs  ujk’s, 

feasibly defined for all  sk  C(bj, x), and the corresponding  sk’s  individual payoffs  

vjk’s, with  bj  C(sk, x), determine a feasible payoff vector  (u, v)  and  (u, v; x)  is called 

a feasible outcome. We say that  x  is compatible with  (u, v). Given a feasible outcome 

(u, v; x), we denote  uj(min)  and  vk(min)  the smallest individual payoff of buyer           

bj  and seller  sk, respectively:  uj(min) = Min {ujk; sk  C(bj, x)}  and  vk(min) =               

Min {vjk; bj  C(sk, x)}.11 

The value of an allowable set of objects  S’  to buyer  bj  is the sum of the values of 

the objects in  S’  to her. Thus, given a price vector  p, buyer  bj  B  has preferences 

over the allowable sets of objects that are completely described by the numbers  ajk’s: 

For any two allowable sets of objects  S’  and  S”, buyer  bj  prefers  S’  to  S”  at prices  

p  if  ∑S’ (ajk  pk) > ∑S” (ajk  pk). She is indifferent between these sets if  ∑S’ (ajk  pk) 
                                                            

11 uj(min)  and  vk(min)  can depend on the maching  x. However, as shown in Sotomayor (1992) and 
(1999), they are independent of the matching for competitive equilibrium outcomes. For notational 
simplicity, we do not include a reference to the matching  x  in the expressions  uj(min)  and  vk(min). 
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= ∑S” (ajk  pk). We denote by  D(bj, p)  the set of allowable sets of objects that buyer  bj  

most prefers at a given feasible price vector p and we call it the demand set of buyer  bj  

at  p. In this context,  D(bj, p) ≠   for all  bj  B. Also, if  S’  D(bj, p)  and  sk  S’, 

then  ajk  pk  0,  so the trade is acceptable to  sk  and  bj. 

A competitive equilibrium is a feasible price vector for the objects plus an 

allocation of each buyer to an allowable set of objects belonging to her demand set that 

respects the quotas of the sellers. Moreover, in a competitive equilibrium, the price of 

each unsold object is its value for his owner. Formally, 

 

Definition 2.3. A competitive equilibrium for  M  is a feasible allocation  (p, x)  such 

that (i)  C(bj, x)  D(bj, p)  for all  bj  B; (ii) if object  sk  is left unsold, then  pk = rk. 

 

If the allocation  (p, x)  is a competitive equilibrium, we say that  p  is an 

equilibrium price vector,  x  is a competitive matching, and  x  is compatible with  p  and 

vice-versa. The corresponding outcome  (u, v; x)  is called a competitive equilibrium 

outcome and  (u, v)  is called a competitive equilibrium payoff compatible with  x. 

Sotomayor (1992 and 1999) has shown that every competitive matching is optimal and 

that every optimal matching is compatible with any competitive equilibrium payoff. 

These results imply, in particular, that all competitive equilibria are Pareto optimal. 

The next proposition, whose proof is immediate, provides an alternative 

characterization of competitive equilibria. It implies, in particular, that every seller sells 

all of his items for the same price 

 

Proposition 2.1. The outcome  (u, v; x)  is a competitive equilibrium for  M  if and only 

if it is feasible and (i) vjk = vk(min)  for all  bj  C(sk, x), (ii) uj(min) + vk(min)  ajk  rk  

for all pairs  (bj, sk)  with  xjk = 0  and (iii)  uj(min)  0  and  vk(min)  0  for all  bj  B  

and  sk  S. 

 

Sotomayor (2007) proves that the set of competitive equilibrium payoffs is a 

complete lattice, under the partial order relation defined by the preferences of the 

sellers. Moreover, there is a conflict of interests between buyers and sellers with respect 

to two comparable competitive equilibrium payoffs. Thus, two particularly interesting 

outcomes in the set of competitive equilibrium outcomes exist: 
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Definition 2.4 A competitive equilibrium payoff is called a buyer-optimal competitive 

equilibrium payoff if every buyer weakly prefers it to any other competitive equilibrium 

payoff. We define a seller-optimal competitive equilibrium payoff similarly. 

 

The unique competitive price vector corresponding to the buyer-optimal 

(respectively, seller-optimal) competitive equilibrium payoff is smaller (respectively, 

larger) in each component than any other competitive price vector. It is called the 

minimum competitive price vector (respectively, maximum competitive price vector) and 

we denote it by  p   (respectively,  p ). Also, we let  (u , p   r)  and  (u , p   r)  be the 

buyer-optimal and the seller-optimal competitive equilibrium payoffs. 

 

3. COMPETITIVE EQUILIBRIUM RULES 

For a given set of agents and arrays of quotas  (B, S, tB, tS), a competitive 

equilibrium rule is a function that selects a unique competitive equilibrium allocation 

for every market, that is, for every possible valuation matrix for the buyers  a  and 

valuation vector for the sellers  r. We denote the market by  M(a, r). For each such 

market, the competitive equilibrium rule selects an equilibrium price vector  П(a, r)  and 

a competitive matching  X(a, r). Hence, we denote the competitive equilibrium rule by  

(П, X)  and the competitive equilibrium selected by the rule when it is applied to      

M(a, r)  by  (П(a, r), X(a, r)). The corresponding buyers’ and sellers’ payoff vectors are 

denoted by  u(a, r) and  v(a, r). Then, for all  (bj, sk)  BxS,  u(a, r)jk = ajk  П(a, r)k  and  

v(a, r)jk =  П(a, r)k  rk  if  X(a, r)jk > 0. 

If the competitive equilibrium rule  (П, X)  produces the buyer-optimal 

(respectively, seller-optimal) competitive equilibrium for every  M(a, r), the rule is 

called the buyer-optimal (respectively, seller-optimal) competitive equilibrium rule. 

When a competitive equilibrium rule  (П, X)  is adopted in a market  M(a, r)  and 

the agents are requested to report their valuations, then the rule induces a strategic game  

(П, X, a, r), where the set of players is the set of agents  BS; the profile of valuations 

is given by  (a, r); the set of strategies for buyer  bj  Bb0  is the set of vectors            

a’j  Rm
+, with a’0 = 0; the set of strategies for seller  sk  Ss0  is the set of numbers    

r’k  0, with  r’0 = 0; and the outcome function applied to the profile of strategies        

(a’, r’)  is given by  (П(a’, r’), X(a’, r’)). We say that the game  (П, X, a, r)  is the 

strategic game induced by  (П, X)  in market  M(a, r). The preferences of the players are 
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determined by their true valuations  (a, r).12 Thus, the true individual payoffs in the 

transaction between buyer  bj  and seller  sk  at allocation  (П(a’, r’), X(a’, r’))  are: 

Ujk(П(a’, r’), X(a’, r’); a, r) = ajk  Пk(a’, r’)  if  X(a’, r’)jk > 0, 

Vjk(П(a’, r’), X(a’, r’); a, r) = Пk(a’, r’)  rk  if  X(a’, r’)jk = 1  and  bj ≠ b0  and 

Vjk(П(a’, r’), X(a’, r’); a, r) = 0  if  X(a’, r’)jk > 0  and  bj = b0. 

Therefore, buyer  bj  prefers allocation  (П(a’, r’), X(a’, r’))  to allocation          

(П(a, r), X(a, r))  if 

∑C(bj, X(a’, r’)) Ujk(П(a’, r’), X(a’, r’); a, r) > ∑C(bj, X(a, r)) Ujk(П(a, r), X(a, r); a, r) 

and seller  sk  prefers allocation  (П(a’, r’), X(a’, r’))  to allocation  (П(a, r), X(a, r))  if 

∑C(sk, X(a, r)) Vjk(П(a’, r’), X(a’, r’); a, r) > t(sk) (Пk(a, r)  rk). 

 

Definition 3.1. Agent  y  BS  can manipulate the competitive equilibrium rule       

(П, X)  in the market  M(a, r)  if there is a profile of valuations  (a’, r’), which differs 

from  (a, r)  only in agent  y’s valuations, such that agent  y  is better off at allocation  

(П(a’, r’), X(a’, r’))  than at allocation  (П(a, r), X(a, r)). 

 

We say that a competitive equilibrium rule is strategy-proof for the buyers 

(respectively, strategy-proof for the sellers) if there is no buyer (respectively, seller) 

who can manipulate the rule in any market. 

 

4. THE NON-MANIPULABILITY THEOREMS 

According to the Non-Manipulability Theorem for the assignment game, the buyer-

optimal (respectively, seller-optimal) competitive equilibrium rule is strategy-proof for 

the buyers (respectively, sellers). In this section, we use examples to show that this 

theorem does not extend to the many-to-many market. On the other hand, we prove that 

no seller can manipulate the seller-optimal competitive equilibrium rule in markets 

where each seller only has one object to sell, even though the buyers may want to 

acquire more than one object; and similarly for the buyers. Indeed, we prove a stronger 

result that asserts that no group of agents with a quota of one can manipulate a rule that 

gives them their most-preferred competitive equilibrium payoff. 

                                                            

12 We will use “primes” to denote reported variables. For example,  a  is the true valuation matrix of the 
buyers, whereas  a’  is the reported valuation matrix of the buyers. 
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Example 4.1 illustrates a situation in which the seller-optimal competitive 

equilibrium rule is manipulated by a seller who does not sell all his objects following 

manipulation. We will show that this feature of our example is key. 

 

Example 4.1. Consider the market  M(a, r), where  B = {b1, b2, b0},  S = {s1, s0},         

a11 = 3,  a21 = 1,  t(b1) = t(b2) = 1,  t(s1) = 2,  and  r1 = 0. At the seller-optimal 

competitive equilibrium allocation, seller  s1  sells his two objects at a price of  1, so his 

total payoff is  2. However, if he misrepresents his valuation and reports  r’1 = 2.5  then, 

at any competitive equilibrium allocation for  M(a, r’), he only sells one object, to buyer  

b1, and obtains a true payoff of  2.5.  Therefore,  s1  can manipulate the seller-optimal 

competitive equilibrium rule. 

 

Similarly, Example 4.2 shows that there are markets where the buyers may have 

incentives not to report their true valuations if the buyer-optimal competitive 

equilibrium rule is applied. 

 

Example 4.2. Consider the market  M(a, r)  with  B = {b1, b2, b0},  S = {s1, s2, s3, s0},  

a1 = (7, 6, 4, 0),  a2 = (8, 6, 3, 0),  r1 = r2 = r3 = 0, t(b1) = 2  and  t(b2) = t(s1) = t(s2) = 

t(s3) = 1. Under the buyer-optimal competitive equilibrium, buyer  b1  is matched to  s2  

and  s3  and she receives individual payoffs of  5  and  4  from these transactions, 

whereas buyer  b2  is matched to  s1  and receives a payoff of  5. But if buyer  b1  reports 

a1’ = (7, 6, 7, 0)  then, under the new buyer-optimal competitive equilibrium,  b1  pays  

0  to sellers  s2  and  s3. Hence, she gets  6  and  4  under her true individual payoffs 

instead of  5  and  4 and she has an incentive to misrepresent her valuations. 

 

In Example 4.2, buyer  b1  can manipulate the rule because she buys two objects 

and she can influence the price of one of the objects (s2) by reporting a different 

valuation for some other object (s3). We will show that a buyer with a quota of one does 

not have an incentive to manipulate any competitive equilibrium rule in a market where 

she obtains her most-preferred competitive equilibrium payoff; in particular, she never 

has an incentive to manipulate the buyer-optimal competitive equilibrium rule. 

Theorem 4.1 states a general non-manipulability result. It considers deviations by 

groups of buyers and sellers. It asserts that if a group of agents with a quota of one 

misrepresents their valuation then at least one of the agents would be as well-off under 
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her/his most preferred competitive equilibrium outcome for the true market than in the 

outcome selected by the rule for the reported market. 

 

Theorem 4.1. Consider a market  M(a, r)  and a vector of reported valuations  (a’, r’). 

Let  B’S’  be the set of agents who misrepresent their valuations, where  B’  B,         

S’  S, and suppose that  t(bj) = 1  and  t(sk) = 1  for all  bj  B’  and all  sk  S’. Let  

(u’, v’; x’)  be any competitive equilibrium outcome for the market  M(a’, r’)  and       

(U, V; x’)  the true outcome under  (u’, v’; x’). Then, there exists a competitive 

equilibrium outcome  (u, v; x)  for  M(a, s)  such that either  k ujk   k Ujk  for at least 

one  bj  B’  or  j vjk   j Vjk  for at least one  sk  S’.   

Proof. The proof of Theorem 4.1 requires some preliminaries. 

Consider  M(a) M(a, r), where  ajk = max{ajk  rk, 0}  for all  (bj, sk)  BxS. We 

define a market related to  M(a)  in which each buyer  bj  (resp., each seller  sk) with a 

quota  t(bj)  (resp.,  t(sk)) is “replicated”  t(bj)  (resp.,  t(sk)) times so that each non-

dummy agent has a quota of one in the new market. We denote  bj(q)  (resp.,  sk(h)) the       

q-th (resp., h-th) copy of  bj  (resp.,  sk),  B#  {bj(1), bj(2),…, bj(t(bj)); bj  Bb0}{b0}  

and  S#  {sk(1),…, sk(t(sk)); sk  Ss0}{s0}. Also, let  t(bj(q)) = 1  and  t(sk(h)) = 1  for all  

bj(q)  B#b0  and  sk(h)  S#s0. 

In the proof, we use the following simplification. If some agent, say buyer  bj, has a 

quota of one, then we will identify her individual payoff  ujk  under  (u, v)  with her 

array of individual payoffs  uj = {ujk}, and we will refer to  uj  as  bj’s payoff  under       

(u, v). 

Definition 4.1. Let  x  be a feasible matching for  B  and  S. The x-related matching  x#  

for  B#  and  S#  is defined as the matching that satisfies the following conditions: 

(i) if  xjk = 1  then  q,h x#j(q)k(h) = 1; 

(ii) if  x#j(q)k(h) = 1  then  xjk = 1; 

(iii) B# x#j(q)k(h) = 1  for all  sk(h)  S#  and  S# x#j(q)k(h) = 1  for all  bj(q)  B#. 

Thus, if  bj  buys  sk  at  x, then one copy of  bj,  say  bj(q), buys one copy of  sk, say  

sk(h), under  x#. Moreover, no other pair in  B#xS#  can enter a partnership at  x#. 

For each pair  (a, x), where  x  is an optimal matching for  M(a), we define the  

|B#|x|S#|-matrix  a#  by 

a#j(q)k(h) = 0  if  xjk = 1  but  x#j(q)k(h) = 0;  a#j(q)k(h) = ajk  otherwise.  

The functional relation defined above is denoted by  (a, x)  and the related market 

is  M(a#). Clearly,  x#  is an optimal matching for  M(a#). 

The following Key lemma is due to Sotomayor (1992). 
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Lemma 4.1 (Key Lemma). Let  x  be an optimal matching for  M(a). Let  x#  be the     

x-related matching  and  a# = (a, x). Consider a feasible matching  x’  for  M(a). Then 

there exists a feasible matching  x’#   for  M(a#)  such that 

(i) if  x’jk = 1  then  q,h x’#j(q)k(h) = 1; if also  xjk = 1  then  x’#j(q)k(h) = 1  if  

x#j(q)k(h) = 1  and  x’#j(q)k(h) = 0  if  x#j(q)k(h) = 0; 

(ii) if  x’#j(q)k(h) = 1  then  x’jk = 1  and  aj(q)k(h) = ajk; 

(iii) B# x’#j(q)k(h) = 1  for all  sk(h)  S#  and  S# x’#j(q)k(h) = 1  for all  bj(q)  B#.  

The matching  x’#  defined in Lemma 4.1 is an x’-related matching. It can be easily 

shown that  x’  is optimal for  M(a)  if and only if  x’#  is optimal for  M(a#). 

The connection between the feasible outcomes and the competitive equilibrium 

outcomes for  M(a#)  and  M(a)  is given by Lemma 4.2. below. (The proofs of the 

lemmas are in the Appendix.) 

Lemma 4.2. Let  x  be an optimal matching for  M(a),  x#  the matching obtained from  

x  by Definition 4.1, and  a# = (a, x). Also, let  x’  be a feasible matching for  M(a)  

and  x’#  the x’-related matching defined by the Key Lemma. Consider the outcome     

(u’, v’; x’)  for  M(a)  and the outcome  (u’#, v’#; x’#) for  M(a#)  and suppose that they 

satisfy the following relation: (1) for all pairs  (bj(q), sk(h))  B#xS#  such that  x’#j(q)k(h) 

= 1  then  u’#j(q) = u’jk  and  v’#k(h) = v’jk; (2) for all  bj(q)  B# (resp., sk(h)  S#) such 

that  x’#j(q)0 = 1  (resp.,  x’#0k(h)= 1) then  u’#j(q) = u’j0 = 0  (resp., v’#k(h) = v’0k = 0). 

Then, 

(i)  (u’, v’; x’)  is a feasible outcome for  M(a)  if and only if  (u’#, v’#; x’#)  is a 

feasible outcome for  M(a#); 

(ii) if  (u’, v’; x’)  is a competitive equilibrium outcome for  M(a), then              

(u’#, v’#; x’#)  is a competitive equilibrium outcome for  M(a#); 

(iii) if  (u’#, v’#; x’#)  is a competitive equilibrium outcome for  M(a#)  and  

v’#k(1) = v’#k(2) =…= v’#k(t(sk))  for all  sk  S, then  (u’, v’; x’)  is  a competitive 

equilibrium outcome for  M(a). 

Lemma 4.2 does not relate the seller-optimal competitive equilibrium payoff of  

M(a#)  and the seller-optimal competitive equilibrium payoff of  M(a). Lemma 4.3 

states that the sellers with a quota of one have the same payoff in both outcomes. 

Lemma 4.3. Let  (u , v ; x)  be a seller-optimal competitive equilibrium outcome for  

M(a)  and  (u, v; x#)  be a seller-optimal competitive equilibrium outcome for  M(a#), 

where a# = (a, x). Then,  v k = vk  for all  sk  S  with  t(sk) = 1. 

Lemma 4.4 (Blocking Lemma). Let  (u, v; x)  be a feasible outcome for  M(a#)  and 

 B+  {bj(q)  B#; uj(q) > u+
j(q)},  S+  {sk(h)  S#; vk(h) > v+

k(h)}, 
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where  (u+, v-)  and  (u-, v+)  are the buyer-optimal and the seller-optimal competitive 

equilibrium payoffs for  M(a#), respectively. If  (B+S+)    then there exist  bj(q)  

B#\B+  and  sk(h)  S#\S+  such that  (bj(q), sk(h))  blocks  (u, v; x). 

Our last lemma is an immediate consequence of Corollary 1 of Sotomayor (2007).  

Lemma 4.5. Let  (u , v ; x)  be a buyer-optimal competitive equilibrium outcome for  

M(a)  and  (u, v; x#)  the related competitive equilibrium outcome for  M(a#)  according 

to Lemma 4.2, where a# = (a, x). Then,  (u, v; x#)  is a buyer-optimal competitive 

equilibrium outcome for  M(a#). 

We can now proof Theorem 4.1. Denote  a’jk = max{a’jk  r’k, 0}  for all  (bj, sk)  

BxS  and let  (u , v ; x)  and  (u , v ; x)  be a buyer-optimal and seller-optimal 

competitive equilibrium outcomes  for  M(a). Suppose that  B’S’    and all agents 

in  B’S’  are strictly better off at  (u’, v’; x’)  than at any competitive equilibrium 

outcome for the original market  M(a). Then, Uj > u j  for all  bj  B’  and  Vk > v k  for 

all  sk  S’. 

We claim that  (U, V; x’)  is pairwise-feasible for  M(a). In fact, if  x’jk = 1  then 

 Ujk = u’jk  0  if  bj  B’; 

 Ujk = Uj > u j  0  if  bj  B’; 

 Vjk = v’jk  0  if  sk  S’; 

 Vjk = Vk > v k  0  if  sk  S’. 

Therefore, 0  Ujk + Vjk = (ajk  v’jk  r’k) + (v’jk + r’k  rk) = ajk  rk. Then,  ajk  rk  0  

which implies that  ajk = ajk – rk  and  Ujk + Vjk = ajk. Thus,  (U, V; x’)  is pairwise-

feasible for  M(a). Consequently,  (U, V; x’)  is feasible for  M(a). 

Let  a# = (a, x). Since  x’  is feasible for  M(a), the Key Lemma implies that there 

exists a feasible matching  x’#  for  M(a#)  related to  x’  such that (1)  x’jk = 1  and  

a#j(q)k(h) = ajk  if  x’#j(q)k(h) = 1, and (2)  x’#j(q)k(h) = 1  for some  bj(q)  B#  and  sk(h)  S#  

if  x’jk = 1. Let  (U#, V#, x’#)  be the feasible outcome in  M(a#)  related to  (U, V; x’)  

according to Lemma 4.2. Also, let  (u #, v #; x#)  and  (u #, v #; x#)  be the competitive 

equilibrium outcomes related to  (u , v ; x)  and  (u , v ; x), respectively, according to 

Lemma 4.2. Now take  B+  and  S+  as defined in Lemma 4.4: 

 B+  {bj(q)  B#; U#j(q)) > u+
j(q))}  and  S+  {sk(h)  S#; V#k(h) > v+

k(h)}, 

where  (u+, v-)  and  (u-, v+)  are the buyer-optimal and the seller-optimal competitive 

equilibrium payoffs for  M(a#), respectively. 

Lemma 4.5 implies that  (u #, v #; x#) = (u+, v-; x#). By hypothesis,  Uj > u j  if         

bj  B’. Then, by identifying  bj  with his single copy  bj(1)  we can write  U#j = Uj > u j = 

u #j = u+
j. Thus, if  B’    then  B’  B+  and so  B+S+  .  
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If  B’ =   then  S’  . Since  t(sk) = 1  for all  sk  S’, it follows from Lemma 4.3 

that  v k = v+
k  for all  sk  S’. Then,  S’  S+ and so  B+S+  . 

Therefore, we can apply Lemma 4.4 and there exists a pair  (bj(q), sk(h))  (B#\B+) x 

(S#\S+)  with  x’#j(q)k(h) = 0  such that  U#j(q)f(z) + V#g(y)k(h) < a#j(q)k(h)  where  {f(z)} = 

C(bj(q), x’#)  and  {g(y)} = C(sk(h), x’#). Since  bj  is not in  B’  and  sk  is not in  S’  we 

have that these agents did not misrepresent their valuations. Then, 

 U#j(q)f(z) = Ujf = u’jf, 

 V’#g(y)k(h) = Vgk = v’gk, and 

 ajk = a’jk. 

Given that either  a#j(q)k(h) = ajk  or  a#j(q)k(h) = 0, it follows that  a#j(q)k(h)  ajk = a’jk. Thus,  

0  u’j(min) + v’k(min)  u’jf + v’gk = U#j(q)f(z) + V#g(y)k(h) < a#j(q)k(h)  a’jk = a’jk  r’k, 

where the last equality follows from the fact that  a’jk > 0. But then  u’j(min) + v’k(min) 

< a’jk  r’k, which contradicts the fact that  (u’, v’; x’)  is a competitive equilibrium 

outcome for  M(a’, r’), and the proof is complete. 

 

Theorem 4.1 is a strong result in the sense that it provides information about any 

possible deviation by any group of agents with a quota of one. It leads to results on the 

incentives to manipulate of individual agents with a quota of one. It also allows us to 

derive results concerning the strategy-proofness of certain rules in many-to-one and 

one-to-many markets. 

Theorem 4.2 states the first consequence of Theorem 4.1: no seller with a quota of 

one can manipulate in  M(a, r)  any competitive equilibrium rule  (П, X)  that associates  

(a, r)  with a competitive equilibrium that gives the seller his optimal competitive 

equilibrium payoff. Similarly, no buyer with a quota of one can manipulate any 

competitive equilibrium rule  (П, X)  that associates  (a, r)  with a competitive 

equilibrium that gives the buyer her optimal competitive equilibrium payoff. We note 

that it is not required that  (П, X)  is the seller-optimal, respectively the buyer-optimal, 

competitive equilibrium rule. 

 

Theorem 4.2. Let  M = M(a, r)  be a market and  (П, X)  a competitive equilibrium rule. 

(i) Consider  sk  S  with  t(sk) = 1. If the competitive equilibrium outcome 

associated with  (П(a, r), X(a, r)  gives  sk  his most-preferred competitive equilibrium 

payoff then  sk  cannot manipulate  (П, X). In particular,  sk  cannot manipulate the 

seller-optimal competitive equilibrium rule in  M. 
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(ii) Consider  bj  B  with  t(bj) = 1. If the competitive equilibrium outcome 

associated with  (П(a, r), X(a, r)  gives  bj  her most-preferred competitive equilibrium 

payoff then  bj  cannot manipulate  (П, X). In particular,  bj  cannot manipulate the 

buyer-optimal competitive equilibrium rule in M. 

Proof. The proof follows directly from Theorem 4.1 by considering  S’ = {sk}  and       

B’ =   in (i), and S’ =   and  B’ = {bj}  in (ii).  

 

As a corollary of Theorem 4.2, no seller can manipulate the seller-optimal 

competitive equilibrium rule in many-to-one models, that is, in markets where all sellers 

have a quota of one. Similarly, in markets where all buyers have a quota of one, no 

buyer can manipulate the buyer-optimal competitive equilibrium rule. 

 

Corollary 4.1. (i) The seller-optimal competitive equilibrium rule is strategy-proof for 

the sellers in many-to-one buyer-seller markets. 

(ii) The buyer-optimal competitive equilibrium rule is strategy-proof for the buyers 

in one-to-many buyer-seller markets. 

 

Corollary 4.1 states that the competitive equilibrium rule which is optimal for one 

side of the market is individual strategy-proof for the agents in that side of the market. 

We can use Theorem 4.1 to go further and show that the rules are also group strategy-

proof.13 We now provide the precise definition of group strategy-proof for the sellers we 

are using in this paper. The definition of group strategy-proof for the buyers is similar. 

 

Definition 4.2. The rule  (П, X)  is manipulable in market  M(a, r)  by coalition  S’  S  

if there exists  r’  with  r’k = rk  for all  sk  S\S’  such that all sellers in S’ strictly prefer  

(П(a, r’), X(a, r’))  to  (П(a, r), X(a, r)). The rule   (П, X)  is group strategy-proof for 

the sellers if it is not manipulable by any coalition  S’  S  in any market  M(a, r). 

 

Theorem 4.3. (i) The seller-optimal competitive equilibrium rule is group strategy-

proof for the sellers in many-to-one buyer-seller markets. 

(ii) The buyer-optimal competitive equilibrium rule is group strategy-proof for the 

buyers in one-to-many buyer-seller markets. 
                                                            

13 Barberà, Berga, and Moreno (forthcoming) show the equivalence between individual strategy-proof 
and group strategy-proof if the domain and the rule satisfy three properties. We cannot use their results 
because our framework does not satisfy the properties. 
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Proof. The proof follows directly from Theorem 4.1 by taking into account that all 

sellers have a quota of one in many-to-one markets and all buyers have a quota of one in 

one-to-many markets.  

 

We close this section with a result that helps understand why a buyer with a quota 

of one never has an incentive to manipulate the buyer-optimal competitive equilibrium 

rule. The result is interesting in itself because it shows that the payoff of a buyer with a 

quota of one in the buyer-optimal competitive equilibrium rule is the difference between 

the “total value” of the market and the “total value” of the market without that buyer. 

This result implies that, at the buyer-optimal competitive equilibrium allocation, the 

price charged to a buyer with a quota of one does not depend on his statement of 

valuation. 

Theorem 4.4 requires some notation: For a market  M = M(a, r)  and an optimal 

matching  x  for  M, we set  V(a, r)  BxS a(a, r)jk xjk. Similarly, for the market  Mj  that 

involves the sets of agents  B–{bj}  and  S  with the same valuations as in M, and an 

optimal matching  x’  for  Mj, we set  Vj(a, r)  (B–{bj})xS a(a, r)jk x’jk. 

 

Theorem 4.4. Let  (u , v ; x)  be a buyer-optimal competitive equilibrium outcome for           

M(a, r). Then,  u jk = V(a, r) – Vj(a, r), for all  bj  B  with  t(bj) = 1  and  sk  S  with  

xjk = 1. 

Proof. We use the following lemma, which is proven in the Appendix: 

Lemma 4.6. Let  (u ,  v ; x)  be a buyer-optimal competitive equilibrium outcome for      

M(a, r). Let  S’  S  with  S’    be such that  v k > 0  for all  sk  S’. Then,                   

(i) x(S–S’)  {b0}  and (ii) there is a pair  (bj, sk)  x(S–S’)xS’,  with  bj  b0  and          

xjk = 0,  and a seller  st  S–S’ with  xjt = 1, such that  u jt + v k = ajk – rk. 

Construct a graph whose vertices are  BS  with two types of arcs. If  xjk = 0  and  

u j(min) + v k = ajk – rk  there is an arc from  sk  to  bj; if  xjk = 1  and  u j(min) = u jk  

there is an arc from  bj  to  sk. Let  b1  B  such that  t(b1) = 1. Let  s1  S  such that       

x11 = 1. Then there is an arc from  b1  to  s1. We claim that there is an oriented path 

starting from  b1  and ending at a seller with a zero payoff (this seller might be  s0). To 

see this, suppose there is no such a path. Let  B’S’  be all the vertices that can be 

reached by a directed path starting from  b1. Then,  v k > 0  for all  sk  S’, so  s0  S’  

and  bj  b0  for all  bj  B’. Also, if  bj  B’  then  bj  fills her quota, since otherwise  

u j(min) = u j0 = 0  and then there is an arc from  bj  to  s0, so  s0  S’, contradiction. By 

Lemma 4.1,  x(S–S’)  b0  and there is a pair  (bj, sk)  x(S–S’)xS’, with  bj  b0  and     
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xjk = 0,  and  st  S–S’  with  xjt = 1, such that  u jt + v k = ajk – rk. But then  ajk – rk =    

u jt + v k  u j(min) + v k  ajk – rk, so  u j(min) + v k = ajk – rk  and there is an arc from  

sk  to  bj, which implies that  bj B’,  and  u jt = u j(min), so there is an arc from  bj  to  

st,  which implies that  st  S’,  which contradicts the fact that  st  S–S’. 

Now consider a directed path  c  starting on  b1  and ending at a seller  sh  with a 

zero payoff (note that  sh  might be  s1). That is,  c = (b1, s1, b2, s2, b3, …,sh-1, bh, sh), 

where  xdd = 1,  u d(min) = u dd  and  u d(min) + v d–1 = add–1 – rd–1  for  d = 1,…,h. 

Take the matching  x’  in  M’ = M1(a, r)  that assigns  s1  to  {b2}(C(s1, x)–{b1}),  

s2  to {b3}(C(s2, x)–{b2}),…,  sh–1 to  {bh}(C(sh–1, x)–{bh–1})  and  sh  to                

{b0}(C(sh, x)–{bh})  if  sh  s0, and that otherwise agrees with  x  on every agent in   

B–{b1}S  that is not in the path. Define  u*  as follows: if  bd  c  and  bd  b1  then  

u*dd–1 = u dd  and  u*dk = u dk  if  sk  C(bd, x)–{sd}; if  bd  c. Thus,  u*dk = u dk  if       

sk  C(bd, x). From the construction of  x’  and  u*  it follows that  (u*, v ; x’)  is a 

competitive equilibrium outcome for  M’, which implies that  x’  is an optimal matching 

for  M’. Therefore,  bjb1,skS a(a, r)jk x’jk = V1(a, r). Then we can write  

bjb1,skS a(a, r)jk x’jk = bjB–{b1},skC(bj, x’)  u*jk + S v k = 

bjB–{b1},skC(bj, x’) u jk + S v k = V(a, r) – u 11. 

Hence,  u 11 = V(a, r) – V1(a, r).  

 

According to Theorem 4.4, if  t(bj) = 1  and  xjk = 1  for  bj  B,  sk  S  and optimal 

matching  x, then 

v k = a(a, r)jk – u jk = a(a, r)jk – V(a, r) + Vj(a, r) = Vj(a, r) – B–{bj},S a(a, r)it xit. 

Therefore, buyer  bj  acquires object  sk  at the price 

pk = Vj(a, r) – B–{bj},S a(a, r)it xit + rk                                         (2) 

that is independent of any valuations of  bj. So, as in a Vickrey second-price auction for 

a single object, the price paid by a buyer with a quota of one is not determined by the 

valuation she states. Thus, she does not have an incentive to manipulate her valuation in 

the buyer-optimal competitive equilibrium rule. 

 

5. THE MANIPULABILITY THEOREMS 

In this section, we prove the two “folk theorems” stated in the introduction as 

corollaries of the General Manipulability Theorem. This theorem states that any agent 

who does not get her/his optimal equilibrium payoff in a market according to a 

competitive equilibrium rule can manipulate the rule. In these results, we analyze the 
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agents’ equilibrium behavior when the buyer-seller market has several competitive price 

vectors.  

 

Theorem 5.1. (General Manipulability Theorem) Let  (П, X)  be any competitive 

equilibrium rule. Let  M  M(a, r)  be a market with more than one competitive price 

vector. Then any buyer (respectively, seller), whose vector of individual payoffs at  

(П(a, r); X(a, r))  is different from her (respectively, his) vector of individual payoffs 

under the buyer-optimal (respectively, seller-optimal) competitive equilibrium for  M  

can manipulate  (П, X)  in  M. 

Proof. We write as lemmas some results that are proven in Sotomayor (1992) and 

Sotomayor (1999), respectively. 

Lemma 5.1. If  (u, v; x)  is a competitive equilibrium outcome and  x’  is an optimal 

matching for M, then: 

(i) ujk = uj(min)  for all  bj  B  and  sk  C(bj, x)C(bj, x’). 

(ii) There exists a competitive equilibrium outcome  (u’, v; x’)  such that  u’j(min) = 

uj(min)  and  u’jk = ujk  for all  bj  B  and  sk  C(bj, x)C(bj, x’). 

(iii) (u, v; x’)  is also a competitive equilibrium outcome for M. 

Lemma 5.2. If  (u, v; x)  is a competitive equilibrium outcome for M, then  x  is an 

optimal matching for M. 

We now prove the theorem. The competitive equilibrium outcome if agents select 

the profile  (a, r)  is  (u(a, r), П(a, r) – r; X(a, r)). Let  (u , p   r)  and  (u , p   r)  be 

the buyer-optimal and the seller-optimal competitive equilibrium payoffs for  M. 

Lemma 5.2 implies that  X(a, r)  is optimal and Lemma 5.1 (iii) implies that it is 

compatible with  (u , p   r)  and  (u , p   r). Furthermore,  p  ≤ p ≤ p , where  p  is the 

equilibrium price vector of the competitive equilibrium outcome selected by the rule.  

The case of a buyer: By hypothesis,  u(a, r)  u . Let  bj  be any buyer such that  

u(a, r)j  u j. Then, there is some  sl  C(bj, X(a, r))  such that  u jl > u(a, r)jl, which 

implies that the set  Aj  {sk  C(bj, X(a, r)); u jk > u(a, r)jk.}  is non-empty. (Note that  

u jk = u(a, r)jk. for all  sk  C(bj, X(a, r))Aj ). Clearly, for all  sk  Aj,  u jk > 0  and so  sk 

 s0. Furthermore, for every  sk  Aj, there is some positive  k  such that  u jk > u jk  k 

> u(a, r)jk  0, so  u jk  k > 0. 

Now define  a’  as follows:  a’it = ait  for all  (bi, st)  BxS  with  bi  bj;  a’jk = ajk  

(u jk  k)  for all  sk  Aj;  a’jk = ajk  u jk  for all  sk  C(bj, X(a, r))Aj; and  a’jk = 0  for 

all  sk  C(bj, X(a, r)).  It is a matter of verification that  a’it  0  for all  (bi, st)  BxS; 

hence,  a’  is well-defined. (It is enough to see that for all  sk  Aj,  a’jk = ajk  (u jk  k) 
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> ajk  u jk = p k  0 and, for all  sk  C(bj, X(a, r))Aj,  a’jk = ajk  u jk = p k  0.) 

We show that  bj’s total true payoff at allocation  (П(a’, r), X(a’, r))  is strictly 

greater than at  (П(a, r); X(a, r)). First note that  p   is a competitive price vector for  

M(a’, r)  because  bj  still demands the set  C(bj, X(a, r)) at prices  p   in M(a’, r)  and 

the demand sets of the other buyers do not change. Then, according to Lemma 5.1 (iii),  

X(a, r)  is compatible with every competitive price vector for  M(a’, r); and by Lemma 

5.2  X(a’, r)  is compatible with  p . Denote  Bj  {sk; sk  C(bj, X(a, r))C(bj, X(a’, r))}  

and  B’j  {sk; sk  C(bj, X(a’, r))C(bj, X(a, r))}. Clearly,  |Bj| = |B’j|. Also, denote      

 j = min{u jk; sk  C(bj, X(a, r))}. By Lemma 5.1 (i), since  (u , p   r)  is compatible 

with  X(a, r)  and  X(a’, r), then   j = ajq – p q = a’jk  p k, for all  sq  Bj  and  sk  B’j. 

By definition,  a’jk = 0  for all  sk  B’j,  so   j = 0. Therefore, for all  sk  B’j  and       

sq  Bj,  Ujk(П(a’, r), X(a’, r); a, r) = ajk – Пk(a’, r)  ajk – a’jk = ajk  0 = j = u  jq  

u(a, r)jq. We conclude that 

Ujk(П(a’, r), X(a’, r); a, r)   u(a, r)jq,     sk  B’j  and  sq  Bj.           (3) 

Equation (3) states that bj’s utility derived from any new transactions (those under  

X(a’, r)  and not under  X(a, r)) is larger than the utility derived from any transactions 

that do not take place in the new situation. 

Now observe that, at every equilibrium price  p’  for  M(a’, r), and for all  sk  Aj  

and  sq  C(bj, X(a, r)), we have  a’jk  p’k  = ( p k  p’k) + k > 0  p’q = a’jq  p’q, so  

a’jk  p’k > a’jq  p’q. This implies that every  sk  Aj  is matched to  bj  at any optimal 

matching for  M(a’, r), and in particular at  X(a’, r), from which it follows that               

Aj  C(bj, X(a, r))C(bj, X(a’, r)). Moreover, for all  sk  Aj  we have that                 

Ujk(П(a’, r), X(a’, r); a, r) = ajk  Пk(a’, r)  ajk  a’jk  = u jk  k > u(a, r)jk. Thus, 

  Ujk(П(a’, r), X(a’, r); a, r) > u(a, r)jk,    sk  Aj  C(bj, X(a, r))C(bj, X(a’, r))j  (4) 

Finally, for all  sk  C(bj, X(a, r))C(bj, X(a’, r))Aj  the following holds:                 

Ujk(П(a’, r), X(a’, r); a, r) = ajk  Пk(a’, r)  ajk  a’jk = u jk = u(a, r)jk. Therefore, 

  Ujk(П(a’, r), X(a’, r); a, r)  u(a, r)jk,    sk  C(bj, X(a’, r))C(bj, X(a’, r))Aj.  (5) 

The result follows from (3), (4), (5),  |B| = |B’|, and  Aj    (if  |B| = 0, the result 

also holds following (4) and (5)). Hence, the proof of this case is complete. 

The case of a seller: By hypothesis,  П(a, r)  p . Let  sk  be any seller for whom  

p k > Пk(a, r)  rk. Then  p k > rk,  so seller  sk  sells all his objects at  X(a, r). 

Furthermore, for some positive  ,  p k > p k   > Пk(a, r). 

Let  r’  be defined as follows:  r’t = rt  for all  st  sk  and  r’k = p k  . That is, 

under the profile  (a, r’),  sk  replaces his true valuation by  r’k, whereas the other players 

keep their valuations.  
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First note that  p t  r’t  for all  st, which implies that  ( p , X(a, r))  is a feasible 

allocation for  M(a, r’). Now use the fact that  ( p , X(a, r))  is a competitive equilibrium 

in  M(a, r)  and that if  st  does not sell some objects at  X(a, r), then  st  sk, so                

p t = rt = r’t,  to obtain that  ( p , X(a, r))  is a competitive equilibrium for  M(a, r’).  As  

p k  r’k =  > 0, it follows that  sk  sells all his objects at any optimal matching for  

M(a, r’); in particular,  sk  sells all his objects at  X(a, r’).  Hence, the seller’s individual 

payoff from each object is 

Vk(П(a, r’), X(a, r’)) =  Пk(a, r’)  rk  r’k  rk = ( p k    rk) > Пk(a, r)  rk.  

 

Theorem 5.1 implies, in particular, that for any competitive equilibrium rule  (П, X)  

(not necessarily one of the optimal rules), if  (П(a, r), X(a, r))  is not the buyer- 

(respectively, seller-) optimal competitive equilibrium for market  M(a, r), then in the 

induced game  (П, X, a, r), truthful behavior is not a best response for at least one 

buyer (respectively, seller). In particular, 

 

Corollary 5.1. (Manipulability Theorem) Consider the buyer-optimal (respectively, 

seller-optimal) competitive equilibrium rule. Suppose that  M(a, r)  has more than one 

vector of equilibrium prices. Then there is a seller (respectively, buyer) who can 

manipulate the rule via  M(a, r). 

 

Another immediate consequence of Theorem 5.1 is that for every market with more 

than one vector of competitive equilibrium prices, there is no competitive equilibrium 

rule such that the induced game gives every agent an incentive to play her/his sincere 

strategy. For the proof of the old impossibility result, Roth and Sotomayor (1990) 

constructed an example with one seller and  n > 1  buyers and showed that any 

competitive equilibrium rule can be manipulated by either the seller or one of the 

buyers. Corollary 5.2 strengthens this result by stating that every competitive 

equilibrium rule is manipulable in every market that has more than one vector of 

equilibrium prices. 

 

Corollary 5.2. (General Impossibility Theorem) Suppose that the market  M  has 

more than one vector of equilibrium prices. Then every competitive equilibrium rule is 

manipulable in  M. 
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Corollaries 5.1 and 5.2 are valid under the assumption that the market has more 

than one vector of equilibrium price vectors. Sotomayor (2002) proved that this 

assumption holds in the one-to-one assignment game when there is only one optimal 

matching, which is generically the case. Furthermore, for any buyer-seller market, 

Sotomayor (1992) constructed a related assignment game via an appropriate definition 

of the matrix of valuations and she showed that there is a one-to-one correspondence 

between the set of competitive equilibrium allocations for the two models. This implies 

that, also for the buyer-seller market, there are always more than one competitive 

equililibrium price vectors, except in the ulikely situation where the market has several 

optimal matchings. Thefore, Corollaries 5.1 and 5.2 apply very generally.14 

We now use the manipulability and non-manipulability theorems to state the 

necessary and sufficient conditions for an agent with a quota of one to be able to 

manipulate a competitive equilibrium rule. 

 

Theorem 5.2. Let  M = M(a, r)  be a market and  (П, X)  a competitive equilibrium rule. 

Consider a buyer (respectively, seller) with a quota of one. Then, this agent cannot 

manipulate  (П, X)  in  M  if and only if  (П(a, r), X(a, r))  gives to the agent her 

(respectively, his) most preferred equilibrium payoff in  M. 

Proof. The first direction is immediate after Theorem 5.1. The other direction follows 

from Theorem 4.1, if the agent is a seller or Theorem 4.3, if the agent is a buyer.  

 

In particular, for the assignment game we can state the following corollary, which 

follows immediately after Theorem 5.2. 

 

Corollary 5.3. Suppose all agents have a quota of one. Let  M = M(a, r)  be a market 

and  (П, X)  a competitive equilibrium rule. Then, no buyer (respectively, seller) can 

manipulate  (П, X)  in  M  if and only if  (П(a, r), X(a, r))  is the buyer-optimal 

(respectively, seller-optimal) competitive equilibrium rule. 

 

Corollary 5.3 implies that when all agents have a quota of one, no agent can 

manipulate  (П, X) in  M(a, r)  if and only if  M(a, r) has only one equilibrium price 

                                                            

14 Consider a market with more than one optimal matching and only one competitive equilibrium price. 
Then, add any small   > 0 to the valuation of any of the buyers who is matched under an optimal 
matching  x. The maching  x  becomes the only optimal matching and, hence, the new market has more 
than one competitive equilibrium price. 
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vector. This is an interesting result that does not extend to one-to-many or many-to-one 

buyer-seller markets. For instance, if the number of identical objects owned by a seller 

is larger than the number of buyers, then the only equilibrium price of these objects is 

equal to the seller’s valuation. However, he often has an incentive to claim a higher 

valuation and obtain profits from a buyer whose valuation is higher that the seller’s true 

valuation. And similar examples can be constructed if a buyer is interested in acquiring 

more than one object. 

 

Finally, we state the necessary and sufficient condition for a competitive 

equilibrium rule to be strategy-proof for one side of the market in the assignment game. 

 

Corollary 5.2. Suppose all agents have a quota of one. The competitive equilibrium 

rule  (П, X)  is strategy proof by the buyers (respectively, sellers)  if and only if  (П, X)  

is the buyer-optimal (respectively, seller-optimal) competitive equilibrium rule. 

 

6. CONCLUSION 

We have analyzed sellers’ and buyers’ incentives if competitive equilibrium rules 

are applied. First, we have shown that although the Non-Manipulability Theorem for the 

one-to-one buyer-seller market cannot be generalized for the many-to-many buyer-seller 

market, it can be extended to the model where all agents of one of the sides of the 

market have a quota of one. Second, we have proven a General Manipulability Theorem 

for the many-to-many buyer-seller market. The theorem states that if a competitive 

equilibrium rule does not yield the buyer- (seller-) optimal competitive equilibrium for 

an instance of the buyer-seller market, then any buyer (seller) who does not receive his 

(her) optimal equilibrium payoff has an incentive to misrepresent his (her) preferences. 

This theorem has two corollaries which are extensions of two important “folk theorems” 

for Shapley and Shubik’s (1972) one-to-one assignment game. Moreover, restricted to 

the assignment game, it is a sort of converse of the Non-Manipulability Theorem. 

We have studied a market where the value of an object for a buyer does not depend 

on the other objects that she acquires or on the other buyers acquiring a similar object. 

This condition implies, in particular, that the preferences of the buyers fulfill the “gross 

substitutes condition.” The analysis of competitive equilibria and the manipulability of 

competitive equilibrium rules in markets where buyers have more general preferences 

are very challenging problems that are outside the scope of the current paper. 
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APPENDIX 

 

Proof of Lemma 4.2. (i) Suppose that  (u’, v’; x’)  is feasible for  M(a). If  x’#j(q)k(h) = 1  

then  x’jk = 1  and  a#j(q)k(h) = ajk  by the Key Lemma. Then,  u’#j(q) + v’#k(h) = u’jk + v’jk = 

ajk = a#j(q)k(h). By definition,  u’#j(q)  0  and  v’#k(h)  0. Hence, (u’#, v’#; x’#)  is a 

pairwise-feasible outcome for  M(a#), so it is feasible for  M(a#).  
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In the other direction, suppose that (u’#, v’#; x’#)  is feasible for  M(a#). If  x’jk = 1, 

then  x’#j(q)k(h) = 1  for some pair  (bj(q), sk(h))  B#xS#  by the Key Lemma and  a#j(q)k(h) 

= ajk  by the definition of  a#. Then  u’jk + v’jk = u’#j(q) + v’#k(h)  = a#j(q)k(h) = ajk. By 

definition,  u’jk  0  and  v’jk  0. Hence,  (u’, v’; x’)  is a pairwise-feasible outcome for  

M(a), so it is feasible for  M(a).  

(ii) Suppose that  (u’, v’; x’)  is a competitive equilibrium for  M(a). Then, x’#  is an 

optimal matching for  M(a#). Also,  (u’, v’; x)  is a competitive equilibrium for  M(a)  

(see Theorem 1 of Sotomayor, 1999). Moreover, if  x#j(q)k(h) = 0, we have either (1)  xjk = 

0, in which case  u’j(min) + v’k(min) ajk  by Proposition 2.1, which implies  u’#j(q) + 

v’#k(h)  u’j(min) + v’k(min) ajk = a#j(q)k(h), where the last equality follows from the 

definition of  a#; or (2)  xjk = 1, in which case  u’#j(q) + v’#k(h)  0 = a#j(q)k(h). In either 

case, we obtain that  (u’#, v’#; x#)  is a competitive equilibrium for  M(a#). Then, by the 

optimality of  x’#,  (u’#, v’#; x’#)  is also a competitive equilibrium for  M(a#).  

(iii) Suppose that  (u’#, v’#; x’#)  is a competitive equilibrium for  M(a#). Then 

(u’#, v’#; x#)  is also a competitive equilibrium for  M(a#). Moreover,  x’#  is an optimal 

matching for  M(a#), which implies that  x’  is an optimal matching for  M(a). Then, if  

xjk = 0  we have that x#j(q)k(h) = 0  and  a#j(q)k(h) = ajk  for all  bj(q)  B#  and all  sk(h)  S#. 

The definition of  (u’#, v’#)  implies that  u’j(min) = u’#j(q)  for some  bj(q)  B#  and  

v’k(min) = v’#k(h)  for some  sk(h)  S#. Hence,  u’j(min) + v’k(min) = u’#j(q) + v’#k(h)  

a#j(q)k(h) = ajk. By hypothesis,  v’ik = v’k(min)  holds for all  bi    C(sk, x). Then, 

Proposition 2.1 implies that  (u’, v’; x)  is a competitive equilibrium outcome for  M(a). 

Since  x’  is optimal for  M(a),  Theorem 1 of Sotomayor (1999) implies that  (u’, v’; x’)  

is a competitive equilibrium outcome for  M(a).    

 

Proof of Lemma 4.3. Define the outcome  (u’, v’; x#)  for  M(a#)  as follows:  v’k(z)  

min{vk(1),…, vk(t(sk))}  for all  sk(z)  S#  and the payoff vector  u’  is defined pairwise-

feasibly. We claim that  (u’, v’; x#)  is a competitive equilibrium outcome for  M(a#). 

First, it is clear that  (u’, v’; x#)  is feasible for  M(a#)  by definition. Second,  u’j(q)  

uj(q)  for all  bj(q)  B#  because  v’k(z)  vk(z)  for all  sk(z)  S#. Consider now a pair      

(bj(q), sk(h))  with  x#j(q)k(h) = 0  and  let  l  t(sk)  such that  vk(l) = min{vk(1),…, vk(t(sk))}. 

There are two cases.  

Case 1. xjk = 0, in which case  a#j(q)k(h) = a#j(q)k(l). It follows that  u’j(q) + v’k(h)  uj(q) + vk(l) 

 a#j(q)k(l) = a#j(q)k(h), where we use Proposition 2.1 in the last inequality. 

Case 2. xjk = 1, in which case  a#j(q)k(h) = 0. It follows that  u’j(q) + v’k(h)  uj(q) + vk(l)  0 = 

a#j(q)k(h). 
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Given that  u’j(q) + v’k(h)  a#j(q)k(h)  for all  (bj(q), sk(h))  with  x#j(q)k(h) = 0, the result 

that (u’, v’; x#)  is a competitive equilibrium outcome for  M(a#)  follows from 

Proposition 2.1. 

We now use Lemma 4.2 to obtain that the outcome  (u”, v”; x)  related to            

(u’, v’; x#)  is competitive for  M(a). Then, by the optimality for  S  of  (u , v )  in  M(a),   

vk”  v k  for all  sk  with a quota of one.   (A1) 

On the other hand, let  (u ’, v ’; x#)  be the competitive equilibrium outcome related 

to  (u , v ; x)  according to Lemma 4.2. By the optimality for  S#  of  (u, v; x#)  in  M(a#)  

we have that  v ’k(h)  vk(h)  for all  sk(h)  S#. We also have that  vk = v’k  for all  sk  with  

t(sk) = 1. Therefore, if  t(sk) = 1  we must have that   

v k = v ’k  vk = v’k = v”k.     (A2) 

From (A1) and (A2) we obtain that  v k = v”k  so the inequality in (A2) is in fact an 

equality and so  v k = vk  for all  sk  with a quota of one, which concludes the proof.   

 

Proof of Lemma 4.4. If  B+  , Lemma 9.20 of Roth and Sotomayor (1990), due to 

Demange and Gale (1985), implies that there exist  bj(q)  B#\B+ and sk(h)  x(B+)  such 

that  (bj(q), sk(h))  blocks  (u, v; x). Since  bj(q)  B#\B+, uj(q)  u+
j(q). Also, since  sk(h)  

x(B+)  there exists some  bl(m)  B+  such that  xl(m)k(h) = 1. Then,  ul(m) > u+
l(m)  so  vk(h)  

v-
k(h)  v+

k(h)  by the competitiveness of  (u+, v-). Therefore,  sk(h)  S+. 

 

Proof of Lemma 4.6. (i) Suppose by contradiction that  x(S–S’) = {b0}. Given that       

s0  S–S’,  x(S–S’) = {b0}  implies that if  sk  S’  and  xjk = 1, then  bj  b0. Moreover, 

every  bj  b0  fills her quota and does that with sellers in  S’. That is,  x(S’) = B–{b0}. 

Then take   > 0  such that  v k –  > 0  for all  sk  S’  and define  (u, v; x)  as follows: 

 vk = v k –   if  sk  S’  and  vk = v k ,  otherwise; 

 ujk = u jk +   if  bj  x(S’) = B–{b0}  and  xjk = 1; 

 u0k = u 0k = 0  if  x0k = 1. 

We claim that  (u, v; x)  is a competitive equilibrium outcome for M(a, r). In fact, 

the feasibility of  (u, v; x)  and condition (iii) of Proposition 2.1 are clearly satisfied. To 

show that uj(min) + vk  ajk – rk  for all  (bj, sk)  BxS, use the construction of  (u, v; x)  

and the fact that  (u , v ; x)  is a competitive equilibrium outcome for the case when                

bj  b0. When  bj = b0, it is enough to verify the inequality when  sk  S’. In this case, we 

have that uj(min) + vk = v k –  > 0 = a0k – rk = ajk – rk. However,  vk < v k  for all          

sk  S’, and  S’  , which contradicts the fact that  (u , v ; x)  is a seller-optimal 

competitive equilibrium outcome for  M(a, r).  Hence,  x(S–S’)  b0. 
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(ii) Arguing by contradiction, suppose  u jt + v k > ajk – rk  for all  (bj, sk)  x(S–S’)xS’ 

with  bj  b0  and  xjk = 0, and for all  st  S–S’  with  xjt = 1. Then there exists   > 0  

such that  v k –  > 0  for all  sk  S’  and also such that for all  (bj, sk)  x(S–S’)xS’, 

with  bj  b0  and  xjk = 0, and for all  st  S–S’  with  xjt = 1, the parameter    satisfies 

u jt + v k –  > ajk – rk .                     (A1) 

Now, define  (u’, v’; x)  as follows: 

v’k = v k –   if  sk  S’  and  v’k = v k ,  otherwise; 

u’jk = u jk +   if  sk  S’  and  xjk = 1; 

u’jk = u jk  if  sk  S–S’  and  xjk = 1. 

We claim that  (u’, v’; x)  is a competitive equilibrium outcome. The argument is 

similar to the one used in part (i). We only need to check that  u’j(min) + v’k  ajk – rk  

for all  sk  S’  and  xjk = 0. Then, let  (bj, sk)  BxS’, with  xjk = 0  and let                            

u’j(min) = u’jt, for some  st  C(bj, x). If  st  S’  then the result follows from the 

competitiveness of  ( u , v ; x); if  st  S–S’  the result follows from (A1).  

However,  v’k < v k  for all  sk  S’, and  S’  , which contradicts that  (u , v ; x)  is 

buyer-optimal for  M(a, r).  


