# Generalised Canonical Correlation Estimation of the Multilevel Factor Model<sup>\*</sup>

Rui Lin<sup>†</sup> Yongcheol Shin<sup>‡</sup>

November 2022, preliminary and incomplete

## Abstract

We develop a novel approach based on the generalised canonical correlation (GCC) analysis to consistently estimating the multilevel factor model and providing the proper inference theory. Importantly, our approach is shown to be robust to a non-zero correlation between the local factors across the different blocks and valid even if some blocks share the same local factors. We also propose a novel selection criterion for identifying the number of the global factors. Relevant asymptotic theories are derived under fairly standard conditions. Via Monte Carlo simulations, we show the satisfactory and dominant performance of the GCC estimator relative to existing approaches. Finally, we demonstrate its usefulness with an application to the housing market in England and Wales using a large disaggregated panel data of the real house price growth rates for the 331 local authorities over the period 1996Q1 to 2021Q2.

**JEL:** C55, R31.

**Keywords:** Multilevel Factor Models, Principal Components, Generalised Canonical Correlation, Housing Market Cycles.

<sup>\*</sup>We are mostly grateful for the insightful comments by Luis Serven, Michael Thornton, Takashi Yamagata, and Chaowen Zheng. We are also grateful to the seminar participants at University of York. Shin acknowledges partial financial support from the Economic Social Research Council in the UK (Grant number ES/T01573X/1). Lin is grateful to the financial support from China Scholarship Council. The usual disclaimer applies.

<sup>&</sup>lt;sup>†</sup>Department of Economics, University of York. Email: rui.lin@york.ac.uk

<sup>&</sup>lt;sup>‡</sup>Department of Economics, University of York. Email: yongcheol.shin@york.ac.uk

## 1 Introduction

In a data-rich environment with large cross-section units and time periods, the factor model is a useful technique for dimension reduction, e.g. Chamberlain and Rothschild (1982), Stock and Watson (2002) and Bai and Ng (2002). Recently, the multilevel factor models have gained increasing attention, in which the factors are not only pervasive (i.e. common to all groups) but also semi-pervasive (i.e. common to a subset of groups only). They are referred to as the global and local factors, respectively. Kose et al. (2003) advance the multilevel factor model for characterising the global business cycle, documenting evidence that the global factors play an important role in explaining macroeconomic activities. Barrot and Serven (2018) find that the common factors are the main driving force behind advanced-country capital flows whilst idiosyncratic components dominate the emerging/developing country capital flows. Andreou et al. (2019) show that the industrial production is still the most important workhorse in the US economy, using the two-block factor model with a mixed-frequency data.

Although the principal component (PC) estimation is a popular method in the single-level factor model, it is not directly applicable to the multilevel setting, because it can only estimate the whole factor space consistently but fails to separately identify the global and local factors. This renders the estimation of the multilevel factor model a challenging issue. Wang (2008) proposes a sequential PCapproach which updates the global and local factors iteratively, though this approach does not guarantee convergence to the global minimum unless the initial estimate is consistent. Breitung and Eickmeier (2016) and Choi et al. (2018) propose the use of the canonical correlation analysis (CCA) for obtaining an initial consistent estimate of the global factors by employing CCA using any two blocks. Once the (estimated) global factors are projected out, the local factors can be consistently estimated for each block. The global and local factors are iteratively updated until convergence.

Consider, however, the more general multilevel factor models in which some blocks share the common regional factors, see for example, Moench et al. (2013) and Beck et al. (2016). Another case is provided by Hallin and Liška (2011) and Rodríguez-Caballero and Caporin (2019), where the blocks share the pairwise common local factors. In such cases, CCA does not always produce consistent estimate of the global factors because the common local factors can be misidentified as the global factors.

As the main contribution, we propose the generalised canonical correlation analysis (GCC), which extends the standard CCA using any two blocks through constructing the system-wide matrix, denoted  $\Phi$ , that contains all the factor spaces from all blocks. As the pairwise canonical correlation between any two blocks is now satisfied simultaneously for all pairs of the blocks, this approach is shown to overcome the aforementioned issue associated with the common local factors. Moreover, unlike most existing studies, GCC is computationally convenient as it does not involve any iteration.

We provide an asymptotic theory that establishes the consistency of the estimated factors and loadings based on the matrix perturbation theory, and derives the asymptotic normal distributions of the factors and loadings estimates. Andreou et al. (2019) develop an asymptotic theory for the factors and loadings estimators under rather stringent conditions, though their theory can be applied to the case with the two blocks only. In this regard, we highlight that our theories are derived under fairly standard assumptions, and the GCC approach can be applied to the more general cases.

Furthermore, we develop a GCC-based consistent selection criteria for identifying the number of the global factors by evaluating the ratios of adjacent singular values of the matrix  $\Phi$ . As shown by Han (2021), the standard approaches for selecting the number of factors  $(r_0)$  in the single-level factor literature (e.g. Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013)), fail to generate reliable model selection in the multilevel case. Recently, a few approaches have been proposed to deal with an issue of consistently estimating  $r_0$  under the multilevel setting. And reou et al. (2019) propose a testing procedure

by deriving the asymptotic distribution of the canonical correlation between the factor spaces in a two block model. Choi et al. (2021) develop consistent selection criteria for determining the number of the global factors based on the average pairwise canonical correlation among all blocks. Chen (2022) proposes a selection criteron based on the average residual sum of square (ARSS) from a regression of (estimated) global factors on the factor spaces in each block. It is important to notice that our approach does not require either the orthogonality between the global and local factors or the selection of any tuning parameters. This makes the GCC criterion more general than existing studies.

Via Monte Carlo simulations, we first focus on the consistent estimation of the global factors and the number of the global factors, finding that GCC outperforms the CCA approach by Andreou et al. (2019) and Choi et al. (2021), and the circular projection matrix estimation (CPE) approach by Chen (2022) under all experiments we consider. Next, we document evidence that the GCC estimator of the global factors and loadings is well-centered and tends to the standard normal density, confirming the validity of our asymptotic theory.

We apply the *GCC* approach to estimating the multilevel factor model and characterising the national and regional housing market cycles in England and Wales using a large disaggregated panel data of the real house price growth rates for the 331 local authorities over the period 1996Q1 to 2021Q2. The main empirical findings are summarised as follows:

We first detect one global (national) factor, one local factor in the seven regions (NE, NW, YH, EE, LD, SE and WA) but no local factor in the three regions (EM, WM and SW) (see Table 1). Second, the national factor explains a considerable portion of the hosue price inflation variation with a mean of 46.6% while the regional factor contribution is much weaker with its average at 8.3% only. This suggests that the house market in England and Wales appears to be more integrated than the U.S. market (e.g. Del Negro and Otrok (2007)). Third, we can identify that the regional factor components of EE, LD and SE (Area 1) co-move closely while those of NE, NW, YH and WA (Area 2) tend to cluster, confirming that the regional factors are common across some regions. Fourth, the national housing market cycle captured by the global factor components displays a typical boom-bust-recover behaviour, which is in line with the conventional view that the national housing market cycle is pro-cyclical and closely related to economic fundamentals (e.g. Chodorow-Reich et al. (2021)). By contrast, the regional housing market cycles captured by the regional/areal factor components display a heterogeneous and opposition pattern unrelated to fundamentals, demonstrating a housing market segmentation in the North and the South. Finally, we document evidence that the growth rate of the (lagged) population gap between areas strongly comoves with the areal components gap, suggesting that the population gap growth may be an important driver behind the regional house price gap.

The rest of the paper is structured as follows. Section 2 introduces the multilevel factor model and provides a review of the related literature. Section 3 proposes the novel *GCC* approach and presents the main estimation algorithms. Section 4 develops the asymptotic of the *GCC* estimator. We also advance a new selection criterion for identifying the number of the global factors. Section 5 reports Monte Carlo simulation results. Section 6 presents an empirical application to the house price inflation data in England and Wales. Section 7 offers concluding remarks. The mathematical proofs, the additional simulation results and theoretical derivations are relegated to the Online Appendix.

## 2 The Multilevel Factor Model

Consider the multilevel factor model:

$$y_{ijt} = \gamma'_{ij} \boldsymbol{G}_t + \lambda'_{ij} \boldsymbol{F}_{it} + e_{ijt}, i = 1, ..., R, j = 1, ..., N_i, t = 1, ..., T$$
(1)

where  $\boldsymbol{G}_t = [G_t^1, ..., G_t^{r_0}]'$  is the  $r_0 \times 1$  vector of the global factors,  $\boldsymbol{F}_{it} = [F_{it}^1, ..., F_{it}^{r_i}]'$  is the  $r_i \times 1$  vector of the local factors in the block i,  $\boldsymbol{\gamma}_{ij}$  and  $\boldsymbol{\lambda}_{ij}$  are the corresponding factor loadings, and  $e_{ijt}$  is the idiosyncratic error. Stacking (1) across the  $N_i$  individuals in block i, we have:

$$\mathbf{Y}_{it} = \mathbf{\Gamma}_i \mathbf{G}_t + \mathbf{\Lambda}_i \mathbf{F}_{it} + \mathbf{e}_{it},\tag{2}$$

where  $\mathbf{Y}_{it}_{N_i \times 1} = [y_{i1t}, ..., y_{iN_it}]', \ \mathbf{e}_{it}_{N_i \times 1} = [e_{i1t}, ..., e_{iN_it}]', \ \mathbf{\Gamma}_{i}_{N_i \times r_0} = (\mathbf{\gamma}_{i1}, ..., \mathbf{\gamma}_{iN_i})' \text{ and } \mathbf{\Lambda}_{i}_{N_i \times r_i} = [\mathbf{\lambda}_{i1}, ..., \mathbf{\lambda}_{iN_i}]'.$ The model can also be written as

$$Y_t = \Theta^+ K_t^+ + e_t, \tag{3}$$

where

$$\mathbf{Y}_{t} = \begin{bmatrix} \mathbf{Y}_{1t} \\ \vdots \\ \mathbf{Y}_{Rt} \end{bmatrix}, \mathbf{e}_{t} = \begin{bmatrix} \mathbf{e}_{1t} \\ \vdots \\ \mathbf{e}_{Rt} \end{bmatrix}, \mathbf{K}_{t}^{+} = \begin{bmatrix} \mathbf{G}_{t} \\ \mathbf{F}_{1t} \\ \vdots \\ \mathbf{F}_{Rt} \end{bmatrix}, \mathbf{\Theta}^{+}_{N \times r^{+}} = \begin{bmatrix} \Gamma_{1} & \Lambda_{1} & 0 & \cdots & 0 \\ \Gamma_{2} & 0 & \Lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Gamma_{R} & 0 & 0 & \cdots & \Lambda_{R} \end{bmatrix}$$

with  $N = \sum_{i=1}^{R} N_i$  and  $r^+ = r_0 + \sum_{i=1}^{R} r_i$ . Further, the model is written in a matrix form:

$$Y = K^+ \Theta^{+\prime} + e, \tag{4}$$

where  $\mathbf{Y}_{T \times N} = [\mathbf{Y}_1, ..., \mathbf{Y}_T]', \ \mathbf{K}_{T \times r^+}^+ = [\mathbf{K}_1, ..., \mathbf{K}_T]', \text{ and } \mathbf{e}_{T \times N} = [\mathbf{e}_1, ..., \mathbf{e}_T]'.$ 

Alternatively, stacking (1) over time period t, we can rewrite the model as

$$Y_{ij} = G\gamma_{ij} + F_i\lambda_{ij} + e_{ij} = K_i\theta_{ij} + e_{ij}$$
(5)

where  $\mathbf{Y}_{ij} = [y_{ij1}, ..., y_{ijT}]', \ \mathbf{e}_{ij} = [e_{ij1}, ..., e_{ijT}]', \ \mathbf{G}_{T \times r_0} = [\mathbf{G}_1, ..., \mathbf{G}_T]', \ \mathbf{F}_i = [\mathbf{F}_{i1}, ..., \mathbf{F}_{iT}]', \ \boldsymbol{\theta}_{ij} = [\boldsymbol{\gamma}'_{ij}, \boldsymbol{\lambda}'_{ij}]' \text{ and } \mathbf{K}_i = [\mathbf{G}, \mathbf{F}_i].$  For each block *i*, we then have:

$$Y_i = G\Gamma'_i + F_i\Lambda'_i + e_i = K_i\Theta'_i + e_i$$
(6)

where  $Y_i = [Y_{i1}, Y_{i2}, ..., Y_{iN_i}], e_i = [e_{i1}, e_{i2}, ..., e_{iN_i}]$  and  $\Theta_i = [\Gamma_i, \Lambda_i]$ .

The primary issue in the multilevel factor model is to identify the global and local factors, separately. Suppose that we express the model (2) as

$$Y_{it} = \Gamma_i G_t + u_{it}, \ u_{it} = \Lambda_i F_{it} + e_{it}, \tag{7}$$

where the local factors are treated as the part of the error components. The first  $r_0$  factors extracted from the *PC* estimation applied to the whole data  $\mathbf{Y}_t = [\mathbf{Y}'_{1t}, \ldots, \mathbf{Y}'_{Rt}]'$ , will be inconsistent estimates of  $\mathbf{G}_t$  because the weak correlation condition among the error components in  $\mathbf{u}_t = [\mathbf{u}'_{1t}, \ldots, \mathbf{u}'_{Rt}]'$  is violated due to the presence of the local factors (see Breitung and Eickmeier (2016)). Alternatively, if we apply the *PC* estimation to each block  $\mathbf{Y}_i$  in (6), the factor space spanned by  $\mathbf{K}_i = [\mathbf{G}, \mathbf{F}]$  can be consistently estimated up to rotation, though the global and local factors cannot be separately identified.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Moreover, the  $r^+$  factors extracted from  $Y_t$  in (3) are not necessarily consistent estimates of  $K^+$ . Lemma 2 in Freyaldenhoven (2021) establishes that the local factors can be consistently estimated only if the number of individuals within that group is larger than  $\sqrt{N}$ .

A number of alternative methods have been developed to separately identify the global and local factors. Wang (2008) proposed an iterative sequential approach. Given the estimated global factors and loadings, denoted  $\hat{G}$  and  $\hat{\Gamma}_i$ , then the local factors and loadings for each block *i* can be estimated from the following *PC* estimation:

$$Y_i - \widehat{G}\widehat{\Gamma}'_i = F_i\Lambda'_i + e_i \tag{8}$$

Given the estimated local factors and loadings, denoted  $\widehat{F}_i$  and  $\widehat{\Lambda}_i$ , then the global factors and loadings can be updated by the following *PC* estimation:

$$\left[oldsymbol{Y}_1-\widehat{oldsymbol{F}}_1\widehat{oldsymbol{\Lambda}}_1',\ldots,oldsymbol{Y}_R-\widehat{oldsymbol{F}}_R\widehat{oldsymbol{\Lambda}}_R'
ight]=oldsymbol{G}\left[oldsymbol{\Gamma}_1',\ldots,oldsymbol{\Gamma}_R'
ight]+oldsymbol{e}$$

This procedure will be repeated until convergence. However, this approach does not guarantee consistency unless the initial estimates of the global factors and loadings are consistent, because the least square objective function is not globally convex.

To get consistent initial estimates of the global factors, Breitung and Eickmeier (2016) and Choi et al. (2018) propose the use of the canonical correlation analysis (*CCA*), where the canonical correlation between  $\widehat{K}_m$  and  $\widehat{K}_h$  is estimated using the *PC* from any two blocks *m* and *h*. For simplicity assume that  $r_0$ ,  $r_m$  and  $r_h$  are known and set  $r_0 + r_m = r_0 + r_h$ . Then, we consider the following characteristic equation:

$$\left(\widehat{\boldsymbol{S}}_{mh}\widehat{\boldsymbol{S}}_{hh}^{-1}\widehat{\boldsymbol{S}}_{hm} - \ell\widehat{\boldsymbol{S}}_{mm}\right)\boldsymbol{v} = \boldsymbol{0}$$
(9)

where  $\widehat{S}_{ab}$  (a, b = m, h) denotes the variance matrix between  $\widehat{K}_m$  and  $\widehat{K}_h$ . We then obtain the solution  $\ell$ by the (squared) canonical correlations between  $\widehat{K}_m$  and  $\widehat{K}_h$ . Since  $\widehat{K}_m$  and  $\widehat{K}_h$  share the factor space spanned by the global factors, the  $r_0$  largest canonical correlations will be equal to one asymptotically. Therefore, we can consistently estimate the global factors by  $\widehat{G} = \widehat{K}_m V_m^{r_0}$ , where  $V_m^{r_0}$  is an  $(r_0 + r_m) \times r_0$ matrix consisting of the characteristic vectors corresponding to the  $r_0$  largest characteristic roots. Next, after projecting  $\widehat{G}$  out, we can consistently estimate the local factors and loadings. In practice, this estimation proceeds iteratively until convergence. Breitung and Eickmeier (2016) and Choi et al. (2018) suggest choosing the block pair (m, h) that yields the largest canonical correlation. Andreou et al. (2019) develop an asymptotic theory for the estimated factors and loadings under rather stringent conditions, though their theory can be applied to the case with the two blocks only.

However, the pairwise identification strategy, based on CCA, does not always produce the consistent estimation of the global factors. For instance, consider a two-level factor model with three blocks (R = 3)and  $r_0 = r_i = 1$  for i = 1, 2, 3. Suppose that the first and second blocks share the same local factor, and we obtain the largest canonical correlation between  $\widehat{K}_1$  and  $\widehat{K}_2$ . Now, we are no longer sure whether  $\widehat{K}_1 V_1^{r_0}$  produces the consistent estimate of the global factor or the (common) local factor. Furthermore, the number of global factors tends to be overestimated. A few empirical studies show that some blocks, that share the same geographic region, are subject to (common) regional factors. Hallin and Liška (2011) find one common local factor between France and Germany in a three-country model using industrial production indices for France, Germany and Italy. Alternatively, Rodríguez-Caballero and Caporin (2019) consider the pairwise-common local factors by employing two parallel country classifications using the Debt/GDP ratio and credit ratings, in which case CCA cannot consistently estimate the global factors. See also Moench et al. (2013) and Beck et al. (2016).

Hence, to overcome this important issue, we propose the GCC by incorporating the information from all blocks simultaneously. Recently, Chen (2022) proposed a circular projection estimation (CPE) approach. The circular projection matrix is a successive product of the factor spaces of  $K_i$ , given by the product inside the bracket in  $\left[\left(\prod_{i=1}^{R} P(\mathbf{K}_{i})\right)'\left(\prod_{i=1}^{R} P(\mathbf{K}_{i})\right)\right]\boldsymbol{\zeta} = \pi\boldsymbol{\zeta}$ , where P(.) is the projection matrix, and  $\pi$  and  $\boldsymbol{\zeta}$  are the eigenvalue and eigenvector. Only if  $\pi = 1$ , then  $\boldsymbol{\zeta}$  is a global factor. Hence, the global factors can be estimated as  $\sqrt{T}$  times the  $r_{0}$  eigenvectors corresponding to the unit eigenvalues of the circular projection matrix by replacing  $\mathbf{K}_{i}$  by  $\hat{\mathbf{K}}_{i}$ . The *CPE* does not suffer from the issue related to the common local factors since it encompasses all blocks. By contrast, the *GCC* estimates the global factors by a linear combination of the factor spaces (see (19) below). This yields a simpler asymptotic expansion of the global factors. Moreover, via the simulation studies, we show that *GCC* outperforms *CPE* in all cases considered (see Section 4).

## 3 The Generalised Canonical Correlation Analysis

We begin with the standard canonical correlation analysis (CCA) by selecting any two blocks, h and m, and letting  $\mathbf{K}_m$  and  $\mathbf{K}_h$  be  $T \times (r_0 + r_m)$  and  $T \times (r_0 + r_h)$  matrices consisting of the global and local factors. The CCA aims to find the linear combinations  $\mathbf{v}_{mj}$  and  $\mathbf{v}_{hj}$  such that

$$(\boldsymbol{v}_{mj}, \boldsymbol{v}_{hj}) = \operatorname*{argmax}_{\boldsymbol{v}_m, \boldsymbol{v}_h} Corr\left(\boldsymbol{K}_m \boldsymbol{v}_m, \boldsymbol{K}_h \boldsymbol{v}_h\right).$$
(10)

subject to the restrictions

$$V'_m K'_m K_m V_m = I_{r_{\min}} \text{ and } V'_h K'_h K_h V_h = I_{r_{\min}}$$
(11)

where  $r_{\min} = \min\{r_0 + r_m, r_0 + r_h\}$ ,  $V_m = [v_{m1}, \ldots, v_{mr_{\min}}]$  and  $V_h = [v_{h1}, \ldots, v_{hr_{\min}}]$ . If  $K_m$  and  $K_h$  share the  $r_0$  global factors, then there exists  $r_0$  linear combinations such that their correlations are equal to one or equivalently

$$\boldsymbol{K}_m \boldsymbol{V}_m^{r_0} = \boldsymbol{K}_h \boldsymbol{V}_h^{r_0} \tag{12}$$

where  $V_m^{r_0} = [v_{m1}, \ldots, v_{mr_0}]$  and  $V_h^{r_0} = [v_{h1}, \ldots, v_{hr_0}]$  are the matrices collecting such linear combinations. We then solve the following characteristic equation:

$$\left(oldsymbol{S}_{mh}oldsymbol{S}_{hm}^{-1}oldsymbol{S}_{hm}-\elloldsymbol{S}_{mm}
ight)oldsymbol{v}=oldsymbol{0}$$

to obtain  $V_m^{r_0}$  that is the collection of characteristic vectors v corresponding to the  $r_0$  largest characteristic roots.

Notice, however, that CCA cannot always identify the global factors in the presence of common local factors. To address this important issue, we propose the generalised canonical correlation (GCC) analysis by constructing the following  $T(R-1)R/2 \times \sum_{l=1}^{R} (r_0 + r_l)$  system-wide matrix:

$$\Phi = \begin{bmatrix} K_1 & -K_2 & 0 & 0 & \dots & 0 & 0 \\ K_1 & 0 & -K_3 & 0 & \dots & 0 & 0 \\ & & & \vdots & & \\ 0 & 0 & 0 & 0 & \dots & K_{R-1} & -K_R \end{bmatrix}$$
(13)

where  $K_i = [G, F_i]$  for i = 1, ..., R. We then find the kernel of  $\Phi$ , i.e. a set of vectors collected by the

matrix  $\boldsymbol{Q} = [\boldsymbol{Q}_1', \dots, \boldsymbol{Q}_R']'$  that satisfies:

$$\Phi oldsymbol{Q} = \left[egin{array}{c} oldsymbol{K}_1 oldsymbol{Q}_1 - oldsymbol{K}_2 oldsymbol{Q}_2 \ oldsymbol{K}_1 oldsymbol{Q}_1 - oldsymbol{K}_3 oldsymbol{Q}_3 \ dots \ oldsymbol{K}_{R-1} oldsymbol{Q}_{R-1} - oldsymbol{K}_R oldsymbol{Q}_R \end{array}
ight] = \left[egin{array}{c} oldsymbol{0} \ oldsymbol{0} \ dots \ oldsymbol{0} \ dots \ oldsymbol{0} \end{array}
ight]$$

To this end we consider the following singular value decomposition (SVD) of  $\Phi$ :

$$\Phi = P\Delta Q' \tag{14}$$

such that  $\Phi Q = P \Delta$ , where P and Q are the  $TR(R-1)/2 \times \sum_{l=1}^{R} (r_0+r_l)$  and  $\sum_{l=1}^{R} (r_0+r_l) \times \sum_{l=1}^{R} (r_0+r_l)$ orthonormal matrices, and  $\Delta = diag\{\delta_1, \delta_2, \ldots, \delta_{\sum_{l=1}^{R} (r_0+r_l)}\}$  is a  $\sum_{l=1}^{R} (r_0+r_l) \times \sum_{l=1}^{R} (r_0+r_l)$  diagonal matrix consisting of the singular values in *ascending order*. If we can find a set of vectors q and the singular values  $\delta = 0$  such that  $\Phi q = \delta p = 0$ , then we obtain Q by the set of vectors, q.

We establish the existence of the  $r_0$  zero singular values and the corresponding eigenvectors, denoted  $Q^{r_0}$  in the following proposition.<sup>2</sup> A direct example of  $Q^{r_0}$  is such that each  $Q_i^{r_0} = [I_{r_0}, \mathbf{0}]'$  is a selection matrix. To rule out an infeasible case where the global factors can be expressed as a linear combination of the local factors, we assume that  $G\alpha_0 = F_1\alpha_1 + \cdots + F_R\alpha_R$  if and only if  $\alpha_0 = \mathbf{0}, \alpha_1 = \mathbf{0}, \ldots, \alpha_R = \mathbf{0}$ , which resembles the rank condition in Assumption A of Wang (2008).

**Proposition 1.** There exists a  $\sum_{l=1}^{R} (r_0 + r_l) \times r_0$  matrix,  $\mathbf{Q}^{r_0} = [\mathbf{Q}_1^{r_0'}, \mathbf{Q}_2^{r_0'}, \dots, \mathbf{Q}_R^{r_0'}]'$  containing the right eigenvectors of  $\mathbf{\Phi}$ , such that  $\mathbf{\Phi}\mathbf{Q}^{r_0} = \mathbf{0}$  with the  $r_0$  zero singular values. Moreover, the remaining singular values of  $\mathbf{\Phi}$  are larger than zero and of stochastic order  $O_p(\sqrt{T})$ .

From Proposition 1 we have:

$$K_1 Q_1^{r_0} = K_2 Q_2^{r_0} = \dots = K_R Q_R^{r_0}$$
 (15)

which shows that the pairwise canonical correlation in (12) is simultaneously satisfied for all pairs of the blocks. This important result demonstrates that all  $K_i Q_i^{r_0}$  for i = 1, ..., R, obtained by the system approach, can consistently estimate the factor space spanned by G.

Let  $\Psi = [K_1 Q_1^{r_0}, \dots, K_R Q_R^{r_0}]$  and consider the eigen-decomposition,

$$T^{-1}\Psi\Psi' = L\Xi L',\tag{16}$$

where  $\Xi$  is a diagonal matrix containing the eigenvalues of  $T^{-1}\Psi\Psi'$  in descending order.

**Proposition 2.** The first  $r_0$  columns of L, denoted  $L^{r_0}$ , consists of the factor space spanned by G.

Proposition 2 shows that the global factors can be identified by a linear combination of appropriately rotated block factor spaces. Importantly, the factor space spanned by the  $r_0$  global factors can be consistently estimated so long as the factor spaces of  $\mathbf{K}_i$  are consistently estimated for i = 1, ..., R.

The estimation algorithm proceeds as follows.

$$\left(\boldsymbol{Q}_{1}^{r_{0}}, \boldsymbol{Q}_{2}^{r_{0}}, \dots, \boldsymbol{Q}_{R}^{r_{0}}\right) = \operatorname*{argmin}_{\boldsymbol{W}_{1}, \boldsymbol{W}_{2}, \dots, \boldsymbol{W}_{R}} \sum_{i=1}^{R} \left\|\boldsymbol{G} - \boldsymbol{K}_{i} \boldsymbol{W}_{i}\right\|^{2},$$

 $<sup>^2 \</sup>mathrm{We}$  note that the solution  $\boldsymbol{Q}_i$  's are equivalent to

which is more common in the GCC literature (see Yang et al. (2019)). Therefore, we name our approach after GCC dispite the slight difference in the problem formulation.

Estimation of global factors and loadings We first obtain the *PC* estimate of  $K_i$  for each block *i*, denoted  $\widehat{K}_i$ , by  $\sqrt{T}$  times the  $r_{\max}$  eigenvectors of  $Y_i Y'_i$  corresponding to the  $r_{\max}$  largest eigenvalues, where  $r_{\max} \ge \max_{i=1,...,R} \{r_0 + r_i\}$  is a common positive integer. We then construct the  $TR(R-1)/2 \times Rr_{\max}$  matrix,  $\widehat{\Phi}$  by replacing  $K_i$  with  $\widehat{K}_i$  in (13), and evaluate the *SDV* of  $\widehat{\Phi}$  as

$$\widehat{\Phi} = \widehat{P}\widehat{\Delta}\widehat{Q}',\tag{17}$$

where  $\widehat{\boldsymbol{P}}$  and  $\widehat{\boldsymbol{Q}}$  are the  $TR(R-1)/2 \times Rr_{\max}$  and  $Rr_{\max} \times Rr_{\max}$  orthonormal matrices, and  $\widehat{\boldsymbol{\Delta}}$  is the  $Rr_{\max} \times Rr_{\max}$  diagonal matrix consisting of the singular values in *ascending order*.

Next, denote  $\widehat{\boldsymbol{Q}}^{r_0} = \left[\widehat{\boldsymbol{Q}}_1^{r_0\prime}, \dots, \widehat{\boldsymbol{Q}}_R^{r_0\prime}\right]'$  as the first  $r_0$  columns of  $\widehat{\boldsymbol{Q}}$ , and construct the  $T \times Rr_0$  matrix,  $\widehat{\boldsymbol{\Psi}} = \left[\widehat{\boldsymbol{K}}_1 \widehat{\boldsymbol{Q}}_1^{r_0}, \dots, \widehat{\boldsymbol{K}}_R \widehat{\boldsymbol{Q}}_R^{r_0}\right]$ . We consider the eigen decomposition,

$$T^{-1}\widehat{\Psi}\widehat{\Psi}' = \widehat{L}\widehat{\Xi}\widehat{L}' \tag{18}$$

where  $\hat{L}$  is a  $T \times Rr_0$  orthonormal matrix and  $\hat{\Xi}$  is a  $T \times T$  diagonal matrix consisting of the eigenvalues in *descending order*. Then, from (18), we obtain the consistent estimator of the global factors, denoted  $\hat{G}$ , by the  $r_0$  vectors of  $\hat{L}$  corresponding to the  $r_0$  largest eigenvalues multiplied by  $\sqrt{T}$ ; namely,

$$\widehat{\boldsymbol{G}} = \frac{1}{\sqrt{T}} \widehat{\boldsymbol{\Psi}} \widehat{\boldsymbol{\Psi}}' \widehat{\boldsymbol{J}}^{r_0} = \frac{1}{\sqrt{T}} \left( \sum_{i=1}^R \widehat{\boldsymbol{K}}_i \widehat{\boldsymbol{Q}}_i^{r_0} \widehat{\boldsymbol{Q}}_i^{r_0'} \widehat{\boldsymbol{K}}_i' \right) \widehat{\boldsymbol{J}}^{r_0}$$
(19)

where  $\widehat{J}^{r_0} = \widehat{L}^{r_0} \left(\widehat{\Xi}^{r_0}\right)^{-1}$ ,  $\widehat{L}^{r_0}$  collects the first  $r_0$  columns of  $\widehat{L}$  and  $\widehat{\Xi}^{r_0}$  is an  $r_0 \times r_0$  diagonal matrix consisting of the  $r_0$  largest eigenvalues of  $T^{-1}\widehat{\Psi}\widehat{\Psi}'$  in descending order.

Finally, the global factor loadings can be estimated by  $\widehat{\Gamma}_i = T^{-1} Y_i \widehat{G}_i$ 

Estimation of local factors and loadings For each block i = 1, ..., R, the local factors, denoted  $\hat{F}_i$ , can be consistently estimated by  $\sqrt{T}$  times the  $r_i$  eigenvectors of  $\hat{Y}_i \hat{Y}'_i$  corresponding to the  $r_i$  largest eigenvalues, where  $\hat{Y}_i = Y_i - \hat{G}\hat{\Gamma}'_i$ .

The local factor loadings can be estimated by  $\widehat{\Lambda}_i = T^{-1} \widehat{Y}_i' \widehat{F}_i$  for each block i = 1, ..., R.

## 4 Asymptotic Theory for the GCC Estimator

Section 4.1 establishes the consistency of estimates of factors and loadings based on the matrix perturbation theory, assuming that the number of global and local factors,  $r_0$  and  $r_i$  are known for all *i*. Section 4.2 develops a consistent selection criteria for determining the number of the global factors. In Section 4.3, we derive asymptotic normal distributions for the factors and loadings estimates.

## 4.1 Consistent estimation of factors and loadings

Let  $\mathcal{M}$  be a finite constant. Following Bai and Ng (2002) and Choi et al. (2021), we assume:

## Assumption A.

1.  $E(e_{ijt}) = 0$  and  $E(|e_{ijt}|^8) \leq \mathcal{M}$  for all i, j and t.

- 2. Let  $E\left(N_i^{-1}\sum_{j=1}^{N_i} e_{ijs}e_{ijt}\right) = \omega_i(s,t)$  for all i. Then,  $|\omega_{i,N_i}(s,s)| \leq \mathcal{M}$  and  $T^{-1}\sum_{s=1}^T \sum_{t=1}^T |\omega_i(s,t)| \leq \mathcal{M}$  for all t.
- 3. Let  $E(e_{ijt}e_{ikt}) = \tau_{i,(jk),t}$ , with  $|\tau_{i,(jk),t}| \le |\tau_{i,(jk)}| < \mathcal{M}$  for all i and t. In addition, for each i, we have  $N_i^{-1} \sum_{j=1}^{N_i} \sum_{k=1}^{N_i} |\tau_{i,(jk)}| \le \mathcal{M}$ .
- 4. Let  $E(e_{ijt}e_{iks}) = \tau_{i,(jk),(ts)}$ . For each *i*, we have

$$\frac{1}{N_i T} \sum_{j=1}^{N_i} \sum_{k=1}^{N_i} \sum_{t=1}^T \sum_{s=1}^T |\tau_{i,(jk),(ts)}| \le \mathcal{M}$$

5. For every i, t and s

$$E\left(\left|\frac{1}{\sqrt{N_i}}\sum_{j=1}^{N_i} \left[e_{ijs}e_{ijt} - E(e_{ijs}e_{ijt})\right]\right|^4\right) \le \mathcal{M}$$

## Assumption B.

- 1.  $T^{-1}G'G$  has distinct eigenvalues. Let  $\mathbf{K}_{it} = (\mathbf{G}'_t, \mathbf{F}'_{it})'$ . For every *i* and *t*, we have  $E(\mathbf{K}_{it}) = 0$ ,  $E(\|\mathbf{K}_{it}\|^4) < \infty$  and  $T^{-1}\mathbf{K}'_i\mathbf{K}_i \xrightarrow{p} \Sigma_{K_i}$  where  $\Sigma_{K_i}$  is positive definite.
- 2. For each m, h and t,

$$E\left(\frac{1}{N_m}\sum_{j=1}^{N_m} \left\|\frac{1}{\sqrt{T}}\sum_{t=1}^T \boldsymbol{K}_{ht} \boldsymbol{e}_{mjt}\right\|^2\right) \leq \mathcal{M}$$

## Assumption C.

- 1.  $\|\boldsymbol{\gamma}_{ij}\| \leq \bar{\gamma} < \infty$  and  $\|\boldsymbol{\lambda}_{ij}\| \leq \bar{\lambda} < \infty$  for all *i* and *j*, where  $\bar{\gamma}$  and  $\bar{\lambda}$  are constants.
- 2. For every  $i = 1, \cdots, R$ ,
  - (a)  $rank(\Theta_i) = r_0 + r_i$  where  $\Theta_i = [\Gamma_i, \Lambda_i];$
  - (b)  $N_i^{-1} \Theta_i' \Theta_i = N_i^{-1} \begin{bmatrix} \Gamma_i' \Gamma_i & \Gamma_i' \Lambda_i \\ \Lambda_i' \Gamma_i & \Lambda_i' \Lambda_i \end{bmatrix} \longrightarrow \Sigma_{\Theta_i} = \begin{bmatrix} \Sigma_{\Gamma_i} & \Sigma_{\Gamma_i \Lambda_i} \\ \Sigma_{\Gamma_i \Lambda_i}' & \Sigma_{\Lambda_i} \end{bmatrix}$  which is a positive-definite matrix;
  - (c)  $\Sigma_{\Theta_i} \Sigma_{K_i}$  has distinct eigenvalues;
  - (d)  $\Sigma_{\Lambda_i} \Sigma_{F_i}$  has distinct eigenvalues.

Assumption D. The global factors are uncorrelated to the local factors; for every *i*,  $T^{-1}K'_iK_i = \begin{bmatrix} \Sigma_G & \mathbf{0} \\ \mathbf{0} & \Sigma_{F_i} \end{bmatrix} + O_p(T^{-1/2})$  where  $\Sigma_G$  and  $\Sigma_{F_i}$  are  $r_0 \times r_0$  and  $r_i \times r_i$  full rank matrices.

Assumption A is an extended version of Assumption C in Bai and Ng (2002), which allows the idiosyncratic errors to be serially and (weakly) cross-sectionally correlated within blocks. This is less restrictive than the assumption made in Choi et al. (2018). Assumptions B and C are standard in the literature. Assumption B.2 allows weak correlation between global/local factors and idiosyncratic errors. Assumption C requires the global (local) factors to have non-trivial contributions to the variance of all individuals within the corresponding block. Assumption D ensures that the global and local factors can be separately identified. Notice that we do not require the orthogonality between global and local factors for consistently estimating the global factors and their dimension, though we need Assumption D for consistent estimation of  $\Gamma_i$ ,  $\Lambda_i$ ,  $F_i$  and  $r_i$ . More importantly, we allow the local factors to be correlated or even identical across some blocks although some existing studies require the orthogonality among local factors, e.g. Choi et al. (2018) and Han (2021). Nevertheless, the GCC estimator is shown to be valid in the presence of the common local factors. We focus on the practical case with a fixed number of blocks R, but the GCC can be valid even as  $R \to \infty$ .<sup>3</sup>

**Lemma 1.** Under Assumptions A-C, as  $N_i, T \to \infty$ , we have:

$$\frac{1}{\sqrt{T}} \left\| \widehat{\boldsymbol{K}}_{i} - \boldsymbol{K}_{i} \widehat{\boldsymbol{H}}_{i} \right\| = O_{p} \left( \frac{1}{C_{N_{i}T}} \right), \ i = 1, ..., R,$$

where  $\widehat{\mathbf{K}}_i$  is the  $T \times r_{\max}$  matrix of the PC estimates given by  $\sqrt{T}$  times the  $r_{\max}$  eigenvectors of  $\mathbf{Y}_i \mathbf{Y}'_i$  corresponding to the  $r_{\max}$  largest eigenvalues,  $\mathbf{K}_i = [\mathbf{G}, \mathbf{F}_i]$  is the  $T \times (r_0 + r_i)$  factors,  $\widehat{\mathbf{H}}_i$  is the  $(r_0 + r_i) \times r_{\max}$  rotation matrix,  $C_{N_iT} = \min\left\{\sqrt{N_i}, \sqrt{T}\right\}$ , and

$$\frac{1}{\sqrt{T}} \left\| \widehat{\boldsymbol{\Phi}} - \boldsymbol{\Phi} \widehat{\boldsymbol{H}} \right\| = O_p \left( \frac{1}{C_{\underline{N},T}} \right)$$

where  $\mathbf{\Phi}$  is the  $T(R-1)R/2 \times \sum_{l=1}^{R} (r_0 + r_l)$  matrix defined in (13),  $\widehat{\mathbf{\Phi}}$  is the  $T(R-1)R/2 \times Rr_{\max}$  matrix by replacing  $\mathbf{K}_i$  with  $\widehat{\mathbf{K}}_i$ ,  $\widehat{\mathbf{H}} = diag \left\{ \widehat{\mathbf{H}}_1, \widehat{\mathbf{H}}_2, \dots, \widehat{\mathbf{H}}_R \right\}$  is a  $\sum_{l=1}^{R} (r_0 + r_l) \times Rr_{\max}$  block-diagonal rotation matrix and  $C_{\underline{N},T} = \min\{\sqrt{\underline{N}}, \sqrt{T}\}$  with  $\underline{N} = \min\{N_1, N_2, \dots, N_R\}$ .

Lemma 1 establishes that as  $N_i, T \to \infty$ ,  $\widehat{\mathbf{K}}_i$  converges to their population counterpart up to a rotation. The rotation matrix,  $\widehat{\mathbf{H}}_i$  is shown to exist in Bai and Ng (2002), but we do not need a specific form since any full rank rotation matrix yields the observationally equivalent model.

**Lemma 2.** There exists an  $Rr_{\max} \times r_0$  matrix  $\overline{Q}^{r_0}$  such that  $\Phi \widehat{H} \overline{Q}^{r_0} = \mathbf{0}$ , where the  $r_0$  singular values are zero. The remaining singular values of  $\Phi \widehat{H}$  are larger than zero and of stochastic order  $O_p(\sqrt{T})$ .

Lemma 2 extends Proposition 1 to the case under the rotation incurred by the PC estimation, and enables us to apply Lemma 3 below to  $\hat{\Phi}$  for deriving the convergence rate of the estimated eigenvectors under rotation. It also helps to estimate the number of global factors  $r_0$  by counting the number of zero singular values of  $\hat{\Phi}$  (see Section 4.2).

While the consistency of the estimated eigenvalues are well-established, there are the two main issues in establishing the consistency of the estimated eigenvectors. First, it is widely acknowledged that the convergence of the eigenvectors may not be well-behaved under eigenvalue-multiplicity. Second,

<sup>&</sup>lt;sup>3</sup>When  $R \to \infty$ , the identification of global factors is simpler because each block is asymptotically negligible and the *PC* estimation can be applied to the whole data matrix.

convergence rates of the eigenvectors associated with zero eigenvalues are unclear according to Davis-Kahan theorem (see Theorem 3.4 of Stewart and Sun (1990)).

In Lemma 3 we state the perturbation theory developed by Yu et al. (2015), that is a variant of the Davis-Kahan Theorem, and necessary for deriving our consistency results.

**Lemma 3.** Let S and  $\hat{S}$  be the  $p \times p$  symmetric matrices with eigenvalues  $\lambda_1 \geq \cdots \geq \lambda_p$  and  $\hat{\lambda}_1 \geq \cdots \geq \hat{\lambda}_p$ , respectively. Fix  $1 \leq r \leq s \leq p$  and set d = s - r + 1. Assume that  $\min\{\lambda_{r-1} - \lambda_r, \lambda_s - \lambda_{s+1}\} > 0$ , where  $\lambda_0 = \infty$  and  $\lambda_{p+1} = -\infty$ . Let the  $p \times d$  matrices  $V = [v_r, v_{r+1}, \ldots, v_s]$  and  $\hat{V} = [\hat{v}_r, \hat{v}_{r+1}, \ldots, \hat{v}_s]$  have orthogonal columns, satisfying  $\Sigma v_j = \lambda_j v_j$  and  $\hat{\Sigma} \hat{v}_j = \lambda_j \hat{v}_j$  for  $j = r, r + 1, \ldots, s$ . Then, there exists a  $d \times d$  orthogonal matrix  $\hat{O}$  such that

$$\left\| \widehat{\boldsymbol{V}} \widehat{\boldsymbol{O}} - \boldsymbol{V} \right\| \le rac{2^{3/2} \left\| \widehat{\boldsymbol{S}} - \boldsymbol{S} \right\|}{\min\{\lambda_{r-1} - \lambda_r, \lambda_s - \lambda_{s+1}\}}$$

The Davis-Kahan Theorem states that the eigenvectors converge to their population counterparts corresponding to non-zero eigenvalues up to rotation under eigenvalue-multiplicity for any real symmetric matrices. However, the stochastic bound provided by the Davis-Kahan Theorem cannot be applicable to our case where the eigenvalues of interest are zero. Lemma 3 establishes that the convergence of the eigenvectors still holds up to an orthogonal rotation even if the population eigenvalues are zero.

With Lemmas 1-3, we establish the consistency of the estimated global factors and loadings (up to rotation) in Theorem 1.

**Theorem 1.** 1. Under Assumptions A–C, as  $N_1, N_2, \ldots, N_R, T \to \infty$ , we have:

$$\frac{1}{\sqrt{T}} \left\| \widehat{\boldsymbol{G}} - \boldsymbol{G} \mathbb{H} \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$

2. Under Assumptions A–D, as  $N_1, N_2, \ldots, N_R, T \to \infty$ , we have:

$$\frac{1}{\sqrt{N_i}} \left\| \widehat{\boldsymbol{\Gamma}}'_i - \mathbb{H}^{-1} \boldsymbol{\Gamma}'_i \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$

where  $\mathbb{H} = T^{-1/2} \mathbf{G}' \mathbf{J}^{r_0} \mathbf{U}$  is an  $r_0 \times r_0$  rotation matrix,  $\mathbf{J}^{r_0} = \mathbf{L}^{r_0} (\mathbf{\Xi}^{r_0})^{-1}$ ,  $\mathbf{\Xi}^{r_0}$  is an  $r_0 \times r_0$ diagonal matrix consisting of the  $r_0$  non-zero eigenvalues of  $T^{-1} \mathbf{G} \mathbf{G}'$  in descending order,  $\mathbf{L}^{r_0}$  is a  $T \times r_0$  matrix of the corresponding eigenvectors,  $\mathbf{U}$  is an  $r_0 \times r_0$  orthogonal matrix defined in (24), and  $C_{\underline{N}T} = \min\{\sqrt{\underline{N}}, \sqrt{T}\}$  with  $\underline{N} = \min\{N_1, N_2, \dots, N_R\}$ .

If the main focus is on the consistent estimation of the global factors (e.g. Del Negro and Otrok (2007)), then an orthogonality between global and local factors is not required. This feature is more general than existing studies that assume an orthogonality, see Wang (2008), Choi et al. (2018), Andreou et al. (2019) and Han (2021). But, we still need to impose such an orthogonality for consistent estimation of the global factor loadings.

Given consistent estimates of the global factors and loadings, we next establish the consistency of the estimated local factors and loadings in Theorem 2.

**Theorem 2.** Under Assumptions A–D, as  $N_i, T \to \infty$ , for each i = 1, ..., R, we have:

$$\frac{1}{\sqrt{T}} \left\| \widehat{F}_i - F_i \widehat{\mathscr{H}}_i \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$

$$\frac{1}{\sqrt{N_i}} \left\| \widehat{\mathbf{\Lambda}}'_i - \widehat{\mathscr{H}}_i^{-1} \mathbf{\Lambda}'_i \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$

where  $\widehat{\mathscr{H}_{i}} = (\mathbf{\Lambda}'_{i}\mathbf{\Lambda}_{i}/N_{i})\left(\widehat{\mathbf{F}}'_{i}\mathbf{F}/\mathbf{T}\right)\widehat{\mathbf{\Upsilon}}_{i}^{-1}$  is an  $r_{i} \times r_{i}$  rotation matrix,  $\widehat{\mathbf{\Upsilon}}_{i}$  is an  $r_{i} \times r_{i}$  diagonal matrix consisting of the  $r_{i}$  largest eigenvalues of  $\frac{1}{N_{i}T}\widehat{\mathbf{Y}}_{i}\widehat{\mathbf{Y}}_{i}'$  in descending order,  $\widehat{\mathbf{Y}}_{i} = \mathbf{Y}_{i} - \widehat{\mathbf{G}}\widehat{\mathbf{\Gamma}}'_{i}$ , and  $C_{\underline{N},T} = \min\{\sqrt{\underline{N}},\sqrt{T}\}$  with  $\underline{N} = \min\{N_{1}, N_{2}, \ldots, N_{R}\}$ .

We allow the local factors to be correlated or identical across some blocks, unlike many existing studies that require orthogonality among the local factors, e.g. Choi et al. (2018) and Han (2021). Theorem 2 establishes that the *GCC* estimator is still consistent even in the presence of the pairwise common local factors and the local factors common across some blocks.

## 4.2 Determining the number of global factors

We now develop the GCC criterion for identifying the number of global factors. Consider the diagonal matrix,  $\hat{\Delta}$  from the SDV of  $\hat{\Phi}$  defined in (17). Then, we evaluate the ratio of adjacent (squared) singular values in a similar fashion as in Ahn and Horenstein (2013).

Let  $\hat{\delta}_1, \ldots, \hat{\delta}_{Rr_{\max}}$  be the diagonal elements of  $\widehat{\Delta}$  in ascending order. Then, we propose estimating the number of global factors by

$$\hat{r}_{0,GCC} = \operatorname*{argmax}_{k=0,...,r_{\max}} \frac{\hat{\delta}_{k+1}^2}{\hat{\delta}_k^2}$$
(20)

The main idea is that the ratio sharply separates the zero singular value with the positive one. Using Lemma 2, we can show that  $\hat{\delta}_k = O_p\left(\sqrt{T}/C_{\underline{NT}}\right)$  for  $k = 1, \ldots, r_0$  while  $\hat{\delta}_k = O_p\left(\sqrt{T}\right)$  for  $k = r_0 + 1, \ldots, Rr_{\max}$ , where  $C_{\underline{NT}} = \min\{\underline{N}, T\}$  and  $\underline{N} = \min\{N_1, N_2, \ldots, N_R\}$ . Hence, the ratio is bounded for  $k = 0, \ldots, r_0 - 1, r_0 + 1, \ldots, r_{\max}$ , but it tends to infinity for  $k = r_0$ .

To deal with the case with  $r_0 = 0$ , we set the mock singular value as

$$\hat{\delta}_0^2 = \frac{1}{C_{\underline{N}T}Rr_{\max}} \sum_{k=1}^{Rr_{\max}} \hat{\delta}_k^2$$

Since the average of squared singular values is of stochastic order  $O_p\left(\sqrt{T}\right)$ , we have:  $\hat{\delta}_0 = O_p\left(\sqrt{T}/C_{\underline{N}T}\right)$ , that has the same stochastic order as  $\hat{\delta}_k$  for  $k = 1, \ldots, r_0$ . Hence,  $\hat{\delta}_1^2/\hat{\delta}_0^2 = O_p(1)$  for  $r_0 > 0$  whilst  $\hat{\delta}_1^2/\hat{\delta}_0^2 \xrightarrow{p} \infty$  for  $r_0 = 0$ . This ensures that we do not overestimate  $r_0$  even for  $r_0 = 0$ .

**Theorem 3.** Under Assumptions A–C, we have:

$$\lim_{N_1,\dots,N_R,T\to\infty} \Pr\left(\hat{r}_{0,GCC}=r_0\right)=1$$

where  $\hat{r}_{0,GCC} = \underset{k=0,\ldots,r_{\max}}{\operatorname{arg\,max}} \hat{\delta}_{k+1}^2 / \hat{\delta}_k^2$ ,  $\hat{\delta}_1 \leq \cdots \leq \hat{\delta}_{r_{\max}} \leq \cdots \leq \hat{\delta}_{r_{\max}}$  are the singular values of  $\widehat{\Phi}$  and  $\hat{\delta}_0^2 = (C_{\underline{NT}} Rr_{\max})^{-1} \sum_{l=1}^{Rr_{\max}} \hat{\delta}_l^2$ .

The justification behind Theorem 3 lies in the sense of the matrix perturbation theory that the eigenvalues converge to their population counterparts under a small perturbation term (see Stewart and Sun (1990)). Notice that if our main focus is on the consistent estimation of  $r_0$ , then an orthogonality

between global and local factors is not required. This make the GCC criterion more general than existing studies that require orthogonality, e.g. Andreou et al. (2019) and Han (2021).

Given  $\hat{r}_0$ , we can consistently estimate global factors and loadings, denoted  $\hat{G}$  and  $\hat{\Gamma}_i$ . Then, the number of local factors,  $r_i$  can be consistently estimated by applying the existing approximate factor model to  $\hat{Y}_i = Y_i - \hat{G}\hat{\Gamma}'_i$  for i = 1, ..., R, which has been extensively studied, e.g. Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013). See Choi and Jeong (2019) for a comprehensive review.

**Related literature** Chen (2012) and Dias et al. (2013) develop the following information criteria to determine the number of global and local factors:

$$(\hat{r}_0, \hat{r}_1, \dots, \hat{r}_i) = \operatorname*{argmin}_{k_0, k_1, \dots, k_R} \sum_{i=1}^R \left\| \boldsymbol{Y}_i - \widehat{\boldsymbol{G}}^{k_0} \widehat{\boldsymbol{\Gamma}}_i^{k_0\prime} - \widehat{\boldsymbol{F}}_i^{k_i} \widehat{\boldsymbol{\Lambda}}_i^{k_i\prime} \right\|^2 + \text{ penalty}$$

As described in Choi et al. (2021), however, these information criteria have two shortcomings. First, it involves too many combinations of  $k_0$  and  $k_i$  even if R is mildly large. Second, it is nontrivial to construct a proper penalty function that can discriminate the respective roles played by the global and local factors.

Andreou et al. (2019) derive the canonical correlation based test statistic given by  $\hat{\xi}(r) - r$  where  $\hat{\xi}(r) = \sum_{k=1}^{r} \sqrt{\hat{\ell}_k}$  and  $\hat{\ell}_k$  is the k-th largest characteristic root of (9). Let  $\tilde{\xi}(r)$  be the de-biased and re-scaled version of  $\hat{\xi}(r) - r$ . Then, it is shown that  $\tilde{\xi}(r) \stackrel{d}{\to} N(0,1)$  for  $r = 1, \ldots, r_0$ . A sequence of tests can be conducted from  $r = r_{\text{max}}$  to r = 1 so that  $r_0$  can be estimated by

$$\hat{r}_{0,AGGR} = \max\left\{r: 1 \le r \le r_{\max}, \tilde{\xi}(r) \ge z_{\alpha_{NT}}\right\}$$

where  $z_{\alpha_{NT}}$  is a threshold value depending on  $(\underline{N}, T)$  and some tuning parameters. However, the main weakness of their approach lies in that it can be applied to the data with the two blocks only.

Choi et al. (2021) develop consistent selection criteria based on the average canonical correlations among all block pairs. Let  $\hat{\ell}_{mh,r}$  be the *r*-th largest characteristic root of (9) between a block pair *m* and *h*, and construct the average (squared) canonical correlation by  $\hat{s}(r) = \frac{2}{R(R-1)} \sum_{m=1}^{R-1} \sum_{h=m+1}^{R} \hat{\ell}_{mh,r}$ . The following two selection criteria, *CCD* and *MCC*, are proposed:

$$\hat{r}_{0,CCD} = \operatorname*{argmax}_{r=0,...,r_{\max}+1} \hat{s}(r) - \hat{s}(r+1)$$
$$\hat{r}_{0,MCC} = \max \{ 0 \le r \le r_{\max} : 1 - \hat{s}(r) - C \times \text{penalty} < 0 \}$$

where C is a data dependent tuning parameter. CCD is consistent while imposing a slightly strong condition that the average canonical correlation has an upper bound. MCC does not require this condition but  $1 - \hat{s}(r)$  needs to be modified by the product of a data dependent tuning parameter and a penalty term. We conjecture that CCD and MCC can be consistent in the presence of multi-block common local factors while they become inconsistent in the presence of the pairwise common local factors.<sup>4</sup>

Chen (2022) proposes a selection criteron based on the average residual sum of square (ARSS) from a regression of  $\hat{\zeta}_r$  on  $\hat{K}_i$  given by  $ARSS_r = \frac{1}{R} \sum_{i=1}^R \hat{\zeta}'_r \left( I_T - P\left(\widehat{K}_i\right) \right) \hat{\zeta}_r$ , where  $\hat{\zeta}_r$  is the eigenvector corresponding to the *r*-th largest eigenvalue of the circular projection matrix,  $\left[ \left( \prod_{i=1}^R P\left(\widehat{K}_i\right) \right)' \left( \prod_{i=1}^R P\left(\widehat{K}_i\right) \right) \right]$ .

<sup>&</sup>lt;sup>4</sup>For instance, if the two blocks share the pairwise common local factors, then the  $r_0 + 1$  largest canonical correlations between such a block pair is equal to one, in which case CCD and MCC tend to select the  $r_0 + 1$  global factors instead of  $r_0$ . We also observe that CCD and MCC are sensitive to the excessively large  $r_{\max}$  when the errors are serially correlated. By contrast, in (unreported) simulations, we find that GCC is generally insensitive to the coice of  $r_{\max}$ .

Chen suggests estimating  $r_0$  by

 $\hat{r}_{0,ARSS} = \underset{r=1,\dots,r_{\max}}{\operatorname{argmax}} \operatorname{Logistic}(\log \log(\underline{N}) \times ARSS_{r+1}) - \operatorname{Logistic}(\log \log(\underline{N}) \times ARSS_{r})$ 

where the logistic function,  $\text{Logistic}(x) = P_1/[1 + A \exp(-\tau x)]$  polarises  $ARSS_r$  to 0 or 1 with  $A = P_1/P_0 - 1$ ,  $P_0 = 10^{-3}$ ,  $P_1 = 1$  and  $\tau = 14$ . The ARSS can allow non-zero correlations between local factors, but it does not cover the case with a zero global factor, implying that the ARSS estimator always overestimates  $r_0$  when  $r_0 = 0$  (see the simulation evidence in Section 5).

## 4.3 Asymptotic distributions of the estimated factors and loadings

To develop the asymptotic distributions of the estimated factors and loadings, we need to impose slightly stronger conditions than those required for consistency in Section 4.1. Following Bai (2003), we make the additional assumptions.

Assumption E. For each *i*, we have  $\lim_{N_i, N \to \infty} N/N_i = \alpha_i \leq \mathcal{M}$ 

## Assumption F.

- 1.  $\sum_{s=1}^{T} |\omega_{i,N_i}(s,t)| < \mathcal{M} \text{ for all } i \text{ and } t.$
- 2. Let  $\tau_{(mh),(kj),t} = E\left(e_{mkt}e_{hjt}\right)$ . For every t, we have  $|\tau_{(mh),(kj),t}| \leq |\tau_{(mh),(kj)}| \leq \mathcal{M}$ . Moreover, for every m, h, k, j, we have  $\sum_{k=1}^{N_m} |\tau_{(mh),(kj)}| \leq \mathcal{M}$ .

#### Assumption G.

1. For each m, h and t,

$$E\left(\left\|\frac{1}{\sqrt{N_hT}}\sum_{s=1}^T\sum_{k=1}^{N_h}\boldsymbol{K}_{ms}\left[e_{hks}e_{hkt}-E(e_{hks}e_{hkt})\right]\right\|^2\right) \leq \mathcal{M}$$

2. For each m, h and t, the  $(r_0 + r_i) \times (r_0 + r_i)$  matrix satisfies

$$E\left(\left\|\frac{1}{\sqrt{N_hT}}\sum_{t=1}^T\sum_{j=1}^{N_h}\boldsymbol{K}_{mt}\boldsymbol{\theta}'_{hj}e_{hjt}\right\|^2\right) \leq \mathcal{M}$$

3. For each t, as  $N_1, \ldots, N_R \to \infty$ , we have

$$\mathbb{E}_{t} = \begin{bmatrix} \mathbb{E}_{1t} \\ \mathbb{E}_{2t} \\ \vdots \\ \mathbb{E}_{Rt} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{N_{1}}} \sum_{j=1}^{N_{1}} \boldsymbol{\theta}_{1j} e_{1jt} \\ \frac{1}{\sqrt{N_{2}}} \sum_{j=1}^{N_{2}} \boldsymbol{\theta}_{2j} e_{2jt} \\ \vdots \\ \frac{1}{\sqrt{N_{R}}} \sum_{j=1}^{N_{R}} \boldsymbol{\theta}_{Rj} e_{Rjt} \end{bmatrix} \xrightarrow{d} N\left(\mathbf{0}, \mathbb{D}_{t}^{(1)}\right)$$

 $\mathbb{D}_{t}^{(1)} = \begin{bmatrix} \mathbb{D}_{11,t}^{(1)} & \mathbb{D}_{12,t}^{(1)} & \dots & \mathbb{D}_{1R,t}^{(1)} \\ \mathbb{D}_{21,t}^{(1)} & \mathbb{D}_{22,t}^{(1)} & \dots & \mathbb{D}_{2R,t}^{(1)} \\ & & \vdots \\ \mathbb{D}_{R1,t}^{(1)} & \mathbb{D}_{R2,t}^{(1)} & \dots & \mathbb{D}_{RR,t}^{(1)} \end{bmatrix}$ 

is the covariance matrix with

$$\mathbb{D}_{mh,t}^{(1)} = plim_{N_m,N_h \to \infty} (N_m N_h)^{-1/2} \sum_{j=1}^{N_m} \sum_{k=1}^{N_h} \boldsymbol{\theta}_{mj} \boldsymbol{\theta}_{hk}^{\prime} E(e_{mjt} e_{hkt}) \leq \mathcal{M}.$$

4. For each i and j, as  $T \to \infty$ , we have:

$$\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \boldsymbol{G}_t \left( \boldsymbol{\lambda}'_{ij} \boldsymbol{F}_{it} + e_{ijt} \right) \stackrel{d}{\longrightarrow} N(\boldsymbol{0}, \mathbb{D}_{ij}^{(2)})$$
$$\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \boldsymbol{F}_t e_{ijt} \stackrel{d}{\longrightarrow} N(\boldsymbol{0}, \mathbb{D}_{ij}^{(3)})$$
where  $\mathbb{D}_{ij}^{(2)} = plim_{T \to \infty} T^{-1} \sum_{s=1}^{T} \sum_{t=1}^{T} E \left[ \boldsymbol{G}_s \left( \boldsymbol{\lambda}'_{ij} \boldsymbol{F}_{is} + e_{ijs} \right) \left( \boldsymbol{\lambda}'_{ij} \boldsymbol{F}_{it} + e_{ijt} \right) \boldsymbol{G}'_t \right]$  and  $\mathbb{D}_{ij}^{(3)} = plim_{T \to \infty} \sum_{s=1}^{T} \sum_{t=1}^{T} E \left[ \boldsymbol{F}_{it} \boldsymbol{F}'_{is} e_{ijs} e_{ijt} \right].$ 

Assumption E imposes that  $N_i$  is of the same order of magnitude as N for all i = 1, ..., R, similarly to Choi et al. (2018). Assumptions F and G, corresponding to Assumptions E and F in Bai (2003), are standard in the literature. Assumption F restricts the cross-sectional and serial dependence of the errors. Notice that Assumption F.2 imposes limited cross-block dependence, which is not required in Assumption A. Assumptions G.1 and G.2 are technical conditions for controlling the stochastic order of the bias terms in the asymptotic expansions, though they are not too restrictive since they are summations of zero mean random variables. Assumptions G.3 and G.4 are the central limit theorems that can be applied to several mixing processes.

With Assumptions F and G, Lemma 6 establishes that some parts in the asymptotic expansion of  $\widehat{K}_{it}$  achieve a convergence rate faster than  $O_p(C_{N_iT}^{-1})$ , as previously shown in Lemma 1. This allows us to refine the convergence rates of  $\widehat{Q}^{r_0}$  and  $\widehat{L}^{r_0}$  in Lemma 7 so that they are now  $O_p(C_{\underline{N}T}^{-2})$  instead of  $O_p(C_{\underline{N}T}^{-1})$  as in the proof of Theorem 1. By applying these results, we are able to derive the asymptotic normal distributions of the estimated factors and loadings in Theorems 4-7.

**Theorem 4.** Under Assumptions A-C and E-G, as  $N_1, N_2, \ldots, N_R, T \to \infty$  and  $\sqrt{N}/T \to 0$ , we have for each t:

$$\sqrt{N}\left[\widehat{\boldsymbol{G}}_{t}-\left(\mathbb{H}'+\mathbb{B}'\right)\boldsymbol{G}_{t}\right]=\frac{1}{R}\mathbb{H}'\mathcal{I}'\widehat{\mathbb{C}}\mathbb{E}_{t}+o_{p}(1)\overset{d}{\longrightarrow}N\left(\boldsymbol{0},\frac{1}{R^{2}}\mathbb{H}'\mathcal{I}'\mathbb{C}\mathbb{D}_{t}^{(1)}\mathbb{C}'\mathcal{I}\mathbb{H}\right)$$

where  $\mathbb{H}$  is an  $r_0 \times r_0$  rotation matrix defined in Theorem 1,  $\mathcal{I} = [\mathbf{I}_{r_0}, \dots, \mathbf{I}_{r_0}]'$  is an  $Rr_0 \times r_0$  matrix,  $\widehat{\mathbb{C}} = diag\left(\sqrt{\frac{N}{N_1}}\mathbb{I}'_1\left(\frac{\Theta'_1\Theta_1}{N_1}\right)^{-1}, \dots, \sqrt{\frac{N}{N_R}}\mathbb{I}'_R\left(\frac{\Theta'_R\Theta_R}{N_R}\right)^{-1}\right)$  is an  $Rr_0 \times Rr_0$  block diagonal matrix with  $\mathbb{I}_i = \mathbb{I}_i$ 

where

 $[\mathbf{I}_{r_0}, \mathbf{0}]'$  an  $(r_0 + r_i) \times r_0$  matrix,  $\mathbb{C} = plim_{N_1, \dots, N_R, T \to \infty} \widehat{\mathbb{C}}$ ,  $\mathbb{E}_t$  and  $\mathbb{D}_t^{(1)}$  are defined in Assumption G.3, and  $\mathbb{B}$  is an  $r_0 \times r_0$  matrix given by

$$\mathbb{B} = \frac{1}{R} \sum_{i=1}^{R} \sqrt{\frac{1}{N_i}} \mathbb{I}'_i \left(\frac{\Theta'_i \Theta_i}{N_i}\right)^{-1} \frac{\Theta'_i e'_i}{\sqrt{N_i T}} J^{r_0} U = O_p \left(\frac{1}{\sqrt{N}}\right)$$

where  $J^{r_0}$  and U are defined in Theorem 1 and (24).

**Theorem 5.** Under Assumptions A-G, as  $N_1, N_2, \ldots, N_R, T \to \infty$  and  $\sqrt{T}/\underline{N} \to 0$ , we have for each *i* and *j*:

$$\sqrt{T}\left[\widehat{\boldsymbol{\gamma}}_{ij} - \left(\mathbb{H} + \mathbb{B}\right)^{-1} \boldsymbol{\gamma}_{ij}\right] = \mathbb{H}' \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \boldsymbol{G}_t \left(\boldsymbol{\lambda}'_{ij} \boldsymbol{F}_{it} + e_{ijt}\right) + o_p(1) \stackrel{d}{\longrightarrow} N\left(\boldsymbol{0}, \mathbb{H}' \mathbb{D}_{ij}^{(2)} \mathbb{H}\right)$$

where  $\mathbb{D}_{ij}^{(2)}$  is defined in Assumption G.4.

**Theorem 6.** Under Assumptions A-G, as  $N_1, N_2, \ldots, N_R, T \to \infty$ , and if  $\sqrt{N_i}/T \to 0$  and  $0 < N_i/T < \infty$ , then we have for each t:

$$\sqrt{N_i} \left( \widehat{F}_{it} - \widehat{\mathscr{H}}_i' F_{it} - \mathcal{B}_{it} \right) = \widehat{\Upsilon}_i^{-1} \left( \frac{1}{T} \sum_{s=1}^T \widehat{F}_{is} F_{is}' \right) \frac{1}{\sqrt{N_i}} \sum_{j=1}^{N_i} \lambda_{ij} e_{ijt} \stackrel{d}{\longrightarrow} N \left( \mathbf{0}, \Upsilon_i^{-1} \mathbb{W}_i \mathbb{D}_{ii,t}^{(4)} \mathbb{W}_i' \Upsilon_i^{-1} \right)$$

where  $\mathbb{D}_{ii,t}^{(4)} = plim_{N_i \to \infty} N_i^{-1} \sum_{j=1}^{N_i} \sum_{k=1}^{N_i} \lambda_{ij} \lambda'_{ik} E(e_{ijt}e_{ikt})$  is a the lower-right  $r_i \times r_i$  matrix of  $\mathbb{D}_{ii,t}^{(1)}$ , and  $\mathcal{B}_{it}$  is the bias term given by

$$\boldsymbol{\mathcal{B}}_{it} = \boldsymbol{\widehat{\Upsilon}}_{i}^{-1} \frac{1}{N_{i}T} \sum_{s=1}^{T} \boldsymbol{\widehat{F}}_{is} \boldsymbol{F}_{is}' \boldsymbol{\Lambda}_{i}' \boldsymbol{\widehat{S}}_{i.t} = O_{p} \left(\frac{1}{\sqrt{N}}\right) + O_{p} \left(\frac{1}{\sqrt{T}}\right)$$

 $\mathcal{I}, \mathbb{C}$  and  $\mathbb{E}_t$  are defined in Theorem 3.  $\Upsilon_i^{-1}$  and  $\mathbb{W}_i$  are defined in Lemma 11 and  $\Sigma_{\Gamma_i\Lambda_i}$  is defined in Assumption C.2b.

**Theorem 7.** Under Assumptions A-G, as  $N_1, N_2, \ldots, N_R, T \to \infty$ , and if  $\sqrt{T}/N_i \to 0$  and  $0 < T/N_i < \infty$ , then we have each  $j = 1, \ldots, N_i$ :

$$\sqrt{T}\left(\widehat{\boldsymbol{\lambda}}_{ij} - \widehat{\mathscr{H}}_{i}^{-1}\boldsymbol{\lambda}_{ij} - \mathscr{B}_{ij}\right) = \widehat{\mathscr{H}}_{i}^{\prime}\frac{1}{T}\sum_{t=1}^{T}\boldsymbol{F}_{it}e_{ijt} + o_{p}(1) \stackrel{d}{\longrightarrow} N\left(\boldsymbol{0}, \left(\mathbb{W}_{i}^{-1}\right)^{\prime}\mathbb{D}_{ij}^{(3)}\mathbb{W}_{i}^{-1}\right)$$

where  $\mathbb{D}_{ij}^{(3)}$  is defined in Assumption G.4,  $\mathscr{B}_{ij}$  is the bias term given by

$$\mathscr{B}_{ij} = \widehat{\mathscr{H}_i'} \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{F}_{it} \widehat{S}_{ijt} = O_p \left(\frac{1}{\sqrt{N}}\right) + O_p \left(\frac{1}{\sqrt{T}}\right)$$

and  $\mathbb{W}_i$  is defined in Lemma 11.

Theorems 4 and 5 establish that the estimates of the global factors and loadings follow the asymptotic normal distributions. Unlike in Theorem 1, the rotation matrix has an additional term,  $\mathbb{B}$  of order  $O_p\left(\underline{N}^{-1/2}\right)$ , which does not affect the asymptotic variance matrices. To the best of our knowledge, there is no studies that establish the asymptotic distributions of the global factors and loadings. One exception is Andreou et al. (2019), but their theory only applies when R = 2.

Theorems 6 and 7 show that there are bias terms  $\mathcal{B}_{it}$  and  $\mathscr{B}_{ij}$  of order  $O_p\left(C_{\underline{NT}}^{-1}\right)$  stemming from the estimation error from the global components,  $\widehat{S}_{ijt}$ , that is the (t, j) element of  $\widehat{S}_i = G\Gamma'_i - \widehat{G}\widehat{\Gamma}'_i$ . A similar result is documented by Andreou et al. (2019), who show that the asymptotic distribution of the local factors is not centered. In principle, it is not straightforward to perform the bias correction unless the global factors and loadings are known. Notice, however, that we derive our asymptotic theories under weaker conditions than those imposed by Andreou et al. (2019); namely, we do not assume that the global factors are orthogonal to each other, and the local factors are orthogonal within blocks.

This generality brings forth the rotation matrices in the asymptotic variances, as shown in Theorem 4 and 5. To deal with this issue, we use the wild bootstrap advanced by Gonçalves and Perron (2014) for the global factors. We also use a dependent bootstrapping method developed by Shao (2010) for the global factor loadings to account for the potential serial correlation induced by the local factors as suggested in Assumption G.4 and Theorem 5. The bootstrapped covariance matrices are not consistent estimates for those in Theorems 4 and 5, because the bootstrap version of the rotation matrix  $\mathbb{H}^{*(b)}$  changes in each replication and does not necessarily match  $\mathbb{H}$ . Therefore, we construct confidence intervals (CI) using the percentile estimates based on the back-rotated estimates by

$$\sqrt{N}\left[\left(\mathbb{H}^{*(b)\prime} + \mathbb{B}^{*(b)\prime}\right)^{-1} \widehat{\boldsymbol{G}}_{t}^{*(b)} - \widehat{\boldsymbol{G}}_{t}\right] \text{ and } \sqrt{T}\left[\left(\mathbb{H}^{*(b)} + \mathbb{B}^{*(b)}\right) \widehat{\boldsymbol{\gamma}}_{ij}^{*(b)} - \widehat{\boldsymbol{\gamma}}_{ij}\right].$$

Since the resulting CIs are unaffected by the bootstrap rotation matrix, they should provide correct coverage rates. See Appendix B for details.

## 5 Monte Carlo Simulation

Following Choi et al. (2021) and Han (2021), we generate the multilevel factor data as follows:

$$y_{ijt} = \boldsymbol{\gamma}_{ij}' \boldsymbol{G}_t + \sqrt{\theta_{i1}} \boldsymbol{\lambda}_{ij}' \boldsymbol{F}_{it} + \sqrt{\kappa \theta_{i2}} e_{ijt} = \sum_{z=1}^{r_0} \gamma_{ij}^z \boldsymbol{G}_t^z + \sqrt{\theta_{i1}} \sum_{z=1}^{r_i} \lambda_{ij}^z \boldsymbol{F}_{it}^z + \sqrt{\kappa \theta_{i2}} e_{ijt}$$
(21)

for i = 1, ..., R,  $j = 1, ..., N_i$ , and t = 1, ..., T, where the superscript z denote the z-th factor and loading. We generate the global factors/loadings, the local factors/loadings and idiosyncratic errors by

$$\begin{aligned} \boldsymbol{G}_t &= \phi_G \boldsymbol{G}_{t-1} + \boldsymbol{v}_t, \, \boldsymbol{v}_t \sim \text{ i.i.d. } N(\boldsymbol{0}, \boldsymbol{I}_{r_0}) \\ \boldsymbol{F}_{it} &= \phi_F \boldsymbol{F}_{i,t-1} + \boldsymbol{w}_{it}, \, \boldsymbol{w}_{it} \sim \text{ i.i.d. } N(0, \boldsymbol{I}_{r_i}) \text{ for } i = 1, \dots, R, \\ \gamma_{ij}^Z &\sim \text{ i.i.d. } N(0,1) \text{ for } z = 1, \dots, r_0; \, \lambda_{ij}^z \sim \text{ i.i.d. } N(0,1) \text{ for } z = 1, \dots, r_i \\ e_{ijt} &= \phi_e e_{ij,t-1} + \varepsilon_{ijt} + \beta \sum_{1 \leq |h| \leq 8} \varepsilon_{i,j-h,t}, \, \varepsilon_{ijt} \sim \text{ i.i.d. } N(0,1) \end{aligned}$$

We allow global and local factors to be serially correlated, but also idiosyncratic errors to be serially and cross-sectionally correlated.

We control the noise-to-signal ratio by  $\kappa$ . When  $\kappa = 1$ , the variances associated with the global factors, local factors and idiosyncratic errors are respectively given by

$$Var(\boldsymbol{\gamma}'_{ij}\boldsymbol{G}_{t}) = \sum_{z=1}^{r_{0}} Var(\gamma_{ij}^{z}G_{t}^{z}) = \frac{r_{0}}{1-\phi_{G}^{2}},$$
$$Var(\boldsymbol{\lambda}'_{ij}\boldsymbol{F}_{it}) = \sum_{z=1}^{r_{i}} Var(\lambda_{ij}^{z}F_{it}^{z}) = \frac{r_{i}}{1-\phi_{F}^{2}} \text{ and } Var(e_{ijt}) = \frac{1+16\beta^{2}}{1-\phi_{e}^{2}}$$

We then make the variance contribution of each component equalised for  $\kappa = 1$  (e.g. Choi et al. (2018) and Han (2021)). For  $r_0 > 0$ , we set:

$$\theta_{i1} = \left(\frac{r_0}{1 - \phi_G^2}\right) \left(\frac{r_i}{1 - \phi_F^2}\right) \text{ and } \theta_{i2} = \left(\frac{r_0}{1 - \phi_G^2}\right) \left/ \left(\frac{1 + 16\beta^2}{1 - \phi_e^2}\right).$$

while for  $r_0 = 0$  we set:

$$\theta_{i1} = 1 \text{ and } \theta_{i2} = \left(\frac{r_i}{1-\phi_G^2}\right) \left/ \left(\frac{1+16\beta^2}{1-\phi_e^2}\right).\right.$$

We consider five DGPs for the following combinations of sample sizes:  $R \in \{3, 10\}, N_i \in \{20, 50, 100, 200\}$ with  $N_1 = \cdots = N_R$  and  $T \in \{50, 100, 200\}$ . We fix  $(r_0, r_i) = (2, 2)$  for  $i = 1, \ldots, R$ ,  $\phi_G = \phi_F = 0.5$  and  $(\beta, \phi_e, \kappa) = (0.1, 0.5, 1)$  under DGP1, which serves as the benchmark case. DGP2 is the same as DGP1 except that we allow the local factors to be identical for some blocks. To generate the pairwise common local factors for R = 3, we set  $F_{1t}^1 = F_{2t}^1, F_{1t}^2 = F_{3t}^2$  and  $F_{2t}^2 = F_{3t}^2$ . For R = 10, we set  $F_{1t}^1 = \cdots = F_{5t}^1$  and  $F_{6t}^1 = \cdots = F_{10t}^1$  to allow the presence of multi-block common local factors. DGP3 considers the noisy data with  $\kappa = 3$  while the other configurations remain the same as in DGP1. DGP4 and DGP5 replicate DGP1 but allow the local factors to be correlated. Specifically, we generate the local factors by

$$\boldsymbol{F}_{t} = 0.5 \boldsymbol{F}_{t-1} + \boldsymbol{w}_{t}, \, \boldsymbol{w}_{t} \sim \text{ i.i.d. } N\left(0, \boldsymbol{\Omega}_{F}\right)$$

where  $\mathbf{F}_t = [\mathbf{F}'_{1t}, \dots, \mathbf{F}'_{Rt}]'$  and  $\mathbf{w}_t = [\mathbf{w}'_{1t}, \dots, \mathbf{w}'_{Rt}]'$ . We set the diagonal elements of  $\mathbf{\Omega}_F$  at 1, and the off-diagonal elements (denoted  $\omega_F$ ) at 0.4 and 0.8 in DGP4 and DGP5, respectively. The number of replications of each experiment is set at 1,000.

We focus on the estimation of the global factors  $\hat{G}$  and the number of the global factors  $\hat{r}_0$ . Without loss of generality we assume that the number of the global factors and local factors are known with  $r_{\max} = r_0 + r_i$  for all *i*. To evaluate the precision of the estimated global factors, we report the trace ratio defined as

$$TR\left(\widehat{\boldsymbol{G}}\right) = \frac{tr\left\{\boldsymbol{G}'\widehat{\boldsymbol{G}}(\widehat{\boldsymbol{G}}'\widehat{\boldsymbol{G}})^{-1}\widehat{\boldsymbol{G}}'\boldsymbol{G}\right\}}{tr\left\{\boldsymbol{G}'\boldsymbol{G}\right\}}$$

where  $tr\{.\}$  is the trace of a matrix. The more precise the estimated factors are, the higher the trace ratio is. If the global factors are perfectly estimated, then  $TR(\widehat{G}) = 1$ . For comparison, we also report the results generated by the *CCA* by Andreou et al. (2019) and the *CPE* by Chen (2022). Since the precision of  $\widehat{F}_i$  and  $\hat{r}_i$  depend purely on the precision of  $\widehat{G}$  and  $\hat{r}_0$  due to the sequential estimation, and their properties are extensively studied by existing literature, we only focus on the performance of *GCC* estimates for  $\widehat{G}$  and  $\hat{r}_0$ . Table 6 shows the average trace ratios over 1000 repetitions. For DGP1, all three approaches can produce precise estimates of global factors. While GCC and CPE estimates are quite close to each other, GCC substantially outperforms them, especially when  $N_i$  and T are small. Under DGP2 where we allow the common local factors across some blocks, CCA is shown to be inconsistent since the largest canonical correlation between the two blocks does not necessarily refer to the presence of the global factors. On the other hand, CPE and GCC do not suffer from this issue, and they continue to be consistent while GCCstill outperforms CPE in all sample sizes. For DGP3, all three approaches are negatively affected by the noisy data, but the performance of GCC improves faster as the sample size increases than CCA and CPE. We obtain qualitatively similar results under DGP4 and DGP5. Notice also that the performance of GCC improves as the number of blocks, R increases while CPE does not display this property.<sup>5</sup> Overall, we find that GCC dominates CCA and CPE in all cases we consider.

#### Table 6 about here

Next, we turn to the estimation of  $r_0$  by GCC together with CCD and MCC advanced by Choi et al. (2021) and ARSS by Chen (2022).<sup>6</sup> Table 7 reports the average of  $\hat{r}_0$  over 1,000 replications and the percentages of over- and under-estimation, denoted (O|U). For DGP1, all the four selection criteria perform satisfactory unless the sample size is too small. Under DGP2, CCD and MCC are shown to overestimate  $r_0$  due to the presence of the pairwise common local factors in which case the canonical correlation between the common local factors from such two blocks is expected to be equal to one. While the performance of ARSS is adversely affected, it improves for large  $N_i$  and T. We still find that GCC outperforms ARSS. For R = 10, CCD becomes the most vulnerable to the common regional factors. While MCC and ARSS can produce relatively precise estimates, GCC outperforms them especially in a small T. Under DGP3, we obtain mixed results. CCD and MCC perform better than ARSS and GCC for a small T whilst ARSS and GCC produce more precise estimates than CCD and MCC for a small  $N_i$ . All the four selection methods can correctly select  $r_0$  when  $N_i$  and T become large. For DGP4, CCD can produce reliable estimates under the mild correlation between local factors while MCC estimates remain precise unless  $N_i$  and T are small. ARSS underperforms when  $N_i$  or T is small. GCC has a similar performance to MCC but its performance is much better in small samples. Under DGP5 where the correlation between the local factors is extremely strong, CCD fails completely since the upper bound condition is violated whilst ARSS does not show any sign of improvement. MCC can select  $r_0$  precisely in large samples, but GCC still dominates with a faster convergence. Overall, we find that MCC, ARSS and GCC can be reliable selection criteria, although ARSS tends to over-estimate  $r_0$  when there is no global factor in the data. Given that GCC does not rely upon the penalty function and the tuning parameters, we conclude that GCC is the most robust and reliable criterion.

## Table 7 about here

As a robust check we repeat the simulation experiments for  $(r_0, r_i) = (1, 1)$  and  $(r_0, r_i) = (3, 3)$ , and present the outcomes in Table 8 to 11. The results are qualitative similar to those with  $(r_0, r_i) = (2, 2)$ . As the number of factors in the data increases, we notice that the accuracy of the estimates becomes slightly lower.

#### Tables 8-11 about here

<sup>&</sup>lt;sup>5</sup>For example, under DGP3 with  $N_i = 20$  and T = 50, the trace ratios for *CPE* and *GCC* are 0.59 and 0.755 for R = 3 while they become 0.59 and 0.919 for R = 10.

<sup>&</sup>lt;sup>6</sup>When implementing these alternative selection criteria, we follow the practical guidelines byChoi et al. (2021) and use  $\hat{r}_{\max} = \max\{\widehat{r_{0}+r_{1},\ldots,r_{0}+r_{R}}\}.$ 

Finally, we investigate whether the global factors and loadings estimated by GCC follow the asymptotic normal distribution. For convenience, we fix R = 3,  $(r_0, r_i) = (2, 2)$ ,  $N_i \in \{20, 100, 200\}$  and  $T \in \{50, 200\}$ , and consider the benchmark case where  $(\phi_G, \phi_F) = (0, 0)$  and  $(\beta, \phi_e, \kappa) = (0, 0, 1)$ . Using the known quantities in the asymptotic variances in Theorems 4 and 5, we standardise the estimates by

$$\begin{pmatrix} \frac{1}{R^2} \mathbb{H}' \mathcal{I}' \mathbb{C} \mathbb{D}_t^{(1)} \mathbb{C}' \mathcal{I} \mathbb{H} \end{pmatrix}^{-1/2} \sqrt{N} \left[ \widehat{\boldsymbol{G}}_t - (\mathbb{H}' + \mathbb{B}') \, \boldsymbol{G}_t \right] \\ \left( \mathbb{H}' \mathbb{D}_{ij}^{(2)} \mathbb{H} \right)^{-1/2} \sqrt{T} \left[ \widehat{\boldsymbol{\gamma}}_{ij} - (\mathbb{H} + \mathbb{B})^{-1} \, \boldsymbol{\gamma}_{ij} \right]$$

We then compare our estimates with the standard normal density. In Figures 5 and 6 we display the histograms for the first element of  $\hat{G}_t$  and  $\hat{\gamma}_{ij}$  evaluated at  $i = 1, j = N_i/2$  and t = T/2. We find that the standardised estimates are well centered and scaled, and tend to the standard normal density. As  $N_i$  and T increase, the approximation becomes more accurate, confirming the validity of our asymptotic theory.

## Figures 5 and 6 about here

We also propose a bootstrap approach to produce the valid confidence intervals for the estimated global factors and loadings. In Appendix B, we conduct a simulation study using the bootstrap approach, and find that the coverage rates of the bootstrap CIs are getting close to the nominal 95% as the sample size increases.

## 6 Empirical Application

Using the multilevel factor model we apply the GCC approach to studying the national and regional housing market cycles in England and Wales. Residential houses are the most valuable properties of the households while house price fluctuations can put the financial system at a greater risk of default during a recession. The housing sector is also directly related to employment, investment and consumption, playing a central role in the business cycle (e.g. Leamer (2007)). While house prices are subject to nation-wide shocks, such as the business cycle and credit liquidity, they are also determined by regional characteristics such as local amenities and the land supply. Hence, te housing market cycle is likely to exist at both national and regional levels.

From the website of Office of National Statistics HPSSA Dataset 14, we download the quarterly (mean) house prices of four different types of properties, (detached, semi-detached, terraced and flats/maisonettes) for 331 local authorities over the period 1996Q1 to 2021Q2. The local authorities belong to ten regions: North East (NE), North West (NW), Yorkshire and the Humber (YH), East Midlands (EM), West Midlands (WM), East of England (EE), London (LD), South East (SE), South West (SW) and Wales (WA). Each "block" in the multilevel factor model is referred to as a region.

We construct the real house price growth in the jth local authority of the region i through deflating the nominal house price by CPI and log-differencing it as follows:

$$\pi_{ijt} = 100 \times \log\left(\frac{PRICE_{ijt}}{CPI_t}\right) - 100 \times \log\left(\frac{PRICE_{ij,t-1}}{CPI_{t-1}}\right)$$

By removing the series with missing observations, we end up with a balanced panel with R = 10,  $N = \sum_{i=1}^{10} N_i = 1300$  and T = 102.

Table 1 displays the number of local authorities for each region as well as the mean and standard deviation of  $\pi_{ijt}$ . We observe that the average growth rates for NE, NW, YH and WA are lower than the overall mean, those for EE, LD and SE higher than the overall mean, and those for EM, WM and SW close to the mean. Notice that LD displays the highest mean growth and standard deviation.

## Table 1 about here

We apply the GCC approach to estimating the multilevel factor model for the standardised series, denoted  $\tilde{\pi}_{ijt}$ , with 10 regions, which is referred to as the national-regional model. By setting  $r_{\text{max}} = 5$ and applying the GCC criterion in (20), we detect one global (national) factor.<sup>7</sup> Next, by applying BIC<sub>3</sub> to each region,<sup>8</sup> we find that there is one local factor for NE, NW, YH, EE, LD, SE and WA whereas no local factor is detected for EM, WM and SW (see Table 1). The existence of both global and local factors clearly suggests that there are housing market cycles at both national and regional levels.

To measure the strength of the factors relative to idiosyncratic errors, we evaluate the relative importance ratios of the national and regional factors for region i by

$$RIG_{i} = N_{i}^{-1} \sum_{j=1}^{N_{i}} \left( \widehat{\gamma}_{ij}' \widehat{\gamma}_{ij} / \left( T^{-1} \widetilde{\pi}_{ij}' \widetilde{\pi}_{ij} \right) \right) \text{ and } RIF_{i} = N_{i}^{-1} \sum_{j=1}^{N_{i}} \left( \widehat{\lambda}_{ij}' \widehat{\lambda}_{ij} / \left( T^{-1} \widetilde{\pi}_{ij}' \widetilde{\pi}_{ij} \right) \right)$$

where  $\tilde{\pi}_{ij}$  is the  $T \times 1$  vector of the (standardised) real house price growth rates in the *j*-th local authority of the region *i*. The results reported in Table 1 show that the global factor explains a considerable portion of the variation, ranging between 29.6% (London) and 55.1% (South West) with a mean of 46.6%. The large variance share explained by the national factor suggests that the house market in England and Wales appears to be more integrated than the U.S. market where the national factor is dominated by the regional factors (see Del Negro and Otrok (2007)). RIGs of YH, EM, WM, EE and SW are above average, exhibiting that these regions are more responsive to national shocks. Interestingly, London is the least sensitive region to the national factor. On the other hand, the regional contribution is much weaker as its average relative importance ratio is only 8.3%. Still, the regional factor explains substantially larger time variations of the house price inflation for London and South East respectively at 22.6% and 15.1%.

To avoid the issue that the estimated global and local factors are subject to rotation/sign indeterminacy, we report the time-varying behaviour of the average global (national) and local (regional) factor-components for each region *i* at time *t* that are constructed by  $\hat{\mathcal{G}}_{it} = \bar{\gamma}'_i \hat{\mathcal{G}}_t$  and  $\hat{\mathcal{F}}_{it} = \bar{\lambda}'_i \hat{\mathcal{F}}_{it}$ , where  $\bar{\gamma}_i = N_i^{-1} \sum_{j=1}^{N_i} \hat{\gamma}_{ij}$  and  $\bar{\lambda}_i = N_i^{-1} \sum_{j=1}^{N_i} \hat{\lambda}_{ij}$ .<sup>9</sup> The trajectories of  $\hat{\mathcal{G}}_{it}$  plotted in Figure 2, are highly persistent but exhibit a typical "boom-bust-recover" pattern of the (recent) housing market cycle.<sup>10</sup> The national factor-components initially displayed an upward trend until 2003Q3, followed by a long-term downturn until 2009Q2. It then made a quick recovery and became relatively stable from 2012 till 2020 when the COVID19 pandemic erupted. We also observe a surge in the national factor-components during

 $<sup>^{7}</sup>CCD$  and MCC by Choi et al. (2021) also select one global factor. This result is robust to the different values of  $r_{\rm max}$ .

<sup>&</sup>lt;sup>8</sup>We have also applied alternative selection criteria,  $IC_{p2}$  by Bai and Ng (2002), ER by Ahn and Horenstein (2013) and ED by Onatski (2010). First, ER surprisingly reports zero local factors for all regions whilst  $IC_{p2}$  and ED tend to produce more factors but the additional factors explain very small portions of variance. Second,  $BIC_3$  is shown to have good finite sample performance, see Choi and Jeong (2019) and Choi et al. (2021).

<sup>&</sup>lt;sup>9</sup>As the (uniquely identified) factor-components are just scaled factors, they carry qualitatively the same information.

 $<sup>^{10}</sup>$ The boom-bust pattern is consistent with the economic theory suggesting that agents are over-optimistic about the fundamentals during a boom, rendering the growth continues to accelerate, whilst as the economy deteriorates following the negative shock, their expectations of capital return are reversed, resulting in the house market collapse, which is further worsened by foreclosures, see Kaplan et al. (2020) and Chodorow-Reich et al. (2021).

the COVID19 period, which was mainly prompted by a tax relief policy introduced by the UK government to boost the economy and improve liquidity.<sup>11</sup>

## Figure 2 about here

The first two figures in Figure 3 display the time-varying patterns of the regional factor-components  $\hat{\mathcal{F}}_{it}$ , from which we can identify that the regional components of EE, LD and SE (solid lines) comove closely (the upper panel) while those of NE, NW, YH and WA (dotted lines) tend to cluster together (the lower panel). These clustering patterns are corroborated by the correlation matrix among the estimated regional components in Table 2, showing that the first and second off-diagonal elements are close to one, but the other off-diagonal ones are considerably smaller. Furthermore, we observe transparent discrepancies between these two groups (referred to as Area 1 and Area 2). The regional factor-components in Area 1 appear to have an earlier turning point around 2000 than the global components during the boom, but declined sharply during the financial crisis, Brexit and COVID19 period. On the other hand, the regional components in Area 2 tend to move in an opposite direction, but remained remarkably stable since 2008.

#### Table 2 and Figure 3 about here

Next, we formally investigate an issue of whether there are areal factors common to some regions. We first project the estimated global factors out from the data and obtain the residuals containing only the local factors and errors, which form the new areal data. Then, we apply the GCC and MCC criterion to these areal data consisting of the different combinations of regions. For example, if the local factors of NE, NW, YH, and WA are common, then the number of common (areal) factors should be one, and zero otherwise. Alternatively, we may consider a two-block model with Area 1 and Area 2 as blocks. If the two areal factors are identical, then there should be one common factor. Otherwise, the number of common factor is zero. The results in Table 3 confirm that the local factors are common within each area, but the two areal factors are different. Thus, we can identify three areas. Area 1 (LD, EE and SW) with one areal factor, Area 2 (NE, NW, YH and WA) with one areal factor, and Area 3 (EM, WM and SW) with zero areal factor. Interestingly, these areas are adjacent geographically (see Figure 1). Notice that the existence of an areal factor around London is not in line with the notion that the "London factor" is pervasive nationally,<sup>12</sup> because the main impact of London is more likely to be confined to its neighbouring regions. In this regard, this finding may provide a support to the notion of "convergence club" that the house prices in regions, that are closer and more distant to London, tend to converge separately, e.g. Holmes and Grimes (2008) and Montagnoli and Nagayasu (2015).

## Table 3 about here

Next, we estimate a national-areal model with 3 areas, and compare its estimation results with those obtained from the national-regional model with 10 regions. It is remarkable that the correlation between the global factors estimated from these two models is 0.996. Further, the local (areal) factor from Area 1 has correlations of 0.924, 0.974 and 0.977 with the local (regional) factors from EE, LD and SE, whereas the areal factor from Area 2 has correlations of 0.917, 0.978, 0.941 and 0.955 with the regional factors from NE, NW, YH, and W. This confirms the presence of the common local factors among some regions

<sup>&</sup>lt;sup>11</sup>The residential property buyers in the U.K. pay Stamp Duty Land Tax (SDLT). The first stage of the policy started from July 2020 and ended at June 2021. The tax reduction is effectively raising the nil rate threshold of the property value from £125,000 to £500,000. See https://www.gov.uk/guidance/stamp-duty-land-tax-temporary-reduced-rates. As the housing demand was stimulated by the policy, the price was pushed up with the inelastic housing supply.

 $<sup>^{12}</sup>$ Holly et al. (2011) propose a spatio-temporal model with the London price set as a common factor for all regions.

in which case the standard *CCA*-based estimates of the global and local factors may be inconsistent. The third panel in Figure 3 displays the areal factor components constructed by  $\hat{\mathcal{F}}_{at} = (N_a^{-1} \sum_{j=1}^{N_a} \hat{\lambda}'_{aj}) \hat{F}_{at}$  for a = 1, 2. These areal components follow the quite similar time-varying patterns to the clustered regional components as shown in the first two figures in Figure 3.

To assess the information contents of the global/local factor components, we present the correlations between the national/areal factor components and a list of macroeconomic and financial variables in Table 5. The national components are positively correlated with the GDP growth, the number of buildings started and the New York house price growth rate, demonstrating the pro-cyclicality and possibly strong connection to the international housing market. Moreover, the national component is negatively correlated with the unemployment rate (the demand side), whilst they are negatively correlated with the labour force in the construction sector (the supply side). The credit market condition also plays an important role, as the national components are negatively correlated with the mortgage rate and the 20-year government bond yields while positively correlated with residential lending approvals. These results are in line with the conventional view that the national housing market cycle is pro-cyclical and closely related to economic fundamentals (see Chodorow-Reich et al. (2021)). By contrast, the areal housing market cycles captured by the areal components display a heterogeneous and opposition pattern, as shown in the last subplot of Figure 3. Although the areal component in Area 2 is still negatively and positively correlated with the unemployment rate and the residential credit supply respectively, it is positively correlated with the construction labour. Interestingly, the areal component in Area 1 shows that even tight financial market/economy conditions do not seem to suppress the housing market cycle surrounding Area 1. The opposite sign of the correlations reflect that the two areas react differently to changes of financial market/economy conditions. We may therefore conclude that the existence of such distinctive areal factors clearly indicates a housing market segmentation subject to a geographical gradient.

## Table 5 about here

Finally, we investigate another important issue called the South-North house price gap, which has been a long-standing political concern. We collect the annual regional population data from Nomis and construct the areal population by the average of the regional population.<sup>13</sup> We also aggregate the areal factor components into the annual ones. The first two figures in Figure 4 display the areal factor components and the (lagged) population growth rate of in Area 1 and Area 2 respectively. We observe that they move closely to each other with correlations of 0.304 and 0.44 respectively for Area 1 and Area 2. Next, we construct the population gap between the two areas, calculated as the population in Area 1 minus the population in Area 2. We then compare its growth rate with the difference (gap) between their areal components. From the third panel in Figure 4, we observe that the growth rate of the (lagged) population gap strongly comoves with the areal components gap with the remarkably high correlation (0.8). This suggests that the growth rate of the previous population gap can become a strong predictor for the areal components gap.<sup>14</sup>

Figure 4 about here

<sup>&</sup>lt;sup>13</sup>The regional population data can be found in https://www.nomisweb.co.uk.

<sup>&</sup>lt;sup>14</sup>Howard and Liebersohn (2020) show that the expected income inequality may drive the divergence of the house prices through the channel of rent expectation. Our results suggest that the widening population gap also contribute to the house price gap.

## 7 Conclusion

We have developed a novel approach based on the generalised canonical correlation (GCC) analysis for consistently estimating the global/local factors and loadings in a multilevel factor model. We also introduce a new selection criteria for the number of global factors. The Monte Carlo simulation shows dominating performance of our approach. Our methodology is applied to analysing the house market in England and Wales using a large disaggregated panel data of the real house price growth rates for the 331 local authorities over the period 1996Q1 to 2021Q. We find that the national factor explains about half of the time series variation while the regional factors are less important but non-negligible. Moreover, we show that the regional factors are common to some regions and hence suggesting a national-areal model rather than a national-regional model.

Although we focus on the global-local specification, our approach can be extended to cover the multilevel factor model that has a more complicated grouping scheme. For example, the model in which the individuals can be classified to more than two layers. See the parallel grouping in Breitung and Eickmeier (2016) and the hierarchical grouping in Moench et al. (2013). Furthermore, if the block membership is unknown, it is possible to estimate the block memberships using methods developed by Ando and Bai (2017), Coroneo et al. (2020) and Uematsu and Yamagata (2022) and apply GCC thereafter.



Figure 1: Map of regions in England and Wales

| Region                   | $N_i$ | Mean  | Std   | $\hat{r}_i$ | RIG   | RIF   |
|--------------------------|-------|-------|-------|-------------|-------|-------|
| North East               | 48    | 0.692 | 3.238 | 1           | 0.445 | 0.114 |
| North West               | 153   | 0.823 | 3.429 | 1           | 0.436 | 0.082 |
| Yorkshire and The Humber | 84    | 0.848 | 3.2   | 1           | 0.501 | 0.073 |
| East Midlands            | 136   | 0.969 | 3.75  | 0           | 0.507 | 0.000 |
| West Midlands            | 119   | 0.912 | 2.817 | 0           | 0.527 | 0.000 |
| East of England          | 180   | 1.163 | 2.8   | 1           | 0.501 | 0.092 |
| London                   | 122   | 1.45  | 4.362 | 1           | 0.296 | 0.226 |
| South East               | 256   | 1.138 | 2.518 | 1           | 0.456 | 0.151 |
| South West               | 116   | 1.072 | 2.843 | 0           | 0.551 | 0.000 |
| Wales                    | 86    | 0.875 | 3.829 | 1           | 0.437 | 0.094 |
| Summary/Average          | 1300  | 1.037 | 3.237 |             | 0.466 | 0.083 |

Table 1: Main Empirical Results over 1996Q1–2021Q2

 $N_i$  is the number of local authorities in each region. Meand and Std represent the mean and standard deviation of  $\pi_{ijt}$  from each region j.  $\hat{r}_i$  is the number of local factors estimated by  $BIC_3$  after projecting out one global factor selected by GCC.  $RIG_i$  and  $RIF_i$  are the relative importance ratios of global and local factors for block i, which are calculated as  $RIG_i = N_i^{-1} \sum_{j=1}^{N_i} \left( \hat{\gamma}'_{ij} \hat{\gamma}_{ij} / T^{-1} \tilde{\pi}'_{ij} \tilde{\pi}_{ij} \right)$  and  $RIF_i = N_i^{-1} \sum_{j=1}^{N_i} \left( \hat{\lambda}'_{ij} \hat{\lambda}_{ij} / T^{-1} \tilde{\pi}'_{ij} \tilde{\pi}_{ij} \right)$ .

|               | NE     | NW     | YH     | W      | EE     | LD     | SE     |
|---------------|--------|--------|--------|--------|--------|--------|--------|
| NE            | 1      | 0.859  | 0.885  | 0.827  | -0.59  | -0.383 | -0.512 |
| NW            | 0.859  | 1      | 0.911  | 0.946  | -0.659 | -0.471 | -0.585 |
| YH            | 0.885  | 0.911  | 1      | 0.884  | -0.672 | -0.531 | -0.628 |
| W             | 0.827  | 0.946  | 0.884  | 1      | -0.628 | -0.456 | -0.559 |
| $\mathbf{EE}$ | -0.59  | -0.659 | -0.672 | -0.628 | 1      | 0.859  | 0.948  |
| LD            | -0.383 | -0.471 | -0.531 | -0.456 | 0.859  | 1      | 0.927  |
| SE            | -0.512 | -0.585 | -0.628 | -0.559 | 0.948  | 0.927  | 1      |

Table 2: Correlation matrix among the regional factor components

Table 3: Test of the number of common local factors from new blocks after  $\hat{G}$  being projected out

| New Blocks     | $\hat{r}_{MCC}$ | $\hat{r}_{GCC}$ |
|----------------|-----------------|-----------------|
| NE, NW, YH, W  | 1               | 1               |
| EE, LD, SE     | 1               | 1               |
| Area 1, Area 2 | 0               | 0               |

Table 4: Relative importance ratios from the Nation-Area model

| Area   | $\hat{r}_i$ | RIG   | RIF   |
|--------|-------------|-------|-------|
| Area 1 | 1           | 0.447 | 0.132 |
| Area 2 | 1           | 0.429 | 0.104 |
| Area 3 | 0           | 0.525 | 0.000 |
| Avg    |             | 0.467 | 0.079 |

|                                             | Obs | National       | Area 1         | Area 2        |
|---------------------------------------------|-----|----------------|----------------|---------------|
| GDP (Growth Rate)                           | 102 | 0.135          | 0.055          | 0.006         |
| IP (Growth Rate)                            | 102 | 0.106          | 0.031          | -0.047        |
| CPI (Growth Rate)                           | 102 | $-0.39^{**}$   | -0.156         | 0.003         |
| Employment                                  | 102 | 0.198          | -0.34          | 0.146         |
| Unemployment                                | 102 | $-0.439^{***}$ | 0.321          | -0.241        |
| Construction Labour (Log)                   | 98  | -0.304         | $-0.387^{**}$  | $0.492^{***}$ |
| Building Started (Log)                      | 97  | $0.532^{***}$  | -0.028         | 0.298         |
| Residential Investment (Log)                | 98  | -0.269         | $-0.428^{***}$ | 0.272         |
| New York House Price (Growth Rate)          | 102 | $0.655^{***}$  | -0.176         | 0.21          |
| M1 (Growth Rate)                            | 102 | 0.228          | 0.166          | 0.103         |
| M3 (Growth Rate)                            | 102 | 0.062          | 0.028          | 0.15          |
| Residential Lending Approvals (Log)         | 102 | 0.238          | $-0.434^{***}$ | $0.467^{***}$ |
| Mortgage Rate                               | 58  | -0.343         | 0.354          | 0.135         |
| Inter Bank Lending Rate Overnight           | 98  | $0.371^{*}$    | 0.303          | 0.048         |
| Inter Bank Lending Rate 3 Months            | 87  | 0.287          | 0.163          | 0.085         |
| Government Zero Coupon Bond Yields 5 Years  | 102 | 0.064          | 0.074          | 0.078         |
| Government Zero Coupon Bond Yields 10 Years | 102 | -0.257         | 0.019          | 0.04          |
| Government Zero Coupon Bond Yields 20 Years | 100 | $-0.575^{***}$ | -0.083         | 0.008         |

Table 5: The correlations between factor components and macro variables

\*\*\*, \*\* and \* indicate 1%, 5% and 10% significance level respectively. The data of macro variables from GDP to Unemployment rate are downloaded from the website of Office for National Statistics: https://www.ons.gov.uk/. The financial variables from M1 to zero coupon bond yield are downloaded from the website of Bank of Endland: https://www.bankofengland.co.uk/statistics/research-datasets.

Figure 2: Estimated national components





Figure 3: Estimated regional components



Figure 4: Areal components and population

Series — Difference of the areal components — Growth rate of the areal population gap (lag 1 year)

Table 6: Average trace ratios of the global factor estimates with  $(\phi_G, \phi_F) = (0.5, 0.5), (r_0, r_i) = (2, 2)$ 

|    |       |     | CCA               | CPE               | GCC        | CCA               | CPE               | GCC      |
|----|-------|-----|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|----------|
|    |       |     |                   | DGP1              |            |                   | DGP2              |            |                   | DGP3              |            |                   | DGP4              |            |                   | DGP5              |          |
|    |       |     | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 1) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 1) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 3) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 1) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | (0.5, 1) |
| R  | $N_i$ | T   | b                 | enchmai           | 'k         | comm              | on local          | factors    | 1                 | noisy dat         | a          |                   | $\omega_F = 0.4$  | 1          | -                 | $\omega_F = 0.8$  | 3        |
| 3  | 20    | 50  | 0.82              | 0.827             | 0.926      | 0.637             | 0.809             | 0.885      | 0.595             | 0.59              | 0.755      | 0.794             | 0.813             | 0.902      | 0.69              | 0.725             | 0.774    |
| 3  | 50    | 50  | 0.93              | 0.942             | 0.977      | 0.661             | 0.941             | 0.971      | 0.727             | 0.744             | 0.861      | 0.911             | 0.94              | 0.974      | 0.784             | 0.894             | 0.926    |
| 3  | 100   | 50  | 0.956             | 0.974             | 0.989      | 0.655             | 0.973             | 0.988      | 0.838             | 0.863             | 0.929      | 0.936             | 0.974             | 0.989      | 0.824             | 0.963             | 0.98     |
| 3  | 200   | 50  | 0.969             | 0.987             | 0.994      | 0.658             | 0.987             | 0.993      | 0.904             | 0.931             | 0.962      | 0.955             | 0.987             | 0.994      | 0.844             | 0.984             | 0.991    |
| 3  | 20    | 100 | 0.843             | 0.834             | 0.938      | 0.626             | 0.818             | 0.9        | 0.606             | 0.585             | 0.789      | 0.82              | 0.814             | 0.912      | 0.716             | 0.72              | 0.776    |
| 3  | 50    | 100 | 0.949             | 0.95              | 0.982      | 0.654             | 0.949             | 0.98       | 0.772             | 0.761             | 0.898      | 0.944             | 0.949             | 0.98       | 0.87              | 0.925             | 0.957    |
| 3  | 100   | 100 | 0.973             | 0.977             | 0.991      | 0.663             | 0.977             | 0.991      | 0.904             | 0.906             | 0.961      | 0.969             | 0.976             | 0.991      | 0.923             | 0.973             | 0.988    |
| 3  | 200   | 100 | 0.985             | 0.989             | 0.996      | 0.666             | 0.988             | 0.995      | 0.953             | 0.957             | 0.982      | 0.982             | 0.989             | 0.996      | 0.939             | 0.987             | 0.995    |
| 3  | 20    | 200 | 0.848             | 0.836             | 0.941      | 0.617             | 0.82              | 0.909      | 0.614             | 0.586             | 0.812      | 0.834             | 0.825             | 0.924      | 0.731             | 0.72              | 0.786    |
| 3  | 50    | 200 | 0.954             | 0.952             | 0.983      | 0.649             | 0.951             | 0.982      | 0.8               | 0.785             | 0.916      | 0.952             | 0.952             | 0.982      | 0.921             | 0.939             | 0.971    |
| 3  | 100   | 200 | 0.978             | 0.978             | 0.992      | 0.659             | 0.978             | 0.992      | 0.921             | 0.918             | 0.97       | 0.977             | 0.978             | 0.992      | 0.961             | 0.976             | 0.991    |
| 3  | 200   | 200 | 0.989             | 0.989             | 0.996      | 0.664             | 0.989             | 0.996      | 0.963             | 0.963             | 0.986      | 0.988             | 0.989             | 0.996      | 0.976             | 0.989             | 0.996    |
| 10 | 20    | 50  | 0.843             | 0.834             | 0.98       | 0.677             | 0.758             | 0.97       | 0.632             | 0.59              | 0.919      | 0.819             | 0.823             | 0.969      | 0.709             | 0.73              | 0.821    |
| 10 | 50    | 50  | 0.933             | 0.944             | 0.992      | 0.709             | 0.932             | 0.991      | 0.751             | 0.744             | 0.948      | 0.914             | 0.945             | 0.991      | 0.793             | 0.917             | 0.963    |
| 10 | 100   | 50  | 0.958             | 0.974             | 0.996      | 0.722             | 0.973             | 0.996      | 0.851             | 0.862             | 0.967      | 0.944             | 0.974             | 0.995      | 0.836             | 0.969             | 0.99     |
| 10 | 200   | 50  | 0.971             | 0.987             | 0.997      | 0.721             | 0.986             | 0.997      | 0.911             | 0.932             | 0.979      | 0.956             | 0.987             | 0.997      | 0.845             | 0.986             | 0.996    |
| 10 | 20    | 100 | 0.862             | 0.836             | 0.984      | 0.671             | 0.759             | 0.978      | 0.654             | 0.589             | 0.943      | 0.851             | 0.829             | 0.978      | 0.737             | 0.735             | 0.836    |
| 10 | 50    | 100 | 0.954             | 0.949             | 0.994      | 0.715             | 0.947             | 0.994      | 0.798             | 0.765             | 0.969      | 0.949             | 0.949             | 0.994      | 0.875             | 0.94              | 0.983    |
| 10 | 100   | 100 | 0.976             | 0.977             | 0.997      | 0.728             | 0.976             | 0.997      | 0.912             | 0.903             | 0.986      | 0.972             | 0.976             | 0.997      | 0.92              | 0.975             | 0.995    |
| 10 | 200   | 100 | 0.986             | 0.989             | 0.998      | 0.731             | 0.989             | 0.998      | 0.956             | 0.957             | 0.992      | 0.983             | 0.989             | 0.998      | 0.939             | 0.988             | 0.998    |
| 10 | 20    | 200 | 0.868             | 0.836             | 0.984      | 0.663             | 0.767             | 0.981      | 0.653             | 0.588             | 0.95       | 0.854             | 0.832             | 0.982      | 0.76              | 0.758             | 0.864    |
| 10 | 50    | 200 | 0.958             | 0.951             | 0.995      | 0.716             | 0.95              | 0.995      | 0.823             | 0.784             | 0.976      | 0.956             | 0.951             | 0.995      | 0.924             | 0.947             | 0.99     |
| 10 | 100   | 200 | 0.979             | 0.978             | 0.998      | 0.734             | 0.977             | 0.998      | 0.929             | 0.919             | 0.99       | 0.978             | 0.978             | 0.998      | 0.963             | 0.977             | 0.997    |
| 10 | 200   | 200 | 0.989             | 0.989             | 0.999      | 0.736             | 0.989             | 0.999      | 0.966             | 0.963             | 0.995      | 0.989             | 0.989             | 0.999      | 0.977             | 0.989             | 0.999    |

Each entry is the average of trace ratios over 1,000 replications.  $r_0$  and  $r_i$  are the true number of global factors and true number of local factors in group *i*. We set  $r_1 = \cdots = r_R$ , and  $N_1 = \cdots = N_R$  where  $N_i$  is the number of individuals in block *i*. *T* is the number of time periods.  $\phi_G$  and  $\phi_F$  are AR coefficients for the global and local factors.  $\beta$ ,  $\phi_e$  and  $\kappa$  control the cross-section correlation, serial correlation and noise-to-signal ratio.

|                                                                                                  |                                                                                                                                                                                                 |                                                                                                                  | CCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ARSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ARSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCD                     | MCC                         | ARSS             | GCC                    |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|------------------|------------------------|
|                                                                                                  |                                                                                                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | DC                          | GP3              |                        |
| _                                                                                                |                                                                                                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(\beta, \phi_e, \kappa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = (0.1, 0.5, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\beta, \phi_e, \kappa)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = (0.1, 0.5, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | $(\beta, \phi_e, \kappa) =$ | = (0.1, 0.5, 3)  |                        |
| R                                                                                                | $N_i$                                                                                                                                                                                           | T                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | / / - \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | local factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | / !                         |                  |                        |
| 3                                                                                                | 20                                                                                                                                                                                              | 50                                                                                                               | 2.041(4 0.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.223(22.3 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.329(89.8 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.872(0 12.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.028(99.3 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.035(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.496(99.5 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.833(1.2 17.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.551(14.1 39.6)        | 2.183(20 1.7)               | 4.478(91.7 0.1)  | 1.597(4.6 46.6)        |
| 3                                                                                                | 50                                                                                                                                                                                              | 50                                                                                                               | 2.002(0.2 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.745(86 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.986(0 1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.002(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.915(98.3 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.978(0 2.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.923(3.3 10.1)         | 1.95(0.4 5.4)               | 3.914(89.7 0)    | 1.825(0.9 18.5)        |
| 3                                                                                                | 100                                                                                                                                                                                             | 50                                                                                                               | 2.001(0.1 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.661(98.2 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2(0.1 0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.002(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.755(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.994(0 0.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.962(1.1 4.9)          | 1.921(0/7.9)                | 4.88(99.3 0)     | 1.883(0.3 12)          |
| 3                                                                                                | 200                                                                                                                                                                                             | 50                                                                                                               | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)<br>1.004(0 0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.899(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.999(0 0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.881(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.999(0 0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.961(0.1 4.1)          | 1.947(0 5.3)                | 6.077(100 0)     | 1.944(0 5.6)           |
| 3                                                                                                | 20                                                                                                                                                                                              | 100                                                                                                              | 1.999(0 0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.994(0 0.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.029(2.9 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.991(0 0.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.984(98.4 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.324(72.4 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.953(0 4.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.227(0 46.1)           | 1.281(0 09.6)               | 2.052(5.4 0.6)   | 1.796(0.1 20.5)        |
| 3                                                                                                | 100                                                                                                                                                                                             | 100                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.002(0.2 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3(100 0)<br>3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.585(47.4 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.861(0 12.6)           | 1.0(0 39.7)                 | 2.003(0.3 0)     | 1.991(0 0.9)           |
| 3                                                                                                | 200                                                                                                                                                                                             | 100                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)<br>2.021(2 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3(100 0)<br>3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.303(32.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2(0 0)                  | 1.943(0 0.7)                | 2(0 0)           | 2(0 0)                 |
| 3                                                                                                | 200                                                                                                                                                                                             | 200                                                                                                              | 1.008(0 0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2(0 0)<br>1.014(0 8.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.021(2 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3(100 0)<br>3(937(93,70))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.512(42 0)<br>2.661(50.70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2(0 0)<br>1.086(0 1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 2(0 0)<br>0.662(0 08.1)     | 1.000(010.1)     | 2(0 0)<br>1.052(0 4.7) |
| 2                                                                                                | 50                                                                                                                                                                                              | 200                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.333(33.30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2(10010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.001(30.7[0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 862(0 11 5)           | 1.262(0 70.1)               | 2(0 0)           | 2(0 0)                 |
| 3                                                                                                | 100                                                                                                                                                                                             | 200                                                                                                              | 2(0 0)<br>2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2(0 0)<br>2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(0 0)<br>2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(0 0)<br>2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.309(29.2 0)<br>2.15(14.9 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2(0 0)                  | 1.203(0/70.1)               | 2(0 0)<br>2(0 0) | 2(0 0)                 |
| 3                                                                                                | 200                                                                                                                                                                                             | 200                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.10(14.5 0)<br>2.048(4.8 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2(0 0)                  | 2(0 0)                      | 2(0 0)           | 2(0 0)                 |
| 10                                                                                               | 200                                                                                                                                                                                             | 50                                                                                                               | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)<br>2 178(17 8 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2(0 0)<br>2 001(0 1 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{2}{1}992(0 0 8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,779(77,8 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,997(99,7 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.040(4.00)<br>2.507(50.40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.978(0 2,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12(0 0)<br>1281(07 405) | 2(0 0)<br>2 28(28 0)        | 1.937(0.4 6.7)   | 1.785(0 21.5)          |
| 10                                                                                               | 50                                                                                                                                                                                              | 50                                                                                                               | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.001(0.1 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.955(95.5 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.549(54.9 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.244(24.2 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.95(015)               | 1.988(0 1.2)                | 1.999(0.1 0.2)   | 1.944(0 5.6)           |
| 10                                                                                               | 100                                                                                                                                                                                             | 50                                                                                                               | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.048(4.6 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.945(94.5 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.021(2.1 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.36(32.4 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.984(0 1.6)            | 1.983(0 1.7)                | 2.044(3.9 0)     | 1.977(0 2.3)           |
| 10                                                                                               | 200                                                                                                                                                                                             | 50                                                                                                               | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.986(56.1 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.393(39.3 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.537(66.6 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.997(0 0.3)            | 1.985(0 1.5)                | 3.25(64.3 0)     | 1.987(0 1.3)           |
| 10                                                                                               | 20                                                                                                                                                                                              | 100                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.006(0.6 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2(00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.046(4.6 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.529(0 24.8)           | 1.282(0 71.8)               | 1.922(0 7.8)     | 1.98(0 2)              |
| 10                                                                                               | 50                                                                                                                                                                                              | 100                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.063(6.3 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.975(0 2.4)            | 1.695(0 30.5)               | 2(0 0)           | 1.999(0 0.1)           |
| 10                                                                                               | 100                                                                                                                                                                                             | 100                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.056(5.6 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.999(0 0.1)            | 1.976(0 2.4)                | 2(0 0)           | 2(0 0)                 |
| 10                                                                                               | 200                                                                                                                                                                                             | 100                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.04(4 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2(0 0)                  | 2(0 0)                      | 2(0 0)           | 2(0 0)                 |
| 10                                                                                               | 20                                                                                                                                                                                              | 200                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.995(0 0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.98(0 53.4)            | 0.797(0 100)                | 1.921(0 7.9)     | 2(0 0)                 |
| 10                                                                                               | 50                                                                                                                                                                                              | 200                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.983(0 1.5)            | 1.24(0 75.7)                | 2(0 0)           | 2(0 0)                 |
| 10                                                                                               | 100                                                                                                                                                                                             | 200                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.001(0.1 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2(0 0)                  | 1.99(0 1)                   | 2(0 0)           | 2(0 0)                 |
| 10                                                                                               | 200                                                                                                                                                                                             | 200                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2(0 0)                  | 2(0 0)                      | 2(0 0)           | 2(0 0)                 |
|                                                                                                  |                                                                                                                                                                                                 |                                                                                                                  | CCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ARSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ARSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                             |                  |                        |
|                                                                                                  |                                                                                                                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7P4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CP5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                             |                  |                        |
|                                                                                                  |                                                                                                                                                                                                 |                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                             |                  |                        |
| -                                                                                                |                                                                                                                                                                                                 | _                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(\beta, \phi_e, \kappa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = (0.1, 0.5, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\beta, \phi_e, \kappa)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = (0.1, 0.5, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                             |                  |                        |
| R                                                                                                | $N_i$                                                                                                                                                                                           | T                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(\beta, \phi_e, \kappa) = \omega_F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = (0.1, 0.5, 1)<br>= 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\beta, \phi_e, \kappa)$<br>$\omega_F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = (0.1, 0.5, 1)<br>= 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                             |                  |                        |
| R<br>3                                                                                           | $\frac{N_i}{20}$                                                                                                                                                                                | T<br>50                                                                                                          | 2.297(24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(\beta, \phi_e, \kappa) = \omega_F$ $2.632(62.5 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = (0.1, 0.5, 1)<br>= 0.4<br>4.703(97.8 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.829(1.3 18.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.075(98.4 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(\beta, \phi_e, \kappa) = \begin{matrix} \omega_F \\ 3.039(99.8 0) \\ 2.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039(99.8 0) \\ 0.039($                                                                                                              | = (0.1, 0.5, 1)<br>= 0.8<br>4.62(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.576(69.9 12.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                             |                  |                        |
| R<br>3<br>3                                                                                      | ${}^{N_i}_{20}_{50}$                                                                                                                                                                            | $T \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 5$                                                               | 2.297(24.4 63)<br>2.138(13.4 0.1)<br>2.135(12.5 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\beta, \phi_e, \kappa) = \omega_F$<br>2.632(62.5 0)<br>2.08(8 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{l} = (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(00, 0 0) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.829(1.3 18.5)<br>1.978(0 2.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.075(98.4 0)<br>3.011(99.8 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(\beta, \phi_e, \kappa)$<br>$\omega_F$<br>3.039(99.8 0)<br>2.997(99.7 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = (0.1, 0.5, 1)<br>= 0.8<br>4.62(100 0)<br>4.377(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.576(69.9 12.8)<br>2.438(48.9 5.3)<br>2.15(17.8 2.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                             |                  |                        |
| R<br>3<br>3<br>3                                                                                 | ${N_i} \\ 20 \\ 50 \\ 100 \\ 200$                                                                                                                                                               | T<br>50<br>50<br>50                                                                                              | 2.297(24.4 53)<br>2.138(13.4 0.1)<br>2.135(13.5 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\beta, \phi_e, \kappa) = \frac{\omega_F}{2.632(62.5 0)}$ 2.08(8 0) 2.009(0.9 0) 2(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{l} = (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.269(100 0) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.829(1.3 18.5) \\ 1.978(0 2.2) \\ 1.996(0 0.4) \\ 2(0 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.075(98.4 0)<br>3.011(99.8 0)<br>3.007(99.9 0)<br>2.002(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(\beta, \phi_e, \kappa) \\ \omega_F \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.973(97.3 0) \\ 2.973(97.3 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97.5 0) \\ 0.975(97$                                                                                                                          | = (0.1, 0.5, 1)<br>= 0.8<br>4.62(100 0)<br>4.377(100 0)<br>5.317(100 0)<br>6.620(100 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.576(69.9 12.8)<br>2.438(48.9 5.3)<br>2.15(17.8 2.8)<br>2.014(2.2 0.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3                                                                            | $N_i$<br>20<br>50<br>100<br>200                                                                                                                                                                 | $T \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 100$                                                                         | 2.297(24.4 53) $2.138(13.4 0.1)$ $2.135(13.5 0)$ $2.123(12.3 0)$ $2.123(12.3 0)$                                                                                                                                                                                                                                                                                                                                                                                                                       | $(\beta, \phi_e, \kappa) = \\ \omega_F \\ 2.632(62.5 0) \\ 2.008(8 0) \\ 2.009(0.9 0) \\ 2(0 0) \\ 1.008(0 0, 2) \\ (0, 0, 1) \\ 0.008(0 0, 2) \\ (0, 0, 1) \\ 0.008(0 0, 2) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ (0, 0, 1) \\ ($                                                                                                                                                                                 | $ \begin{array}{l} = (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.689(66, 1 0) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.829(1.3 18.5) 1.978(0 2.2) 1.996(0 0.4) 2(0 0) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0 5 5 7) 1.948(0                                                                                                                                                                                                                                                                                                                                                                                                         | 3.075(98.4 0)<br>3.011(99.8 0)<br>3.007(99.9 0)<br>3.002(100 0)<br>2.000(90.0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(\beta, \phi_e, \kappa) \\ & \omega_F \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.875(87.5 0) \\ 2.95(65(0)) \\ (0.510) \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 \\ 0.510 $ | $ \begin{array}{l} (0.1, 0.5, 1) \\ = (0.1, 0.5, 1) \\ = 0.8 \\ 4.62(100 0) \\ 4.377(100 0) \\ 5.317(100 0) \\ 6.629(100 0) \\ 2.021(100 0) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.576(69.9 12.8)<br>2.438(48.9 5.3)<br>2.15(17.8 2.8)<br>2.014(2.2 0.8)<br>2.021(04.2 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3                                                                  | $egin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \end{array}$                                                                                                                          | $egin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \end{array}$                                             | $\begin{array}{c} 2.297(24.4 53)\\ 2.138(13.4 0.1)\\ 2.135(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\end{array}$                                                                                                                                                                                                                                                                                                                                                                        | $(\beta, \phi_e, \kappa) = \frac{\omega_F}{\omega_F}$ 2.632(62.5 0)<br>2.08(8 0)<br>2.009(0.9 0)<br>2(0 0)<br>1.998(0 0.2)<br>2(0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = (0.1, 0.5, 1) = 0.4  4.703(97.8 0)  4.193(95.3 0)  5.02(99.6 0)  6.268(100 0)  2.689(66.1 0)  2.272(26.0 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.829(1.3 18.5) $1.978(0 2.2)$ $1.996(0 0.4)$ $2(0 0)$ $1.948(0.5 5.7)$ $1.904(0 0.1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.007(99.9 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 2(100 0)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} (\beta, \phi_{e}, \kappa) \\ & \omega_{F} \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.875(87.5 0) \\ 2.95(95 0) \\ 2.95(95 0) \\ 2.95(95 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} (0.1, 0.5, 1) \\ = (0.1, 0.5, 1) \\ = 0.8 \\ 4.62(100 0) \\ 4.377(100 0) \\ 5.317(100 0) \\ 6.629(100 0) \\ 3.021(100 0) \\ 2.004(100 0) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.576(69.9 12.8)<br>2.438(48.9 5.3)<br>2.15(17.8 2.8)<br>2.014(2.2 0.8)<br>2.921(94.2 2.1)<br>2.727(27.2 0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                             | $egin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \end{array}$                                                                                                                   | $egin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \end{array}$                                            | $\begin{array}{c} 2.297(24.4 53)\\ 2.138(13.4 0.1)\\ 2.135(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(2.2 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                      | $(\beta, \phi_e, \kappa) = \begin{matrix} \omega_F \\ 2.632(62.5 0) \\ 2.008(8 0) \\ 2.009(0.9 0) \\ 2(0 0) \\ 1.998(0 0.2) \\ 2(0 0) \\ 2(0 0) \end{matrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = (0.1, 0.5, 1) = 0.4  4.703(97.8 0)  4.193(95.3 0)  5.02(99.6 0)  6.268(100 0)  2.689(66.1 0)  2.372(36.9 0)  2.111(0)  2.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3.111(0)  3                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.007(99.9 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} (\beta,\phi_{e},\kappa)\\ &\omega_{F}\\ 3.039(99.8 0)\\ 2.997(99.7 0)\\ 2.973(97.3 0)\\ 2.875(87.5 0)\\ 2.95(87.5 0)\\ 2.976(97.6 0)\\ 2.9976(97.6 0)\\ 2.891(89.1 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{l} (0.1, 0.5, 1) \\ = (0.1, 0.5, 1) \\ = 0.8 \\ 4.62(100 0) \\ 4.377(100 0) \\ 5.317(100 0) \\ 6.629(100 0) \\ 3.021(100 0) \\ 3.004(100 0) \\ 3.0100(0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.576(69.9 12.8)<br>2.438(48.9 5.3)<br>2.014(2.2 0.8)<br>2.014(2.2 0.8)<br>2.921(94.2 2.1)<br>2.772(77.3 0.1)<br>2.305(30.5 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                   | $egin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \end{array}$                                                                                                            | $egin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 100 \end{array}$                                     | $\begin{array}{c} 2.297(24.4 83)\\ 2.138(13.4 0.1)\\ 2.135(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.052(5 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} (\beta, \phi_e, \kappa) = \\ \omega_F \\ 2.632(62.5 0) \\ 2.09(0.9 0) \\ 2(0 0) \\ 1.998(0 0.2) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{l} = (0.1, 0.5, 1) \\ = (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.689(66.1 0) \\ 2.372(36.9 0) \\ 2.211(21.1 0) \\ 2.266(26 0) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.007(99.9 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} (\beta, \phi_{e}, \kappa) \\ & \omega_{F} \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.955(87.5 0) \\ 2.95(95 0) \\ 2.976(97.6 0) \\ 2.891(89.1 0) \\ 2.585(58.5 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} (A10) \\ (A10) \\$                                                                                      | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.04(4.4 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                         | $egin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \end{array}$                                                                                                      | $egin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 100 \\ 200 \end{array}$                              | $\begin{array}{c c} 2.297(24.4 & & \\ \hline & & \\ 2.138(13.4   & \\ 1.5   0) \\ 2.123(12.3   0) \\ 2.121(12.3   0.2) \\ 2.047(4.7   0) \\ 2.032(3.2   0) \\ 2.025(2.5   0) \\ 2.0425(5.9   0) \\ 2.0445(5.9   1.4) \end{array}$                                                                                                                                                                                                                                                                      | $(\beta, \phi_e, \kappa) = \begin{matrix} \omega_F \\ \omega_F \\ 2.632(62.5 0) \\ 2.009(0.9 0) \\ 2(0 0) \\ 1.998(0 0.2) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 1.988(0 7, 1) \end{matrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 1.986(0 1.4)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.875(87.5 0) \\ 2.95(95 0) \\ 2.976(97.6 0) \\ 2.891(89.1 0) \\ 2.885(58.5 0) \\ 2.598(59.9 0,1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} (0.1,0.5,1)\\ = (0.1,0.5,1)\\ = 0.8\\ 4.62(100 0)\\ 4.377(100 0)\\ 5.317(100 0)\\ 6.629(100 0)\\ 3.021(100 0)\\ 3.004(100 0)\\ 3.014(100 0)\\ 3.014(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.92(492.5 0.1)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                               | $egin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \end{array}$                                                                                                | $egin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \end{array}$                       | $\begin{array}{c} 2.297(24.4 \mathbf{S})\\ 2.138(13.4 \mathbf{S})\\ 2.135(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.025(2.5 0)\\ 2.044(5.9 1.4)\\ 2.013(1.3 0)\\ \end{array}$                                                                                                                                                                                                                                                                                        | $\begin{array}{c} (\beta, \phi_e, \kappa) = \\ & \omega_F \\ & \omega_F \\ 2.632(62.5 0) \\ 2.009(0.9 0) \\ 2(0 0) \\ 1.998(0 0.2) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 1.928(0 7.1) \\ 2(0 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 1.986(0 1.4)\\ 2(0 0)\\ 1.986(0 1.4)\\ 2(0 0)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.007(99.9 0)\\ 3.002(100 0)\\ 3.099(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.875(87.5 0) \\ 2.95(95 0) \\ 2.976(97.6 0) \\ 2.891(89.1 0) \\ 2.585(58.5 0) \\ 2.598(59.9 0.1) \\ 2.598(59.9 0.1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} (0.1, 0.5, 1) \\ (-0.8, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.021(94.2 2.0,8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044((4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                     | $egin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \end{array}$                                                                                         | $egin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \end{array}$                | $\begin{array}{c c} 2.297(24.4 \mathbf{k}_{2})\\ 2.138(13.4 \mathbf{k}_{1})\\ 2.135(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.025(2.5 0)\\ 2.044(5.9 1.4)\\ 2.013(1.3 0)\\ 2.005(0.5 0)\end{array}$                                                                                                                                                                                                                                                                  | $\begin{array}{c} (\beta, \phi_e, \kappa) = & \\ & \omega_F \\ 2.632(62.5 0) \\ 2.009(0.9 0) \\ 2(0 0) \\ 1.998(0 0.2) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 1.928(0 7.1) \\ 2(0 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1 \\ (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.689(66.1 0) \\ 2.372(36.9 0) \\ 2.211(21.1 0) \\ 2.266(26 0) \\ 2.517(51.7 0) \\ 2.082(8.2 0) \\ 2.008(0.8 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 1.986(0 1.4)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)$  | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.007(99.9 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ \omega_F \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.975(87.5 0) \\ 2.955(95 0) \\ 2.956(97.6 0) \\ 2.891(89.1 0) \\ 2.585(58.5 0) \\ 2.598(59.9 0.1) \\ 2.769(76.9 0) \\ 2.412(41.2 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} (0.1,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,1)\\ (-0.8,0.5,$                                                                                                                                                                                                    | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3           | $egin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \end{array}$                                                                                  | $egin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \end{array}$         | $\begin{array}{c} 2.297(24.4 33)\\ 2.138(13.4 0.1)\\ 2.135(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.025(2.5 0)\\ 2.044(5.9 1.4)\\ 2.013(1.3 0)\\ 2.005(0.5 0)\\ 2.005(0.5 0)\\ 2.001(0.1 0)\\ \end{array}$                                                                                                                                                                                                                                                          | $\begin{array}{c} (\beta, \phi_e, \kappa) = & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | $\begin{array}{c} (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.688(66.1 0) \\ 2.372(36.9 0) \\ 2.211(21.1 0) \\ 2.2662(60 0) \\ 2.211(21.1 0) \\ 2.2662(60 0) \\ 2.517(51.7 0) \\ 2.082(2.8 0) \\ 2.008(0.8 0) \\ 2.001(0,1 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 0.96(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 1.986(0 1.4)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\$ | $\begin{array}{c} 3.075 (98.4 0)\\ 3.011 (99.8 0)\\ 3.007 (99.9 0)\\ 3.002 (100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 2.999 (99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.975(87.5 0) \\ 2.875(87.5 0) \\ 2.95(65 0) \\ 2.976(97.6 0) \\ 2.891(89.1 0) \\ 2.585(58.5 0) \\ 2.598(59.9 0.1) \\ 2.585(58.5 0) \\ 2.698(59.9 0.1) \\ 2.769(76.9 0) \\ 2.412(41.2 0) \\ 2.442(4.5 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{l} (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (100)\\ (1$                                                  | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>10                              | $egin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \end{array}$                                                                            | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \end{array}$ | $\begin{array}{c c} 2.297(24.4 \mathbf{x}_{3})\\ 2.138(13.4 \mathbf{x}_{3})\\ 2.135(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.025(2.5 0)\\ 2.044(5.9 1.4)\\ 2.013(1.3 0)\\ 2.005(0.5 0)\\ 2.005(0.5 0)\\ 2.059(5.9 0) \end{array}$                                                                                                                                                                                                                   | $\begin{array}{c} (\beta, \phi_e, \kappa) = & \omega_F \\ \omega_F \\ 2.632(62.5[0] \\ 2.08(8 0] \\ 2.009(0.9 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 1.928(0 7.1) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(82(88.2 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1,0,1,0.5,1)\\ = 0.4\\ 4.703(97.8 0)\\ 4.193(95.3 0)\\ 5.02(99.6 0)\\ 5.02(99.6 0)\\ 2.689(66.1 0)\\ 2.372(36.9 0)\\ 2.211(21.1 0)\\ 2.266(26 0)\\ 2.217(51.7 0)\\ 2.082(8.2 0)\\ 2.008(0.8 0)\\ 2.001(0.1 0)\\ 2.29(29.1 0.1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 1.986(0 1.4)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 1.962(0.5 4.3)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.007(99.9 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100$ | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ \omega_F \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} (0.1, 0.5, 1) \\ (-0.8, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ 2.904(92.2 1.8)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>10<br>10                        | $\begin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \end{array}$                                                                    | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 5$        | $\begin{array}{c c} 2.297(24.4 63)\\ 2.138(13.4 6.1)\\ 2.135(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.025(2.5 0)\\ 2.044(5.9 1.4)\\ 2.013(1.3 0)\\ 2.005(0.5 0)\\ 2.001(0.1 0)\\ 2.059(5.9 0)\\ 2.037(3.7 0)\\ \end{array}$                                                                                                                                                                                                                                         | $\begin{array}{c} (\beta, \phi_e, \kappa) = & \omega_F \\ & \omega_F \\ 2.632(62.5[0] \\ 2.09(0.9[0] \\ 2.09(0.9[0] \\ 2(0[0] \\ 1.998(0]0.2) \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2.036(3.6[0] \\ 2.036(3.6[0] \\ \end{array} ) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{l} 1 \\ (0,1,0.5,1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.689(66.1 0) \\ 2.372(36.9 0) \\ 2.211(21.1 0) \\ 2.266(26 0) \\ 2.517(51.7 0) \\ 2.082(8.2 0) \\ 2.008(0.8 0) \\ 2.001(0.1 0) \\ 2.29(29.1 0.1) \\ 1.39(13.9 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 1.962(0.5 4.3)\\ 2(0 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.007(99.9 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 2.999(99.8 0)\\ 2.997(98.8 0)\\ 2.997(98.7 0)\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ \omega_F \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.875(87.5 0) \\ 2.95(95 0) \\ 2.95(95 0) \\ 2.391(89.1 0) \\ 2.585(58.5 0) \\ 2.598(59.9 0.1) \\ 2.769(76.9 0) \\ 2.412(41.2 0) \\ 2.045(4.5 0) \\ 3.018(100 0) \\ 2.999(9.9 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{l} (0.1, 0.5, 1) \\ (-0.8, 0.8, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.061(66.9 0.8)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>10<br>10                        | $\begin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \end{array}$                                                             | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 50 \\ 5$         | $\begin{array}{c} 2.297(24.4 \mathbf{x}_{3})\\ 2.138(13.4 \mathbf{x}_{1})\\ 2.135(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.044(5.9 1.4)\\ 2.005(2.5 0)\\ 2.001(0.1 0)\\ 2.059(5.9 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.032(3.2 0) \end{array}$                                                                                                                                                                                        | $\begin{array}{c} (\beta, \phi_e, \kappa) = & \omega_F \\ \omega_F \\ 2.632(62.5[0] \\ 2.009(0.9[0] \\ 2(0[0] \\ 1.998(0]0.2) \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2.882(88.2[0] \\ 2.882(88.2[0] \\ 2.036(3.6[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2(0[0] \\ 2$                                                                                                            | $\begin{array}{c} c(0,1,0.5,1)\\ = 0.4\\ 4.703(97.8 0)\\ 4.193(95.3 0)\\ 5.02(99.6 0)\\ 6.268(100 0)\\ 2.689(661 0)\\ 2.372(36.9 0)\\ 2.211(21.1 0)\\ 2.266(26 0)\\ 2.217(51.7 0)\\ 2.082(8.2 0)\\ 2.008(0.8 0)\\ 2.001(0.1 0)\\ 2.092(10.1 0)\\ 2.29(29.1 0.1)\\ 2.139(13.9 0)\\ 2.278(25.2 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 $ | $\begin{array}{c} 3.075 (98.4 0)\\ 3.011 (99.8 0)\\ 3.007 (99.9 0)\\ 3.002 (100 0)\\ 2.999 (99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 2.999 (99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 2.999 (99.8 0)\\ 2.997 (99.7 0)\\ 3(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ & \omega_F \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.875(87.5 0) \\ 2.95(95 0) \\ 2.976(97.6 0) \\ 2.891(89.1 0) \\ 2.585(58.5 0) \\ 2.598(59.9 0.1) \\ 2.769(76.9 0) \\ 2.412(41.2 0) \\ 2.412(41.2 0) \\ 2.045(4.5 0) \\ 3.018(100 0) \\ 2.999(99.9 0) \\ 2.999(99.3 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} = (0.1, 0.5, 1) \\ \sim = 0.8 \\ 4.62(100 0) \\ 4.377(100 0) \\ 5.317(100 0) \\ 5.021(100 0) \\ 3.0021(100 0) \\ 3.004(100 0) \\ 3.014(100 0) \\ 3.014(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034($                                                                                                                                                                                                         | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.021(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.041(6.8 0.8)\\ 2.665(6.8 0.3)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>10<br>10<br>10<br>10            | $\begin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \end{array}$                                  | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 50 \\ 5$         | $\begin{array}{c c} 2.297(24.4 \mathbf{x}^{3})\\ 2.138(13.4 \mathbf{b}.1)\\ 2.138(13.5 0)\\ 2.123(12.3 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.025(2.5 0)\\ 2.044(5.9 1.4)\\ 2.013(1.3 0)\\ 2.005(0.5 0)\\ 2.001(0.1 0)\\ 2.059(5.9 0)\\ 2.037(3.7 0)\\ 2.032(3.2 0)\\ 2.057(5.7 0) \end{array}$                                                                                                                                                                        | $\begin{array}{c} (\beta, \phi_e, \kappa) = & \omega_F \\ \omega_F \\ 2.632(62.5[0] \\ 2.08(8 0] \\ 2.009(0.9 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2.882(88.2 0) \\ 2.036(3.6 0) \\ 2(0 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 1 \\ (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.689(66.1 0) \\ 2.372(36.9 0) \\ 2.211(21.1 0) \\ 2.266(26 0) \\ 2.517(51.7 0) \\ 2.008(0.8 0) \\ 2.001(0.1 0) \\ 2.29(29.1 0.1) \\ 2.139(13.9 0) \\ 2.278(25.2 0) \\ 3.403(68.1 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 2.999(99.8 0)\\ 2.997(99.8 0)\\ 2.997(99.7 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ \omega_F \\ 0 \\ \omega_F \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{l} (1) \\ (1) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\$ | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.036(30.5 0)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.041(4.2)\\ 2.661(66.9 0.8)\\ 2.665(26.8 0.3)\\ 2.007(0.8 0.1)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                             |                  |                        |
| R<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>10<br>10<br>10<br>10<br>10 | $\begin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 200 \\ 20 \end{array}$                                                           | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 5$        | $\begin{array}{c} 2.297(24.4 33)\\ 2.138(13.4 0.1)\\ 2.138(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.047(4.7 0)\\ 2.052(2.5 0)\\ 2.044(5.9 1.4)\\ 2.032(3.2 0)\\ 2.005(0.5 0)\\ 2.005(0.5 0)\\ 2.005(0.5 0)\\ 2.037(3.7 0)\\ 2.032(3.2 0)\\ 2.057(5.7 0)\\ 2.044(4 0)\\ \end{array}$                                                                                                                                                                                 | $\begin{array}{c} (\beta, \phi_e, \kappa) = & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | $\begin{array}{c} (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.872(36.9 0) \\ 2.211(21.1 0) \\ 2.2662(60 0) \\ 2.211(21.1 0) \\ 2.2662(60 0) \\ 2.082(2.8 0) \\ 2.082(2.8 0) \\ 2.001(0.1 0) \\ 2.29(29.1 0.1  \\ 2.199(13.9 0) \\ 2.278(25.2 0) \\ 3.403(68.1 0) \\ 2.024(4 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 $ | $\begin{array}{c} 3.075 (98.4 0)\\ 3.011 (99.8 0)\\ 3.007 (99.9 0)\\ 3.0002 (100 0)\\ 3.0902 (99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 2.999 (99.8 0)\\ 2.997 (99.7 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 $   | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ & \omega_F \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.975(87.5 0) \\ 2.875(87.5 0) \\ 2.95(695 0) \\ 2.976(97.6 0) \\ 2.891(89.1 0) \\ 2.585(58.5 0) \\ 2.598(59.9 0.1) \\ 2.769(76.9 0) \\ 2.412(41.2 0) \\ 2.045(4.5 0) \\ 3.018(100 0) \\ 2.999(99.9 0) \\ 2.993(99.3 0) \\ 2.997(90.7 0) \\ 2.985(88.5 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} (1) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\$ | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ 2.904(92.2 1.8)\\ 2.661(66.9 0.8)\\ 2.265(26.8 0.3)\\ 2.067(0.8 0.1)\\ 2.999(99.9 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                             |                  |                        |
| $egin{array}{cccc} R & & & & & \\ 3 & & & & & & \\ 3 & & & & &$                                  | $\begin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 50 \\ 50 \\ 50 \\ 50 \end{array}$                            | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 50 \\ 5$         | $\begin{array}{c c} 2.297(24.4 \mathbf{x})\\ 2.138(13.4 \mathbf{b}.1)\\ 2.138(13.5 0)\\ 2.123(12.3 0)\\ 2.122(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.044(5.9 1.4)\\ 2.013(1.3 0)\\ 2.005(0.5 0)\\ 2.005(0.5 0)\\ 2.005(0.5 0)\\ 2.032(3.2 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.037(5.7 0)\\ 2.057(5.7 0)\\ 2.004(4 0)\\ 2.004(0.4 0)\\ \end{array}$                                                                                                 | $\begin{array}{c} (\beta, \phi_e, \kappa) = & \omega_F \\ \omega_F \\ 2.632(62.5[0] \\ 2.08(8[0]) \\ 2.009(0.9[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2.882(88.2[0]) \\ 2.036(3.6[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.689(66.1 0) \\ 2.372(36.9 0) \\ 2.211(21.1 0) \\ 2.266(26 0) \\ 2.517(51.7 0] \\ 2.082(8.2 0) \\ 2.008(0.8 0) \\ 2.001(0.1 0) \\ 2.29(29.1 0.1) \\ 2.139(13.9 0) \\ 2.278(25.2 0) \\ 3.403(68.1 0) \\ 2.024(2.4 0) \\ 2.00  \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 1.986(0 1.4)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)$  | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.007(99.9 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 2.999(99.8 0)\\ 2.997(99.7 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100$  | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ \omega_F \\ 0 \\ \omega_F \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} = (0.1, 0.5, 1) \\ \sim = 0.8 \\ 4.62(100 0) \\ 4.377(100 0) \\ 5.317(100 0) \\ 5.317(100 0) \\ 3.021(100 0) \\ 3.001(100 0) \\ 3.01(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(99.9 0) \\ 3.034(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ $                                                                                                                                                            | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.041(4.8)\\ 2.65(26.8 0.3)\\ 2.661(66.9 0.8)\\ 2.265(26.8 0.3)\\ 2.007(0.8 0.1)\\ 2.999(99.9 0)\\ 2.903(90.3 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                             |                  |                        |
| $egin{array}{cccc} R & & & & & & \\ 3 & & & & & & & \\ 3 & & & &$                                | $\begin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 100 \\ 200 \\ 200 \\ 50 \\ 100 \end{array}$                | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 50 \\ 5$         | $\begin{array}{c c} 2.297(24.4 \mathbf{x})\\ 2.138(13.4 \mathbf{x})\\ 2.138(13.4 \mathbf{x})\\ 0.135(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.025(2.5 0)\\ 2.044(5.9 1.4)\\ 2.013(1.3 0)\\ 2.005(0.5 0)\\ 2.001(0.1 0)\\ 2.059(5.9 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.057(5.7 0)\\ 2.057(5.7 0)\\ 2.04(4 0)\\ 2.004(0.4 0)\\ 2.009(0.9 0)\\ \end{array}$                                                                                                          | $\begin{array}{c} (\beta,\phi_{e},\kappa) = \\ & \omega_{F} \\ 2.632(62.5[0]) \\ 2.08(8 0] \\ 2.009(0.9 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.689(66.1 0) \\ 2.372(36.9 0) \\ 2.211(21.1 0) \\ 2.266(26 0) \\ 2.517(51.7 0) \\ 2.008(0.8 0) \\ 2.001(0.1 0) \\ 2.29(29.1 0.1) \\ 2.138(13.9 0) \\ 2.278(25.2 0) \\ 3.403(68.1 0) \\ 2.024(2.4 0) \\ 2(0 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 $ | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.002(90.9 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ \omega_F \\ \omega_F \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} (1) \\ (0,1,0.5,1) \\ (-2),0.8 \\ (-3),0.8 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0.1 \\ (-3),0$                                                                                                                                                            | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.934(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.661(66.9 0.8)\\ 2.662(26.8 0.3)\\ 2.662(26.8 0.3)\\ 2.007(0.8 0.1)\\ 2.999(99.9 0)\\ 2.993(90.3 0)\\ 2.492(49.2 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                             |                  |                        |
| $egin{array}{ccccc} R \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$                           | $\begin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 100 \\ 200 \\ 200 \\ 50 \\ 100 \\ 200 \end{array}$ | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 50 \\ 5$         | $\begin{array}{c} 2.297(24.4 33)\\ 2.138(13.4 0.1)\\ 2.138(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.044(5.9 1.4)\\ 2.005(0.5 0)\\ 2.001(0.1 0)\\ 2.005(0.5 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.037(5.7 0)\\ 2.044(0)\\ 2.004(0.4 0)\\ 2.009(0.9 0)\\ 2.005(0.5 0)\end{array}$                                                                                                                                         | $\begin{array}{c} (\beta, \phi_e, \kappa) = & \omega_F \\ \omega_F \\ 2.632(62.5[0] \\ 2.08(8 0) \\ 2.009(0.9[0] \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2.882(88.2[0] \\ 2.036(3.6 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.689(66.1 0) \\ 2.372(36.9 0) \\ 2.211(21.1 0) \\ 2.266(26 0) \\ 2.217(51.7 0) \\ 2.266(26 0) \\ 2.008(0.8 0) \\ 2.008(0.8 0) \\ 2.008(0.8 0) \\ 2.001(0.1 0) \\ 2.29(29.1 0.1) \\ 2.139(13.9 0) \\ 2.078(25.2 0) \\ 3.403(68.1 0) \\ 2.024(2.4 0) \\ 2.024(2.4 0) \\ 2.0 0) \\ 2(0 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 $ | $\begin{array}{c} 3.075 (98.4 0)\\ 3.011 (99.8 0)\\ 3.007 (99.9 0)\\ 3.002 (100 0)\\ 2.999 (99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ $ | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ & \omega_F \\ & \omega_F \\ \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.875(87.5 0) \\ 2.95(695 0) \\ 2.976(97.6 0) \\ 2.891(89.1 0) \\ 2.585(58.5 0) \\ 2.598(59.9 0.1) \\ 2.769(76.9 0) \\ 2.412(41.2 0) \\ 2.045(4.5 0) \\ 3.018(100 0) \\ 2.999(99.9 0) \\ 2.999(99.9 0) \\ 2.999(99.9 0) \\ 2.990(99.9 0) \\ 2.992(99.2 0) \\ 2.925(92.5 0) \\ 2.566(56.6 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} = (0.1, 0.5, 1) \\ \hline = 0.8 \\ 4.62(100 0) \\ 4.377(100 0) \\ 5.317(100 0) \\ 5.317(100 0) \\ 3.021(100 0) \\ 3.004(100 0) \\ 3.004(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.034(100 0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.0300(0) \\ 3.$                                                                                                                                                                         | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.65(26.8 0.3)\\ 2.65(26.8 0.3)\\ 2.097(0.8 0.1)\\ 2.993(99.9 0)\\ 2.903(90.3 0)\\ 2.492(49.2 0)\\ 2.039(3.9 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                             |                  |                        |
| $egin{array}{ccccc} R & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$                                     | $\begin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 500 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 20 \end{array}$                     | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 5$               | $\begin{array}{c c} 2.297(24.4 33)\\ 2.138(13.4 6.1)\\ 2.138(13.5 0)\\ 2.123(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.025(2.5 0)\\ 2.044(5.9 1.4)\\ 2.013(1.3 0)\\ 2.005(0.5 0)\\ 2.001(0.1 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.032(3.2 0)\\ 2.057(5.7 0)\\ 2.032(3.2 0)\\ 2.057(5.7 0)\\ 2.04(4 0)\\ 2.009(0.9 0)\\ 2.005(0.5 0)\\ 2.006(0.6 0)\\ \end{array}$                                                                                                                    | $\begin{array}{c} (\beta,\phi_e,\kappa) = \\ & \omega_F \\ 2.632(62.5[0] \\ 2.08(8 0] \\ 2.009(0.9 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0$                                                                                                              | $\begin{array}{c} (0.1, 0.5, 1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.372(36.9 0) \\ 2.372(36.9 0) \\ 2.211(21.1 0) \\ 2.266(26 0) \\ 2.517(51.7 0) \\ 2.008(0.8 0) \\ 2.001(0.1 0) \\ 2.29(29.1 0.1) \\ 2.139(13.9 0) \\ 2.278(25.2 0) \\ 3.403(68.1 0) \\ 2.024(2.4 0) \\ 2(0 0) \\ 2(0 0) \\ 2(0 0) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.9948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0$ | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.007(99.9 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 2.999(99.8 0)\\ 2.997(99.8 0)\\ 2.997(99.8 0)\\ 2.997(99.8 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100$   | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ \omega_F \\ 0 \\ \omega_F \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} (0,1,0.5,1)\\ (-0,1,0.5,1)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,0)\\ (-0,1,0,$                                                                                                                                                                            | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.042(2.2 1.8)\\ 2.661(66.9 0.8)\\ 2.265(26.8 0.3)\\ 2.007(0.8 0.1)\\ 2.999(99.9 0)\\ 2.993(99.9 0)\\ 2.993(9.3 0)\\ 2.492(49.2 0)\\ 2.039(3.9 0)\\ 3(100 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                             |                  |                        |
| $egin{array}{ccccc} R & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$                                     | $\begin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 200 \\ 50 \\ 100 \\ 200 \\ 50 \\ 100 \\ 200 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$                  | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 5$               | $\begin{array}{c} 2.297(24.4 33)\\ 2.138(13.4 0.1)\\ 2.138(13.4 0.1)\\ 2.135(13.5 0)\\ 2.123(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.047(4.7 0)\\ 2.052(2.5 0)\\ 2.044(5.9 1.4)\\ 2.032(3.2 0)\\ 2.005(0.5 0)\\ 2.005(0.5 0)\\ 2.037(3.7 0)\\ 2.032(3.2 0)\\ 2.037(3.7 0)\\ 2.032(3.2 0)\\ 2.057(5.7 0)\\ 2.032(3.2 0)\\ 2.057(5.7 0)\\ 2.032(3.2 0)\\ 2.057(5.7 0)\\ 2.032(3.2 0)\\ 2.057(5.7 0)\\ 2.004(0.4 0)\\ 2.009(0.9 0)\\ 2.005(0.5 0)\\ 2.006(0.6 0)\\ 2(0 0)\\ \end{array}$              | $\begin{array}{c} (\beta, \phi_e, \kappa) = \\ & \omega_F \\ \omega_F \\ 2.632(62.5[0] \\ 2.08(8[0]) \\ 2.009(0.9[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[$                                                                                                                               | $\begin{array}{c} (0,1,0.5,1) \\ = 0.4 \\ 4.703(97.8 0) \\ 4.193(95.3 0) \\ 5.02(99.6 0) \\ 6.268(100 0) \\ 2.372(36.9 0) \\ 2.211(21.1 0) \\ 2.2682(66.1 0) \\ 2.211(21.1 0) \\ 2.2682(66.1 0) \\ 2.2682(26 0) \\ 2.211(21.1 0) \\ 2.082(2.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.003(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0) \\ 2.001(0.8 0)$                                                                                                        | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 $ | $\begin{array}{c} 3.075 (98.4 0)\\ 3.011 (99.8 0)\\ 3.007 (99.9 0)\\ 3.0007 (99.9 0)\\ 3.0002 (100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 2.999 (99.9 0)\\ 3(100 0)\\ 2.997 (99.7 0)\\ 2.997 (99.7 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ $   | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ & \omega_F \\ \omega_F \\ 3.039(99.8 0) \\ 2.997(99.7 0) \\ 2.973(97.3 0) \\ 2.875(87.5 0) \\ 2.95(95 0) \\ 2.976(97.6 0) \\ 2.991(89.1 0) \\ 2.585(58.5 0) \\ 2.598(59.9 0.1) \\ 2.769(76.9 0) \\ 2.412(41.2 0) \\ 2.045(4.5 0) \\ 3.018(100 0) \\ 2.999(99.9 0) \\ 2.999(99.3 0) \\ 2.997(90.7 0) \\ 2.992(99.2 0) \\ 2.992(99.2 0) \\ 2.956(56.6 0) \\ 2.566(56.6 0) \\ 2.662(66.2 0) \\ 2.788(78.8 0) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} = (0.1, 0.5, 1) \\ \hline = 0.8 \\ 4.62(100 0) \\ 4.377(100 0) \\ 5.317(100 0) \\ 5.317(100 0) \\ 3.021(100 0) \\ 3.004(100 0) \\ 3.014(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(00 0) \\ 3(00 0) \\ 3.034(100 0) \\ 3(00 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(1$                                                                                                                                                          | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.941(99.5 0.1)\\ 2.941(49.1 0)\\ 2.041(4.1 0)\\ 2.904(92.2 1.8)\\ 2.661(66.9 0.8)\\ 2.265(26.8 0.3)\\ 2.067(0.8 0.1)\\ 2.999(99.9 0)\\ 2.093(9.9 0)\\ 2.093(9.9 0)\\ 2.999(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ 2.99(9 0)\\ $ |                         |                             |                  |                        |
| $egin{array}{ccccc} R & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$                                     | $\begin{array}{c} N_i \\ 20 \\ 50 \\ 100 \\ 200 \\ 20 \\ 50 \\ 100 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 50 \\ 100 \end{array}$                | $\begin{array}{c} T \\ 50 \\ 50 \\ 50 \\ 100 \\ 100 \\ 100 \\ 200 \\ 200 \\ 200 \\ 50 \\ 50 \\ 50 \\ 50$         | $\begin{array}{c} 2.297(24.4 63)\\ 2.138(13.4 61)\\ 2.138(13.5 0)\\ 2.123(12.3 0)\\ 2.122(12.3 0)\\ 2.121(12.3 0.2)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.047(4.7 0)\\ 2.032(3.2 0)\\ 2.047(5.9 1.4)\\ 2.005(0.5 0)\\ 2.001(0.1 0)\\ 2.005(0.5 0)\\ 2.001(0.1 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.037(3.7 0)\\ 2.037(5.7 0)\\ 2.04(4 0)\\ 2.009(0.9 0)\\ 2.009(0.5 0)\\ 2.006(0.6 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ \end{array}$ | $\begin{array}{c} (\beta, \phi_e, \kappa) = & \omega_F \\ \omega_F \\ 2.632(62.5[0]) \\ 2.08(8[0]) \\ 2.009(0.9[0.2]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0[0]) \\ 2(0$                                                                                                                                | $\begin{array}{l} c(0,1,0.5,1)\\ = 0.4\\ 4.703(97.8 0)\\ 4.193(95.3 0)\\ 5.02(99.6 0)\\ 6.268(100 0)\\ 2.689(66.1 0)\\ 2.372(36.9 0)\\ 2.211(21.1 0)\\ 2.266(26 0)\\ 2.517(51.7 0)\\ 2.266(26 0)\\ 2.517(51.7 0)\\ 2.082(8.2 0)\\ 2.008(0.8 0)\\ 2.001(0.1 0)\\ 2.29(29.1 0.1)\\ 2.139(13.9 0)\\ 2.278(25.2 0)\\ 3.403(68.1 0)\\ 2.024(2.4 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)$ | $\begin{array}{c} 1.829(1.3 18.5)\\ 1.978(0 2.2)\\ 1.996(0 0.4)\\ 2(0 0)\\ 1.948(0.5 5.7)\\ 1.999(0 0.1)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 0)\\ 2(0 $ | $\begin{array}{c} 3.075(98.4 0)\\ 3.011(99.8 0)\\ 3.007(99.9 0)\\ 3.002(100 0)\\ 2.999(99.9 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100 0)\\ 3(100$ | $\begin{array}{c} (\beta, \phi_e, \kappa) \\ \omega_F \\ \omega_F \\ 0 \\ \omega_F \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} = (0.1, 0.5, 1) \\ \hline = 0.8 \\ 4.62(100 0) \\ 4.377(100 0) \\ 5.317(100 0) \\ 5.317(100 0) \\ 3.021(100 0) \\ 3.004(100 0) \\ 3.004(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(09.9 0) \\ 3.034(100 0) \\ 3(00 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ 3(100 0) \\ $                                                                                                                                                          | $\begin{array}{c} 2.576(69.9 12.8)\\ 2.438(48.9 5.3)\\ 2.15(17.8 2.8)\\ 2.014(2.2 0.8)\\ 2.921(94.2 2.1)\\ 2.772(77.3 0.1)\\ 2.305(30.5 0)\\ 2.044(4.4 0)\\ 2.994(99.5 0.1)\\ 2.937(93.7 0)\\ 2.491(49.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.041(4.1 0)\\ 2.024(22.2 1.8)\\ 2.661(66.9 0.8)\\ 2.265(26.8 0.3)\\ 2.007(0.8 0.1)\\ 2.999(99.9 0)\\ 2.039(3.9 0)\\ 3(100 0)\\ 2.99(99 0)\\ 2.634(63.4 0)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                             |                  |                        |

Table 7: Average estimates of the number of global factors with  $(\phi_G, \phi_F) = (0.5, 0.5), (r_0, r_i) = (2, 2)$ 

The average of  $\hat{r}_0$  over 1,000 replications is reported together with (O|U) inside the parenthesis, indicating the percentage of overestimation and underestimation.  $r_0$  and  $r_i$  are the true numbers of global factors and local factors in group *i*. We set  $r_1 = \cdots = r_R$  and  $N_1 = \cdots = N_R$ , where *R* is the number of groups and  $N_i$  is the number of individuals in block *i*. *T* is the number of time periods.  $\phi_G$  and  $\phi_F$  are AR coefficients for the global and local factors.  $\beta$ ,  $\phi_e$  and  $\kappa$  control the cross-section correlation, serial correlation and noise-to-signal ratio.

Table 8: Average trace ratios of the global factor estimates with  $(\phi_G, \phi_F) = (0.5, 0.5), (r_0, r_i) = (1, 1)$ 

|    |       |     | CCA               | CPE               | GCC        | CCA               | CPE               | GCC      |
|----|-------|-----|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|----------|
|    |       |     |                   | DGP1              |            |                   | DGP2              |            |                   | DGP3              |            |                   | DGP4              |            |                   | DGP5              |          |
|    |       |     | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 1) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 1) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 3) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 1) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | (0.5, 1) |
| R  | $N_i$ | T   |                   |                   |            | comm              | on local          | factors    |                   |                   |            |                   | $\omega_F = 0.4$  | 1          |                   | $\omega_F = 0.8$  | 3        |
| 3  | 20    | 50  | 0.936             | 0.927             | 0.973      | 0.623             | 0.927             | 0.97       | 0.771             | 0.697             | 0.864      | 0.933             | 0.925             | 0.972      | 0.882             | 0.903             | 0.949    |
| 3  | 50    | 50  | 0.971             | 0.976             | 0.991      | 0.639             | 0.975             | 0.991      | 0.907             | 0.899             | 0.958      | 0.967             | 0.975             | 0.991      | 0.916             | 0.972             | 0.988    |
| 3  | 100   | 50  | 0.982             | 0.988             | 0.995      | 0.655             | 0.988             | 0.995      | 0.95              | 0.952             | 0.98       | 0.978             | 0.988             | 0.995      | 0.926             | 0.987             | 0.995    |
| 3  | 200   | 50  | 0.986             | 0.994             | 0.998      | 0.658             | 0.994             | 0.998      | 0.97              | 0.976             | 0.989      | 0.984             | 0.994             | 0.998      | 0.939             | 0.993             | 0.997    |
| 3  | 20    | 100 | 0.947             | 0.933             | 0.976      | 0.612             | 0.933             | 0.975      | 0.804             | 0.719             | 0.893      | 0.946             | 0.932             | 0.976      | 0.924             | 0.922             | 0.964    |
| 3  | 50    | 100 | 0.977             | 0.977             | 0.992      | 0.617             | 0.977             | 0.992      | 0.927             | 0.915             | 0.968      | 0.977             | 0.976             | 0.992      | 0.963             | 0.975             | 0.991    |
| 3  | 100   | 100 | 0.988             | 0.989             | 0.996      | 0.648             | 0.989             | 0.996      | 0.964             | 0.962             | 0.986      | 0.988             | 0.989             | 0.996      | 0.973             | 0.989             | 0.996    |
| 3  | 200   | 100 | 0.993             | 0.995             | 0.998      | 0.656             | 0.995             | 0.998      | 0.98              | 0.982             | 0.993      | 0.992             | 0.994             | 0.998      | 0.978             | 0.994             | 0.998    |
| 3  | 20    | 200 | 0.95              | 0.937             | 0.978      | 0.612             | 0.936             | 0.977      | 0.811             | 0.725             | 0.897      | 0.949             | 0.934             | 0.977      | 0.941             | 0.927             | 0.969    |
| 3  | 50    | 200 | 0.98              | 0.978             | 0.992      | 0.636             | 0.978             | 0.992      | 0.935             | 0.925             | 0.973      | 0.98              | 0.978             | 0.992      | 0.976             | 0.977             | 0.992    |
| 3  | 100   | 200 | 0.99              | 0.989             | 0.996      | 0.639             | 0.989             | 0.996      | 0.968             | 0.965             | 0.988      | 0.99              | 0.989             | 0.996      | 0.987             | 0.989             | 0.996    |
| 3  | 200   | 200 | 0.995             | 0.995             | 0.998      | 0.624             | 0.995             | 0.998      | 0.984             | 0.983             | 0.994      | 0.994             | 0.995             | 0.998      | 0.991             | 0.995             | 0.998    |
| 10 | 20    | 50  | 0.956             | 0.929             | 0.992      | 0.536             | 0.91              | 0.991      | 0.864             | 0.704             | 0.962      | 0.951             | 0.929             | 0.992      | 0.91              | 0.914             | 0.98     |
| 10 | 50    | 50  | 0.977             | 0.975             | 0.997      | 0.547             | 0.975             | 0.997      | 0.931             | 0.896             | 0.985      | 0.972             | 0.975             | 0.997      | 0.93              | 0.975             | 0.996    |
| 10 | 100   | 50  | 0.984             | 0.988             | 0.998      | 0.547             | 0.988             | 0.998      | 0.958             | 0.954             | 0.991      | 0.98              | 0.988             | 0.998      | 0.939             | 0.988             | 0.998    |
| 10 | 200   | 50  | 0.986             | 0.994             | 0.999      | 0.57              | 0.994             | 0.999      | 0.972             | 0.976             | 0.994      | 0.983             | 0.994             | 0.999      | 0.942             | 0.994             | 0.999    |
| 10 | 20    | 100 | 0.963             | 0.935             | 0.993      | 0.543             | 0.928             | 0.993      | 0.881             | 0.707             | 0.969      | 0.962             | 0.934             | 0.993      | 0.948             | 0.928             | 0.988    |
| 10 | 50    | 100 | 0.983             | 0.977             | 0.998      | 0.537             | 0.977             | 0.997      | 0.947             | 0.915             | 0.99       | 0.981             | 0.977             | 0.997      | 0.966             | 0.977             | 0.997    |
| 10 | 100   | 100 | 0.99              | 0.989             | 0.999      | 0.523             | 0.989             | 0.999      | 0.97              | 0.962             | 0.995      | 0.989             | 0.989             | 0.999      | 0.976             | 0.989             | 0.999    |
| 10 | 200   | 100 | 0.994             | 0.995             | 0.999      | 0.544             | 0.994             | 0.999      | 0.983             | 0.981             | 0.997      | 0.993             | 0.994             | 0.999      | 0.977             | 0.994             | 0.999    |
| 10 | 20    | 200 | 0.984             | 0.977             | 0.998      | 0.531             | 0.932             | 0.993      | 0.888             | 0.742             | 0.972      | 0.965             | 0.937             | 0.993      | 0.96              | 0.933             | 0.991    |
| 10 | 50    | 200 | 0.984             | 0.977             | 0.998      | 0.562             | 0.978             | 0.998      | 0.951             | 0.924             | 0.992      | 0.984             | 0.978             | 0.998      | 0.98              | 0.978             | 0.997    |
| 10 | 100   | 200 | 0.991             | 0.989             | 0.999      | 0.535             | 0.989             | 0.999      | 0.974             | 0.965             | 0.996      | 0.991             | 0.989             | 0.999      | 0.988             | 0.989             | 0.999    |
| 10 | 200   | 200 | 0.995             | 0.995             | 0.999      | 0.548             | 0.995             | 0.999      | 0.986             | 0.983             | 0.998      | 0.995             | 0.995             | 0.999      | 0.992             | 0.995             | 0.999    |

Each entry is the average of trace ratios over 1,000 replications.  $r_0$  and  $r_i$  are the true numbers of the global factors and local factors in group *i*. We set  $r_1 = \cdots = r_R$  and  $N_1 = \cdots = N_R$  where  $N_i$  is the number of individuals in block *i*.  $\phi_G$  and  $\phi_F$  are AR coefficients for the global and local factors.  $\beta$ ,  $\phi_e$  and  $\kappa$  control the cross-section correlation, serial correlation and noise-to-signal ratio.

|    |       |     | CCD                     | MCC                                                | ARSS                   | GCC     | CCD                            | MCC                            | ARSS                           | GCC                          | CCD                    | MCC                         | ARSS             | GCC              |
|----|-------|-----|-------------------------|----------------------------------------------------|------------------------|---------|--------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------|-----------------------------|------------------|------------------|
|    |       |     |                         | DGP1                                               |                        |         |                                | DG                             | P2                             |                              |                        | DGI                         | 23               |                  |
|    |       |     |                         | $(\beta, \phi_e, \kappa) = (0$                     | (1, 0.5, 1)            |         |                                | $(\beta, \phi_e, \kappa) =$    | (0.1, 0.5, 1)                  |                              |                        | $(\beta, \phi_e, \kappa) =$ | (0.1, 0.5, 3)    |                  |
| R  | $N_i$ | T   |                         |                                                    |                        |         |                                | common lo                      | cal factors                    |                              |                        |                             |                  |                  |
| 3  | 20    | 50  | 1.004(0.4 0)            | 1.445(44.1 0)                                      | 1.823(51.6 0)          | 1(0 0)  | 1.35(31.9 0)                   | 2.003(97.9 0)                  | 1.867(53.9 0)                  | 1(0 0)                       | 1.023(4.1 2.8)         | 1.652(63.7 0)               | 1.819(50.2 0)    | 1.003(0.2 0)     |
| 3  | 50    | 50  | 1(0 0)                  | 1(0 0)                                             | 1.016(1.5 0)           | 1(0 0)  | 1.261(26 0)                    | 1.219(21.9 0)                  | 1.029(2.9 0)                   | 1(0 0)                       | 1.003(0.4 0.1)         | 1.014(1.4 0)                | 1.022(2.1 0)     | 0.999(0 0.1)     |
| 3  | 100   | 50  | 1.001(0.1 0)            | 1(0 0)                                             | 1.011(1.1 0)           | 1(0 0)  | 1.23(22.9 0)                   | 1.025(2.5 0)                   | 1.025(2.5 0)                   | 1(0 0)                       | 1.002(0.2 0)           | 1(0 0)                      | 1.01(1 0)        | 1(0 0)           |
| 3  | 200   | 50  | 1.001(0.1 0)            | 1(0 0)                                             | 1.002(0.2 0)           | 1(0 0)  | 1.058(5.8 0)                   | 1(0 0)                         | 1.001(0.1 0)                   | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 3  | 20    | 100 | 1(0 0)                  | 1(0 0)<br>1(0 0)                                   | 1(0 0)                 | 1(0 0)  | 1.007(0.70)                    | 1(0 0)                         | 1.001(0.1 0)                   | 1(0 0)                       | 0.998(0 0.2)           | 0.999(0 0.1)                | 1(0 0)           | 1(0 0)           |
| 3  | 100   | 100 | 1(0 0)                  | 1(0 0)<br>1(0 0)                                   | 1(0 0)                 | 1(0 0)  | 1.003(0.3 0)                   | 1(0 0)                         | 1(0 0)<br>1(0 0)               | 1(0 0)<br>1(0 0)             | 1(0 0)<br>1(0 0)       | 1(0 0)                      | 1(0 0)           | 1(0 0)<br>1(0 0) |
| 3  | 200   | 100 | 1(0 0)                  | 1(0 0)<br>1(0 0)                                   | 1(0 0)<br>1(0 0)       | 1(0 0)  | 1(0 0)                         | 1(0 0)<br>1(0 0)               | 1(0 0)<br>1(0 0)               | 1(0 0)<br>1(0 0)             | 1(0 0)<br>1(0 0)       | 1(0 0)                      | 1(0 0)<br>1(0 0) | 1(0 0)           |
| 3  | 200   | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1(0 0)                         | 1(0 0)                         | 1(0 0)<br>1(0 0)               | 1(0 0)                       | 1(0 0)<br>0.997(0 0.3) | 0.986(0 1.4)                | 1(0 0)           | 1(0 0)           |
| 3  | 50    | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1(0 0)                         | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 3  | 100   | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1(0 0)                         | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 3  | 200   | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1(0 0)                         | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 10 | 20    | 50  | 1(0 0)                  | 1.655(65.5 0)                                      | 1(0 0)                 | 1(0 0)  | 1.96(9610)                     | 2.014(100 0)                   | 1.633(63.3 0)                  | 1(0 0)                       | 0.993(0 0.7)           | 1.966(95.8 0)               | 1(0 0)           | 1(0 0)           |
| 10 | 50    | 50  | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.988(98.8 0)                  | 1.961(96.1 0)                  | 1.023(2.3 0)                   | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 10 | 100   | 50  | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.972(97.20)                   | 1.086(8.6 0)                   | 1.012(1.2 0)                   | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 10 | 200   | 50  | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.601(60.10)                   | 1(0 0)                         | 1.004(0.4 0)                   | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 10 | 20    | 100 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.035(3.5 0)                   | 1(0 0)                         | 1.01(1 0)                      | 1(0 0)                       |                        |                             |                  |                  |
| 10 | 50    | 100 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.077(7.7 0)                   | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 10 | 100   | 100 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.048(4.8 0)                   | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 10 | 200   | 100 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.011(1.1 0)                   | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 10 | 20    | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1(0 0)                         | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       | 1(0 0)                 | 0.999(0 0.1)                | 1(0 0)           | 1(0 0)           |
| 10 | 50    | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.002(0.2 0)                   | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 10 | 100   | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1(0 0)                         | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
| 10 | 200   | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1(0 0)                         | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       | 1(0 0)                 | 1(0 0)                      | 1(0 0)           | 1(0 0)           |
|    |       |     | CCD                     | MCC                                                | ARSS                   | GCC     | CCD                            | MCC                            | ARSS                           | GCC                          |                        |                             |                  |                  |
|    |       |     |                         | $(\beta \phi_{-} \kappa) = (0$                     | 1 0 5 1)               |         |                                | (B d - r) -                    | (0 1 0 5 1)                    |                              |                        |                             |                  |                  |
| B  | N·    | T   |                         | $(\rho, \phi e, \kappa) = (0)$<br>$\omega \pi = 0$ | 4                      |         |                                | $(\rho, \varphi_e, \kappa) =$  | = 0.8                          |                              |                        |                             |                  |                  |
| 3  | 20    | 50  | $\omega_{0.016(1.30)}$  | 1.618(59.910)                                      | 2.127(66.4 0)          | 1(0 0)  | 1.824(73.50)                   | 2.118(99.70)                   | 2.487(100 0)                   | 1.101(10.1 0)                |                        |                             |                  |                  |
| 3  | 50    | 50  | $\frac{1}{1.002(0.20)}$ | 1.006(0.6 0)                                       | 1.08(7.8 0)            | 1(0 0)  | 1.86(83.5 0)                   | 1.895(89.5 0)                  | 1.991(98.1 0)                  | 1.02(2 0)                    |                        |                             |                  |                  |
| 3  | 100   | 50  | 1.003(0.3 0)            | 1(0 0)                                             | 1.042(4.2 0)           | 1(0 0)  | 1.911(89.3 0)                  | 1.609(60.9 0)                  | 1.97(96.8 0)                   | 1.007(0.7 0)                 |                        |                             |                  |                  |
| 3  | 200   | 50  | 1.006(0.6 0)            | 1(0 0)                                             | 1.011(1.1 0)           | 1(0 0)  | 1.927(92.5 0)                  | 1.17(17 0)                     | 1.274(27.3 0)                  | 1.003(0.3 0)                 |                        |                             |                  |                  |
| 3  | 20    | 100 | 1(0 0)                  | 1(0 0)                                             | 1.035(3.5 0)           | 1(0 0)  | 1.951(95.1 0)                  | 1.643(64.3 0)                  | 2(100 0)                       | 1.149(14.9 0)                |                        |                             |                  |                  |
| 3  | 50    | 100 | 1(0 0)                  | 1(0 0)                                             | 1.001(0.1 0)           | 1(0 0)  | 1.968(96.8 0)                  | 1.297(29.7 0)                  | 1.991(99.1 0)                  | 1.008(0.8 0)                 |                        |                             |                  |                  |
| 3  | 100   | 100 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.973(97.3 0)                  | 1.058(5.8 0)                   | 1.678(67.8 0)                  | 1.008(0.8 0)                 |                        |                             |                  |                  |
| 3  | 200   | 100 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.971(97.1 0)                  | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       |                        |                             |                  |                  |
| 3  | 20    | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.992(99.2 0)                  | 1.056(5.6 0)                   | 2(100 0)                       | 1.159(15.9 0)                |                        |                             |                  |                  |
| 3  | 50    | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.999(99.9 0)                  | 1.002(0.2 0)                   | 1.998(99.8 0)                  | 1.002(0.2 0)                 |                        |                             |                  |                  |
| 3  | 100   | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.998(99.8 0)                  | 1(0 0)                         | 1.237(23.7 0)                  | 1(0 0)                       |                        |                             |                  |                  |
| 3  | 200   | 200 | 1(0 0)                  | 1(0 0)<br>1.000(00.410)                            | 1(0 0)<br>1.000(0.010) | 1(0 0)  | 2(100 0)                       | 1(0 0)<br>0.110(100 0)         | 1(0 0)                         | 1(0 0)<br>1.00(0 0)          |                        |                             |                  |                  |
| 10 | 20    | 50  | 1(0 0)                  | 1.938(93.4 0)<br>1.001(0.1 0)                      | 1.008(0.8 0)           | 1(0 0)  | 1.724(72.4 0)<br>1.870(87.0 0) | 2.118(100 0)                   | 1.965(96.5 0)                  | 1.09(9 0)<br>1.007(0.7 0)    |                        |                             |                  |                  |
| 10 | 100   | 50  | 1(0 0)                  | 1.001(0.1 0)                                       | 1(0 0)                 | 1(0 0)  | 1.879(87.90)                   | 1.965(96.5 0)                  | 1.803(80.3 0)                  | 1.007(0.7 0)<br>1.001(0.1 0) |                        |                             |                  |                  |
| 10 | 200   | 50  | 1(0 0)                  | 1(0 0)<br>1(0 0)                                   | 1(0 0)<br>1(0 0)       | 1(0 0)  | 1.92(92 0)<br>1.050(05.0 0)    | 1.000(00.0 0)<br>1.112(11.2 0) | 1.779(77.90)                   | 1(0 0)                       |                        |                             |                  |                  |
| 10 | 200   | 100 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.939(93.9 0)<br>1.972(97.2 0) | 1.112(11.2 0)<br>1.709(70.9 0) | 1.303(30.3 0)<br>1.937(93.7 0) | 1(0 0)<br>1 153(15 3 0)      |                        |                             |                  |                  |
| 10 | 50    | 100 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1 988(98 8(0)                  | 1.703(70.3 0)<br>1.251(25.1 0) | 1.337(33.7 0)<br>1.727(72.7 0) | 1.002(0.2 0)                 |                        |                             |                  |                  |
| 10 | 100   | 100 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1 991(99 1 0)                  | 1.016(1.60)                    | 1.476(47.6 0)                  | 1(0 0)                       |                        |                             |                  |                  |
| 10 | 200   | 100 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1,996(99,6 0)                  | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       |                        |                             |                  |                  |
| 10 | 20    | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.996(99.60)                   | 1.025(2.5 0)                   | 1.971(97.1 0)                  | 1.138(13.8 0)                |                        |                             |                  |                  |
| 10 | 50    | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 2(100 0)                       | 1(0 0)                         | 1.728(72.8 0)                  | 1(0 0)                       |                        |                             |                  |                  |
| 10 | 100   | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 2(100 0)                       | 1(0 0)                         | 1.24(24 0)                     | 1(0 0)                       |                        |                             |                  |                  |
|    |       |     |                         | 1 (010)                                            | 1(0)0)                 | 1 (010) | 1 998(99.810)                  | 1(00)                          | 1(010)                         | 1(010)                       |                        |                             |                  |                  |
| 10 | 200   | 200 | 1(0 0)                  | 1(0 0)                                             | 1(0 0)                 | 1(0 0)  | 1.550(55.010)                  | 1(0 0)                         | 1(0 0)                         | 1(0 0)                       |                        |                             |                  |                  |

Table 9: Average estimates of the number of the global factors with  $(\phi_G, \phi_F) = (0.5, 0.5), (r_0, r_i) = (1, 1)$ 

The average of  $\hat{r}_0$  over 1,000 replications is reported together with (O|U) inside the parenthesis, indicating the percentage of overestimation and underestimation.  $r_0$  and  $r_i$  are the true numbers of the global factors and local factors in group *i*. We set  $r_1 = \cdots = r_R$  and  $N_1 = \cdots = N_R$ , where *R* is the number of groups and  $N_i$  is the number of individuals in block *i*. *T* is the number of time periods.  $\phi_G$  and  $\phi_F$  are AR coefficients for the global and local factors.  $\beta$ ,  $\phi_e$  and  $\kappa$  control the cross-section correlation, serial correlation and noise-to-signal ratio.

Table 10: Average trace ratios of the global factor estimates with  $(\phi_G, \phi_F) = (0.5, 0.5), (r_0, r_i) = (3, 3)$ 

|    |       |     | CCA               | CPE               | GCC        | CCA               | CPE               | GCC      |
|----|-------|-----|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|------------|-------------------|-------------------|----------|
|    |       |     |                   | DGP1              |            |                   | DGP2              |            |                   | DGP3              |            |                   | DGP4              |            |                   | DGP5              |          |
|    |       |     | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 1) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 1) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 3) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | 1, 0.5, 1) | $(\beta, \phi_e,$ | $\kappa$ ) = (0.1 | (0.5, 1) |
| R  | $N_i$ | T   |                   |                   |            | comm              | on local          | factors    |                   |                   |            |                   | $\omega_F = 0.4$  | 1          |                   | $\omega_F = 0.8$  | 3        |
| 3  | 20    | 50  | 0.741             | 0.768             | 0.881      | 0.56              | 0.743             | 0.826      | 0.531             | 0.547             | 0.69       | 0.707             | 0.735             | 0.825      | 0.666             | 0.696             | 0.753    |
| 3  | 50    | 50  | 0.867             | 0.903             | 0.955      | 0.611             | 0.894             | 0.938      | 0.611             | 0.894             | 0.938      | 0.83              | 0.889             | 0.936      | 0.731             | 0.803             | 0.835    |
| 3  | 100   | 50  | 0.921             | 0.955             | 0.979      | 0.624             | 0.953             | 0.975      | 0.725             | 0.778             | 0.858      | 0.881             | 0.952             | 0.976      | 0.773             | 0.9               | 0.923    |
| 3  | 200   | 50  | 0.943             | 0.978             | 0.989      | 0.642             | 0.977             | 0.988      | 0.803             | 0.863             | 0.913      | 0.915             | 0.977             | 0.988      | 0.794             | 0.962             | 0.974    |
| 3  | 20    | 100 | 0.762             | 0.762             | 0.901      | 0.537             | 0.747             | 0.841      | 0.545             | 0.54              | 0.74       | 0.726             | 0.723             | 0.833      | 0.66              | 0.656             | 0.722    |
| 3  | 50    | 100 | 0.909             | 0.912             | 0.966      | 0.579             | 0.911             | 0.96       | 0.672             | 0.671             | 0.83       | 0.895             | 0.907             | 0.959      | 0.766             | 0.801             | 0.839    |
| 3  | 100   | 100 | 0.958             | 0.963             | 0.986      | 0.603             | 0.962             | 0.984      | 0.812             | 0.817             | 0.915      | 0.95              | 0.961             | 0.984      | 0.837             | 0.933             | 0.955    |
| 3  | 200   | 100 | 0.975             | 0.982             | 0.993      | 0.612             | 0.982             | 0.992      | 0.912             | 0.92              | 0.963      | 0.969             | 0.982             | 0.993      | 0.876             | 0.977             | 0.988    |
| 3  | 20    | 200 | 0.767             | 0.758             | 0.909      | 0.518             | 0.748             | 0.85       | 0.55              | 0.54              | 0.771      | 0.729             | 0.716             | 0.838      | 0.649             | 0.628             | 0.693    |
| 3  | 50    | 200 | 0.92              | 0.919             | 0.97       | 0.549             | 0.917             | 0.967      | 0.677             | 0.668             | 0.852      | 0.915             | 0.916             | 0.968      | 0.784             | 0.8               | 0.841    |
| 3  | 100   | 200 | 0.964             | 0.965             | 0.987      | 0.59              | 0.965             | 0.987      | 0.85              | 0.848             | 0.94       | 0.962             | 0.964             | 0.987      | 0.908             | 0.951             | 0.975    |
| 3  | 200   | 200 | 0.982             | 0.983             | 0.994      | 0.611             | 0.983             | 0.994      | 0.938             | 0.939             | 0.976      | 0.981             | 0.983             | 0.994      | 0.947             | 0.981             | 0.992    |
| 10 | 20    | 50  | 0.752             | 0.77              | 0.968      | 0.544             | 0.636             | 0.922      | 0.562             | 0.54              | 0.876      | 0.728             | 0.749             | 0.921      | 0.67              | 0.691             | 0.793    |
| 10 | 50    | 50  | 0.872             | 0.901             | 0.984      | 0.569             | 0.824             | 0.972      | 0.657             | 0.683             | 0.91       | 0.833             | 0.895             | 0.974      | 0.741             | 0.82              | 0.87     |
| 10 | 100   | 50  | 0.925             | 0.956             | 0.991      | 0.569             | 0.934             | 0.989      | 0.736             | 0.787             | 0.932      | 0.888             | 0.954             | 0.99       | 0.775             | 0.919             | 0.949    |
| 10 | 200   | 50  | 0.943             | 0.977             | 0.994      | 0.578             | 0.973             | 0.994      | 0.807             | 0.866             | 0.949      | 0.917             | 0.978             | 0.994      | 0.802             | 0.969             | 0.985    |
| 10 | 20    | 100 | 0.779             | 0.768             | 0.975      | 0.513             | 0.594             | 0.946      | 0.577             | 0.536             | 0.922      | 0.747             | 0.74              | 0.939      | 0.674             | 0.654             | 0.757    |
| 10 | 50    | 100 | 0.915             | 0.913             | 0.99       | 0.542             | 0.87              | 0.986      | 0.685             | 0.67              | 0.946      | 0.896             | 0.912             | 0.987      | 0.765             | 0.815             | 0.87     |
| 10 | 100   | 100 | 0.959             | 0.963             | 0.995      | 0.556             | 0.958             | 0.995      | 0.821             | 0.819             | 0.969      | 0.95              | 0.962             | 0.995      | 0.849             | 0.947             | 0.979    |
| 10 | 200   | 100 | 0.977             | 0.982             | 0.997      | 0.563             | 0.981             | 0.997      | 0.917             | 0.92              | 0.983      | 0.97              | 0.982             | 0.997      | 0.886             | 0.98              | 0.995    |
| 10 | 20    | 200 | 0.78              | 0.764             | 0.977      | 0.497             | 0.576             | 0.959      | 0.582             | 0.54              | 0.936      | 0.747             | 0.739             | 0.951      | 0.659             | 0.625             | 0.726    |
| 10 | 50    | 200 | 0.924             | 0.918             | 0.991      | 0.532             | 0.9               | 0.99       | 0.694             | 0.665             | 0.959      | 0.919             | 0.918             | 0.99       | 0.792             | 0.834             | 0.896    |
| 10 | 100   | 200 | 0.966             | 0.965             | 0.996      | 0.534             | 0.963             | 0.996      | 0.859             | 0.848             | 0.981      | 0.964             | 0.965             | 0.996      | 0.912             | 0.959             | 0.99     |
| 10 | 200   | 200 | 0.983             | 0.983             | 0.998      | 0.532             | 0.983             | 0.998      | 0.942             | 0.939             | 0.991      | 0.981             | 0.983             | 0.998      | 0.949             | 0.982             | 0.997    |

Each entry is the average of trace ratio over 1,000 replications.  $r_0$  and  $r_i$  are the true numbers of the global factors and local factors in group *i*. We set  $r_1 = \cdots = r_R$  and  $N_1 = \cdots = N_R$  where  $N_i$  is the number of individuals in block *i*. *T* is the number of time periods.  $\phi_G$  and  $\phi_F$  are AR coefficients for the global and local factors.  $\beta$ ,  $\phi_e$  and  $\kappa$  control the cross-section correlation, serial correlation and noise-to-signal ratio.

|                          |                                 | CCD                                                                                            | MCC                                                                              | ARSS                                                                                  | GCC                                                                                  | CCD                                                                              | MCC                                                                                       | ARSS                                                                                      | GCC                                                                                          | CCD             | MCC                           | ARSS             | GCC             |
|--------------------------|---------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------|-------------------------------|------------------|-----------------|
|                          |                                 |                                                                                                | DG                                                                               | P1                                                                                    |                                                                                      |                                                                                  | DC                                                                                        | 7P2                                                                                       |                                                                                              |                 | D                             | 3P3              |                 |
|                          |                                 |                                                                                                | (8 \$ \$ \$) =                                                                   | $(0 \ 1 \ 0 \ 5 \ 1)$                                                                 |                                                                                      |                                                                                  | (8 6 5) -                                                                                 | (01051)                                                                                   |                                                                                              |                 | $(\beta \phi \kappa) =$       | (01053)          |                 |
| 3.7                      |                                 |                                                                                                | $(\rho, \varphi_e, \kappa) =$                                                    | (0.1, 0.0, 1)                                                                         |                                                                                      |                                                                                  | $(p, \varphi_e, \kappa) =$                                                                | - (0.1, 0.0, 1)                                                                           |                                                                                              |                 | $(\rho, \varphi_e, \kappa) =$ | (0.1, 0.0, 0)    |                 |
| IN i                     | 1                               |                                                                                                |                                                                                  |                                                                                       |                                                                                      |                                                                                  | common ic                                                                                 | ocal factors                                                                              |                                                                                              |                 |                               |                  |                 |
| 20                       | 50                              | 3.045(13.3 11.6)                                                                               | 3.027(5.4 2.7)                                                                   | 3.373(29.1 1.3)                                                                       | 2.466(0.5 37.5)                                                                      | 3.843(42.6 4.7)                                                                  | 3.534(52.7 0.3)                                                                           | 3.686(49.9 0.7)                                                                           | 2.226(2.3 53.2)                                                                              | 1.087(7.6 78.8) | 2.444(0.6 54.9)               | 3.111(30.5 27.8) | 1.81(3.8 78.7)  |
| 50                       | 50                              | 3(2 2.1)                                                                                       | 2.984(0 1.6)                                                                     | 3.02(2.8 0.8)                                                                         | 2.863(0.1 11.4)                                                                      | 3.508(20.8 0.8)                                                                  | 3.13(13.3 0.3)                                                                            | 3.072(8.1 0.9)                                                                            | 2.672(0.2 24.2)                                                                              | 3.508(20.8 0.8) | 3.13(13.3 0.3)                | 3.072(8.1 0.9)   | 2.672(0.2 24.2) |
| 100                      | 50                              | 3(0.3 0.3)                                                                                     | 2.994(0 0.6)                                                                     | 3.003(0.5 0.2)                                                                        | 2.967(0 3.1)                                                                         | 3.189(7.1 0)                                                                     | 3.008(0.8 0)                                                                              | 3.041(4.3 0.2)                                                                            | 2.897(0 8.5)                                                                                 | 2.251(2.1 60.9) | 1.95(0 87.7)                  | 2.243(0.3 66.3)  | 1.789(0.4 80.9) |
| 200                      | 50                              | 3(010)                                                                                         | 3(0 0)                                                                           | 3 001(0 10)                                                                           | 2 997(00 3)                                                                          | 3 034(1 3 0 1)                                                                   | $3(0 \ 1   0 \ 1)$                                                                        | 3 014(1 5 0 1)                                                                            | 2 988(011 1)                                                                                 | 2147(02694)     | 1.807(0 90.7)                 | 2.181(0 70)      | 1.78(0.1 83.9)  |
| 200                      | 100                             | 2 885(0 10.0)                                                                                  | 2(0 0)                                                                           | 2.068(012.2)                                                                          | 2.718(0 21)                                                                          | 2.012(1.7 11.1)                                                                  | 2,726(0 26,2)                                                                             | 2.046(0.76)                                                                               | 2.264(0.2145)                                                                                | 0.158(0108.6)   | 0.002(0 100)                  | 1 929(0 1 91 9)  | 1 464(0)84 7)   |
| 20                       | 100                             | 2.885(0 10.5)                                                                                  | 2.418(0 37.2)                                                                    | 2.908(0[3.2)                                                                          | 2.713(0[21)                                                                          | 2.913(1.7 11.1)                                                                  | 2.730(0 20.3)                                                                             | 2.940(0.7 0)                                                                              | 2.304(0.3 43)                                                                                | 1.000(0 00.0)   | 1.074(0 100)                  | 1.528(0.1 [51.8) | 1.404(0 34.7)   |
| 50                       | 100                             | 2.997(0 0.3)                                                                                   | 2.951(0 4.9)                                                                     | 2.997(0 0.3)                                                                          | 2.978(0 2.1)                                                                         | 2.996(0 0.4)                                                                     | 2.994(0 0.6)                                                                              | 2.998(0 0.2)                                                                              | 2.924(0 6.8)                                                                                 | 1.006(0 90.3)   | 1.074(0 100)                  | 1.598(0 92.4)    | 1.334(0 89.4)   |
| 100                      | 100                             | 3(0 0)                                                                                         | 3(0 0)                                                                           | 3(0 0)                                                                                | 3(0 0)                                                                               | 3(0 0)                                                                           | 3(0 0)                                                                                    | 3(0 0)                                                                                    | 2.998(0 0.2)                                                                                 | 2.133(0 67.1)   | 1.549(0 96.6)                 | 1.975(0 80)      | 1.871(0 75.8)   |
| 200                      | 100                             | 3(0 0)                                                                                         | 3(0 0)                                                                           | 3(0 0)                                                                                | 3(0 0)                                                                               | 3(0 0)                                                                           | 3(0 0)                                                                                    | 3(0 0)                                                                                    | 3(0 0)                                                                                       | 2.376(0 56.6)   | 1.951(0 85.8)                 | 2.301(0 63.2)    | 2.114(0 68.1)   |
| 20                       | 200                             | 2.788(0 18.6)                                                                                  | 1.861(0 93.7)                                                                    | 2.892(0 10.4)                                                                         | 2.737(0 20.8)                                                                        | 2.787(0.2 16.4)                                                                  | 2.102(0 82.3)                                                                             | 2.903(0 9.6)                                                                              | 2.43(0 40.2)                                                                                 | 0.026(0 100)    | 0.084(0 100)                  | 1.449(0 95)      | 0.851(0 95)     |
| 50                       | 200                             | 2 997(0 0 3)                                                                                   | 2 863(0113 7)                                                                    | 2 996(010 4)                                                                          | 2 993(00 7)                                                                          | 2 998(010 2)                                                                     | 2 969(013 1)                                                                              | 2 998(010 2)                                                                              | $2.97\dot{5}(\dot{0} 2.4)$                                                                   | 0.51(0)97.4)    | 0.401(01100)                  | 1 354(0)97 8)    | 0.97(0)92.9)    |
| 100                      | 200                             | 2(010)                                                                                         | 2(0 0)                                                                           | 2(0 0)                                                                                | 2(010)                                                                               | 2(010)                                                                           | 2(010)                                                                                    | 2(010)                                                                                    | 2(010)                                                                                       | 2 26(0 55 2)    | 1 266(0 07 5)                 | 2,172(0 67,2)    | 2.107(0 57.1)   |
| 100                      | 200                             | 3(0 0)                                                                                         | 3(0 0)                                                                           | 3(0 0)                                                                                | 3(0 0)                                                                               | 3(0 0)                                                                           | 3(0 0)                                                                                    | 3(0 0)                                                                                    | 3(0 0)                                                                                       | 2.30(0 33.2)    | 1.300(0 97.3)                 | 2.173(0 07.2)    | 2.197(0 57.1)   |
| 200                      | 200                             | 3(0 0)                                                                                         | 3(0 0)                                                                           | 3(0 0)                                                                                | 3(0 0)                                                                               | 3(0 0)                                                                           | 3(0 0)                                                                                    | 3(0 0)                                                                                    | 3(0 0)                                                                                       | 2.936(0[6.3)    | 2.883(0[8.7)                  | 2.924(0 6.9)     | 2.913(0 6.9)    |
| 20                       | 50                              | 2.987(0.2 1.5)                                                                                 | 3.015(1.6 0.1)                                                                   | 2.967(0 3.2)                                                                          | 2.905(0 7.3)                                                                         | 4.825(64.7 0)                                                                    | 4.008(97.9 0)                                                                             | 3.683(47.2 7.5)                                                                           | 2.561(1.2 30.2)                                                                              | 0.286(0.5 94)   | 2.689(0.1 31.2)               | 1.911(0.3 79)    | 1.96(0.2 68.2)  |
| 50                       | 50                              | 2.999(0 0.1)                                                                                   | 2.999(0 0.1)                                                                     | 2.985(0 1.5)                                                                          | 2.978(0 1.7)                                                                         | 5.166(72.5 0)                                                                    | 3.565(56.4 0)                                                                             | 3.133(14.1 2.2)                                                                           | 2.846(0.2 11.9)                                                                              | 2.119(0.1 59.5) | 2.162(0 81.7)                 | 1.717(0 89.1)    | 1.922(0 69.9)   |
| 100                      | 50                              | 3(0 0)                                                                                         | 2.998(0 0.2)                                                                     | 2.997(0 0.3)                                                                          | 2.995(0 0.5)                                                                         | 4.458(48.6 0)                                                                    | 3.001(0.1 0)                                                                              | 3.162(15.4 0)                                                                             | 2.997(0 0.3)                                                                                 | 2.43(0.1 50.7)  | 2.133(0 81.1)                 | 1.967(0 79.9)    | 1.979(0 70)     |
| 200                      | 50                              | 3(0 0)                                                                                         | 3(0 0)                                                                           | 3(0 0)                                                                                | 2.999(0 0.1)                                                                         | 4.458(48.6 0)                                                                    | 3.001(0.1 0)                                                                              | 3.162(15.4 0)                                                                             | 2.997(0 0.3)                                                                                 | 2.362(0 56)     | 1.91(0 91.1)                  | 2.065(0 75.5)    | 1.965(0 73.6)   |
| 20                       | 100                             | 2.987(0 1 1)                                                                                   | 2535(0 46 5)                                                                     | 2 91(018 2)                                                                           | 2 993(00 6)                                                                          | 3.015(0.9 1.2)                                                                   | 2 969(013 1)                                                                              | 2 901 (9/20/3)                                                                            | 2813(01 141)                                                                                 | 0.014(0.99.9)   | 0.986(01100)                  | 1443(03 942)     | 1 846(0 56 9)   |
| 50                       | 100                             | 2.000(010.1)                                                                                   | 2.004(0 0.6)                                                                     | 2.007(010.2)                                                                          | 2,000(0 0,1)                                                                         | 2 144(4 810)                                                                     | 2(0 0)                                                                                    | 2.002(0.010.6)                                                                            | 2.028(011 1)                                                                                 | 1 044(0188 4)   | 1 151(0 100)                  | 1 246(0 07 2)    | 1.625(0 70.7)   |
| 100                      | 100                             | 2.999(0 0.1)                                                                                   | 2.334(000.0)                                                                     | 2.997(0 0.3)                                                                          | 2.555(0[0.1)                                                                         | 3.144(4.80)                                                                      | 3(0 0)                                                                                    | 3.003(0.9 0.0)                                                                            | 2.988(0 1.1)                                                                                 | 1.044(0 88.4)   | 1.131(0 100)                  | 1.340(0 97.2)    | 1.023(0 70.7)   |
| 100                      | 100                             | 3(0 0)                                                                                         | 3(0 0)                                                                           | 3(0 0)                                                                                | 3(0 0)                                                                               | 3.099(3.30)                                                                      | 3(0 0)                                                                                    | 3(0 0)                                                                                    | 3(0 0)                                                                                       | 2.372(0 59.1)   | 1.676(0 96.3)                 | 1.75(0 86.8)     | 2.222(0 54.9)   |
| 200                      | 100                             | 3(0 0)                                                                                         | 3(0 0)                                                                           | 3(0 0)                                                                                | 3(0 0)                                                                               | 3.117(3.9 0)                                                                     | 3(0 0)                                                                                    | 3(0 0)                                                                                    | 3(0 0)                                                                                       | 2.538(0 45.4)   | 2.289(0 64.3)                 | 2.348(0 57.2)    | 2.425(0 46.4)   |
| 20                       | 200                             | 2.996(0 0.4)                                                                                   | 1.971(0 98.9)                                                                    | 2.896(0 9.8)                                                                          | 2.998(0 0.2)                                                                         | 2.989(0 1.1)                                                                     | 2.217(0 78.3)                                                                             | 2.786(3 23.8)                                                                             | 2.931(0 5.5)                                                                                 | 0(0 100)        | 0.018(0 100)                  | 1.399(0.3 94.8)  | 0.897(0 76.7)   |
| 50                       | 200                             | 3(0 0)                                                                                         | 2.964(0 3.6)                                                                     | 2.999(0 0.1)                                                                          | 3(0 0)                                                                               | 3(0 0)                                                                           | 3(0 0)                                                                                    | 2.999(0 0.1)                                                                              | 3(0 0)                                                                                       | 0.32(0 97.1)    | 0.415(0 100)                  | 1.282(0 98.2)    | 1.071(0 76.8)   |
| 100                      | 200                             | 3(0)0)                                                                                         | 3(0 0)                                                                           | 3(010)                                                                                | 3(010)                                                                               | 3(0)0)                                                                           | 3(0)0)                                                                                    | 3(0 0)                                                                                    | 3(0)0)                                                                                       | 2.647(0 35.1)   | 1.549(0 99.1)                 | 2.144(0 60.8)    | 2.698(0 21.9)   |
| 200                      | 200                             | 3(010)                                                                                         | 3(010)                                                                           | 3(010)                                                                                | 3(010)                                                                               | 3(0 0)                                                                           | 3(0 0)                                                                                    | 3(010)                                                                                    | 3(0 0)                                                                                       | 2 998(010 2)    | 2 986(0 1 3)                  | 2 997(010 2)     | 2 998(0 0 2)    |
| 200                      | 200                             | 5(0 0)                                                                                         | 3(0 0)                                                                           | <u>3(0 0)</u>                                                                         | <u>5(0 0)</u>                                                                        | 5(0 0)                                                                           | 3(0 0)                                                                                    | 3(0 0)                                                                                    | <u> </u>                                                                                     | 2.556(0[0.2)    | 2.566(0 1.5)                  | 2:331(0[0:2)     | 2.556(0[0.2)    |
|                          |                                 | CCD                                                                                            | MCC                                                                              | AASS                                                                                  | GCC                                                                                  | CCD                                                                              | MCC                                                                                       | ARSS                                                                                      | GUU                                                                                          |                 |                               |                  |                 |
|                          |                                 |                                                                                                | DG                                                                               | P4                                                                                    |                                                                                      |                                                                                  | DC                                                                                        | <sup>i</sup> P5                                                                           |                                                                                              |                 |                               |                  |                 |
|                          |                                 |                                                                                                | $(\beta, \phi_e, \kappa) =$                                                      | (0.1, 0.5, 1)                                                                         |                                                                                      |                                                                                  | $(\beta, \phi_e, \kappa) =$                                                               | = (0.1, 0.5, 1)                                                                           |                                                                                              |                 |                               |                  |                 |
| $N_i$                    | T                               |                                                                                                | $\omega_F =$                                                                     | = 0.4                                                                                 |                                                                                      |                                                                                  | $\omega_F$                                                                                | = 0.8                                                                                     |                                                                                              |                 |                               |                  |                 |
| 20                       | 50                              | 3.65(57.9 5.9)                                                                                 | 3.425(42.6 0.2)                                                                  | 4.104(86 0.1)                                                                         | 2.436(17.2 49.6)                                                                     | 4.026(91.2 0.1)                                                                  | 3.899(89.4 0)                                                                             | 4.19(98.8 0)                                                                              | 3.38(66 18.7)                                                                                |                 |                               |                  |                 |
| 50                       | 50                              | 3.57(54.50.9)                                                                                  | 3.216(21.90.3)                                                                   | 3.657(65.20.2)                                                                        | 2.771(11.5)24.8)                                                                     | 4.003(99.10)                                                                     | 3.964(96.40)                                                                              | 3.999(99.610)                                                                             | 3.923(94.7 1.6)                                                                              |                 |                               |                  |                 |
| 100                      | 50                              | 3 516(51 1 0 2)                                                                                | 3 05(5 510 5)                                                                    | 3 674(6710)                                                                           | 2.945(6.3 9.4)                                                                       | 4 002(99 8 0)                                                                    | 3 973(97 310)                                                                             | 3 993(99 510 2)                                                                           | 3 963(97 1 0 8)                                                                              |                 |                               |                  |                 |
| 200                      | 50                              | 2 454(45 5 0.1)                                                                                | 3.002(0.510.2)                                                                   | 2 66(6610)                                                                            | 2.040(0.0 0.4)<br>2.005(1.0 1.6)                                                     | 2.002(00.810)                                                                    | 2 060(06 010)                                                                             | 2 782(80 211 0)                                                                           | 2 064(06 410)                                                                                |                 |                               |                  |                 |
| 200                      | 100                             | 3.434(43.3 0.1)                                                                                | 3.002(0.3]0.3)                                                                   | 3.00(00 0)                                                                            | 2.555(1.2 1.0)                                                                       | 3.558(55.80)                                                                     | 3.505(50.50)                                                                              | 3.783(80.3 1.9)                                                                           | 3.904(90.40)                                                                                 |                 |                               |                  |                 |
| 20                       | 100                             | 3.462(59.3 10.4)                                                                               | 2.517(0.2 48)                                                                    | 3.735(75.3 1.8)                                                                       | 2.776(33.3 38.3)                                                                     | 3.947(94.8 0.1)                                                                  | 3.296(31.5 1.9)                                                                           | 3.972(97.20)                                                                              | 3.875(90.6 2.2)                                                                              |                 |                               |                  |                 |
| 50                       | 100                             | 3.539(54 0.1)                                                                                  | 2.968(0.1 3.3)                                                                   | 3.495(49.6 0.1)                                                                       | 3.066(16.3 8.2)                                                                      | 3.998(99.8 0)                                                                    | 3.905(90.5 0)                                                                             | 3.998(99.8 0)                                                                             | 3.991(99.3 0.1)                                                                              |                 |                               |                  |                 |
| 100                      | 100                             | 3.427(42.7 0)                                                                                  | 3(0 0)                                                                           | 3.26(26 0)                                                                            | 3.007(1.2 0.5)                                                                       | 4(100 0)                                                                         | 3.991(99.1 0)                                                                             | 3.907(92.4 1.5)                                                                           | 4(100 0)                                                                                     |                 |                               |                  |                 |
| 200                      | 100                             | 3.344(34.4 0)                                                                                  | 3(0 0)                                                                           | 3.27(27 0)                                                                            | 3(0 0)                                                                               | 4(100 0)                                                                         | 3.968(96.8 0)                                                                             | 3.826(83.4 0.7)                                                                           | 3.995(99.5 0)                                                                                |                 |                               |                  |                 |
| 20                       | 200                             | 3.399(62.9 14.6)                                                                               | 1.87(0 92.8)                                                                     | 3.694(72.2 2.7)                                                                       | 3.068(49.8 29.8)                                                                     | 3.922(92.2 0)                                                                    | 2.704(3.1 32.5)                                                                           | 3.948(94.9 0.1)                                                                           | 3.911(92.5 1.2)                                                                              |                 |                               |                  |                 |
| 50                       | 200                             | 3 545(54 6 0 1)                                                                                | 2.87(0 13)                                                                       | 3 264(26 6 0 2)                                                                       | 3 092(14 3 4 3)                                                                      | 4(100)0)                                                                         | 3 698(7010.2)                                                                             | 3 98(98 4 0 3)                                                                            | 3 999(99 910)                                                                                |                 |                               |                  |                 |
| 100                      | 200                             | 2 228(22 8(0)                                                                                  | 2(010)                                                                           | 3 1(10/0)                                                                             | 2 001(0 110)                                                                         | 4(100 0)                                                                         | 2 074(07 410)                                                                             | 2 991(90 611 5)                                                                           | 4(100 0)                                                                                     |                 |                               |                  |                 |
| 100                      | 200                             | 3.338(33.80)                                                                                   | 3(0 0)                                                                           | 3.1(10 0)                                                                             | 3.001(0.1]0)                                                                         | 4(100 0)                                                                         | 3.574(57.40)                                                                              | 3.881(85.011.3)                                                                           | 4(100 0)                                                                                     |                 |                               |                  |                 |
| 200                      | 200                             | 3.233(23.3 0)                                                                                  | 3(0 0)                                                                           | 3.027(2.7 0)                                                                          | 3(0 0)                                                                               | 4(100 0)                                                                         | 3.752(75.2 0)                                                                             | 3.985(98.5 0)                                                                             | 4(100 0)                                                                                     |                 |                               |                  |                 |
| 20                       | 50                              | 3.634(61.8 0.5)                                                                                | 3.635(63.5 0)                                                                    | 3.367(39.8 3.1)                                                                       | 2.925(28.1 25.6)                                                                     | 3.997(99.3 0)                                                                    | 3.994(99.4 0)                                                                             | 3.957(95.8 0.1)                                                                           | 3.927(95.3 1.6)                                                                              |                 |                               |                  |                 |
| 50                       | 50                              | 3.531(53.2 0.1)                                                                                | 3.207(20.7 0)                                                                    | 3.113(12.7 1.4)                                                                       | 2.933(10.3 13.1)                                                                     | 4(100 0)                                                                         | 3.993(99.3 0)                                                                             | 3.983(98.3 0)                                                                             | 3.988(99 0.2)                                                                                |                 |                               |                  |                 |
| 100                      | 50                              | 3.465(46.5 0)                                                                                  | 3.027(2.7 0)                                                                     | 3.125(12.7 0.2)                                                                       | 2.981(3.3 4.5)                                                                       | 4(100 0)                                                                         | 3.998(99.8 0)                                                                             | 3.998(99.8 0)                                                                             | 3.994(99.4 0)                                                                                |                 |                               |                  |                 |
| 200                      | 50                              | 3.421(42.10)                                                                                   | 3(0.1 0.1)                                                                       | 3.11(11 0)                                                                            | 2.991(0 0.9)                                                                         | 4(100 0)                                                                         | 3.987(98.70)                                                                              | 3.992(99.20)                                                                              | 3.98(98 0)                                                                                   |                 |                               |                  |                 |
| 20                       | 100                             | 3 685(69 4 0 9)                                                                                | 2 675(0132 5)                                                                    | 3.027(11.28)                                                                          | 3 496(58 3 5 8)                                                                      | 3 998(99 810)                                                                    | 3 302(30 3 0 1)                                                                           | 3 915(92 0.4)                                                                             | 3 996(99 610)                                                                                |                 |                               |                  |                 |
| 50                       | 100                             | 2 522(52 20)                                                                                   | 2.010(0102.0)                                                                    | 2 005(0 010 4)                                                                        | 2 004(1010 5)                                                                        | 4(10010)                                                                         | 2 082(08 20)                                                                              | 2 002(00 2 0)                                                                             | 4(100 0)                                                                                     |                 |                               |                  |                 |
| 100                      | 100                             | 3.523(32.30)                                                                                   | 2.539(0 0.1)                                                                     | 3.003(0.910.4)                                                                        | 3.094(10 0.3)                                                                        | 4(100 0)                                                                         | 3.362(96.210)                                                                             | 3.393(99.310)                                                                             | 4(100 0)                                                                                     |                 |                               |                  |                 |
| 100                      |                                 | 3.384(38.4 0)                                                                                  | 3(0 0)                                                                           | 3.002(0.2 0)                                                                          | 3.003(0.30)                                                                          | 4(1000)                                                                          | 9.999(99.910)                                                                             | 4(100 0)                                                                                  | 4(100 0)                                                                                     |                 |                               |                  |                 |
|                          | 100                             |                                                                                                | - ( - ! - )                                                                      | /                                                                                     |                                                                                      |                                                                                  | ( ! - )                                                                                   |                                                                                           |                                                                                              |                 |                               |                  |                 |
| 200                      | 100                             | 3.287(28.7 0)                                                                                  | 3(0 0)                                                                           | 3.003(0.3 0)                                                                          | 3(0 0)                                                                               | 4(100 0)                                                                         | 3.98(98 0)                                                                                | 3.998(99.8 0)                                                                             | 3.994(99.4 0)                                                                                |                 |                               |                  |                 |
| $200 \\ 20$              | 100<br>100<br>200               | 3.287(28.7 0)<br>3.827(84.7 1.2)                                                               | 3(0 0)<br>1.989(0 98.2)                                                          | 3.003(0.3 0)<br>2.904(3.2 11.6)                                                       | 3(0 0)<br>3.776(78.8 0.8)                                                            | 4(100 0)<br>3.998(99.8 0)                                                        | 3.98(98 0)<br>2.857(0 14.3)                                                               | 3.998(99.8 0)<br>3.938(94.2 0.4)                                                          | $3.994(99.4 0) \\ 4(100 0)$                                                                  |                 |                               |                  |                 |
| $200 \\ 20 \\ 50$        | 100<br>100<br>200<br>200        | $\begin{array}{c} 3.287(28.7 0) \\ 3.827(84.7 1.2) \\ 3.603(60.3 0) \end{array}$               | 3(0 0)<br>1.989(0 98.2)<br>2.959(0 4.1)                                          | $\begin{array}{c} 3.003(0.3 0)\\ 2.904(3.2 11.6)\\ 2.998(0 0.2) \end{array}$          | 3(0 0)<br>3.776(78.8 0.8)<br>3.072(7.3 0.1)                                          | $\begin{array}{c} 4(100 0)\\ 3.998(99.8 0)\\ 4(100 0) \end{array}$               | $\begin{array}{c} 3.98(98 0)\\ 2.857(0 14.3)\\ 3.823(82.3 0) \end{array}$                 | 3.998(99.8 0)<br>3.938(94.2 0.4)<br>4(100 0)                                              | $\begin{array}{c} 3.994(99.4 0) \\ 4(100 0) \\ 4(100 0) \end{array}$                         |                 |                               |                  |                 |
| $200 \\ 20 \\ 50 \\ 100$ | 100<br>100<br>200<br>200<br>200 | $\begin{array}{c} 3.287(28.7 0)\\ 3.827(84.7 1.2)\\ 3.603(60.3 0)\\ 3.278(27.8 0) \end{array}$ | $\begin{array}{c} 3(0 0) \\ 1.989(0 98.2) \\ 2.959(0 4.1) \\ 3(0 0) \end{array}$ | $\begin{array}{c} 3.003(0.3 0)\\ 2.904(3.2 11.6)\\ 2.998(0 0.2)\\ 3(0 0) \end{array}$ | $\begin{array}{c} 3(0 0) \\ 3.776(78.8 0.8) \\ 3.072(7.3 0.1) \\ 3(0 0) \end{array}$ | $\begin{array}{c} 4(100 0) \\ 3.998(99.8 0) \\ 4(100 0) \\ 4(100 0) \end{array}$ | $\begin{array}{c} 3.98(98 0)\\ 2.857(0 14.3)\\ 3.823(82.3 0)\\ 3.991(99.1 0) \end{array}$ | $\begin{array}{c} 3.998(99.8 0)\\ 3.938(94.2 0.4)\\ 4(100 0)\\ 3.998(99.8 0) \end{array}$ | $\begin{array}{c} 3.994(99.4 0) \\ 4(100 0) \\ 4(100 0) \\ 4(100 0) \\ 4(100 0) \end{array}$ |                 |                               |                  |                 |

Table 11: Average estimates of the number of the global factors with  $(\phi_G, \phi_F) = (0.5, 0.5), (r_0, r_i) = (3, 3)$ 

The average of  $\hat{r}_0$  over 1,000 replications is reported together with (O|U) inside the parenthesis, indicating the percentage of overestimation and underestimation.  $r_0$  and  $r_i$  are the true numbers of the lobal factors and local factors in group *i*. We set  $r_1 = \cdots = r_R$  and  $N_1 = \cdots = N_R$ , where *R* is the number of groups and  $N_i$  is the number of individuals in block *i*. *T* is the number of time periods. *G* and  $\phi_F$  are AR coefficients for the global and local factors.  $\beta$ ,  $\phi_e$  and  $\kappa$  control the cross-section correlation, serial correlation and noise-to-signal ratio.



# Figure 5: Asymptotic normality of the first element of $\widehat{\boldsymbol{G}}_t$ evaluated at T/2

The data is simulated using R = 3,  $(r_0, r_i) = (2, 2)$ ,  $(\phi_G, \phi_F) = (0, 0)$  and  $(\beta, \phi_e, \kappa) = (0, 0, 1)$ . Standard normal density is superimposed.



The data is simulated using R = 3,  $(r_0, r_i) = (2, 2)$ ,  $(\phi_G, \phi_F) = (0, 0)$  and  $(\beta, \phi_e, \kappa) = (0, 0, 1)$ . Standard normal density is superimposed.

## References

- Ahn, S. C. and Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors, *Econometrica* **81**(3): 1203–1227.
- Ando, T. and Bai, J. (2017). Clustering huge number of financial time series: A panel data approach with high-dimensional predictors and factor structures, *Journal of the American Statistical Association* 112(519): 1182–1198.
- Andreou, E., Gagliardini, P., Ghysels, E. and Rubin, M. (2019). Inference in group factor models with an application to mixed-frequency data, *Econometrica* 87(4): 1267–1305.
- Andrews, D. W. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation, Econometrica: Journal of the Econometric Society pp. 817–858.
- Bai, J. (2003). Inferential theory for factor models of large dimensions, *Econometrica* **71**(1): 135–171.
- Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models, *Econometrica* **70**(1): 191–221.
- Barrot, L.-D. and Serven, L. (2018). Gross capital flows, common factors, and the global financial cycle, World Bank Policy Research Working Paper.
- Beck, G. W., Hubrich, K. and Marcellino, M. (2016). On the importance of sectoral and regional shocks for price-setting, *Journal of Applied Econometrics* **31**(7): 1234–1253.
- Breitung, J. and Eickmeier, S. (2016). Analyzing international business and financial cycles using multilevel factor models: A comparison of alternative approaches, *Dynamic Factor Models (Advances in Econometrics, Volume 35) Emerald Group Publishing Limited* **35**: 177–214.
- Chamberlain, G. and Rothschild, M. (1982). Arbitrage, factor structure, and mean-variance analysis on large asset markets.
- Chen, M. (2022). Circularly projected common factors for grouped data, *Journal of Business & Economic Statistics* pp. 1–14.
- Chen, P. (2012). Common factors and specific factors, MPRA Paper No. 36082. URL: "https://mpra.ub.uni-muenchen.de/36114/"
- Chodorow-Reich, G., Guren, A. M. and McQuade, T. J. (2021). The 2000s housing cycle with 2020 hindsight: A neo-kindlebergerian view, *Technical report*, National Bureau of Economic Research.
- Choi, I. and Jeong, H. (2019). Model selection for factor analysis: Some new criteria and performance comparisons, *Econometric Reviews* 38(6): 577–596.
- Choi, I., Kim, D., Kim, Y. J. and Kwark, N.-S. (2018). A multilevel factor model: Identification, asymptotic theory and applications, *Journal of Applied Econometrics* **33**(3): 355–377.
- Choi, I., Lin, R. and Shin, Y. (2021). Canonical correlation-based model selection for the multilevel factors, *Journal of Econometrics*.

- Coroneo, L., Jackson, L. E. and Owyang, M. T. (2020). International stock comovements with endogenous clusters, *Journal of Economic Dynamics and Control* 116: 103904.
- Del Negro, M. and Otrok, C. (2007). 99 luftballons: Monetary policy and the house price boom across us states, *Journal of Monetary Economics* 54(7): 1962–1985.
- Dias, F., Pinheiro, M. and Rua, A. (2013). Determining the number of global and country-specific factors in the euro area, *Studies in Nonlinear Dynamics and Econometrics* 17(5): 573–617.
- Freyaldenhoven, S. (2021). Factor models with local factors—determining the number of relevant factors, Journal of Econometrics.
- Gonçalves, S. and Perron, B. (2014). Bootstrapping factor-augmented regression models, Journal of Econometrics 182(1): 156–173.
- Hallin, M. and Liška, R. (2011). Dynamic factors in the presence of blocks, Journal of econometrics 163(1): 29–41.
- Han, X. (2021). Shrinkage estimation of factor models with global and group-specific factors, *Journal of Business & Economic Statistics* **39**(1): 1–17.
- Holly, S., Pesaran, M. H. and Yamagata, T. (2011). The spatial and temporal diffusion of house prices in the uk, *Journal of urban economics* 69(1): 2–23.
- Holmes, M. J. and Grimes, A. (2008). Is there long-run convergence among regional house prices in the uk?, Urban studies 45(8): 1531–1544.
- Howard, G. and Liebersohn, J. (2020). Regional divergence and house prices, Fisher College of Business Working Paper p. 004.
- Kaplan, G., Mitman, K. and Violante, G. L. (2020). The housing boom and bust: Model meets evidence, Journal of Political Economy 128(9): 3285–3345.
- Kose, M. A., Otrok, C. and Whiteman, C. H. (2003). International business cycles: World, region, and country-specific factors, *The American Economic Review* 93(4): 1216–1239.
- Leamer, E. E. (2007). Housing is the business cycle.
- Moench, E., Ng, S. and Potter, S. (2013). Dynamic hierarchical factor models, *Review of Economics and Statistics* 95(5): 1811–1817.
- Montagnoli, A. and Nagayasu, J. (2015). Uk house price convergence clubs and spillovers, Journal of Housing Economics 30: 50–58.
- Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues, *The Review of Economics and Statistics* **92**(4): 1004–1016.
- Rodríguez-Caballero, C. V. and Caporin, M. (2019). A multilevel factor approach for the analysis of cds commonality and risk contribution, *Journal of International Financial Markets, Institutions and Money* 63: 101144.
- Shao, X. (2010). The dependent wild bootstrap, *Journal of the American Statistical Association* **105**(489): 218–235.

Stewart, G. W. and Sun, J.-g. (1990). Matrix perturbation theory, Academic Press, Boston.

- Stock, J. H. and Watson, M. W. (2002). Forecasting using principal components from a large number of predictors, Journal of the American statistical association 97(460): 1167–1179.
- Uematsu, Y. and Yamagata, T. (2022). Estimation of sparsity-induced weak factor models, Journal of Business & Economic Statistics pp. 1–15.
- Wang, P. (2008). Large dimensional factor models with a multi-level factor structure: identification, estimation and inference, Unpublished manuscript, New York University.
- Yang, X., Liu, W., Liu, W. and Tao, D. (2019). A survey on canonical correlation analysis, *IEEE Transactions on Knowledge and Data Engineering* 33(6): 2349–2368.
- Yu, Y., Wang, T. and Samworth, R. J. (2015). A useful variant of the davis-kahan theorem for statisticians, *Biometrika* 102(2): 315–323.

# Appendices

## A Proofs

We use the following facts throughout the proofs. By Assumption B.1, we have:  $||T^{-1/2}G|| = O_p(1)$ and  $||T^{-1/2}F_i|| = O_p(1)$  for all i = 1, ..., R. By Assumptions C.1, we have:  $||N_i^{-1/2}\Gamma_i|| = O_p(1)$  and  $||N_i^{-1/2}\Lambda_i|| = O_p(1)$  for all i = 1, ..., R. The eigenvectors of a real  $n \times n$  matrix  $\Sigma$  is scale invariant since  $a\Sigma v = a\lambda v$  where v is the eigenvector associated with the eigenvalue  $\lambda$  and a is a non-zero real number.

## **Proof of Proposition 1.**

Using  $K_i = [G, F_i]$  for i = 1, ..., R, we can be express the matrix  $\Phi$  in (13) as

Let

$$egin{aligned} oldsymbol{Q}_i^{r_0} &= \left[ egin{aligned} rac{1}{\sqrt{R}}oldsymbol{A} \ oldsymbol{0} \end{array} 
ight] ext{ and } oldsymbol{Q}_{r_0}^{r_0} &= \left[oldsymbol{Q}_1^{r_0\prime},oldsymbol{Q}_2^{r_0\prime},\ldots,oldsymbol{Q}_R^{r_0\prime} 
ight]' \ \sum_{l=1}^R (r_0+r_l) imes r_0 \end{aligned}$$

where  $(1/\sqrt{R}) \mathbf{A}$  is any  $r_0 \times r_0$  orthogonal matrix. For each *i*, it is easily see that

$$\boldsymbol{K}_{i}\boldsymbol{Q}_{i}^{r_{0}} = [\boldsymbol{G}, \boldsymbol{F}_{i}] \begin{bmatrix} \frac{1}{\sqrt{R}} \boldsymbol{A} \\ \boldsymbol{0} \end{bmatrix} = \boldsymbol{G}\boldsymbol{B}$$
(22)

where  $\boldsymbol{B} = (1/\sqrt{R}) \boldsymbol{A}$ . This shows that  $\boldsymbol{\Phi} \boldsymbol{Q}^{r_0} = \boldsymbol{0}$ . Since  $\boldsymbol{Q}^{r_0} \boldsymbol{Q}^{r_0} = \boldsymbol{I}_{r_0}, \, \boldsymbol{Q}^{r_0}$  can serve as the right eigenvectors in the SVD of  $\boldsymbol{\Phi}$ . Consequently, we obtain

$$oldsymbol{\Phi} oldsymbol{Q}^{r_0} = oldsymbol{P}^{r_0} egin{bmatrix} \delta_1 & & & \ & \delta_2 & & \ & & \ddots & \ & & & \delta_{r_0} \end{bmatrix} = oldsymbol{0}$$

where  $\mathbf{P}^{r_0}$  is the corresponding left eigenvectors. As  $\mathbf{P}^{r_0}$  is non-zero, it follows that  $\delta_1 = \cdots = \delta_R = 0$ . This establishes that the first  $r_0$  smallest singular values are zero.

We now show that the rest of the singular values are larger than zero by contradiction. Suppose that there exists an eigenvector  $\boldsymbol{q}^{\perp} = [\boldsymbol{q}_1^{\perp'}, \dots, \boldsymbol{q}_R^{\perp'}]'$ , satisfying  $\boldsymbol{\Phi}\boldsymbol{q}^{\perp} = \boldsymbol{0}$ ,  $\boldsymbol{Q}^{r_0\prime}\boldsymbol{q}^{\perp} = \boldsymbol{0}$  and  $\boldsymbol{q}^{\perp'}\boldsymbol{q}^{\perp} = 1$ , where  $\boldsymbol{q}_i^{\perp} = [\boldsymbol{q}_i^{G\perp'}, \boldsymbol{q}_i^{F\perp'}]'$ . Noting  $\boldsymbol{\Phi}\boldsymbol{q}^{\perp} = \boldsymbol{0}$ , we have:

$$oldsymbol{G}oldsymbol{q}_m^{G\perp}+oldsymbol{F}_moldsymbol{q}_m^{F\perp}=oldsymbol{G}oldsymbol{q}_h^{G\perp}+oldsymbol{F}_holdsymbol{q}_h^{F\perp}$$
 for any  $h$  and  $m$ 

It follows that

$$R\left(\boldsymbol{G}\boldsymbol{q}_{m}^{G\perp}+\boldsymbol{F}_{m}\boldsymbol{q}_{m}^{F\perp}\right)=\sum_{i=1}^{R}\left(\boldsymbol{G}\boldsymbol{q}_{i}^{G\perp}+\boldsymbol{F}_{i}\boldsymbol{q}_{i}^{F\perp}\right)=\sum_{i=1}^{R}\boldsymbol{F}_{i}\boldsymbol{q}_{i}^{F\perp}.$$

where the second equality holds as a result of  $Q^{r_0} q^{\perp} = B' \sum_{i=1}^{R} q_i^{G\perp} = 0$ . Consequently, we have

$$oldsymbol{G}\left(rac{1}{R}oldsymbol{q}_m^{Got}
ight) = oldsymbol{F}_m\left(1-rac{1}{R}
ight)oldsymbol{q}_m^{Fot} + \sum_{h
eq m}oldsymbol{F}_holdsymbol{q}_h^{Fot}.$$

By construction, we must have  $\boldsymbol{q}_m^{G\perp} = \boldsymbol{q}_1^{F\perp} = \cdots = \boldsymbol{q}_R^{F\perp} = \boldsymbol{0}$  for all m. Hence,  $\boldsymbol{q}^{\perp} = \boldsymbol{0}$ . This contradicts the definition of an eigenvector. Since the singular values are non-negative, the remaining singular values of  $\boldsymbol{\Phi}$  are larger than zero. By Assumption B.1, we have  $T^{-1/2}\boldsymbol{K}_i = O_p(1)$  for all i such that  $\boldsymbol{\Phi} = O_p\left(\sqrt{T}\right)$ . Using  $\boldsymbol{\Phi}\boldsymbol{q} = \delta\boldsymbol{p}$  and the fact that the eigenvectors  $\boldsymbol{p}$  and  $\boldsymbol{q}$  are bounded, we have:  $\delta_{r_0+j} = O_p\left(\sqrt{T}\right)$  for  $j = 1, ..., Rr_{\max} - r_0$ .

## **Proof of Proposition 2**

Using (22) we obtain:

$$\frac{1}{\sqrt{T}}\Psi = \frac{1}{\sqrt{T}} \left[ \boldsymbol{K}_1 \boldsymbol{Q}_1^{r_0}, \dots, \boldsymbol{K}_R \boldsymbol{Q}_R^{r_0} \right] = \frac{1}{\sqrt{T}} \left[ \boldsymbol{G} \boldsymbol{B}, \dots, \boldsymbol{G} \boldsymbol{B} \right]$$
(23)

which yields

$$\frac{\Psi\Psi'}{T} = \frac{GG'}{T} = L\Xi L'$$

where  $\Xi$  is a diagonal matrix with the first  $r_0$  elements non-zero and the remaining elements zero. Finally, it follows that

$$oldsymbol{L}^{r_0} = rac{1}{\sqrt{T}}oldsymbol{G}\left(rac{oldsymbol{G}'oldsymbol{L}^{r_0}(oldsymbol{\Xi}^{r_0})^{-1}}{\sqrt{T}}
ight)$$

where  $\Xi^{r_0}$  is the diagonal matrix consisting of  $r_0$  non-zero diagonal elements of  $\Xi$ . The full rank matrix inside the bracket is a rotation matrix. Q.E.D

#### Proof of Lemma 1

Since Assumptions A–D in Bai and Ng (2002) are satisfied, the stated result follows from Theorem 1 of Bai and Ng (2002).

Proof of Lemma 2 Let  $\bar{Q}_i^{r_0} = \widehat{H}_i^- Q_i^{r_0}$  where  $\widehat{H}_i^-$  is the Moore-Penrose inverse of  $\widehat{H}_i$ . Since  $r_0 + r_i \le r_{\max}$  for all i, by the property of the Moore-Penrose inverse, it follows that  $\widehat{H}_i \widehat{H}_i^- = I_{r_0+r_i}$ . Let  $\overline{Q}_{Rr_{\max} \times r_0}^{r_0} = \left[\overline{Q}_1^{r_0}, \dots, \overline{Q}_R^{r_0}\right]'$ . Then, we obtain

$$\Phi \widehat{H} ar{Q}^{r_0} = \Phi Q^{r_0} = P^{r_0} \Delta^{r_0}$$

Along the same arguments in Proof of Proposition 1, we obtain the desired result.

## Proof of Lemma 3

See the proof of Theorem 2 in Yu et al. (2015).

**Lemma 4.** Under Assumption A–C, as  $N_1, N_2, \ldots, N_R, T \longrightarrow \infty$ , we have:

1. For every m and h,

$$\frac{1}{T\sqrt{N_h}} \left\| \left( \widehat{\boldsymbol{K}}_m - \boldsymbol{K}_m \widehat{\boldsymbol{H}}_m \right)' \boldsymbol{e}_h \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$

2. For each i,

$$\frac{1}{T\sqrt{N_i}} \left\| \widehat{\boldsymbol{G}}' \boldsymbol{e}_i \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$

where  $C_{N,T} = \min\{\sqrt{N}, \sqrt{T}\}$  with  $\underline{N} = \min\{N_1, N_2, \dots, N_R\}$ 

## Proof

1. Using the Cauchy-Schwarz inequality, we obtain:

$$\frac{1}{T\sqrt{N_h}} \left\| \left( \widehat{K}_m - K_m \widehat{H}_m \right)' e_h \right\| \le \left\| \frac{1}{\sqrt{T}} \left( \widehat{K}_m - K_m \widehat{H}_m \right) \right\| \left\| \frac{1}{\sqrt{N_h T}} e_h \right\|$$

The first term is of stochastic order  $O_p(C_{N_mT}^{-1})$  by Lemma 1. For the second term, we have:

$$\left\|\frac{1}{\sqrt{N_h T}} \boldsymbol{e}_h\right\| = \sqrt{\frac{1}{N_h T} tr\left\{\boldsymbol{e}_h' \boldsymbol{e}_h\right\}} = \sqrt{\frac{1}{N_h T} \sum_{j=1}^{N_h} \sum_{t=1}^{T} e_{hjt}^2}$$

Since  $E(e_{hjt}^2) = O(1)$ , the above term is  $O_p(1)$ . Combining the two terms, we obtain the required result. 2. Using equation (19) and  $\widehat{K}_m = \widehat{K}_m - K_m \widehat{H}_m + K_m \widehat{H}_m$ , we have:

$$\begin{split} \frac{1}{T\sqrt{N_i}} \left\| \widehat{\boldsymbol{G}}' \boldsymbol{e}_i \right\| &= \frac{1}{T\sqrt{N_iT}} \left\| \sum_{m=1}^R \left\{ \widehat{\boldsymbol{J}}^{r_0 \prime} \left( \widehat{\boldsymbol{K}}_m - \boldsymbol{K}_m \widehat{\boldsymbol{H}}_m \right) \widetilde{\boldsymbol{Q}}_m^{r_0} \left( \widehat{\boldsymbol{K}}_m - \boldsymbol{K}_m \widehat{\boldsymbol{H}}_m \right)' \boldsymbol{e}_i \right. \\ &+ \left. \widehat{\boldsymbol{J}}^{r_0 \prime} \left( \widehat{\boldsymbol{K}}_m - \boldsymbol{K}_m \widehat{\boldsymbol{H}}_m \right) \widetilde{\boldsymbol{Q}}_m^{r_0} \widehat{\boldsymbol{H}}_m' \boldsymbol{K}_m' \boldsymbol{e}_i + \widehat{\boldsymbol{J}}^{r_0 \prime} \boldsymbol{K}_m \widehat{\boldsymbol{H}}_m \widetilde{\boldsymbol{Q}}_m^{r_0} \left( \widehat{\boldsymbol{K}}_m - \boldsymbol{K}_m \widehat{\boldsymbol{H}}_m \right)' \boldsymbol{e}_i \right. \\ &\left. + \left. \widehat{\boldsymbol{J}}^{r_0 \prime} \boldsymbol{K}_m \widehat{\boldsymbol{H}}_m \widetilde{\boldsymbol{Q}}_m^{r_0} \widehat{\boldsymbol{H}}_m' \boldsymbol{K}_m' \boldsymbol{e}_i \right\} \right\| \end{split}$$

Q.E.D

Q.E.D

Q.E.D

where  $\tilde{\boldsymbol{Q}}_{i}^{r_{0}} = \hat{\boldsymbol{Q}}_{i}^{r_{0}}\hat{\boldsymbol{Q}}_{i}^{r_{0}'}$ . We note that  $\left\|\hat{\boldsymbol{J}}^{r_{0}}\right\| = O_{p}(1)$  since  $\hat{\boldsymbol{L}}^{r_{0}'}\hat{\boldsymbol{L}}^{r_{0}} = \boldsymbol{I}_{r_{0}}$  and  $T^{-1/2}\hat{\boldsymbol{\Psi}} = O_{p}(1)$ . The first term of RHS is bounded by  $O_{p}\left(C_{\underline{N}T}^{-1}\right) \times O_{p}\left(C_{\underline{N}T}^{-1}\right)$  by Lemma 1.1 and Lemma 4.1. The second term is bounded by  $O_{p}\left(T^{-1/2}C_{\underline{N}T}^{-1}\right)$  by Lemma 1.1 and the fact that  $(N_{m}T)^{-1/2}\|\boldsymbol{K}_{m}'\boldsymbol{e}_{i}\| = O_{p}(1)$  under Assumption B2. The third term is bounded by  $O_{p}\left(C_{\underline{N}T}^{-1}\right)$  by Lemma 4.1. The last term is bounded by  $O_{p}(T^{-1/2})$  since  $(N_{m}T)^{-1/2}\|\boldsymbol{K}_{m}'\boldsymbol{e}_{i}\| = O_{p}(1)$  under Assumption B.2. The proof completes by combining all these results.

## Proof of Theorem 1

By Lemma 1, we have:

$$\frac{1}{T} \left\| \widehat{\Phi}' \widehat{\Phi} - \widehat{H}' \Phi' \Phi \widehat{H} \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$

Furthermore, by Lemma 2 and Lemma 3, we obtain:

$$\left\|\widehat{\boldsymbol{Q}}^{r_0} - \bar{\boldsymbol{Q}}^{r_0}\boldsymbol{D}\right\| \le O_p(1) \times \frac{1}{T} \left\|\widehat{\boldsymbol{\Phi}}'\widehat{\boldsymbol{\Phi}} - \widehat{\boldsymbol{H}}'\boldsymbol{\Phi}'\boldsymbol{\Phi}\widehat{\boldsymbol{H}}\right\| = O_p\left(\frac{1}{C_{\underline{N}T}}\right)$$

where D is an  $r_0 \times r_0$  orthogonal matrix. Then, using the definition  $\overline{Q}^{r_0} = \widehat{H}_i^- Q^{r_0}$  and (22), it follows for each *i* that

$$\begin{split} \frac{1}{\sqrt{T}} \left\| \widehat{\boldsymbol{K}}_{i} \widehat{\boldsymbol{Q}}_{i}^{r_{0}} - \boldsymbol{K}_{i} \widehat{\boldsymbol{H}}_{i} \bar{\boldsymbol{Q}}_{i}^{r_{0}} \boldsymbol{D} \right\| &= \frac{1}{\sqrt{T}} \left\| \widehat{\boldsymbol{K}}_{i} \widehat{\boldsymbol{Q}}_{i}^{r_{0}} - \boldsymbol{G} \boldsymbol{B} \boldsymbol{D} \right\| \\ &\leq \frac{1}{\sqrt{T}} \left\| \widehat{\boldsymbol{K}}_{i} \widehat{\boldsymbol{Q}}_{i}^{r_{0}} - \boldsymbol{K}_{i} \widehat{\boldsymbol{H}}_{i} \widehat{\boldsymbol{Q}}_{i}^{r_{0}} + \boldsymbol{K}_{i} \widehat{\boldsymbol{H}}_{i} \widehat{\boldsymbol{Q}}_{i}^{r_{0}} - \boldsymbol{K}_{i} \widehat{\boldsymbol{H}}_{i} \bar{\boldsymbol{Q}}_{i}^{r_{0}} \boldsymbol{D} \right\| \\ &\leq \frac{1}{\sqrt{T}} \left\| \widehat{\boldsymbol{K}}_{i} - \boldsymbol{K}_{i} \widehat{\boldsymbol{H}}_{i} \right\| \left\| \widehat{\boldsymbol{Q}}_{i}^{r_{0}} \right\| + \frac{1}{\sqrt{T}} \left\| \boldsymbol{K}_{i} \widehat{\boldsymbol{H}}_{i} \right\| \left\| \widehat{\boldsymbol{Q}}_{i}^{r_{0}} - \bar{\boldsymbol{Q}}_{i}^{r_{0}} \boldsymbol{D} \right\| = O_{p} \left( \frac{1}{C_{\underline{N}T}} \right) \end{split}$$

where the inequalities hold due to the Cauchy-Schwarz inequality, and the last equality follows from Lemma 1 and the fact that  $\left\|\widehat{Q}_{i}^{r_{0}}\right\| = O_{p}(1)$  and  $\left\|\widehat{H}_{i}\right\| = O_{p}(1)$ . Using this convergence rate, we obtain:

$$\left\|\frac{\widehat{\boldsymbol{\Psi}}\widehat{\boldsymbol{\Psi}'}}{T} - \frac{\boldsymbol{\Psi}\boldsymbol{\Psi}'}{T}\right\| = \left\|\frac{1}{T}\sum_{i=1}^{R}\widehat{\boldsymbol{K}}_{i}\widehat{\boldsymbol{Q}}_{i}^{r_{0}}\widehat{\boldsymbol{Q}}_{i}^{r_{0}'}\widehat{\boldsymbol{K}}_{i}' - \frac{R}{T}\boldsymbol{G}\boldsymbol{B}\boldsymbol{D}\boldsymbol{D}'\boldsymbol{B}'\boldsymbol{G}'\right\|$$
$$\leq \sum_{i=1}^{R}\left\|\frac{1}{T}\widehat{\boldsymbol{K}}_{i}\widehat{\boldsymbol{Q}}_{i}^{r_{0}}\widehat{\boldsymbol{Q}}_{i}^{r_{0}'}\widehat{\boldsymbol{K}}_{i}' - \frac{1}{T}\boldsymbol{G}\boldsymbol{G}'\right\| = O_{p}\left(\frac{1}{C_{\underline{N}T}}\right)$$

where the inequality follows from the Cauchy-Schwarz inequality. Applying Lemma 3 to the above equation, we obtain

$$\left\|\widehat{\boldsymbol{L}}^{r_0} - \boldsymbol{L}^{r_0}\boldsymbol{U}\right\| = O_p\left(\frac{1}{C_{\underline{N}T}}\right)$$
(24)

where U is an  $r_0 \times r_0$  orthogonal matrix<sup>15</sup>. Finally, by definition of  $\hat{G}$  and Proposition 2, we conclude that

$$\frac{1}{\sqrt{T}} \left\| \widehat{\boldsymbol{G}} - \boldsymbol{G} \mathbb{H} \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$
(25)

<sup>&</sup>lt;sup>15</sup>If the  $r_0$  largest eigenvalues of  $\mathbf{GG'}/T$  are distinct, each column of  $\hat{\mathbf{L}}^{r_0}$  converges to its population counterpart in  $\mathbf{L}^{r_0}$  up to sign. In such a case,  $\mathbf{U}$  is an  $r_0 \times r_0$  diagonal matrix whose diagonal elements are either 1 or -1.

where  $\mathbb{H} = T^{-1/2} \boldsymbol{G}' \boldsymbol{L}^{r_0} \boldsymbol{\Xi}^{r_0,-1} \boldsymbol{U}$  is a rotation matrix.

For the global factor loadings in block i, we have:

$$\widehat{\boldsymbol{\Gamma}}_{i}^{\prime} = \frac{1}{T}\widehat{\boldsymbol{G}}^{\prime}\boldsymbol{Y}_{i} = \frac{1}{T}\widehat{\boldsymbol{G}}^{\prime}\left(\boldsymbol{G}\boldsymbol{\Gamma}_{i}^{\prime} + \boldsymbol{F}_{i}\boldsymbol{\Lambda}_{i}^{\prime} + \boldsymbol{e}_{i}\right) = \frac{1}{T}\widehat{\boldsymbol{G}}^{\prime}\left[\left(\boldsymbol{G} - \widehat{\boldsymbol{G}}\mathbb{H}^{-1} + \widehat{\boldsymbol{G}}\mathbb{H}^{-1}\right)\boldsymbol{\Gamma}_{i}^{\prime} + \boldsymbol{F}_{i}\boldsymbol{\Lambda}_{i}^{\prime} + \boldsymbol{e}_{i}\right]$$

Multiplying both sides of the above equation by  $1/\sqrt{N_i}$  and rearranging the results, we have:

$$\frac{1}{\sqrt{N_i}} \left( \widehat{\Gamma}'_i - \mathbb{H}^{-1} \Gamma'_i \right) = \frac{1}{T\sqrt{N_i}} \widehat{G}' \left( G - \widehat{G} \mathbb{H}^{-1} \right) \Gamma'_i + \frac{1}{T\sqrt{N_i}} \widehat{G}' F_i \Lambda'_i + \frac{1}{T\sqrt{N_i}} \widehat{G}' e_i$$
(26)

The first term of RHS is bounded by  $O_p(C_{\underline{NT}}^{-1})$  due to (25). The second term is bounded as

$$\begin{aligned} \left\| \frac{1}{T\sqrt{N_i}} \widehat{\mathbf{G}}' \mathbf{F}_i \mathbf{\Lambda}'_i \right\| &= \left\| \frac{1}{T\sqrt{N_i}} \left( \widehat{\mathbf{G}}' - \mathbf{G} \mathbb{H} + \mathbf{G} \mathbb{H} \right)' \mathbf{F}_i \mathbf{\Lambda}'_i \right\| \\ &\leq \left\| \frac{1}{T\sqrt{N_i}} \left( \widehat{\mathbf{G}}' - \mathbf{G} \mathbb{H} \right)' \mathbf{F}_i \mathbf{\Lambda}'_i \right\| + \left\| \frac{1}{T\sqrt{N_i}} \mathbb{H}' \mathbf{G}' \mathbf{F}_i \mathbf{\Lambda}'_i \right\| \\ &= O_p \left( \frac{1}{C_{\underline{N}T}} \right) + O_p \left( \frac{1}{\sqrt{T}} \right) = O_p \left( \frac{1}{C_{\underline{N}T}} \right) \tag{27}$$

where the inequality follows from the Cauchy-Schwarz inequality and the second to last equalities use Lemma 1 and Assumption D. The last term of (27) is bounded by  $O_p\left(C_{\underline{NT}}^{-1}\right)$  due to Lemma 4.2. Then,

$$\frac{1}{\sqrt{N_i}} \left\| \widehat{\mathbf{\Gamma}}'_i - \mathbb{H}^{-1} \mathbf{\Gamma}'_i \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$
*Q.E.D*

**Lemma 5.** Under Assumptions A-C, as  $N_1, N_2, \ldots, N_R, T \longrightarrow \infty$ , we have for each  $i = 1, \ldots, R$ : 1.

$$\left\|\frac{1}{\sqrt{N_i T}}\mathbf{\Gamma}'_i \boldsymbol{e}'_i\right\| = O_p(1)$$

2.

3.

$$\left\|\frac{1}{\sqrt{N_i T}} \mathbf{\Lambda}'_i \mathbf{e}'_i\right\| = O_p(1)$$
$$\left\|\frac{1}{N_i \sqrt{T}} \left(\widehat{\mathbf{\Gamma}}'_i - \mathbb{H}^{-1} \mathbf{\Gamma}'_i\right) \mathbf{e}'_i\right\| = O_p\left(\frac{1}{C_{\underline{N}T} \sqrt{N_i}}\right) + O_p\left(\frac{1}{\sqrt{N_i}}\right) + O_p\left(\frac{1}{\sqrt{T}}\right)$$

Proof

1.

$$\left\|\frac{1}{\sqrt{N_iT}}\mathbf{\Gamma}'_i \mathbf{e}'_i\right\| = \frac{1}{\sqrt{N_iT}} \left( tr\left\{\sum_{j=1}^{N_i} \mathbf{e}_{ij}\gamma'_{ij}\sum_{k=1}^{N_i}\gamma_{ik}\mathbf{e}'_{ik}\right\} \right)^{\frac{1}{2}} = \left(\frac{1}{N_iT}\sum_{j=1}^{N_i}\sum_{k=1}^{N_i}\gamma'_{ij}\gamma_{ik}\sum_{t=1}^{T} e_{ikt}e_{ijt}\right)^{\frac{1}{2}}$$

Taking expectations of the term inside the bracket, by Assumption A.3 and C.1, we have:

$$E\left(\frac{1}{N_i T} \sum_{j=1}^{N_i} \sum_{k=1}^{N_i} \gamma'_{ij} \gamma_{ik} \sum_{t=1}^{T} e_{ikt} e_{ijt}\right) \le \frac{1}{N_i T} \sum_{j=1}^{N_i} \sum_{k=1}^{N_i} \gamma'_{ij} \gamma_{ik} \sum_{t=1}^{T} \tau_{i,(jk)} = O(1)$$

- 2. The proof is similar to part 1 and therefore omitted.
- 3. From (26) we have:

$$\frac{1}{N_i\sqrt{T}}\left(\widehat{\boldsymbol{\Gamma}}_i' - \mathbb{H}^{-1}\boldsymbol{\Gamma}_i'\right)\boldsymbol{e}_i' = \frac{1}{N_iT\sqrt{T}}\widehat{\boldsymbol{G}}'\left(\boldsymbol{G} - \widehat{\boldsymbol{G}}\mathbb{H}^{-1}\right)\boldsymbol{\Gamma}_i'\boldsymbol{e}_i' + \frac{1}{N_iT\sqrt{T}}\widehat{\boldsymbol{G}}'\boldsymbol{F}_i\boldsymbol{\Lambda}_i'\boldsymbol{e}_i' + \frac{1}{N_iT\sqrt{T}}\widehat{\boldsymbol{G}}'\boldsymbol{e}_i\boldsymbol{e}_i'$$

The first term is bounded by  $O_p\left(C_{\underline{NT}}^{-1}N_i^{-1/2}\right)$  by Theorem 1 and Lemma 5.1. The second term is bounded by  $O_p\left(C_{\underline{NT}}^{-1}N_i^{-1/2}\right)$  due to (27) and Lemma 5.2. Using (19), the third term can be written as

$$\frac{1}{N_i T \sqrt{T}} \widehat{\boldsymbol{G}}' \boldsymbol{e}_i \boldsymbol{e}_i' = \frac{1}{N_i T} \widehat{\boldsymbol{L}}^{r_0 \prime} \boldsymbol{e}_i \boldsymbol{e}_i' = \frac{1}{N_i T} \widehat{\boldsymbol{J}}^{r_0 \prime} \frac{1}{T} \left( \sum_{m=1}^R \widehat{\boldsymbol{K}}_m \widehat{\boldsymbol{Q}}_m^{r_0} \widehat{\boldsymbol{Q}}_m^{r_0 \prime} \widehat{\boldsymbol{K}}_m' \right) \boldsymbol{e}_i \boldsymbol{e}_i'$$

Following the proof of Theorem 1 in Bai and Ng (2002), we have for each m:

$$\frac{1}{N_i T \sqrt{T}} \left\| \widehat{\mathbf{K}}'_m \mathbf{e}_i \mathbf{e}'_i \right\| = O_p \left( \frac{1}{\sqrt{N_i}} \right) + O_p \left( \frac{1}{\sqrt{T}} \right)$$

Therefore, it follows that

$$\frac{1}{N_i T \sqrt{T}} \left\| \widehat{\boldsymbol{G}}' \boldsymbol{e}_i \boldsymbol{e}_i' \right\| = O_p \left( \frac{1}{\sqrt{N_i}} \right) + O_p \left( \frac{1}{\sqrt{T}} \right)$$

The proof completes by combining the above results.

## Proof of Theorem 2

By construction, we have the following relation for each i:

$$\widehat{F}_{i}\widehat{\Upsilon}_{i} = \frac{1}{N_{i}T}\left(Y_{i} - \widehat{G}\widehat{\Gamma}_{i}^{\prime}\right)\left(Y_{i} - \widehat{G}\widehat{\Gamma}_{i}^{\prime}\right)^{\prime}\widehat{F}_{i}$$

Replacing  $Y_i$  with  $Y_i = G\Gamma'_i + F_i\Lambda'_i + e_i$ , we obtain:

$$\widehat{F}_{i}\widehat{\Upsilon}_{i} = \frac{1}{N_{i}T}\left(\widehat{S}_{i} + F_{i}\Lambda'_{i} + e_{i}\right)\left(\widehat{S}_{i} + F_{i}\Lambda'_{i} + e_{i}\right)'\widehat{F}_{i}$$

where  $\widehat{S}_i = G\Gamma'_i - \widehat{G}\widehat{\Gamma}'_i$ . Multiplying both sides by  $\left(F'_i\widehat{F}_i/T\right)^{-1}\left(\Gamma'_i\Gamma_i/N_i\right)^{-1}$  and rearranging terms:

$$\begin{aligned} \frac{1}{\sqrt{T}} \left( \widehat{F}_i \widehat{\mathscr{H}}_i^{-1} - F_i \right) &= \frac{1}{\sqrt{T}} \frac{1}{N_i T} \left( F_i \Lambda'_i e_i + e_i \Lambda_i F'_i + e_i e'_i \right) \widehat{F}_i \left( \frac{F'_i \widehat{F}_i}{T} \right)^{-1} \left( \frac{\Lambda'_i \Lambda_i}{N_i} \right)^{-1} \\ &+ \frac{1}{\sqrt{T}} \frac{1}{N_i T} \left( \widehat{S}_i \widehat{S}'_i + \widehat{S}_i \Lambda_i F'_i + \widehat{S}_i e'_i + F'_i \Lambda' \widehat{S}'_i + e_i \widehat{S}'_i \right) \widehat{F}_i \left( \frac{F'_i \widehat{F}_i}{T} \right)^{-1} \left( \frac{\Lambda'_i \Lambda_i}{N_i} \right)^{-1} \end{aligned}$$

The stochastic bound of the first term is  $O_p(C_{\underline{NT}}^{-1})$  by Theorem 1 of Bai and Ng (2002) and the fact that  $\left(\mathbf{F}'_i \widehat{\mathbf{F}}_i/T\right)$  and  $\left(\mathbf{\Gamma}'_i \mathbf{\Gamma}_i/N_i\right)$  are bounded and invertible (see Proposition 1 of Bai (2003)).

Q.E.D

Next, we study the terms in the the second line of the above equation. Using the relation that

$$\widehat{\boldsymbol{S}}_{i} = \boldsymbol{G}\boldsymbol{\Gamma}_{i}^{\prime} - \widehat{\boldsymbol{G}}\widehat{\boldsymbol{\Gamma}}_{i}^{\prime} = \boldsymbol{G}\boldsymbol{\Gamma}_{i}^{\prime} - \left(\widehat{\boldsymbol{G}} - \boldsymbol{G}\mathbb{H} + \boldsymbol{G}\mathbb{H}\right)\left(\widehat{\boldsymbol{\Gamma}}_{i}^{\prime} - \mathbb{H}^{-1}\boldsymbol{\Gamma}_{i}^{\prime} + \mathbb{H}^{-1}\boldsymbol{\Gamma}_{i}^{\prime}\right) \\ = -\left(\widehat{\boldsymbol{G}} - \boldsymbol{G}\mathbb{H}\right)\left(\widehat{\boldsymbol{\Gamma}}_{i}^{\prime} - \mathbb{H}^{-1}\boldsymbol{\Gamma}_{i}^{\prime}\right) - \left(\widehat{\boldsymbol{G}} - \boldsymbol{G}\mathbb{H}\right)\mathbb{H}^{-1}\boldsymbol{\Gamma}_{i}^{\prime} - \boldsymbol{G}\mathbb{H}\left(\widehat{\boldsymbol{\Gamma}}_{i}^{\prime} - \mathbb{H}^{-1}\boldsymbol{\Gamma}_{i}^{\prime}\right), \quad (28)$$

we obtain:

$$\frac{1}{\sqrt{T}} \frac{1}{N_i T} \widehat{\boldsymbol{S}}_i \widehat{\boldsymbol{S}}'_i \widehat{\boldsymbol{F}}_i = -\frac{1}{\sqrt{T}} \frac{1}{N_i T} \left( \widehat{\boldsymbol{G}} - \boldsymbol{G} \mathbb{H} \right) \left( \widehat{\boldsymbol{\Gamma}}'_i - \mathbb{H}^{-1} \boldsymbol{\Gamma}'_i \right) \widehat{\boldsymbol{F}}_i \\ - \frac{1}{\sqrt{T}} \frac{1}{N_i T} \left( \widehat{\boldsymbol{G}} - \boldsymbol{G} \mathbb{H} \right) \mathbb{H}^{-1} \boldsymbol{\Gamma}'_i \widehat{\boldsymbol{F}}_i - \frac{1}{\sqrt{T}} \frac{1}{N_i T} \boldsymbol{G} \mathbb{H} \left( \widehat{\boldsymbol{\Gamma}}'_i - \mathbb{H}^{-1} \boldsymbol{\Gamma}'_i \right) \widehat{\boldsymbol{F}}_i$$

By Theorem 1, it follows that

$$\left\|\frac{1}{\sqrt{T}}\frac{1}{N_iT}\widehat{\boldsymbol{S}}_i\widehat{\boldsymbol{S}}'_i\widehat{\boldsymbol{F}}_i\right\| = O_p\left(\frac{1}{C_{\underline{N}T}^2\sqrt{N_iT}}\right) + O_p\left(\frac{1}{C_{\underline{N}T}\sqrt{N_iT}}\right) + O_p\left(\frac{1}{C_{\underline{N}T}\sqrt{N_iT}}\right) = O_p\left(\frac{1}{C_{\underline{N}T}\sqrt{N_iT}}\right)$$

Using (28), it follows that

$$\frac{1}{\sqrt{T}} \frac{1}{N_i T} \widehat{\boldsymbol{S}}_i \boldsymbol{\Lambda}_i \boldsymbol{F}'_i \widehat{\boldsymbol{F}}_i = -\frac{1}{\sqrt{T}} \frac{1}{N_i T} \left( \widehat{\boldsymbol{G}} - \boldsymbol{G} \mathbb{H} \right) \left( \widehat{\boldsymbol{\Gamma}}'_i - \mathbb{H}^{-1} \boldsymbol{\Gamma}'_i \right) \boldsymbol{\Lambda}_i \boldsymbol{F}'_i \widehat{\boldsymbol{F}}_i 
- \frac{1}{\sqrt{T}} \frac{1}{N_i T} \left( \widehat{\boldsymbol{G}} - \boldsymbol{G} \mathbb{H} \right) \mathbb{H}^{-1} \boldsymbol{\Gamma}'_i \boldsymbol{\Lambda}_i \boldsymbol{F}'_i \widehat{\boldsymbol{F}}_i - \frac{1}{\sqrt{T}} \frac{1}{N_i T} \boldsymbol{G} \mathbb{H} \left( \widehat{\boldsymbol{\Gamma}}'_i - \mathbb{H}^{-1} \boldsymbol{\Gamma}'_i \right) \boldsymbol{\Lambda}_i \boldsymbol{F}'_i \widehat{\boldsymbol{F}}_i$$

Therefore, by Theorem 1,

$$\left\|\frac{1}{\sqrt{T}}\frac{1}{N_i T}\widehat{\boldsymbol{S}}_i \boldsymbol{\Lambda}_i \boldsymbol{F}'_i \widehat{\boldsymbol{F}}_i\right\| = O_p\left(\frac{1}{C_{\underline{N}T}^2}\right) + O_p\left(\frac{1}{C_{\underline{N}T}}\right) + O_p\left(\frac{1}{C_{\underline{N}T}}\right) = O_p\left(\frac{1}{C_{\underline{N}T}}\right)$$

From (28) we obtain:

$$\frac{1}{\sqrt{T}} \frac{1}{N_i T} \widehat{\boldsymbol{S}}_i \boldsymbol{e}'_i \widehat{\boldsymbol{F}}_i = -\frac{1}{\sqrt{T}} \frac{1}{N_i T} \left( \widehat{\boldsymbol{G}} - \boldsymbol{G} \mathbb{H} \right) \left( \widehat{\boldsymbol{\Gamma}}'_i - \mathbb{H}^{-1} \boldsymbol{\Gamma}'_i \right) \boldsymbol{e}'_i \widehat{\boldsymbol{F}}_i \\ - \frac{1}{\sqrt{T}} \frac{1}{N_i T} \left( \widehat{\boldsymbol{G}} - \boldsymbol{G} \mathbb{H} \right) \mathbb{H}^{-1} \boldsymbol{\Gamma}'_i \boldsymbol{e}'_i \widehat{\boldsymbol{F}}_i - \frac{1}{\sqrt{T}} \frac{1}{N_i T} \boldsymbol{G} \mathbb{H} \left( \widehat{\boldsymbol{\Gamma}}'_i - \mathbb{H}^{-1} \boldsymbol{\Gamma}'_i \right) \boldsymbol{e}'_i \widehat{\boldsymbol{F}}_i$$

The first term is bounded by  $O_p\left(C_{\underline{N}T}^{-1}\right)\left[O_p\left(N_i^{-1/2}\right) + O_p\left(T^{-1/2}\right)\right]$  due to Theorem 1 and Lemma 5.3. The second term is bounded by  $N_i^{-1/2}O_p\left(C_{\underline{N}T}^{-1}\right)$  due to Theorem 1 and Lemma 5.1. The last term is bounded by  $O_p\left(N_i^{-1/2}\right) + O_p\left(T^{-1/2}\right)$ . Consequently, we have:

$$\frac{1}{\sqrt{T}}\frac{1}{N_i T} \left\| \widehat{\boldsymbol{S}}_i \boldsymbol{e}'_i \widehat{\boldsymbol{F}}_i \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$

It is straightforward to show that  $\frac{1}{\sqrt{T}} \frac{1}{N_i T} \left\| \boldsymbol{e}_i \hat{\boldsymbol{S}}'_i \hat{\boldsymbol{F}}_i \right\|$  has the same stochastic order. Using (28):

$$\frac{1}{\sqrt{T}} \frac{1}{N_i T} \mathbf{F}'_i \mathbf{\Lambda}'_i \widehat{\mathbf{S}}'_i \widehat{\mathbf{F}}_i = -\frac{1}{\sqrt{T}} \frac{1}{N_i T} \mathbf{F}'_i \mathbf{\Lambda}'_i \left(\widehat{\mathbf{\Gamma}}'_i - \mathbb{H}^{-1} \mathbf{\Gamma}'_i\right)' \left(\widehat{\mathbf{G}} - \mathbf{G} \mathbb{H}\right)' \widehat{\mathbf{F}}_i \\ - \frac{1}{\sqrt{T}} \frac{1}{N_i T} \mathbf{F}'_i \mathbf{\Lambda}'_i \mathbf{\Gamma}_i \left(\mathbb{H}^{-1}\right)' \left(\widehat{\mathbf{G}} - \mathbf{G} \mathbb{H}\right)' \widehat{\mathbf{F}}_i - \frac{1}{\sqrt{T}} \frac{1}{N_i T} \mathbf{F}'_i \mathbf{\Lambda}'_i \left(\widehat{\mathbf{\Gamma}}'_i - \mathbb{H}^{-1} \mathbf{\Gamma}'_i\right)' \mathbb{H}' \mathbf{G}' \widehat{\mathbf{F}}_i$$

Using Theorem 1, we obtain:

$$\frac{1}{\sqrt{T}}\frac{1}{N_iT}\left\|\boldsymbol{F}_i'\boldsymbol{\Lambda}_i'\boldsymbol{\widehat{S}}_i'\boldsymbol{\widehat{F}}_i\right\| = O_p\left(\frac{1}{C_{\underline{N}T}^2}\right) + O_p\left(\frac{1}{C_{\underline{N}T}}\right) + O_p\left(\frac{1}{C_{\underline{N}T}}\right) = O_p\left(\frac{1}{C_{\underline{N}T}}\right)$$

Combining all the results, we conclude that

$$\frac{1}{\sqrt{T}} \left\| \widehat{F}_i - F_i \widehat{\mathscr{H}}_i \right\| = O_p \left( \frac{1}{C_{\underline{N}T}} \right).$$
<sup>(29)</sup>

Next, for each i, the estimated factor loadings are:

$$\widehat{\mathbf{\Lambda}}_{i}^{\prime}=rac{1}{T}\widehat{m{F}}_{i}^{\prime}\left(m{Y}_{i}-\widehat{m{G}}\widehat{m{\Gamma}}^{\prime}
ight)$$

Plugging  $\mathbf{Y}_i = \mathbf{G}\mathbf{\Gamma}'_i + \mathbf{F}_i\mathbf{\Lambda}'_i + \mathbf{e}_i, \ \mathbf{F}_i = \mathbf{F}_i - \widehat{\mathbf{F}}_i\widehat{\mathscr{H}}_i^{-1} + \widehat{\mathbf{F}}_i\widehat{\mathscr{H}}_i^{-1}$  and (28) into the above equation, we obtain:

$$\begin{aligned} \frac{1}{\sqrt{N_i}} \left( \widehat{\mathbf{\Lambda}}'_i - \widehat{\mathscr{H}}_i^{-1} \mathbf{\Lambda}'_i \right) &= -\frac{1}{T\sqrt{N_i}} \widehat{F}'_i \left( \widehat{G} - \mathbf{G} \mathbb{H} \right) \left( \widehat{\mathbf{\Gamma}}'_i - \mathbb{H}^{-1} \mathbf{\Gamma}'_i \right) - \frac{1}{T\sqrt{N_i}} \widehat{F}'_i \left( \widehat{G} - \mathbf{G} \mathbb{H} \right) \mathbb{H}^{-1} \mathbf{\Gamma}'_i \\ &- \frac{1}{T\sqrt{N_i}} \widehat{F}'_i \mathbf{G} \mathbb{H} \left( \widehat{\mathbf{\Gamma}}'_i - \mathbb{H}^{-1} \mathbf{\Gamma}'_i \right) + \frac{1}{T\sqrt{N_i}} \widehat{F}'_i \left( \mathbf{F}_i - \widehat{F}_i \widehat{\mathscr{H}}_i^{-1} \right) \mathbf{\Lambda}'_i + \frac{1}{T\sqrt{N_i}} \widehat{F}'_i \mathbf{e}_i \end{aligned}$$

The first three terms are bounded by  $O_p\left(C_{\underline{N}T}^{-2}\right)$ ,  $O_p\left(C_{\underline{N}T}^{-1}\right)$  and  $O_p\left(C_{\underline{N}T}^{-1}\right)$  by Theorem 1. The fourth term is bounded by  $O_p\left(C_{\underline{N}T}^{-1}\right)$  from (29). The last term can be written as

$$\frac{1}{T\sqrt{N_i}}\widehat{F}'_i \boldsymbol{e}_i = \frac{1}{T\sqrt{N_i}}\left(\widehat{F}_i - F_i\widehat{\mathscr{H}}_i\right)' \boldsymbol{e}_i + \frac{1}{T\sqrt{N_i}}\widehat{\mathscr{H}}'_i F'_i \boldsymbol{e}_i$$

The first term is bounded by  $O_p\left(C_{\underline{N}T}^{-2}\right)$  that follows from Lemma B1 of Bai (2003) with a slight modification. The second term is bounded by  $O_p\left(T^{-1/2}\right)$  using the fact that  $(N_iT)^{-1/2} \|\mathbf{F}_i\mathbf{e}_i\| = O_p(1)$  under Assumption B.2. Collecting all the terms, we conclude that

$$\frac{1}{\sqrt{N_i}} \left( \widehat{\mathbf{\Lambda}}'_i - \widehat{\mathscr{H}}_i^{-1} \mathbf{\Lambda}'_i \right) = O_p \left( \frac{1}{C_{\underline{N}T}} \right)$$
*Q.E.D*

Proof of Theorem 3

By Lemmas 1 and 2 and using the continuity of the singular values, we have:

$$\hat{\delta}_k = \begin{cases} \sqrt{T}O_p(C_{\underline{NT}}^{-1}) & \text{for } k = 1, \dots, r_0\\ O_p\left(\sqrt{T}\right) & \text{for } k = r_0 + 1, \dots, Rr_{\max}\\ C_{\underline{NT}}^{-1}O_p\left(\sqrt{T}\right) & \text{for } k = 0 \end{cases}$$

If  $r_0 > 0$ , we have:

$$\lim_{N_1,\dots,N_R,T\to\infty} \frac{\hat{\delta}_{k+1}}{\hat{\delta}_k} = \begin{cases} O_p(C_{NT}) & \text{for } k = r_0 \\ O_p(1) & \text{for } k = r_0 + 1,\dots,Rr_{\max} \\ O_p(1) & \text{for } k = 0,1,\dots,r_0 - 1 \end{cases}$$

On the other hand, if  $r_0 = 0$ , we have:

$$\lim_{N_1,\dots,N_R,T\to\infty}\frac{\hat{\delta}_{k+1}}{\hat{\delta}_k} = \begin{cases} O_p(1) & \text{for } k = 1,\dots,Rr_{\max}\\ O_p(C_{\underline{N}T}) & \text{for } k = 0 \end{cases}$$

As  $C_{\underline{NT}} \to \infty$ , the ratio  $\hat{\delta}_{k+1}/\hat{\delta}_k$  attains maximum at  $k = r_0$ . Thus, the desired results follows.

Q.E.D

**Lemma 6.** Let  $C_{N_i,T} = \min\{\sqrt{N_i}, \sqrt{T}\}$ . Under Assumptions A-C and F-G, we have:

1. For each i and t, as  $N_i, T \to \infty$ , we have:

$$\widehat{\boldsymbol{K}}_{it} - \widehat{\boldsymbol{H}}_{i}^{\prime} \boldsymbol{K}_{it} = \widehat{\boldsymbol{V}}_{i}^{-1} \left( \frac{1}{T} \sum_{s=1}^{T} \widehat{\boldsymbol{K}}_{is} \omega_{i}(s,t) + \frac{1}{T} \sum_{s=1}^{T} \widehat{\boldsymbol{K}}_{is} \zeta_{i,st} + \frac{1}{T} \sum_{s=1}^{T} \widehat{\boldsymbol{K}}_{is} \eta_{i,st} + \frac{1}{T} \sum_{s=1}^{T} \widehat{\boldsymbol{K}}_{is} \mu_{i,st} \right)$$

where  $\widehat{H}_{i} = (\Theta'_{i}\Theta_{i}/N_{i}) \left(K'_{i}\widehat{K}_{i}/T\right) \widehat{V}_{i}^{-1}$  is an  $(r_{0}+r_{i}) \times (r_{0}+r_{i})$  matrix with  $\widehat{V}_{i}$  being the diagonal matrix consisting of the first  $r_{0} + r_{i}$  eigenvalues of  $(N_{i}T)^{-1}Y_{i}Y'_{i}$  in descending order. In addition,

$$\begin{array}{l} (a) \ T^{-1} \sum_{s=1}^{T} \widehat{\mathbf{K}}_{is} \omega_{i}(s,t) = O_{p} \left( T^{-1/2} C_{N_{i}T}^{-1} \right) \ where \ \omega_{i}(s,t) = E \left( N_{i}^{-1} \sum_{j=1}^{N_{i}} e_{ijs} e_{ijt} \right); \\ (b) \ T^{-1} \sum_{s=1}^{T} \widehat{\mathbf{K}}_{is} \zeta_{i,st} = O_{p} \left( N_{i}^{-1/2} C_{N_{i}T}^{-1} \right) \ where \ \zeta_{i,st} = N_{i}^{-1} e_{i,s}' e_{i,t} - \omega_{i}(s,t); \\ (c) \ T^{-1} \sum_{s=1}^{T} \widehat{\mathbf{K}}_{is} \eta_{i,st} = O_{p} \left( N_{i}^{-1/2} \right) \ where \ \eta_{i,st} = N_{i}^{-1} \mathbf{K}_{is}' \Theta_{i}' e_{i,t}; \\ (d) \ T^{-1} \sum_{s=1}^{T} \widehat{\mathbf{K}}_{is} \mu_{i,st} = O_{p} \left( N_{i}^{-1/2} C_{N_{i}T}^{-1} \right) \ where \ \mu_{i,st} = N_{i}^{-1} \mathbf{K}_{it}' \Theta_{i}' e_{i,s} \end{array}$$

2. Let  $\widehat{\mathcal{R}}_i = T^{-1/2} \left( \mathbf{K}_i - \widehat{\mathbf{K}}_i \widehat{\mathbf{H}}_i \right)$ . For each *i*, as  $N_i, T \to \infty$ , we have:

$$\left\|\widehat{\mathcal{R}}_{i}\right\| = O_{p}\left(\frac{1}{\sqrt{T}C_{N_{i}T}}\right) + O_{p}\left(\frac{1}{\sqrt{N_{i}}}\right)$$

3. As  $N_m, T \to \infty$ , for each m and h, we have:  $T^{-1/2} \widehat{\mathcal{R}}'_m \mathbf{K}_h = O_p \left( C_{N_m T}^{-2} \right)$ . 4. As  $N_m, N_h, T \to \infty$ , for each m and h, we have:  $T^{-1/2} \widehat{\mathcal{R}}'_m \widehat{\mathbf{K}}_h = O_p \left( C_{N_m T}^{-2} \right)$ . 5. As  $N_m, T \to \infty$ , for each m, h and j, we have:  $T^{-1/2} \widehat{\mathcal{R}}'_m e_{hj} = O_p \left( C_{N_m T}^{-2} \right)$ .

## $\mathbf{Proof}$

1. For each *i*, by the definition of *PC*, we have  $\widehat{K}_i \widehat{V}_i = (N_i T)^{-1} Y'_i \widehat{K}_i$ . By plugging (6) into this equation, we obtain:

$$\widehat{\boldsymbol{K}}_{i} - \boldsymbol{K}_{i}\widehat{\boldsymbol{H}}_{i} = \left(\frac{1}{N_{i}T}\boldsymbol{e}_{i}\boldsymbol{\Theta}_{i}\boldsymbol{K}_{i}'\widehat{\boldsymbol{K}}_{i} + \frac{1}{N_{i}T}\boldsymbol{K}_{i}\boldsymbol{\Theta}_{i}'\boldsymbol{e}_{i}'\widehat{\boldsymbol{K}}_{i} + \frac{1}{N_{i}T}\boldsymbol{e}_{i}\boldsymbol{e}_{i}'\widehat{\boldsymbol{K}}_{i}\right)\widehat{\boldsymbol{V}}_{i}^{-1}$$
(30)

Let  $\widehat{K}_{it} - \widehat{H}_i K_{it}$  be the *t*-th row vector of  $\widehat{K}_i - K_i \widehat{H}_i$ . Then, the proof follows directly from Lemma A.2 in Bai (2003).

2. For each i, we have:

$$\left\|\frac{1}{\sqrt{T}}\left(\widehat{K}_{i}-K_{i}\widehat{H}_{i}\right)\right\|^{2} = tr\left\{\frac{1}{T}\left(\widehat{K}_{i}-K_{i}\widehat{H}_{i}\right)'\left(\widehat{K}_{i}-K_{i}\widehat{H}_{i}\right)\right\} = tr\left\{\frac{1}{T}\sum_{t=1}^{T}\left(\widehat{K}_{it}-\widehat{H}_{i}'K_{it}\right)\left(\widehat{K}_{it}-\widehat{H}_{i}'K_{it}\right)'\right\} = \frac{1}{T}\sum_{t=1}^{T}\left\|\widehat{K}_{it}-\widehat{H}_{i}'K_{it}\right\|^{2}$$

Combining the terms of (a)-(d) in Lemma 6.1, the results follows immediately. 3. Consider the term,

$$\frac{1}{\sqrt{T}}\widehat{\mathcal{R}}'_{m}\boldsymbol{K}_{h} = \widehat{\boldsymbol{V}}_{m}^{-1} \left( \frac{1}{T^{2}} \sum_{t=1}^{T} \sum_{s=1}^{T} \widehat{\boldsymbol{K}}_{ms} \omega_{m}(s,t) \boldsymbol{K}'_{ht} + \frac{1}{T^{2}} \sum_{t=1}^{T} \sum_{s=1}^{T} \widehat{\boldsymbol{K}}_{ms} \zeta_{m,st} \boldsymbol{K}'_{ht} + \frac{1}{T^{2}} \sum_{t=1}^{T} \sum_{s=1}^{T} \widehat{\boldsymbol{K}}_{ms} \eta_{m,st} \boldsymbol{K}'_{ht} + \frac{1}{T^{2}} \sum_{t=1}^{T} \sum_{s=1}^{T} \widehat{\boldsymbol{K}}_{ms} \mu_{m,st} \boldsymbol{K}'_{ht} \right)$$

where  $\|\widehat{V}_m^{-1}\| = O_p(1)$  by Lemma 8. Let  $T^{-1/2}\widehat{\mathcal{R}}'_m K_h = \widehat{V}_m^{-1} (X\mathbf{1} + X\mathbf{2} + X\mathbf{3} + X\mathbf{4})$ . X1 can be written as

$$\frac{1}{T^2} \sum_{t=1}^{T} \sum_{s=1}^{T} \left( \widehat{K}_{ms} - \widehat{H}'_m K_{ms} \right) \omega_m(s,t) K'_{ht} + \widehat{H}'_m \frac{1}{T^2} \sum_{t=1}^{T} \sum_{s=1}^{T} K_{ms} \omega_m(s,t) K'_{ht} = X1.1 + X1.2$$

By the Cauchy-Schwarz inequality, we have:

$$\begin{aligned} \|\boldsymbol{X}\mathbf{1}.\mathbf{1}\| &\leq \frac{1}{\sqrt{T}} \left( \frac{1}{T} \sum_{t=1}^{T} \frac{1}{T} \sum_{s=1}^{T} \left\| \widehat{\boldsymbol{K}}_{ms} - \widehat{\boldsymbol{H}}'_{m} \boldsymbol{K}_{ms} \right\|^{2} \right)^{1/2} \left( \frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{T} |\omega_{m}(s,t)|^{2} \left\| \boldsymbol{K}_{ht} \right\|^{2} \right)^{1/2} \\ &= \left[ O_{p} \left( \frac{1}{\sqrt{N_{m}}} \right) + O_{p} \left( \frac{1}{\sqrt{T}C_{N_{m}T}} \right) \right] \frac{1}{\sqrt{T}} = O_{p} \left( \frac{1}{\sqrt{N_{m}T}} \right) + O_{p} \left( \frac{1}{TC_{N_{m}T}} \right) \end{aligned}$$

where we used Lemma 6.1, Assumption B.1 and the fact that  $T^{-1} \sum_{t=1}^{T} \sum_{s=1}^{T} |\omega_m(s,t)|^2 = O(1)$  (see Bai and Ng (2002) Lemma 1.(i)). The expected value of **X1.2** without  $\widehat{H}'_m$ , is bounded by

$$\frac{1}{T^2} \sum_{t=1}^T \sum_{s=1}^T |\omega_m(s,t)| E\left( \|\boldsymbol{K}_{ms}\|^2 \right)^{1/2} E\left( \|\boldsymbol{K}_{ht}\|^2 \right)^{1/2} \le \mathcal{M} \frac{1}{T} \left( \frac{1}{T} \sum_{t=1}^T \sum_{s=1}^T |\omega_m(s,t)| \right) = O\left(\frac{1}{T}\right)$$

under Assumption B.1 and Assumption A.2. Therefore, we obtain:  $\|\mathbf{X}\mathbf{1}\| = O_p\left(C_{N_mT}^{-2}\right)$ . Next, by the Cauchy-Schwarz inequality,  $\mathbf{X}\mathbf{2}$  is bounded by

$$\|\boldsymbol{X2}\| \le \left(\frac{1}{N_m T^2} \sum_{t=1}^T \left\| \frac{1}{\sqrt{N_m T}} \sum_{s=1}^T \sum_{j=1}^{N_m} \boldsymbol{K}_{ms} \left[ e_{mjs} e_{mjt} - E(e_{mjs} e_{mjt}) \right] \right\|^2 \right)^{1/2} \left( \frac{1}{T} \sum_{t=1}^T \|\boldsymbol{K}_{ht}\|^2 \right)^{1/2} = O_p \left( \frac{1}{\sqrt{N_m T}} \right)^{1/2}$$

under Assumptions G.1 and B.1.

 $\boldsymbol{X3}$  can be expressed as

$$\boldsymbol{X3} = \frac{1}{T^2} \sum_{t=1}^{T} \sum_{s=1}^{T} \left( \widehat{\boldsymbol{K}}_{ms} - \widehat{\boldsymbol{H}}'_{m} \boldsymbol{K}_{ms} \right) \eta_{m,st} \boldsymbol{K}'_{ht} + \widehat{\boldsymbol{H}}'_{m} \frac{1}{T^2} \sum_{t=1}^{T} \sum_{s=1}^{T} \boldsymbol{K}_{ms} \eta_{m,st} \boldsymbol{K}'_{ht} = \boldsymbol{X3.1} + \boldsymbol{X3.2}$$

Applying the Cauchy-Schwarz inequality to **X3.1**, we obtain:

$$\|\boldsymbol{X3.1}\| \leq \left(\frac{1}{T}\sum_{s=1}^{T} \left\|\widehat{\boldsymbol{K}}_{ms} - \widehat{\boldsymbol{H}}'_{m}\boldsymbol{K}_{ms}\right\|^{2}\right)^{1/2} \left(\frac{1}{T}\sum_{s=1}^{T} \left\|\frac{1}{T}\sum_{t=1}^{T}\boldsymbol{K}_{ht}\eta_{m,st}\right\|^{2}\right)^{1/2}$$

The second part can be expressed as

$$\left(\frac{1}{T}\sum_{s=1}^{T}\left\|\frac{1}{T}\sum_{t=1}^{T}\boldsymbol{K}_{ht}\eta_{m,st}\right\|^{2}\right)^{1/2} = \left(\frac{1}{T}\sum_{s=1}^{T}\left\|\frac{1}{N_{m}T}\sum_{t=1}^{T}\boldsymbol{K}_{ht}\boldsymbol{K}_{ms}'\boldsymbol{\theta}_{mj}\boldsymbol{e}_{mjt}\right\|^{2}\right)^{1/2}$$
$$\leq \left(\frac{1}{T}\sum_{s=1}^{T}\left\|\boldsymbol{K}_{ms}\right\|^{2}\left\|\frac{1}{N_{m}T}\sum_{t=1}^{T}\sum_{j=1}^{N_{m}}\boldsymbol{K}_{ht}'\boldsymbol{\theta}_{mj}\boldsymbol{e}_{mjt}\right\|^{2}\right)^{1/2} = O_{p}\left(\frac{1}{\sqrt{N_{m}T}}\right)$$

under Assumptions B.1 and G.2. Hence,  $\|\boldsymbol{X3.1}\| = O_p\left(C_{N_mT}^{-1}\right)O_p\left(N_m^{-1/2}T^{-1/2}\right)$ . For  $\boldsymbol{X3.2}$ , we have:

$$X3.2 = \frac{1}{T} \sum_{s=1}^{T} K_{ms} K'_{ms} \frac{1}{N_m T} \sum_{t=1}^{T} \sum_{j=1}^{N_m} K'_{ht} \theta_{mj} e_{mjt} = O_p \left(\frac{1}{\sqrt{N_m T}}\right)$$

by Assumption G.2. Therefore,  $\|\mathbf{X3}\| = O_p \left( N_m^{-1/2} T^{-1/2} \right)$ . Following similar steps, we obtain:  $\mathbf{X4} = O_p \left( N_m^{-1/2} T^{-1/2} \right)$ . Collecting all these results, we obtain:  $T^{-1/2} \widehat{\mathcal{R}}'_m \mathbf{K}_h = O_p \left( C_{N_m T}^{-2} \right)$ . 4.

$$\frac{1}{\sqrt{T}}\widehat{\mathcal{R}}_{m}\widehat{\mathbf{K}}_{h} = \frac{1}{\sqrt{T}}\widehat{\mathcal{R}}_{m}\left(\widehat{\mathbf{K}}_{h} - \mathbf{K}_{h}\widehat{\mathbf{H}}_{h}\right) + \frac{1}{\sqrt{T}}\widehat{\mathcal{R}}_{m}\mathbf{K}_{h}\widehat{\mathbf{H}}_{h}$$

By Lemmas 6.2 and 6.3, it follows that  $T^{-1/2}\widehat{\mathcal{R}}'_m\widehat{K}_h = O_p\left(C_{N_mT}^{-2}\right)$ .

## 5. Consider

$$\begin{split} \frac{1}{\sqrt{T}}\widehat{\boldsymbol{\mathcal{R}}}_{m}^{\prime}\boldsymbol{e}_{hj} &= \widehat{\boldsymbol{V}}_{m}^{-1}\left(\frac{1}{T^{2}}\sum_{t=1}^{T}\sum_{s=1}^{T}\widehat{\boldsymbol{K}}_{ms}\omega_{m}(s,t)\boldsymbol{e}_{hjt} + \frac{1}{T^{2}}\sum_{t=1}^{T}\sum_{s=1}^{T}\widehat{\boldsymbol{K}}_{ms}\zeta_{m,st}\boldsymbol{e}_{hjt} \\ &+ \frac{1}{T^{2}}\sum_{t=1}^{T}\sum_{s=1}^{T}\widehat{\boldsymbol{K}}_{ms}\eta_{m,st}\boldsymbol{e}_{hjt} + \frac{1}{T^{2}}\sum_{t=1}^{T}\sum_{s=1}^{T}\widehat{\boldsymbol{K}}_{ms}\mu_{m,st}\boldsymbol{e}_{hjt}\right) \end{split}$$

where  $\left\|\widehat{V}_{m}^{-1}\right\| = O_{p}(1)$  by Lemma 8. Let  $T^{-1/2}\widehat{\mathcal{R}}'_{m}e_{hj} = \widehat{V}_{m}^{-1}(\mathcal{X}1 + \mathcal{X}2 + \mathcal{X}3 + \mathcal{X}4)$ . As the first term  $\mathcal{X}1$  is of order  $O_{p}\left(C_{N_{m}T}^{-2}\right)$ , the proof is the same as that of X1 in Lemma 6. The second term is equal to

$$\mathcal{X}2 = \frac{1}{T^2} \sum_{t=1}^{T} \sum_{s=1}^{T} \left( \widehat{\mathbf{K}}_{ms} - \widehat{\mathbf{H}}'_m \mathbf{K}_{ms} \right) \zeta_{m,st} e_{hjt} + \widehat{\mathbf{H}}'_m \frac{1}{T^2} \sum_{t=1}^{T} \sum_{s=1}^{T} \mathbf{K}_{ms} \zeta_{m,st} e_{hjt} = \mathcal{X}2.1 + \mathcal{X}2.2$$

Using the Cauchy-Schwarz inequality, we have:

$$\|\mathcal{X}2.1\| \le \left(\frac{1}{T}\sum_{s=1}^{T} \left\|\widehat{\mathbf{K}}_{ms} - \widehat{\mathbf{H}}'_{m}\mathbf{K}_{ms}\right\|^{2}\right)^{1/2} \left(\frac{1}{T}\sum_{s=1}^{T} \left(\frac{1}{T}\sum_{t=1}^{T} \zeta_{m,st}e_{hjt}\right)^{2}\right)^{1/2}$$

Notice that by Assumption A.5,

$$\frac{1}{T}\sum_{t=1}^{T}\zeta_{m,st}e_{hjt} = \frac{1}{T}\sum_{t=1}^{T}\frac{1}{\sqrt{N_m}}\left(\frac{1}{\sqrt{N_m}}\sum_{k=1}^{N_m}\left[e_{mks}e_{mkt} - E(e_{mks}e_{mkt})\right]\right)e_{hjt} = O_p\left(\frac{1}{\sqrt{N_m}}\right)$$

Using Lemma 6.2, we show that

$$\|\mathcal{X}2.1\| = O_p\left(\frac{1}{\sqrt{N_m T} C_{N_m T}}\right) + O_p\left(\frac{1}{N_m}\right)$$

In addition, by Assumption G.1,

$$\mathcal{X}2.2 = \widehat{\boldsymbol{H}}_m' \frac{1}{\sqrt{N_m T}} \frac{1}{T} \sum_{t=1}^T \left( \frac{1}{\sqrt{N_m T}} \sum_{s=1}^T \sum_{k=1}^{N_m} \boldsymbol{K}_{ms} \left[ e_{mks} e_{mkt} - E(e_{mks} e_{mkt}) \right] \right) e_{hjt} = O_p \left( \frac{1}{\sqrt{N_m T}} \right)$$

Combining these two terms, we have  $\mathcal{X}2 = O_p(C_{N_mT}^{-2})$ . Next, we can rewrite  $\mathcal{X}3$  as

$$\mathcal{X}3 = \frac{1}{T^2} \sum_{t=1}^{T} \sum_{s=1}^{T} \left( \widehat{K}_{ms} - \widehat{H}'_m K_{ms} \right) \eta_{m,st} e_{hjt} + \widehat{H}'_m \frac{1}{T^2} \sum_{t=1}^{T} \sum_{s=1}^{T} K_{ms} \eta_{m,st} e_{hjt} = \mathcal{X}3.1 + \mathcal{X}3.2$$

By the Cauchy-Schwarz inequality, we have:

$$\|\mathcal{X}3.1\| \le \left(\frac{1}{T}\sum_{s=1}^{T} \left\|\widehat{\boldsymbol{K}}_{ms} - \widehat{\boldsymbol{H}}_{m}'\boldsymbol{K}_{ms}\right\|^{2}\right)^{1/2} \left(\frac{1}{T}\sum_{s=1}^{T} \left(\frac{1}{T}\sum_{t=1}^{T} \eta_{m,st}e_{hjt}\right)^{2}\right)^{1/2}$$

Notice that

$$\frac{1}{T}\sum_{t=1}^{T}\eta_{m,st}e_{hjt} = \frac{1}{\sqrt{N_m}}\boldsymbol{K}_{ms}\frac{1}{T}\sum_{t=1}^{T}\left(\frac{1}{\sqrt{N_m}}\sum_{k=1}^{N_m}\boldsymbol{\theta}_{mk}e_{mkt}\right)e_{hjt} = O_p\left(\frac{1}{\sqrt{N_m}}\right)$$

Using Lemma 6.2, we have:

$$\|\mathcal{X}3.1\| = O_p\left(\frac{1}{\sqrt{N_m T} C_{N_m T}}\right) + O_p\left(\frac{1}{N_m}\right).$$

For the second part, by Assumption F.2, we have:

$$\mathcal{X}3.2 = \widehat{\boldsymbol{H}}_{m}^{\prime} \left(\frac{1}{T} \sum_{s=1}^{T} \boldsymbol{K}_{ms} \boldsymbol{K}_{ms}^{\prime}\right) \frac{1}{N_{m}T} \sum_{t=1}^{T} \sum_{k=1}^{N_{m}} \boldsymbol{\theta}_{mk} e_{mkt} e_{hjt} = O_{p} \left(\frac{1}{N_{m}}\right)$$

Combining these two terms, we obtain  $\mathcal{X}_{3} = O_{p}\left(C_{N_{m}T}^{-2}\right)$ . The proof of  $\mathcal{X}_{4}$  is similar to that of  $\mathcal{X}_{3}$ . Finally, we conclude that  $T^{-1/2}\widehat{\mathcal{R}}'_{m}e_{hj} = O_{p}\left(C_{N_{m}T}^{-2}\right)$ . Q.E.D

**Lemma 7.** Under Assumptions A–C and E–G, as  $N_1, \ldots, N_R, T \to \infty$ , we have:

1.

$$\frac{1}{T} \left\| \widehat{\boldsymbol{\Phi}}' \widehat{\boldsymbol{\Phi}} - \widehat{\boldsymbol{H}}' \boldsymbol{\Phi}' \boldsymbol{\Phi} \widehat{\boldsymbol{H}} \right\| = O_p \left( \frac{1}{C_{\underline{N},T}^2} \right) \text{ and } \widehat{\boldsymbol{Q}}_i^{r_0} - \bar{\boldsymbol{Q}}_i^{r_0} \boldsymbol{D} = O_p \left( \frac{1}{C_{\underline{N},T}^2} \right)$$

2.

$$\frac{1}{T} \left\| \widehat{\boldsymbol{\Psi}}' \widehat{\boldsymbol{\Psi}} - \boldsymbol{\Psi}' \boldsymbol{\Psi} \right\| = O_p \left( \frac{1}{C_{\underline{N},T}^2} \right) \text{ and } \left\| \widehat{\boldsymbol{L}}^{r_0} - \boldsymbol{L}^{r_0} \boldsymbol{U} \right\| = O_p \left( \frac{1}{C_{\underline{N},T}^2} \right)$$

where  $C_{\underline{N},T} = \min\{\sqrt{\underline{N}}, \sqrt{T}\}$  and  $\underline{N} = \min\{N_1, N_2, \dots, N_R\}.$ 

## Proof

1. By definition of  $\widehat{\Phi}$ , we have:

$$\frac{1}{T}\widehat{\Phi}'\widehat{\Phi} = \frac{1}{T} \begin{bmatrix} (R-1)\widehat{K}_1'\widehat{K}_1 & -\widehat{K}_1'\widehat{K}_2 & \dots & -\widehat{K}_1'\widehat{K}_R \\ -\widehat{K}_2'\widehat{K}_1 & (R-1)\widehat{K}_2'\widehat{K}_2 & \dots & -\widehat{K}_R'\widehat{K}_R \\ & & \vdots \\ -\widehat{K}_R'\widehat{K}_1 & -\widehat{K}_R'\widehat{K}_1 & \dots & (R-1)\widehat{K}_R'\widehat{K}_R \end{bmatrix}$$

Using (30) and the definition of  $\widehat{\mathcal{R}}_i$  in Lemma 6.2, we obtain:

$$\frac{1}{T}\widehat{\boldsymbol{\Phi}}'\widehat{\boldsymbol{\Phi}} = \frac{1}{T}\widehat{\boldsymbol{H}}'\boldsymbol{\Phi}'\boldsymbol{\Phi}\widehat{\boldsymbol{H}} + \widehat{\mathbb{A}}_1 + \widehat{\mathbb{A}}_2 + \widehat{\mathbb{A}}_3$$

where

$$\widehat{\mathbb{A}}_{1} = \widehat{\mathbb{A}}_{2}^{\prime} = \frac{1}{\sqrt{T}} \begin{bmatrix} (R-1)\widehat{\mathcal{R}}_{1}^{\prime}K_{1}\widehat{\mathcal{H}}_{1} & -\widehat{\mathcal{R}}_{1}^{\prime}K_{2}\widehat{\mathcal{H}}_{2} & \dots & -\widehat{\mathcal{R}}_{1}^{\prime}K_{R}\widehat{\mathcal{H}}_{R} \\ -\widehat{\mathcal{R}}_{2}^{\prime}K_{1}\widehat{\mathcal{H}}_{1} & (R-1)\widehat{\mathcal{R}}_{2}^{\prime}K_{2}\widehat{\mathcal{H}}_{2} & \dots & -\widehat{\mathcal{R}}_{2}^{\prime}K_{R}\widehat{\mathcal{H}}_{R} \\ & & \vdots \\ -\widehat{\mathcal{R}}_{R}^{\prime}K_{1}\widehat{\mathcal{H}}_{1} & -\widehat{\mathcal{R}}_{R}^{\prime}K_{2}\widehat{\mathcal{H}}_{2} & \dots & (R-1)\widehat{\mathcal{R}}_{R}^{\prime}K_{R}\widehat{\mathcal{H}}_{R} \end{bmatrix}$$

and

$$\widehat{\mathbb{A}}_{3} = \begin{bmatrix} (R-1)\widehat{\mathcal{R}}_{1}'\widehat{\mathcal{R}}_{1} & -\widehat{\mathcal{R}}_{1}\widehat{\mathcal{R}}_{2}' & \dots & -\widehat{\mathcal{R}}_{1}'\widehat{\mathcal{R}}_{R} \\ -\widehat{\mathcal{R}}_{2}'\widehat{\mathcal{R}}_{1} & (R-1)\widehat{\mathcal{R}}_{2}'\widehat{\mathcal{R}}_{2} & \dots & -\widehat{\mathcal{R}}_{2}'\widehat{\mathcal{R}}_{R} \\ & & \vdots \\ -\widehat{\mathcal{R}}_{R}'\widehat{\mathcal{R}}_{1} & -\widehat{\mathcal{R}}_{R}\widehat{\mathcal{R}}_{2}' & \dots & (R-1)\widehat{\mathcal{R}}_{R}'\widehat{\mathcal{R}}_{R} \end{bmatrix}$$

Using Lemma 6.3 and the fact that  $\widehat{H}_i$  is  $O_p(1)$ , we have  $\widehat{\mathbb{A}}_1 = \widehat{\mathbb{A}}_2' = O_p\left(C_{\underline{N}T}^{-2}\right)$ . Furthermore, by Lemma 6.2, we have  $\widehat{\mathbb{A}}_3 = O_p\left(C_{\underline{N}T}^{-2}\right)$ .

2. By definition of  $\widehat{\Psi}$  and  $\Psi$ , we have:

$$\left|\frac{1}{T}\widehat{\boldsymbol{\Psi}}'\widehat{\boldsymbol{\Psi}} - \frac{1}{T}\boldsymbol{\Psi}'\boldsymbol{\Psi}\right\| \leq \sum_{i=1}^{R} \left\|\frac{1}{T}\widehat{\boldsymbol{K}}_{i}\widehat{\boldsymbol{Q}}_{i}^{r_{0}}\widehat{\boldsymbol{Q}}_{i}^{r_{0}'}\widehat{\boldsymbol{K}}_{i}' - \frac{1}{T}\boldsymbol{G}\boldsymbol{G}'\right|$$

Using  $\widehat{K}_i = \widehat{K}_i - K_i \widehat{H}_i + K_i \widehat{H}_i$ , we have:

$$\frac{1}{T}\widehat{K}_{i}\widehat{Q}_{i}^{r_{0}}\widehat{Q}_{i}^{r_{0}'}\widehat{K}_{i}' - \frac{1}{T}GG' = \frac{1}{T}\widehat{Q}_{i}'\left(\widehat{K}_{i} - K_{i}\widehat{H}_{i}\right)'\widehat{K}_{i}\widehat{Q}_{i} + \frac{1}{T}\widehat{Q}_{i}'\widehat{H}_{i}'\widehat{K}_{i}'\left(\widehat{K}_{i} - K_{i}\widehat{H}_{i}\right)\widehat{Q}_{i} + \frac{1}{T}\widehat{Q}_{i}'\widehat{H}_{i}'K_{i}'K_{i}\widehat{H}_{i}\widehat{Q}_{i} - \frac{1}{T}GG'$$

The first two terms are bounded by  $O_p(C_{N_iT}^{-2})$  by Lemmas 6.3 and 6.4. Using  $\widehat{Q}_i = \widehat{H}_i^{-1}Q_iD + O_p(C_{N_iT}^{-2})$ , the remaining terms can be expressed as

$$\boldsymbol{D}'\boldsymbol{B}'\frac{\boldsymbol{G}'\boldsymbol{G}}{T}\boldsymbol{B}\boldsymbol{D}+O_p\left(\frac{1}{C_{N_iT}^2}\right)-\frac{\boldsymbol{G}'\boldsymbol{G}}{T}$$

Notice that

$$\left\| \boldsymbol{D}'\boldsymbol{B}'\frac{\boldsymbol{G}'\boldsymbol{G}}{T}\boldsymbol{B}\boldsymbol{D} - \frac{\boldsymbol{G}'\boldsymbol{G}}{T} \right\| = 0$$

since D and B are orthogonal matrices. Therefore, we conclude that

$$\left\|\frac{1}{T}\widehat{\Psi}'\widehat{\Psi} - \frac{1}{T}\Psi'\Psi\right\| = O_p\left(\frac{1}{C_{\underline{N}T}^2}\right)$$

By Lemma 3 and Assumption B.1, we have  $\left\| \widehat{\boldsymbol{L}}^{r_0} - \boldsymbol{L}^{r_0} \boldsymbol{U} \right\| = O_p \left( C_{\underline{N}T}^{-2} \right)$  where  $\boldsymbol{U}$  is defined in (24). *Q.E.D* 

**Lemma 8.** Under Assumptions A–C and F–G, as  $N_i, T \to \infty$ , we have for each i:

1.

$$\frac{1}{T}\widehat{\mathbf{K}}_{i}^{\prime}\left(\frac{1}{N_{i}T}\mathbf{Y}_{i}\mathbf{Y}_{i}^{\prime}\right)\widehat{\mathbf{K}}_{i}=\widehat{\mathbf{V}}_{i}\overset{p}{\longrightarrow}\mathbf{V}_{i}$$

where  $V_i$  is a diagonal matrix consisting of the eigenvalues of  $\Sigma_{\Theta_i} \Sigma_{K_i}$ .

2.

$$\frac{\widehat{\boldsymbol{K}}_{i}'\boldsymbol{K}_{i}}{T}\left(\frac{\boldsymbol{\Theta}_{i}'\boldsymbol{\Theta}_{i}}{N_{i}}\right)\frac{\boldsymbol{K}_{i}'\widehat{\boldsymbol{K}}_{i}}{T} \stackrel{p}{\longrightarrow} \boldsymbol{V}_{i}$$

3.

$$plim_{N_i,T \to \infty} \frac{\widehat{K}'_i K_i}{T} = \mathbb{Q}_i$$

The  $(r_0 + r_i) \times (r_0 + r_i)$  matrix  $\mathbb{Q}_i$  is given by  $\mathbb{Q}_i = \mathbf{V}_i^{1/2} \mathcal{P}'_i \mathbf{\Sigma}_{\Theta_i}^{-1/2}$  and invertible, where  $\mathbf{V}_i$  is the diagonal matrix consisting of the eigenvalues of  $\mathbf{\Sigma}_{\Theta_i}^{1/2} \mathbf{\Sigma}_{K_i} \mathbf{\Sigma}_{\Theta_i}^{1/2}$  and  $\mathcal{P}_i$  is the corresponding eigenvector matrix such that  $\mathcal{P}'_i \mathcal{P}_i / T = \mathbf{I}_{r_0 + r_i}$ .

4.

$$plim_{N_i,T\to\infty} H_i = H_i$$

Q.E.D

where  $\boldsymbol{H}_i = \boldsymbol{\Sigma}_{\Theta_i} \mathbb{Q}'_i \boldsymbol{V}_i^{-1}$ .

## Proof.

The proof follows the same lines from Proposition 1 and Lemma A.3 in Bai (2003) and is thus omitted.

#### Proof of Theorem 4

From (19), we have for each t:

$$\widehat{\boldsymbol{G}}_{t} = \frac{1}{\sqrt{T}} (\widehat{\boldsymbol{\Xi}}^{r_{0}})^{-1} \widehat{\boldsymbol{L}}^{r_{0}\prime} \left( \sum_{i}^{R} \widehat{\boldsymbol{K}}_{i} \widehat{\boldsymbol{Q}}_{i}^{r_{0}} \widehat{\boldsymbol{Q}}_{i}^{r_{0}\prime} \widehat{\boldsymbol{K}}_{it} \right)$$

Using the asymptotic expansions in Lemma 7.1 and Lemma 7.2:

$$\widehat{\boldsymbol{L}}^{r_0} = \boldsymbol{L}^{r_0} \boldsymbol{U} + O_p \left( \frac{1}{C_{\underline{N}T}^2} \right), \, \widehat{\boldsymbol{Q}}_i^{r_0} = \widehat{\boldsymbol{H}}_i^{-1} \boldsymbol{Q}_i^{r_0} \boldsymbol{D} + O_p \left( \frac{1}{C_{\underline{N}T}^2} \right)$$

and keeping the term up to order  $O_p\left(C_{\underline{NT}}^{-2}\right)$ , we have:

$$\widehat{\boldsymbol{G}}_{t} = \frac{1}{\sqrt{T}} \boldsymbol{U}(\boldsymbol{\Xi}^{r_{0}})^{-1} \boldsymbol{L}^{r_{0} \prime} \left[ \sum_{i=1}^{R} \widehat{\boldsymbol{K}}_{i} \widehat{\boldsymbol{H}}_{i}^{-1} \boldsymbol{Q}_{i}^{r_{0}} \boldsymbol{Q}_{i}^{r_{0} \prime} \left( \widehat{\boldsymbol{H}}_{i}^{-1} \right)^{\prime} \widehat{\boldsymbol{K}}_{it} \right] + O_{p} \left( \frac{1}{C_{\underline{N}T}^{2}} \right)$$

where we use that  $(\mathbf{\Xi}^{r_0})^{-1} \mathbf{U}' = \mathbf{U}(\mathbf{\Xi}^{r_0})^{-1}$  because both matrices are diagonal. Replacing  $T^{-1/2} \widehat{\mathbf{K}}_i$  with  $T^{-1/2} \mathbf{K}_i \widehat{\mathbf{H}}_i + \widehat{\mathbf{R}}_i$ , the above equation can be written as

$$\widehat{\boldsymbol{G}}_{t} = \mathbb{H}' \frac{1}{R} \sum_{i=1}^{R} \mathbb{I}'_{i} \left(\widehat{\boldsymbol{H}}_{i}^{-1}\right)' \widehat{\boldsymbol{K}}_{it} + \boldsymbol{U} \boldsymbol{\Xi}^{r_{0},-1} \boldsymbol{L}^{r_{0}'} \left[ \sum_{i=1}^{R} \widehat{\boldsymbol{\mathcal{R}}}_{i} \widehat{\boldsymbol{H}}_{i}^{-1} \boldsymbol{Q}_{i}^{r_{0}} \boldsymbol{Q}_{i}^{r_{0}'} \left(\widehat{\boldsymbol{H}}_{i}^{-1}\right)' \widehat{\boldsymbol{K}}_{it} \right] + O_{p} \left( \frac{1}{C_{\underline{N}T}^{2}} \right) \quad (31)$$

where we use  $\mathbf{K}_i \mathbf{Q}_i^{r_0} = \mathbf{G}\mathbf{B}$ ,  $\mathbf{B} = R^{-1}\mathbf{A}$ ,  $\mathbf{Q}_i^{r_0} = [R^{-1}\mathbf{A}', \mathbf{0}]'$ ,  $\mathbf{B}\mathbf{Q}_i^{r_0} = R^{-1}[\mathbf{I}_{r_0}, \mathbf{0}] = R^{-1}\mathbb{I}'_i$  and  $\mathbf{A}$  is an orthogonal matrix. From the asymptotic expansion in Lemma 6.1, it follows that  $T^{-1}\sum_{s=1}^T \widehat{\mathbf{K}}_{is}\eta_{i,st}$  and  $(N_iT)^{-1}\mathbf{e}_i\mathbf{\Theta}_i\mathbf{K}'_i\widehat{\mathbf{K}}_i\widehat{\mathbf{V}}_i^{-1}$  are dominant terms in  $\widehat{\mathbf{K}}_{it} - \widehat{\mathbf{H}}'_i\mathbf{K}_{it}$  and  $\widehat{\mathbf{R}}_i$ , respectively. So we have:

$$\widehat{\boldsymbol{K}}_{it} = \widehat{\boldsymbol{H}}_{i}^{\prime} \boldsymbol{K}_{it} + \widehat{\boldsymbol{V}}_{i}^{-1} \frac{1}{N_{i}T} \sum_{s=1}^{T} \widehat{\boldsymbol{K}}_{is} \boldsymbol{K}_{is}^{\prime} \boldsymbol{\Theta}_{i}^{\prime} \boldsymbol{e}_{i.t} + O_{p} \left(\frac{1}{C_{N_{i}T}^{2}}\right)$$

and

$$\widehat{\boldsymbol{\mathcal{R}}}_{i} = \frac{1}{\sqrt{T}} \frac{1}{N_{i}T} \boldsymbol{e}_{i} \boldsymbol{\Theta}_{i} \boldsymbol{K}_{i}' \widehat{\boldsymbol{K}}_{i} \widehat{\boldsymbol{V}}_{i}^{-1} + O_{p} \left(\frac{1}{C_{N_{i}T}^{2}}\right)$$

Plugging these expressions into (31) and multiplying both sides by  $\sqrt{N}$ , we can show that

$$\begin{split} \sqrt{N}\left(\widehat{\boldsymbol{G}}_{t}-\mathbb{H}'\boldsymbol{G}_{t}\right) &= \mathbb{H}'\frac{1}{R}\sum_{i=1}^{R}\mathbb{I}'_{i}\left(\widehat{\boldsymbol{H}}_{i}^{-1}\right)'\widehat{\boldsymbol{V}}_{i}^{-1}\sqrt{\frac{N}{N_{i}}}\left(\frac{1}{T}\sum_{s=1}^{T}\widehat{\boldsymbol{K}}_{is}\boldsymbol{K}'_{is}\right)\frac{1}{\sqrt{N_{i}}}\sum_{j=1}^{N_{i}}\boldsymbol{\theta}_{ij}\boldsymbol{e}_{ijt} \\ &+\boldsymbol{U}\boldsymbol{\Xi}^{r_{0},-1}\boldsymbol{L}^{r_{0}'}\sqrt{\frac{N}{N_{i}}}\frac{1}{R}\sum_{i=1}^{R}\frac{1}{\sqrt{N_{i}T}}\boldsymbol{e}_{i}\boldsymbol{\Theta}_{i}\frac{\boldsymbol{K}'_{i}\widehat{\boldsymbol{K}}_{i}}{T}\widehat{\boldsymbol{V}}_{i}^{-1}\widehat{\boldsymbol{H}}_{i}^{-1}\mathbb{I}_{i}\boldsymbol{G}_{t}+O_{p}\left(\frac{\sqrt{N}}{C_{\underline{N}T}^{2}}\right) \end{split}$$

Using  $\widehat{H}_i = (\Theta'_i \Theta_i / N_i) \left( K'_i \widehat{K}_i / T \right) \widehat{V}_i^{-1}$  from Lemma 6.1 and rearranging terms, the above equation can be simplified to

$$\sqrt{N}\left(\widehat{\boldsymbol{G}}_{t}-\left(\mathbb{H}'+\mathbb{B}'\right)\boldsymbol{G}_{t}\right)=\mathbb{H}'\frac{1}{R}\sum_{i=1}^{R}\mathbb{I}'_{i}\sqrt{\frac{N}{N_{i}}}\left(\frac{\boldsymbol{\Theta}'_{i}\boldsymbol{\Theta}_{i}}{N_{i}}\right)^{-1}\frac{1}{\sqrt{N_{i}}}\sum_{j=1}^{N_{i}}\boldsymbol{\theta}_{ij}\boldsymbol{e}_{ijt}+o_{p}(1).$$

where

$$\mathbb{B} = \frac{1}{R} \sum_{i=1}^{R} \sqrt{\frac{1}{N_i}} \mathbb{I}'_i \left(\frac{\boldsymbol{\Theta}'_i \boldsymbol{\Theta}_i}{N_i}\right)^{-1} \frac{\boldsymbol{\Theta}'_i \boldsymbol{e}'_i}{\sqrt{N_i T}} \boldsymbol{J}^{r_0} \boldsymbol{U}.$$

Following Lemmas 5 and 8, it is straightforward to show that  $\mathbb{B} = O_p\left(\underline{N}^{-1/2}\right)$ .

Finally, we achieve the desired result that

$$\sqrt{N}\left(\widehat{\boldsymbol{G}}_{t}-\left(\mathbb{H}'+\mathbb{B}'\right)\boldsymbol{G}_{t}\right)=\frac{1}{R}\mathbb{H}'\boldsymbol{\mathcal{I}}'\widehat{\mathbb{C}}\mathbb{E}_{t}+o_{p}(1)$$

where  $\mathcal{I} = [I_{r_0}, \dots, I_{r_0}]'$  is an  $Rr_0 \times r_0$  matrix,  $\widehat{\mathbb{C}}$  is a  $Rr_0 \times Rr_0$  block diagonal matrix given by

$$\widehat{\mathbb{C}} = \begin{bmatrix} \sqrt{\frac{N}{N_1}} \mathbb{I}'_1 \left(\frac{\Theta'_1 \Theta_1}{N_1}\right)^{-1} & & \\ & \ddots & \\ & & \sqrt{\frac{N}{N_1}} \mathbb{I}'_R \left(\frac{\Theta'_R \Theta_R}{N_R}\right)^{-1} \end{bmatrix},$$

and  $\mathbb{E}_t$  is an  $Rr_0 \times 1$  vector given by

$$\mathbb{E}_{t} = \begin{bmatrix} \mathbb{E}_{1t} \\ \mathbb{E}_{2t} \\ \vdots \\ \mathbb{E}_{Rt} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{N_{1}}} \sum_{j=1}^{N_{1}} \boldsymbol{\theta}_{1j} e_{1jt} \\ \frac{1}{\sqrt{N_{2}}} \sum_{j=1}^{N_{2}} \boldsymbol{\theta}_{2j} e_{2jt} \\ \vdots \\ \frac{1}{\sqrt{N_{R}}} \sum_{j=1}^{N_{R}} \boldsymbol{\theta}_{Rj} e_{Rjt} \end{bmatrix} \stackrel{d}{\longrightarrow} N\left(\mathbf{0}, \mathbb{D}_{t}^{(1)}\right)$$

Using Assumptions C.2b and E, we have:

$$\widehat{\mathbb{C}} \xrightarrow{p} \mathbb{C} = \begin{bmatrix} \alpha_1^{1/2} \mathbb{I}'_1 \Sigma_{\Theta_1} & & \\ & \ddots & \\ & & \alpha_R^{1/2} \mathbb{I}'_R \Sigma_{\Theta_R} \end{bmatrix}$$

Therefore,

$$\sqrt{N} \left[ \widehat{\boldsymbol{G}}_t - \left( \mathbb{H}' + \mathbb{B}' \right) \boldsymbol{G}_t \right] \stackrel{d}{\longrightarrow} N \left( \boldsymbol{0}, \frac{1}{R^2} \mathbb{H}' \mathcal{I}' \mathbb{C} \mathbb{D}_t \mathbb{C}' \mathcal{I} \mathbb{H} \right).$$

$$Q.E.D$$

**Lemma 9.** Under Assumptions A-G, as  $N_1, \ldots, N_R, T \to \infty$ , we have:

1. For each *i*, we have  $T^{-1}\left[\widehat{\boldsymbol{G}} - \boldsymbol{G}\left(\mathbb{H} + \mathbb{B}\right)\right]' \boldsymbol{K}_{i} = O_{p}\left(C_{\underline{N}T}^{-2}\right);$ 2. For each *i* and *j*, we have  $T^{-1}\left[\widehat{\boldsymbol{G}} - \boldsymbol{G}\left(\mathbb{H} + \mathbb{B}\right)\right]' \boldsymbol{e}_{ij} = O_p\left(C_{\underline{N}T}^{-2}\right)$ .

## Proof

Using  $\widehat{K}_{it} - \widehat{H}'_i K_{it} + \widehat{H}'_i K_{it}$ , we can write (31) as

$$\begin{split} \widehat{\boldsymbol{G}}_{t} - \left(\mathbb{H}' + \mathbb{B}'\right) \boldsymbol{G}_{t} &= \mathbb{H}' \frac{1}{R} \sum_{i=1}^{R} \mathbb{I}'_{i} \left(\widehat{\boldsymbol{H}}_{i}^{-1}\right)' \left(\widehat{\boldsymbol{K}}_{it} - \widehat{\boldsymbol{H}}'_{i} \boldsymbol{K}_{it}\right) \\ &+ \Xi^{r_{0}, -1} \boldsymbol{L}^{r_{0}'} \sum_{i=1}^{R} \widehat{\mathcal{R}}_{i} \widehat{\boldsymbol{H}}_{i}^{-1} \boldsymbol{Q}_{i}^{r_{0}} \boldsymbol{Q}_{i}^{r_{0}'} \left(\widehat{\boldsymbol{H}}_{i}^{-1}\right)' \left(\widehat{\boldsymbol{K}}_{it} - \widehat{\boldsymbol{H}}'_{i} \boldsymbol{K}_{it}\right) + O_{p} \left(\frac{1}{C_{\underline{N}T}^{2}}\right) \end{split}$$

Therefore, for Lemma 9.1, we have:

$$\frac{1}{T}\sum_{t=1}^{T} \left[ \widehat{\boldsymbol{G}}_{t} - \left( \mathbb{H}' + \mathbb{B}' \right) \boldsymbol{G}_{t} \right] \boldsymbol{K}_{it}' = \mathbb{H}' \frac{1}{R} \sum_{m=1}^{R} \mathbb{I}'_{m} \left( \widehat{\boldsymbol{H}}_{m}^{-1} \right)' \frac{1}{T} \sum_{t=1}^{T} \left( \widehat{\boldsymbol{K}}_{mt} - \widehat{\boldsymbol{H}}'_{m} \boldsymbol{K}_{mt} \right) \boldsymbol{K}_{it}' \\ + \boldsymbol{\Xi}^{r_{0},-1} \boldsymbol{L}^{r_{0}'} \sum_{m=1}^{R} \widehat{\mathcal{R}}_{m} \widehat{\boldsymbol{H}}_{m}^{-1} \boldsymbol{Q}_{m}^{r_{0}} \boldsymbol{Q}_{m}^{r_{0}'} \left( \widehat{\boldsymbol{H}}_{m}^{-1} \right)' \frac{1}{T} \sum_{t=1}^{T} \left( \widehat{\boldsymbol{K}}_{mt} - \widehat{\boldsymbol{H}}'_{m} \boldsymbol{K}_{mt} \right) \boldsymbol{K}_{it}' + O_{p} \left( \frac{1}{C_{NT}^{2}} \right)$$

By Lemma 6.2,  $T^{-1} \sum_{t=1}^{T} \left( \widehat{K}_{mt} - \widehat{H}'_m K_{mt} \right) K'_{it} = O_p \left( C_{N_m T}^{-2} \right)$ . Then, the required result follows. We can prove Lemma 9.2 along similar arguments using Lemma 6.5. Q.E.D

## Proof of Theorem 5

For each *i* and *j*, we have  $\widehat{\gamma}_{ij} = T^{-1}\widehat{G}'Y_{ij}$ . Using (5) and  $G = G - \widehat{G}(\mathbb{H} + \mathbb{B})^{-1} + \widehat{G}(\mathbb{H} + \mathbb{B})^{-1}$ , we have

$$\widehat{\boldsymbol{\gamma}}_{ij} - \left(\mathbb{H} + \mathbb{B}\right)^{-1} \boldsymbol{\gamma}_{ij} = \frac{1}{T} \widehat{\boldsymbol{G}}' \left[ \boldsymbol{G} - \widehat{\boldsymbol{G}} \left(\mathbb{H} + \mathbb{B}\right)^{-1} \right] \boldsymbol{\gamma}_{ij} + \frac{1}{T} \widehat{\boldsymbol{G}}' \boldsymbol{F}_{i} \boldsymbol{\lambda}_{ij} + \frac{1}{T} \widehat{\boldsymbol{G}}' \boldsymbol{e}_{ij}$$

Using  $\widehat{G} = \widehat{G} - G(\mathbb{H} + \mathbb{B}) + G(\mathbb{H} + \mathbb{B})$ , the above equation can be written as

$$\begin{split} \widehat{\boldsymbol{\gamma}}_{ij} &- \left(\mathbb{H} + \mathbb{B}\right)^{-1} \boldsymbol{\gamma}_{ij} = \frac{1}{T} \left[ \widehat{\boldsymbol{G}} - \boldsymbol{G} \left(\mathbb{H} + \mathbb{B}\right) \right]' \left[ \boldsymbol{G} - \widehat{\boldsymbol{G}} \left(\mathbb{H} + \mathbb{B}\right)^{-1} \right] \boldsymbol{\gamma}_{ij} \\ &+ \frac{1}{T} \left(\mathbb{H} + \mathbb{B}\right)' \boldsymbol{G}' \left[ \boldsymbol{G} - \widehat{\boldsymbol{G}} \left(\mathbb{H} + \mathbb{B}\right)^{-1} \right] \boldsymbol{\gamma}_{ij} + \frac{1}{T} \left[ \widehat{\boldsymbol{G}} - \boldsymbol{G} \left(\mathbb{H} + \mathbb{B}\right) \right]' \boldsymbol{F}_{i} \boldsymbol{\lambda}_{ij} \\ &+ \frac{1}{T} \left[ \widehat{\boldsymbol{G}} - \boldsymbol{G} \left(\mathbb{H} + \mathbb{B}\right) \right]' \boldsymbol{e}_{ij} + \frac{1}{T} \left(\mathbb{H} + \mathbb{B}\right)' \boldsymbol{G}' \boldsymbol{F}_{i} \boldsymbol{\lambda}_{ij} + \frac{1}{T} \left(\mathbb{H} + \mathbb{B}\right)' \boldsymbol{G}' \boldsymbol{e}_{ij} \end{split}$$

The first term is bounded by  $O_p\left(\underline{N}^{-1}\right)$  by Theorem 4. The second to fourth terms are  $O_p\left(C_{\underline{N}T}^{-2}\right)$  by Lemma 9. Then, we obtain:

$$\widehat{\boldsymbol{\gamma}}_{ij} - \left(\mathbb{H} + \mathbb{B}\right)^{-1} \boldsymbol{\gamma}_{ij} = \frac{1}{T} \left(\mathbb{H} + \mathbb{B}\right)' \boldsymbol{G}' \left(\boldsymbol{F}_{i} \boldsymbol{\lambda}_{ij} + \boldsymbol{e}_{ij}\right) + O_{p} \left(\frac{1}{C_{\underline{N}T}^{2}}\right)$$

Multiplying both sides by  $\sqrt{T}$ , we have:

$$\sqrt{T}\left[\widehat{\boldsymbol{\gamma}}_{ij} - \left(\mathbb{H} + \mathbb{B}\right)^{-1} \boldsymbol{\gamma}_{ij}\right] = \mathbb{H}' \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \boldsymbol{G}_t \left(\boldsymbol{\lambda}'_{ij} \boldsymbol{F}_{it} + e_{ijt}\right) + o_p(1) \stackrel{d}{\longrightarrow} N\left(\boldsymbol{0}, \mathbb{H}' \mathbb{D}_{ij}^{(2)} \mathbb{H}\right)$$

Q.E.D

using Assumption G.4 and the fact that  $\mathbb{B} = O_p\left(\underline{N}^{-1/2}\right)$ .

**Lemma 10.** Under Assumptions A-G, as  $N_i, T \to \infty$ , we have for each i, j and t:

$$\hat{S}_{ijt} = -\left[\hat{\gamma}_{ij} - \left(\mathbb{H} + \mathbb{B}\right)^{-1} \gamma_{ij}\right]' \left(\hat{G}_t - \left(\mathbb{H}' + \mathbb{B}'\right) G_t\right) - \gamma'_{ij} \left[\left(\mathbb{H} + \mathbb{B}\right)^{-1}\right]' \left(\hat{G}_t - \left(\mathbb{H}' + \mathbb{B}'\right) G_t\right) - G'_t \left(\mathbb{H} + \mathbb{B}\right) \left[\hat{\gamma}_{ij} - \left(\mathbb{H} + \mathbb{B}\right)^{-1} \gamma_{ij}\right] = O_p \left(\frac{1}{\sqrt{N}}\right) + O_p \left(\frac{1}{\sqrt{T}}\right)$$

where  $\widehat{S}_{ijt}$  is the (t, j) element of  $\widehat{S}_i = G\Gamma'_i - \widehat{G}\widehat{\Gamma}'_i$ .

## Proof.

Using the expansions  $\widehat{G} = \widehat{G} - G(\mathbb{H} + \mathbb{B}) + G(\mathbb{H} + \mathbb{B})$  and  $\widehat{\Gamma}'_i = \widehat{\Gamma}'_i - (\mathbb{H} + \mathbb{B})^{-1} \Gamma'_i + (\mathbb{H} + \mathbb{B})^{-1} \Gamma'_i$ , the result follows from Theorems 4 and 5. Q.E.D

**Lemma 11.** Under Assumptions A–G, for each i, as  $N_i, T \to \infty$ , we have:

1.

$$\frac{1}{T}\widehat{F}_{i}^{\prime}\left(\frac{1}{N_{i}T}\widehat{Y}_{i}\widehat{Y}_{i}^{\prime}\right)\widehat{F}_{i}=\widehat{\Upsilon}_{i}\overset{p}{\longrightarrow}\Upsilon_{i}$$

where  $\widehat{Y}_i = Y_i - \widehat{G}\widehat{\Gamma}'_i$  and  $\Upsilon_i$  is a diagonal matrix consisting of the eigenvalues of  $\Sigma_{\Lambda_i}\Sigma_{F_i}$ .

2.

$$rac{\widehat{m{F}}_i'm{F}_i}{T}\left(rac{m{\Lambda}_i'm{\Lambda}_i}{N_i}
ight)rac{m{F}_i'\widehat{m{F}}_i}{T} \stackrel{p}{\longrightarrow} m{\Upsilon}_i$$

3.

$$plim_{N_i,T \rightarrow \infty} \frac{\widehat{F}'_i F_i}{T} = \mathbb{W}_i$$

The  $r_i \times r_i$  matrix  $\mathbb{W}_i$  is given by  $\mathbb{W}_i = \Upsilon_i^{1/2} \mathcal{L}'_i \Sigma_{\Lambda_i}^{-1/2}$  and invertible, where  $\Upsilon_i$  is also an  $r_i \times r_i$  diagonal matrix consisting of the eigenvalues of  $\Sigma_{\Lambda_i}^{1/2} \Sigma_{F_i} \Sigma_{\Lambda_i}^{1/2}$ , and  $\mathcal{L}_i$  is the corresponding eigenvector matrix such that  $\mathcal{L}'_i \mathcal{L}_i / T = I_{r_i}$ .

$$plim_{N_i,T \to \infty} \widehat{\mathscr{H}_i} =$$

 $\mathscr{H}_i$ 

Q.E.D

where  $\mathscr{H}_i = \Sigma_{\Lambda i} \mathbb{W}'_i \Upsilon_i^{-1} = \mathbb{W}_i^{-1}.$ 

## Proof.

As  $\widehat{S}_i = o_p(1)$ , the proof follows directly from Proposition 1 and Lemma A.3 in Bai (2003) with slight modification.

## Proof of Theorem 6.

By construction of PC, we have

$$\widehat{F}_{i} = \frac{1}{N_{i}T} \left( \widehat{S}_{i} \widehat{S}'_{i} + F_{i} \Lambda'_{i} \widehat{S}'_{i} + e_{i} \widehat{S}'_{i} + \widehat{S}_{i} \Lambda_{i} F'_{i} + F_{i} \Lambda'_{i} \Lambda_{i} F'_{i} + e_{i} \Lambda_{i} F'_{i} + \widehat{S}_{i} e'_{i} + F_{i} \Lambda'_{i} e'_{i} + e_{i} e'_{i} \right) \widehat{F}_{i} \widehat{\Upsilon}^{-1}$$

where  $\widehat{S}_i = G\Gamma'_i - \widehat{G}\widehat{\Gamma}'_i$ . Therefore, we have

$$\begin{aligned} \widehat{F}_{it} - \widehat{\mathscr{H}}_{i}^{T} F_{it} &= \\ \widehat{\Upsilon}_{i}^{-1} \frac{1}{N_{i}T} \left( \sum_{s=1}^{T} \widehat{F}_{is} \widehat{S}_{i.s}' \widehat{S}_{i.t} + \sum_{s=1}^{T} \widehat{F}_{is} \widehat{S}_{i.s}' \Lambda_{i} F_{it} + \sum_{s=1}^{T} \widehat{F}_{is} \widehat{S}_{i.s}' e_{i.t} + \sum_{s=1}^{T} \widehat{F}_{is} \Gamma_{is}' \widehat{S}_{i.t} + \sum_{s=1}^{T} \widehat{F}_{is} \widehat{S}_{i.s}' \widehat{S}_{i.t} \right) \\ &+ \widehat{\Upsilon}_{i}^{-1} \left( \frac{1}{T} \sum_{s=1}^{T} \widehat{F}_{is} \omega_{i}(s,t) + \frac{1}{T} \sum_{s=1}^{T} \widehat{F}_{is} \zeta_{i,st} + \frac{1}{T} \sum_{s=1}^{T} \widehat{F}_{is} \eta_{i,st}^{*} + \frac{1}{T} \sum_{s=1}^{T} \widehat{F}_{is} \mu_{i,st}^{*} \right) \end{aligned}$$
(32)

where  $\widehat{\mathscr{H}_{i}} = (\Lambda'_{i}\Lambda_{i}/N_{i}) (F'_{i}F_{i}/T) \widehat{\Upsilon}_{i}^{-1}$ ,  $\widehat{S}_{i,t}$  is the  $N_{i} \times 1$  vector of  $\widehat{S}_{i}$  (the *t*-th row vector),  $\eta_{i,st}^{*} = N_{i}^{-1}F'_{is}\Lambda'_{i}e_{i,t}$  and  $\mu_{i,st}^{*} = N_{i}^{-1}F'_{it}\Lambda'_{i}e_{i,s}$ .  $\omega_{i}(s,t)$  and  $\zeta_{i,st}$  are defined in Lemma 6.1. To analyse the first part of (32), we let

$$\frac{1}{N_i T} \left( \sum_{s=1}^T \widehat{F}_{is} \widehat{S}'_{i.s} \widehat{S}_{i.t} + \sum_{s=1}^T \widehat{F}_{is} \widehat{S}'_{i.s} \widehat{\Lambda}_i F_{it} + \sum_{s=1}^T \widehat{F}_{is} \widehat{S}'_{i.s} e_{i.t} + \sum_{s=1}^T \widehat{F}_{is} F'_{is} \Lambda'_i \widehat{S}_{i.t} + \sum_{s=1}^T \widehat{F}_{is} e'_{i.s} \widehat{S}_{i.t} \right) = \mathcal{X} 1 + \mathcal{X} 2 + \mathcal{X} 3 + \mathcal{X} 4 + \mathcal{X} 5.$$

Using  $\widehat{F}_{is} = \widehat{F}_{is} - \widehat{\mathscr{H}}_{i}^{\prime} F_{is} + \widehat{\mathscr{H}}_{i}^{\prime} F_{is}$  and by Theorem 1.2, we obtain:

$$\mathscr{X}1 = \frac{1}{N_i T} \sum_{s=1}^T \sum_{j=1}^{N_i} \left( \widehat{F}_{is} - \widehat{\mathscr{H}}_i' F_{is} \right) \widehat{S}_{ijs} \widehat{S}_{ijt} + \widehat{\mathscr{H}}_i' \frac{1}{N_i T} \sum_{s=1}^T \sum_{j=1}^{N_i} F_{is} \widehat{S}_{ijs} \widehat{S}_{ijt} = O_p \left( \frac{1}{C_{\underline{N}T}^2} \right)$$

Similarly,

$$\mathscr{X}2 = \frac{1}{N_i T} \sum_{s=1}^{T} \sum_{j=1}^{N_i} \left( \widehat{F}_{is} - \widehat{\mathscr{H}}_i' F_{is} \right) \widehat{S}_{ijs} \lambda'_{ij} F_{it} + \widehat{\mathscr{H}}_i' \frac{1}{N_i T} \sum_{s=1}^{T} \sum_{j=1}^{N_i} F_{is} \widehat{S}_{ijs} \lambda'_{ij} F_{it}$$

The first term is  $O_p\left(C_{\underline{NT}}^{-2}\right)$  by Theorem 2.1 and Lemma 10. Using Lemma 10, we can express the second

4.

term as

$$\begin{aligned} \widehat{\mathscr{H}}_{i}^{\prime} \frac{1}{N_{i}T} \sum_{s=1}^{T} \sum_{j=1}^{N_{i}} F_{is} \widehat{S}_{ijs} \boldsymbol{\lambda}_{ij}^{\prime} F_{it} = \\ & - \widehat{\mathscr{H}}_{i}^{\prime} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \frac{1}{T} \sum_{s=1}^{T} F_{is} \left( \widehat{G}_{t} - (\mathbb{H}^{\prime} + \mathbb{B}^{\prime}) \, G_{t} \right)^{\prime} \left[ \widehat{\gamma}_{ij} - (\mathbb{H} + \mathbb{B})^{-1} \, \gamma_{ij} \right] \boldsymbol{\lambda}_{ij}^{\prime} F_{it} \\ & - \widehat{\mathscr{H}}_{i}^{\prime} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \frac{1}{T} \sum_{s=1}^{T} F_{is} \left( \widehat{G}_{t} - (\mathbb{H}^{\prime} + \mathbb{B}^{\prime}) \, G_{t} \right)^{\prime} (\mathbb{H} + \mathbb{B})^{-1} \, \gamma_{ij} \boldsymbol{\lambda}_{ij}^{\prime} F_{it} \\ & - \widehat{\mathscr{H}}_{i}^{\prime} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \frac{1}{T} \sum_{s=1}^{T} F_{is} G_{t}^{\prime} (\mathbb{H} + \mathbb{B})^{\prime} \left[ \widehat{\gamma}_{ij} - (\mathbb{H} + \mathbb{B})^{-1} \, \gamma_{ij} \right] \boldsymbol{\lambda}_{ij}^{\prime} F_{it} \end{aligned}$$

The first term of the above expression is  $O_p\left(C_{\underline{N}T}^{-2}\right)\left[O_p\left(T^{-1/2}\right) + O_p\left(\underline{N}^{-1}\right)\right]$  by Lemma 9.1 and Theorem 5. The second term is  $O_p\left(C_{\underline{N}T}^{-2}\right)$  by Lemma 9.1 while the last term is  $O_p\left(T^{-1/2}\right)\left[O_p\left(T^{-1/2}\right) + O_p\left(\underline{N}^{-1}\right)\right]$  by Assumption D. Therefore, we obtain:  $\mathscr{X}2 = O_p\left(C_{\underline{N}T}^{-2}\right)$ . Using  $\widehat{F}_{is} = \widehat{F}_{is} - \widehat{\mathscr{H}}_i' F_{is} + \widehat{\mathscr{H}}_i' F_{is}$ , we have:

$$\mathscr{X}3 = \frac{1}{N_i T} \sum_{s=1}^{T} \sum_{j=1}^{N_i} \left( \widehat{F}_{is} - \widehat{\mathscr{H}}_i' F_{is} \right) \widehat{S}_{ijs} e_{ijt} + \widehat{\mathscr{H}}_i' \frac{1}{N_i T} \sum_{s=1}^{T} \sum_{j=1}^{N_i} F_{is} \widehat{S}_{ijs} e_{ijt}$$

The first term is bounded by  $O_p\left(C_{\underline{NT}}^{-2}\right)$  by Theorem 2.1 and Lemma 10. The second term can be written as

$$\begin{aligned} \widehat{\mathscr{H}}_{i}^{\prime} \frac{1}{N_{i}T} \sum_{s=1}^{T} \sum_{j=1}^{N_{i}} \boldsymbol{F}_{is} \widehat{S}_{ijs} \boldsymbol{e}_{ijt} = \\ & - \widehat{\mathscr{H}}_{i}^{\prime} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \frac{1}{T} \sum_{s=1}^{T} \boldsymbol{F}_{is} \left( \widehat{\boldsymbol{G}}_{t} - (\mathbb{H}^{\prime} + \mathbb{B}^{\prime}) \boldsymbol{G}_{t} \right)^{\prime} \left[ \widehat{\gamma}_{ij} - (\mathbb{H} + \mathbb{B})^{-1} \boldsymbol{\gamma}_{ij} \right] \boldsymbol{e}_{ijt} \\ & - \widehat{\mathscr{H}}_{i}^{\prime} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \frac{1}{T} \sum_{s=1}^{T} \boldsymbol{F}_{is} \left( \widehat{\boldsymbol{G}}_{t} - (\mathbb{H}^{\prime} + \mathbb{B}^{\prime}) \boldsymbol{G}_{t} \right)^{\prime} (\mathbb{H} + \mathbb{B})^{-1} \boldsymbol{\gamma}_{ij} \boldsymbol{e}_{ijt} \\ & - \widehat{\mathscr{H}}_{i}^{\prime} \frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \frac{1}{T} \sum_{s=1}^{T} \boldsymbol{F}_{is} \boldsymbol{G}_{t}^{\prime} (\mathbb{H} + \mathbb{B})^{\prime} \left[ \widehat{\gamma}_{ij} - (\mathbb{H} + \mathbb{B})^{-1} \boldsymbol{\gamma}_{ij} \right] \boldsymbol{e}_{ijt} \end{aligned}$$

The first term of the above equation is  $O_p\left(C_{\underline{N}T}^{-2}\right)\left[O_p\left(T^{-1/2}\right) + O_p\left(\underline{N}^{-1}\right)\right]$  by Lemma 9.1 and Theorem 5. The second term is  $O_p\left(C_{\underline{N}T}^{-2}\right)$  by Lemma 9.1 and the last term is  $O_p\left(T^{-1/2}\right)\left[O_p\left(T^{-1/2}\right) + O_p\left(\underline{N}^{-1}\right)\right]$ 

by Assumption D. Collecting these terms, we have  $\mathscr{X}3 = O_p\left(C_{\underline{N}T}^{-2}\right)$ . Next, consider

$$\mathscr{X}5 = \frac{1}{N_i T} \sum_{s=1}^T \sum_{j=1}^{N_i} \left( \widehat{F}_{is} - \widehat{\mathscr{H}}_i' F_{is} \right) e_{ijs} \widehat{S}_{ijt} + \widehat{\mathscr{H}}_i' \frac{1}{N_i T} \sum_{s=1}^T \sum_{j=1}^{N_i} F_{is} e_{ijs} \widehat{S}_{ijt}$$

The first term of the above equation is of order  $O_p\left(C_{\underline{NT}}^{-2}\right)$  by Theorem 2.1 and Lemma 10. For the second term, we have:

$$\|\mathscr{X}5\| \le \left\|\widehat{\mathscr{H}}_{i}\right\| \frac{1}{\sqrt{T}} \left(\frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \left\|\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \mathbf{F}_{is} e_{ijs}\right\|^{2}\right)^{-1/2} \left(\frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \left|\widehat{S}_{ijt}\right|^{2}\right)^{-1/2} = O_{p} \left(\frac{1}{\sqrt{T}C_{\underline{N}T}}\right)$$

where the last equality follows from Assumption B2 and Lemma 10.

Collecting the results above, (32) becomes

$$\begin{split} \widehat{F}_{it} - \widehat{\mathscr{H}}_{i}^{T} F_{it} &= \widehat{\Upsilon}_{i}^{-1} \frac{1}{N_{i}T} \sum_{s=1}^{T} \widehat{F}_{is} F_{is}^{\prime} \Lambda_{i}^{\prime} \widehat{S}_{i.t} \\ &+ \widehat{\Upsilon}_{i}^{-1} \left( \frac{1}{T} \sum_{s=1}^{T} \widehat{F}_{is} \omega_{i}(s,t) + \frac{1}{T} \sum_{s=1}^{T} \widehat{F}_{is} \zeta_{i,st} + \frac{1}{T} \sum_{s=1}^{T} \widehat{F}_{is} \eta_{i,st}^{*} + \frac{1}{T} \sum_{s=1}^{T} \widehat{F}_{is} \mu_{i,st}^{*} \right) + O_{p} \left( \frac{1}{C_{\underline{N}T}^{2}} \right) \end{split}$$

It then follows that

$$\widehat{F}_{it} - \widehat{\mathscr{H}}_{i}^{\prime} F_{it} = \widehat{\Upsilon}_{i}^{-1} \frac{1}{N_{i}T} \sum_{s=1}^{T} \widehat{F}_{is} F_{is}^{\prime} \Lambda_{i}^{\prime} \widehat{S}_{i.t} + \widehat{\Upsilon}_{i}^{-1} \frac{1}{T} \sum_{s=1}^{T} \widehat{F}_{is} \eta_{i,st}^{*} + O_{p} \left( \frac{1}{C_{\underline{N}T}^{2}} \right)$$

Then, the proof is the same as that of Lemma 6.1. Let  $\mathcal{B}_{it}$  be the bias term given by

$$\boldsymbol{\mathcal{B}}_{it} = \widehat{\boldsymbol{\Upsilon}}_{i}^{-1} \frac{1}{N_{i}T} \sum_{s=1}^{T} \widehat{\boldsymbol{F}}_{is} \boldsymbol{F}_{is}' \boldsymbol{\Lambda}_{i}' \widehat{\boldsymbol{S}}_{i.t}$$

Under Assumption G3, it follows that

$$\sqrt{N_i} \left( \widehat{F}_{it} - \widehat{\mathscr{H}}_i' F_{it} - \mathcal{B}_{it} \right) = \widehat{\Upsilon}_i^{-1} \left( \frac{1}{T} \sum_{s=1}^T \widehat{F}_{is} F_{is}' \right) \frac{1}{\sqrt{N_i}} \sum_{j=1}^{N_i} \lambda_{ij} e_{ijt} + o_p(1) 
\xrightarrow{d} N \left( \mathbf{0}, \Upsilon_i^{-1} \mathbb{W}_i \mathbb{D}_{ii,t}^{(3)} \mathbb{W}_i' \Upsilon_i^{-1} \right) 
Q.E.D$$

**Lemma 12.** Under the assumptions in Theorem 6, we have for each i and j:

1.

$$\frac{1}{T} \left( \widehat{F}_i - F_i \widehat{\mathscr{H}}_i \right)' F_i = O_p \left( \frac{1}{C_{\underline{N}T}^2} \right)$$

2.

$$\frac{1}{T} \left( \widehat{F}_i - F_i \widehat{\mathscr{H}}_i \right)' e_{ij} = O_p \left( \frac{1}{C_{\underline{N}T}^2} \right)$$
$$\frac{1}{T} \left( \widehat{F}_i - F_i \widehat{\mathscr{H}}_i \right)' \widehat{S}_{ij} = O_p \left( \frac{1}{C_{\underline{N}T}^2} \right)$$

3.

where 
$$\widehat{m{S}}_{ij} = m{G}m{\gamma}_{ij} - \widehat{m{G}}\widehat{m{\gamma}}_{ij}$$

## Proof.

1. Using (32), we have:

$$\begin{split} \frac{1}{T} \left( \widehat{F}_{i} - F_{i} \widehat{\mathscr{H}}_{i} \right)' F_{i} &= \frac{1}{T} \sum_{t=1}^{T} \left( \widehat{F}_{it} - \widehat{\mathscr{H}}_{i}^{\prime} F_{it} \right) F_{it}' = \\ & \widehat{\Upsilon}_{i}^{-1} \frac{1}{N_{i} T^{2}} \left( \sum_{s=1}^{T} \sum_{t=1}^{T} \widehat{F}_{is} \widehat{S}_{i.s}' \widehat{S}_{i.t} F_{it}' + \sum_{s=1}^{T} \sum_{t=1}^{T} \widehat{F}_{is} \widehat{S}_{i.s}' \Lambda_{i} F_{it} F_{it}' \right. \\ & + \sum_{s=1}^{T} \sum_{t=1}^{T} \widehat{F}_{is} \widehat{S}_{i.s}' e_{i.t} F_{it}' + \sum_{s=1}^{T} \sum_{t=1}^{T} \widehat{F}_{is} F_{is}' \Lambda_{i}' \widehat{S}_{i.t} F_{it}' + \sum_{s=1}^{T} \sum_{t=1}^{T} \widehat{F}_{is} e_{i.s}' \widehat{S}_{i.t} F_{it}' \right) \\ & + \widehat{\Upsilon}_{i}^{-1} \left( \frac{1}{T^{2}} \sum_{s=1}^{T} \sum_{t=1}^{T} \widehat{F}_{is} \omega_{i}(s, t) F_{it}' + \frac{1}{T^{2}} \sum_{s=1}^{T} \sum_{t=1}^{T} \widehat{F}_{is} \zeta_{i,st} F_{it}' + \frac{1}{T^{2}} \sum_{s=1}^{T} \sum_{t=1}^{T} \widehat{F}_{is} \eta_{i,st}^{*} F_{it}' \right. \\ & + \frac{1}{T^{2}} \sum_{s=1}^{T} \sum_{t=1}^{T} \widehat{F}_{is} \mu_{i,st}^{*} F_{it}' \right) \end{split}$$

By Lemma 11, we have  $\widehat{\Upsilon}_i = O_p(1)$ . The second part of the above equation is of order  $O_p\left(C_{\underline{NT}}^{-2}\right)$ . The

proof is the same as that of Lemma 6.3 and therefore is not repeated here. We focus on the first part, which can be written as  $\hat{\mathbf{\Upsilon}}_{i}^{-1}(\mathcal{Q}1 + \mathcal{Q}2 + \mathcal{Q}3 + \mathcal{Q}4 + \mathcal{Q}5)$ . As a result of Lemma 10,  $\mathcal{Q}1 = O_p\left(C_{\underline{N}T}^{-2}\right)$ . Using  $\hat{\mathbf{F}}_{is} = \hat{\mathbf{F}}_{is} - \widehat{\mathscr{H}}_{i}^{T}\mathbf{F}_{is} + \widehat{\mathscr{H}}_{i}^{T}\mathbf{F}_{is}$ , we have:

$$\mathcal{Q}2 = \frac{1}{N_i T} \sum_{j=1}^{N_i} \sum_{s=1}^T \left( \widehat{F}_{is} - \widehat{\mathscr{H}}_i' F_{is} \right) \widehat{S}_{ijs} \lambda_{ij}' \left( \frac{F_i' F_i}{T} \right) + \widehat{\mathscr{H}}_i' \frac{1}{N_i T} \sum_{j=1}^{N_i} \sum_{s=1}^T F_{is} \widehat{S}_{ijs} \lambda_{ij}' \left( \frac{F_i' F_i}{T} \right)$$

Note that  $F'_i F_i / T = O_p(1)$  by Assumption B1. The first term is  $O_p \left( C_{\underline{NT}}^{-2} \right)$  by Theorem 6 and Lemma 10. Combining Lemmas 9 and 10, Theorems 4 and 5, and Assumption D, we have:  $T^{-1}\sum_{s=1}^{T} F_{is}\hat{S}_{ijs} = O_p\left(C_{\underline{N}T}^{-2}\right)$ , so the second term is also  $O_p\left(C_{\underline{N}T}^{-2}\right)$ . We then obtain  $\mathcal{Q}2 = \left(C_{\underline{N}T}^{-2}\right)$ . Along similar arguments, it is easily seen that Q3 to Q5 have stochastic order  $O_p\left(C_{NT}^{-2}\right)$ . 2. The proof is similar to part 1 of the lemma and therefore omitted.

3. The result follows from Theorem 6 and Lemma 10.

Q.E.D

## Proof of Theorem 7.

Using  $\widehat{\lambda}_i = \widehat{F}'_i \widehat{Y}_{ij}$ ,  $\widehat{Y}_{ij} = \widehat{S}_{ij} + F_i \lambda_{ij} + e_{ij}$  and  $F_i = F_i - \widehat{F}_i \widehat{\mathscr{H}}_i^{-1} + \widehat{F}_i \widehat{\mathscr{H}}_i^{-1}$ , we obtain:

$$\widehat{\boldsymbol{\lambda}}_{ij} - \widehat{\mathscr{H}}_i^{-1} \boldsymbol{\lambda}_{ij} = rac{1}{T} \widehat{F}_i' \left( F_i - \widehat{F}_i \widehat{\mathscr{H}}_i^{-1} 
ight) \boldsymbol{\lambda}_{ij} + rac{1}{T} \widehat{F}_i' e_{ij} + rac{1}{T} \widehat{F}_i' \widehat{S}_{ij}$$

Replacing  $\widehat{F}_i$  by  $\widehat{F}_i - F_i \widehat{\mathscr{H}}_i + F_i \widehat{\mathscr{H}}_i$ , we get:

$$\begin{split} \widehat{\boldsymbol{\lambda}}_{ij} - \widehat{\mathscr{H}_{i}}^{-1} \boldsymbol{\lambda}_{ij} &= \frac{1}{T} \left( \widehat{\boldsymbol{F}}_{i} - \boldsymbol{F}_{i} \widehat{\mathscr{H}_{i}} \right)' \left( \boldsymbol{F}_{i} - \widehat{\boldsymbol{F}}_{i} \widehat{\mathscr{H}_{i}} \right) \boldsymbol{\lambda}_{ij} + \widehat{\mathscr{H}_{i}}' \frac{1}{T} \boldsymbol{F}_{i}' \left( \boldsymbol{F}_{i} - \widehat{\boldsymbol{F}}_{i} \widehat{\mathscr{H}_{i}} \right) \\ &+ \frac{1}{T} \left( \widehat{\boldsymbol{F}}_{i} - \boldsymbol{F}_{i} \widehat{\mathscr{H}_{i}} \right)' \boldsymbol{e}_{ij} + \frac{1}{T} \left( \widehat{\boldsymbol{F}}_{i} - \boldsymbol{F}_{i} \widehat{\mathscr{H}_{i}} \right)' \widehat{\boldsymbol{S}}_{ij} + \widehat{\mathscr{H}_{i}}' \frac{1}{T} \boldsymbol{F}_{i}' \widehat{\boldsymbol{S}}_{ij} + \widehat{\mathscr{H}_{i}}' \frac{1}{T} \boldsymbol{F}_{i}' \boldsymbol{e}_{ij} \end{split}$$

Then, by Theorem 6, Lemma 12 and Assumption D, it follows that

$$\widehat{\boldsymbol{\lambda}}_{ij} - \widehat{\mathscr{H}}_{i}^{-1} \boldsymbol{\lambda}_{ij} = \widehat{\mathscr{H}}_{i}^{\prime} \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{F}_{it} \widehat{S}_{ijt} + \widehat{\mathscr{H}}_{i}^{\prime} \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{F}_{it} e_{ijt} + O_{p} \left( \frac{1}{C_{\underline{N}T}^{2}} \right)$$

Let  $\mathscr{B}_{ij}$  be the bias term given by

$$\mathscr{B}_{ij} = \widehat{\mathscr{H}'_i} \frac{1}{T} \sum_{t=1}^T F_{it} \widehat{S}_{ijt}$$

By Lemma 10.4 and Assumption G.4, we finally obtain

$$\sqrt{T}\left(\widehat{\boldsymbol{\lambda}}_{ij} - \widehat{\mathscr{H}}_{i}^{-1}\boldsymbol{\lambda}_{ij} - \mathscr{B}_{ij}\right) = \widehat{\mathscr{H}}_{i}^{\prime}\frac{1}{T}\sum_{t=1}^{T}\boldsymbol{F}_{it}e_{ijt} + o_{p}(1) \stackrel{d}{\longrightarrow} N\left(\boldsymbol{0}, \left(\mathbb{W}_{i}^{-1}\right)^{\prime}\mathbb{D}_{ij}^{(3)}\mathbb{W}_{i}^{-1}\right)$$

$$Q.E.D$$

## Β Bootstrap confidence intervals for the global factors and loadings

We outline the bootstrap procedure for constructing consistent confidence intervals for the estimates of global factors and loadings. Although their asymptotic distributions are well-established, they are not readily applicable in practice. The asymptotic covariance matrices derived in Theorems 4 and 5 are subject to the rotation matrix  $\mathbb{H}$ , which is unknown and cannot be estimated. Moreover, we cannot use bootstrap to consistently estimate the variances, because the bootstrap version of the rotation matrix  $\mathbb{H}^{*(b)}$  varies in each replication b.

It is still possible to construct valid CIs for the global factors and loadings since  $\mathbb{H}^{*(b)}$  can be replaced by known quantities in the bootstrap world. The back-rotated bootstrap factors and loadings have the same asymptotic covariance matrices over all replications  $b = 1, \ldots, B$ , as shown in (33) and (35). This enables us to construct CIs based on the percentile estimates. For simplicity we assume that the error terms are cross-sectionally and serially uncorrelated.<sup>16</sup>In Theorem 5, the asymptotic covariance matrix of  $\hat{\gamma}_{ii}$  depends on the time series variation of the local factors  $F_{ii}$ . Therefore, we should also bootstrap

<sup>&</sup>lt;sup>16</sup>This is mainly because we make the algorithm computationally tractable.

the local factors in addition to the error term. This step will affect the bootstrap rotation matrix  $\widehat{H}_{i}^{*(b)}$ as well as the covariance matrix in Theorem 4, which contains the bootstrap version of  $\widehat{K}_{i}$ , denoted  $\widehat{K}_{i}^{*}$ . If the local factors are also bootstrapped,  $\widehat{K}_{i}^{*}$  is not consistent for  $\widehat{K}_{i}$ , which results in different limiting distributions of  $\widehat{G}_{t}^{*(b)}$  across each repetition. Therefore, the bootstrapping for  $\widehat{G}_{t}$  and  $\widehat{\gamma}_{ij}$  should be done, separately.

We now outline the different bootstrap algorithms for for  $\widehat{G}_t$  and  $\widehat{\gamma}_{ij}$  for  $b = 1, \ldots, B$ . Bootstrapping the global factors

- 1. For each *i*, *j* and *t*, construct  $e_{ijt}^{*(b)} = \hat{e}_{ijt}\varepsilon_{ijt}^{*(b)}$  where  $\hat{e}_{ijt} = y_{ijt} \hat{\gamma}'_{ij}\hat{G}_t \hat{\lambda}'_{ij}\hat{F}_{it}$  and  $\varepsilon_{ijt}^{*(b)} \sim i.i.d. N(0, 1)$ .
- 2. Generate the re-sampled data by  $y_{ijt}^{*(b)} = \widehat{\gamma}'_{ij}\widehat{G}_t + \widehat{\lambda}'_{ij}\widehat{F}_{it} + e_{ijt}^{*(b)}$ .
- 3. Apply the estimation procedure developed in Section 3 to the re-sampled data, and obtain the bootstrap estimates, denoted  $\widehat{K}_{i}^{*(b)}$  and  $\widehat{G}_{t}^{*(b)}$ .
- 4. Repeat Steps 1-3 for B times.

The consistency and asymptotic normality of the GCC estimators for the re-sampled model are achieved since Step 1 does not change the validity of Assumptions A-G. In order to have consistent estimates of the bootstrap covariance matrices, we assume cross-section independence of the error terms  $e_{ijt}$ . For each  $b = 1, \ldots, B$ , we have

$$\begin{split} \sqrt{N} \left[ \widehat{\mathbf{G}}_{t}^{*(b)} - \left( \mathbb{H}^{*(b)\prime} + \mathbb{B}^{*(b)\prime} \right) \widehat{\mathbf{G}}_{t} \right] &= \frac{1}{R} \mathbb{H}^{*(b)\prime} \mathcal{I}' \widehat{\mathbb{C}}^{*} \mathbb{E}_{t}^{*(b)} + o_{p}(1) \\ & \stackrel{d}{\longrightarrow} N \left( \mathbf{0}, \frac{1}{R^{2}} \mathbb{H}^{*(b)\prime} \mathcal{I}' \widehat{\mathbb{C}}^{*} \mathbb{D}_{t}^{*,(1)} \widehat{\mathbb{C}}^{*\prime} \mathcal{I} \mathbb{H}^{*(b)} \right), \end{split}$$

where  $\mathbb{H}^{*(b)} = U^{*(b)}$  with  $U^{*(b)} = T^{-1} \widehat{G}^{*(b)\prime} \widehat{G} + O_p \left( C_{\underline{N}T}^{-1} \right)^{17}$ , and

$$\mathbb{B}^{*(b)} = \frac{1}{R} \sum_{i=1}^{R} \sqrt{\frac{1}{N_i}} \mathbb{I}'_i \left(\frac{\widehat{\Theta}'_i \widehat{\Theta}_i}{N_i}\right)^{-1} \frac{\widehat{\Theta}'_i \widehat{e}'_i}{\sqrt{N_i T}} \widehat{J}^{r_0} U^{*(b)}$$

with  $\widehat{\Theta}_i = T^{-1} Y_i' \widehat{K}_i$ . Moreover,  $\widehat{\mathbb{C}}^* = diag \left( \sqrt{\frac{N}{N_1}} \mathbb{I}_1' \left( \frac{\widehat{\Theta}_1' \widehat{\Theta}_1}{N_1} \right)^{-1}, ..., \sqrt{\frac{N}{N_R}} \mathbb{I}_R' \left( \frac{\widehat{\Theta}_R' \widehat{\Theta}_R}{N_R} \right)^{-1} \right)$  and  $\mathbb{D}_t^*$  being a block diagonal matrix as

|                             | $\mathbb{D}_{11,t}^{*,(1)}$ | 0                           |   | 0                           |
|-----------------------------|-----------------------------|-----------------------------|---|-----------------------------|
| m∗,(1)                      | 0                           | $\mathbb{D}_{22,t}^{*,(1)}$ |   | 0                           |
| $\mathbb{D}_t^{+++} \equiv$ |                             |                             | ÷ |                             |
|                             | 0                           | 0                           |   | $\mathbb{D}_{RR,t}^{*,(1)}$ |

<sup>&</sup>lt;sup>17</sup>Using Theorem 4, we have  $\mathbb{H}^{*(b)} = T^{-1/2} \widehat{\mathbf{G}}' \widehat{\mathbf{J}}^{r_0} U^{*(b)}$  where  $\widehat{\mathbf{J}}^{r_0} = \widehat{\mathbf{L}}^{r_0} \left(\widehat{\mathbf{\Xi}}^{r_0}\right)^{-1}$  and  $\widehat{\mathbf{\Xi}}^{r_0}$  is an  $r_0 \times r_0$  diagonal matrix consisting of the  $r_0$  non-zero eigenvalues of  $T^{-1} \widehat{\mathbf{G}} \widehat{\mathbf{G}}'$ . Because  $T^{-1} \widehat{\mathbf{G}}' \widehat{\mathbf{G}} = \mathbf{I}_{r_0}$ , it follows that  $\widehat{\mathbf{\Xi}}^{r_0} = \mathbf{I}_{r_0}$ . Using  $\widehat{\mathbf{L}}^{r_0} = T^{-1/2} \widehat{\mathbf{G}}$ , it follows that  $\mathbb{H}^{*(b)} = \mathbf{U}^{*(b)}$ . Using Lemma 7, it is straightforward that  $\mathbf{U}^{*(b)} = T^{-1} \widehat{\mathbf{G}}' \widehat{\mathbf{G}}^{*(b)} + O_p \left( C_{NT}^{-2} \right)$ .

with

$$\mathbb{D}_{ii,t}^{*,(1)} = \operatorname{plim}_{N_i \to \infty} \frac{1}{N_i} \sum_{j=1}^{N_i} \widehat{\theta}_{ij} \widehat{\theta}'_{ij} E(\hat{e}_{ijt}^2) \le \mathcal{M}$$

Notice that we cannot consistently estimate the covariance matrix in Theorem 4 in general. This is mainly because  $\mathbb{H}^{*(b)}$  does not necessarily converge to  $\mathbb{H}$  as the rotation matrix is subject to the data dependent matrix  $U^{*(b)}$ , which does not always coincide with the population counterpart U. In tis regard, we follow Gonçalves and Perron (2014) and construct the CIs using the percentile estimates based on

$$\sqrt{N}\left[\left(\mathbb{H}^{*(b)\prime} + \mathbb{B}^{*(b)\prime}\right)^{-1} \widehat{\boldsymbol{G}}_{t}^{*(b)} - \widehat{\boldsymbol{G}}_{t}\right] \xrightarrow{d} N\left(\boldsymbol{0}, \frac{1}{R^{2}}\mathcal{I}'\widehat{\mathbb{C}}^{*}\mathbb{D}_{t}^{*,(1)}\widehat{\mathbb{C}}^{*\prime}\mathcal{I}\right),\tag{33}$$

which keeps the bootstrap covariance free from the rotation matrix. Let

$$\widehat{\mathcal{D}}_{G_t}^*(\tau) = \frac{1}{B} \sum_{b=1}^B \mathbb{1}\left(\sqrt{N}\left[\left(\mathbb{H}^{*(b)\prime} + \mathbb{B}^{*(b)\prime}\right)^{-1} \widehat{G}_t^{*(b)} - \widehat{G}_t\right] \le \tau\right).$$

be the empirical distribution function where 1 is the indicator function. The  $1 - \alpha$  CI is given by

$$\left[\widehat{\boldsymbol{G}}_{t} - \frac{q_{\alpha/2}}{\sqrt{N}}, \widehat{\boldsymbol{G}}_{t} - \frac{q_{1-\alpha/2}}{\sqrt{N}}\right]$$
(34)

where  $q_{\alpha/2} = \widehat{\mathcal{D}}_{G_t}^{*,-1}(\alpha/2)$  and  $q_{1-\alpha/2} = \widehat{\mathcal{D}}_{G_t}^{*,-1}(1-\alpha/2)$  are the inverse function of  $\widehat{\mathcal{D}}_{G_t}^*$  evaluated at  $\alpha/2$  and  $1-\alpha/2$  respectively.

We outline the bootstrap algorithm for the global factor loadings: Bootstrapping the global factor loadings

- 1. For each *i*, *j* and *t*, let  $e_{ijt}^{*(b)} = \hat{e}_{ijt} \varepsilon_{ijt}^{*(b)}$  where  $\hat{e}_{ijt} = y_{ijt} \widehat{\gamma}'_{ij}\widehat{G}_t \widehat{\lambda}'_{ij}\widehat{F}_{it}$  and  $\varepsilon_{ijt}^{*(b)} \sim$  i.i.d. N(0, 1).
- 2. Construct the re-sampled local factors as

$$F_{it}^{k,*(b)} = \widehat{F}_{it}^z \cdot \omega_{it}^{k,*(b)}$$
 for  $i = 1, \dots, R, z = 1, \dots, r_i, t = 1, \dots, T$ .

 $\omega_{it}^{k,*(b)}$  is drawn from a zero mean normal distribution independent across i and k with covariance

$$Cov\left(\omega_{it}^{k,*(b)},\omega_{is}^{k,*(b)}\right) = Bartlett\left(\frac{t-s}{l_i^k}\right)$$
 for  $t,s=1,\ldots,T$ 

where *Bartlett* is the Bartlett kernel function and  $l_i^k$  is a bandwidth parameter.<sup>18</sup>

- 3. Construct the re-sampled data as  $y_{ijt}^{*(b)} = \widehat{\gamma}'_{ij}\widehat{G}_t + \widehat{\lambda}'_{ij}F_{it}^{*(b)} + e_{ijt}^{*(b)}$  where  $F_{it}^{*(b)} = [F_{it}^{1,*(b)}, \dots, F_{it}^{r_i,*(b)}]'$ .
- 4. Estimate the model from the re-sampled data using the procedure developed in Section 3 and obtain the bootstrap version estimates  $\hat{\gamma}_{ij}^{*(b)}$ .
- 5. Repeat Step 1–4 for B times.

<sup>&</sup>lt;sup>18</sup>The bandwidth parameter can be chosen following the data dependent approach developed by Andrews (1991).

Step 2 follows the dependent wild bootstrap developed by Shao (2010), which accounts for times series dependence of the local factors. We can also consider other block bootstrapping methods to preserve the serial correlation structure of the local factors. For each  $b = 1, \ldots, B$ , we have:

$$\sqrt{T} \left[ \widehat{\boldsymbol{\gamma}}_{ij}^{*(b)} - \left( \mathbb{H}^{*(b)} + \mathbb{B}^{*(b)} \right)^{-1} \widehat{\boldsymbol{\gamma}}_{ij} \right] = \mathbb{H}^{*(b)'} \frac{1}{\sqrt{T}} \sum_{t=1}^{T} \widehat{\boldsymbol{G}}_t \left( \widehat{\boldsymbol{\lambda}}_{ij}' \boldsymbol{F}_{it}^{*(b)} + e_{ijt}^{*(b)} \right) + o_p(1) \\
\xrightarrow{d} N \left( \boldsymbol{0}, \mathbb{H}^{*(b)'} \mathbb{D}_{ij}^{*,(2)} \mathbb{H}^{*(b)} \right)$$

where  $\mathbb{D}_{ij}^{*,(2)} = \operatorname{plim}_{T \to \infty} T^{-1} \sum_{s=1}^{T} \sum_{t=1}^{T} E\left[\widehat{G}_s\left(\widehat{\lambda}'_{ij}\widehat{F}_{is} + \hat{e}_{ijs}\right)\left(\widehat{\lambda}'_{ij}\widehat{F}_{it} + \hat{e}_{ijt}\right)\widehat{G}'_t\right]$ . For the same reason explained before, we construct the CI based on

$$\sqrt{T}\left[\left(\mathbb{H}^{*(b)} + \mathbb{B}^{*(b)}\right)\widehat{\gamma}_{ij}^{*(b)} - \widehat{\gamma}_{ij}\right] \xrightarrow{d} N\left(\mathbf{0}, \mathbb{D}_{ij}^{*,(2)}\right)$$
(35)

to eliminate the rotational indeterminacy. Recall that the rotation matrix  $\mathbb{H}^{*(b)}$  is a diagonal matrix with elements  $\pm 1$ , so  $\mathbb{H}^{*(b)}\mathbb{H}^{*(b)'} = I_{r_0}$ . Let

$$\widehat{\mathcal{D}}_{\gamma_{ij}}^{*}(\tau) = \frac{1}{B} \sum_{b=1}^{B} \mathbb{1}\left(\sqrt{T}\left[\left(\mathbb{H}^{*(b)} + \mathbb{B}^{*(b)}\right)\widehat{\gamma}_{ij}^{*(b)} - \widehat{\gamma}_{ij}\right] \le \tau\right).$$

be the empirical distribution function. The  $1 - \alpha$  CI is given by

$$\left[\widehat{\gamma}_{ij} - \frac{q_{\alpha/2}}{\sqrt{T}}, \widehat{\gamma}_{ij} - \frac{q_{1-\alpha/2}}{\sqrt{T}}\right]$$
(36)

where  $q_{\alpha/2} = \widehat{\mathcal{D}}_{\gamma_{ij}}^{*,-1}(\alpha/2)$  and  $q_{1-\alpha/2} = \widehat{\mathcal{D}}_{\gamma_{ij}}^{*,-1}(1-\alpha/2)$  are the inverse functions of  $\widehat{\mathcal{D}}_{\gamma_{ij}}^{*,-1}$  evaluated at  $\alpha/2$  and  $1-\alpha/2$  respectively.

A simulation is conducted to examine the validity of our bootstrapping procedure. We use the same DGP as in Section 5 in which we fix R = 3 and  $(r_0, r_i) = (2, 2)$  and  $(\beta, \phi_e, \kappa) = (0, 0, 1)$ . The sample size varies as  $N_i \in \{20, 50, 100, 200\}$  with  $N_1 = \cdots = N_R$  and  $T \in \{50, 100, 200\}$ . Moreover, we allow  $(\phi_G, \phi_F) = (0, 0)$  and  $(\phi_G, \phi_F) = (0.5, 0.5)$  to address the potential serial correlation induced by the local factors. We focus on the first element of  $\hat{G}_t$  and  $\hat{\gamma}_{ij}$  evaluated at t = T/2 and  $i = 1, j = N_i/2$ , respectively. The bootstrapped CIs are generated by (34) or (36). For comparison, the CIs generated by theoretical (infeasible) variances of 4 and 5 are also reported. We choose the significance level  $\alpha = 0.05$  throughout the study.

Each entry of Table 12 is the coverage rate calculated as the ratios of CIs that contains the true factors or loadings over 1000 repetitions. The top panel of Table 12 shows that the infeasible CIs for the global factors have coverage rates around 0.95 whilst the coverage rates of the bootstrapped CIs increase as the sample size increases. The bottom panel of Table 12 presents the results for the global factor loadings. On one hand, it seems that the infeasible CIs are unaffected by the serial correlation of the factors and become closer to 0.95 as the sample size grows. On the other hand, the bootstrapped CIs performs better under non-zero serial correlation of the factors, although both of them become to 0.95 eventually. The above investigation confirms that the bootstrapped CIs are reliable.

Table 12: Coverage rates for the bootstrap CIs with R = 3,  $(r_0, r_i) = (2, 2)$  and  $(\beta, \phi_e, \kappa) = (0, 0, 1)$ 

| Global factors         |     |                             |           |                                 |           |
|------------------------|-----|-----------------------------|-----------|---------------------------------|-----------|
|                        |     | $(\phi_G, \phi_F) = (0, 0)$ |           | $(\phi_G, \phi_F) = (0.5, 0.5)$ |           |
| $N_i$                  | T   | Infeasible                  | Bootstrap | Infeasible                      | Bootstrap |
| 20                     | 50  | 0.939                       | 0.874     | 0.943                           | 0.894     |
| 50                     | 50  | 0.947                       | 0.923     | 0.932                           | 0.898     |
| 100                    | 50  | 0.942                       | 0.911     | 0.952                           | 0.936     |
| 200                    | 50  | 0.943                       | 0.921     | 0.935                           | 0.925     |
| 20                     | 100 | 0.942                       | 0.902     | 0.956                           | 0.896     |
| 50                     | 100 | 0.949                       | 0.923     | 0.939                           | 0.907     |
| 100                    | 100 | 0.953                       | 0.934     | 0.953                           | 0.933     |
| 200                    | 100 | 0.946                       | 0.925     | 0.942                           | 0.935     |
| 20                     | 200 | 0.95                        | 0.901     | 0.957                           | 0.904     |
| 50                     | 200 | 0.954                       | 0.921     | 0.945                           | 0.929     |
| 100                    | 200 | 0.945                       | 0.93      | 0.949                           | 0.931     |
| 200                    | 200 | 0.951                       | 0.93      | 0.948                           | 0.929     |
| Global factor loadings |     |                             |           |                                 |           |
|                        |     | $(\phi_G, \phi_F) = (0, 0)$ |           | $(\phi_G, \phi_F) = (0.5, 0.5)$ |           |
| $N_i$                  | T   | Infeasible                  | Bootstrap | Infeasible                      | Bootstrap |
| 20                     | 50  | 0.972                       | 0.925     | 0.963                           | 0.897     |
| 50                     | 50  | 0.961                       | 0.915     | 0.966                           | 0.862     |
| 100                    | 50  | 0.974                       | 0.922     | 0.979                           | 0.909     |
| 200                    | 50  | 0.965                       | 0.916     | 0.978                           | 0.887     |
| 20                     | 100 | 0.955                       | 0.931     | 0.960                           | 0.910     |
| 50                     | 100 | 0.963                       | 0.929     | 0.958                           | 0.915     |
| 100                    | 100 | 0.966                       | 0.934     | 0.956                           | 0.909     |
| 200                    | 100 | 0.9678                      | 0.936     | 0.967                           | 0.914     |
| 20                     | 200 | 0.951                       | 0.933     | 0.930                           | 0.911     |
| 50                     | 200 | 0.937                       | 0.926     | 0.955                           | 0.932     |
| 100                    | 200 | 0.958                       | 0.942     | 0.959                           | 0.931     |
| 200                    | 200 | 0.955                       | 0.936     | 0.951                           | 0.929     |

Each entry shows the coverage rate calculated as the ratios of CIs that contains the true factors or loadings over 1000 repetitions. The infeasible CIs are generated by the theoretical asymptotic distributions in Theorem 4 or 5, and the bootstrap CIs are generated by the by (34) or (36). We report the CIs for the first global factor and loading, evaluated at t = T/2 and  $i = 1, j = N_i/2$  respectively.  $r_0$  and  $r_i$  are the true number of global factors and true number of local factors in group *i*. We set  $r_1 = \cdots = r_R$ . We set  $N_1 = \cdots = N_R$  where  $N_i$  is the number of individuals in block *i*. *T* is the number of time periods.  $\phi_G$  and  $\phi_F$  are the AR coefficients for the global and local factors.  $\beta, \phi_e$  and  $\kappa$  control the cross-section correlation, serial correlation and noise-to-signal ratio.