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1 Introduction

In a data-rich environment with large cross-section units and time periods, the factor model is a useful
technique for dimension reduction, e.g. Chamberlain and Rothschild (1982), Stock and Watson (2002)
and Bai and Ng (2002). Recently, the multilevel factor models have gained increasing attention, in which
the factors are not only pervasive (i.e. common to all groups) but also semi-pervasive (i.e. common to a
subset of groups only). They are referred to as the global and local factors, respectively. Kose et al. (2003)
advance the multilevel factor model for characterising the global business cycle, documenting evidence
that the global factors play an important role in explaining macroeconomic activities. Barrot and Serven
(2018) find that the common factors are the main driving force behind advanced-country capital flows
whilst idiosyncratic components dominate the emerging/developing country capital flows. Andreou et al.
(2019) show that the industrial production is still the most important workhorse in the US economy,
using the two-block factor model with a mixed-frequency data.

Although the principal component (PC) estimation is a popular method in the single-level factor
model, it is not directly applicable to the multilevel setting, because it can only estimate the whole
factor space consistently but fails to separately identify the global and local factors. This renders the
estimation of the multilevel factor model a challenging issue. Wang (2008) proposes a sequential PC
approach which updates the global and local factors iteratively, though this approach does not guarantee
convergence to the global minimum unless the initial estimate is consistent. Breitung and Eickmeier
(2016) and Choi et al. (2018) propose the use of the canonical correlation analysis (CCA) for obtaining
an initial consistent estimate of the global factors by employing CCA using any two blocks. Once the
(estimated) global factors are projected out, the local factors can be consistently estimated for each block.
The global and local factors are iteratively updated until convergence.

Consider, however, the more general multilevel factor models in which some blocks share the common
regional factors, see for example, Moench et al. (2013) and Beck et al. (2016). Another case is provided
by Hallin and Liska (2011) and Rodriguez-Caballero and Caporin (2019), where the blocks share the
pairwise common local factors. In such cases, CC A does not always produce consistent estimate of the
global factors because the common local factors can be misidentified as the global factors.

As the main contribution, we propose the generalised canonical correlation analysis (GCC'), which
extends the standard CC' A using any two blocks through constructing the system-wide matrix, denoted
®, that contains all the factor spaces from all blocks. As the pairwise canonical correlation between
any two blocks is now satisfied simultaneously for all pairs of the blocks, this approach is shown to
overcome the aforementioned issue associated with the common local factors. Moreover, unlike most
existing studies, GCC' is computationally convenient as it does not involve any iteration.

We provide an asymptotic theory that establishes the consistency of the estimated factors and loadings
based on the matrix perturbation theory, and derives the asymptotic normal distributions of the factors
and loadings estimates. Andreou et al. (2019) develop an asymptotic theory for the factors and loadings
estimators under rather stringent conditions, though their theory can be applied to the case with the two
blocks only. In this regard, we highlight that our theories are derived under fairly standard assumptions,
and the GCC approach can be applied to the more general cases.

Furthermore, we develop a GCC-based consistent selection criteria for identifying the number of the
global factors by evaluating the ratios of adjacent singular values of the matrix ®. As shown by Han
(2021), the standard approaches for selecting the number of factors (rg) in the single-level factor literature
(e.g. Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013)), fail to generate reliable model
selection in the multilevel case. Recently, a few approaches have been proposed to deal with an issue of
consistently estimating ro under the multilevel setting. Andreou et al. (2019) propose a testing procedure



by deriving the asymptotic distribution of the canonical correlation between the factor spaces in a two
block model. Choi et al. (2021) develop consistent selection criteria for determining the number of the
global factors based on the average pairwise canonical correlation among all blocks. Chen (2022) proposes
a selection criteron based on the average residual sum of square (ARSS) from a regression of (estimated)
global factors on the factor spaces in each block. It is important to notice that our approach does
not require either the orthogonality between the global and local factors or the selection of any tuning
parameters. This makes the GCC' criterion more general than existing studies.

Via Monte Carlo simulations, we first focus on the consistent estimation of the global factors and the
number of the global factors, finding that GC'C' outperforms the CC A approach by Andreou et al. (2019)
and Choi et al. (2021), and the circular projection matrix estimation (CPE) approach by Chen (2022)
under all experiments we consider. Next, we document evidence that the GCC estimator of the global
factors and loadings is well-centered and tends to the standard normal density, confirming the validity of
our asymptotic theory.

We apply the GC'C approach to estimating the multilevel factor model and characterising the national
and regional housing market cycles in England and Wales using a large disaggregated panel data of the
real house price growth rates for the 331 local authorities over the period 1996Q1 to 2021Q2. The main
empirical findings are summarised as follows:

We first detect one global (national) factor, one local factor in the seven regions (NE, NW, YH, EE,
LD, SE and WA) but no local factor in the three regions (EM, WM and SW) (see Table 1). Second,
the national factor explains a considerable portion of the hosue price inflation variation with a mean of
46.6% while the regional factor contribution is much weaker with its average at 8.3% only. This suggests
that the house market in England and Wales appears to be more integrated than the U.S. market (e.g.
Del Negro and Otrok (2007)). Third, we can identify that the regional factor components of EE, LD and
SE (Area 1) co-move closely while those of NE, NW, YH and WA (Area 2) tend to cluster, confirming
that the regional factors are common across some regions. Fourth, the national housing market cycle
captured by the global factor components displays a typical boom-bust-recover behaviour, which is in
line with the conventional view that the national housing market cycle is pro-cyclical and closely related
to economic fundamentals (e.g. Chodorow-Reich et al. (2021)). By contrast, the regional housing market
cycles captured by the regional /areal factor components display a heterogeneous and opposition pattern
unrelated to fundamentals, demonstrating a housing market segmentation in the North and the South.
Finally, we document evidence that the growth rate of the (lagged) population gap between areas strongly
comoves with the areal components gap, suggesting that the population gap growth may be an important
driver behind the regional house price gap.

The rest of the paper is structured as follows. Section 2 introduces the multilevel factor model and
provides a review of the related literature. Section 3 proposes the novel GCC approach and presents
the main estimation algorithms. Section 4 develops the asymptotic of the GCC' estimator. We also
advance a new selection criterion for identifying the number of the global factors. Section 5 reports
Monte Carlo simulation results. Section 6 presents an empirical application to the house price inflation
data in England and Wales. Section 7 offers concluding remarks. The mathematical proofs, the additional
simulation results and theoretical derivations are relegated to the Online Appendix.

2 The Multilevel Factor Model

Consider the multilevel factor model:

Yijt = ’)’Z{jGt + )\;]th =+ eijtai =1,.., R,] =1,..., Ni,t =1,...T (1)



where G; = [G%, ...,G:O]I is the rg x 1 vector of the global factors, Fy; = [let, ...,Fﬁ"}’ is the r; x 1
vector of the local factors in the block 4, v;; and A;; are the corresponding factor loadings, and e;j; is
the idiosyncratic error. Stacking (1) across the N; individuals in block 4, we have:

Yi =T:G, + AiFyy + ey, (2)
where Yy = [Yite, -, Yinit)s € = i1ty -r €invi)s Lo = (Yirs o, vany) and - Ay = [Xir, o A,
Nin N,;><1 NiX’I“(] Ni><’l”i
The model can also be written as
Yrt = ®+Kt+ + €, (3)
where
G, rn Ay 0 --- 0
Y et F, 'y 0 Ay --- 0
Y;f - . , et = ’K:r - . 5 ®+ =
Nx1 Y Nx1 ‘ r+x1 : Nxrt : : : .
Rt Rt Fr, Tk 0 0 - Ap

with N = 221 N; and v+ =1rg + Zf;l r;. Further, the model is written in a matrix form:
Y = KT te, (4)
where Y =1Y7,..,Y7], Kt =[Ky,...K7|,and e =[ei,...,er].
TxN Txrt TxN
Alternatively, stacking (1) over time period ¢, we can rewrite the model as
Y;‘J‘ = G'Yij + F;Aij +e; = Kieij + €5 (5)
/ / I /
where Yi; = [yij1, . yisr| s €ij = [eij1,-eijr], G = [G1,....Gr], F; = [Fu,.. Fr|, 6;; =
Tx1 Tx1 T'xro Txr;
(Y50 )\gj]l and K, = [G, F;]. For each block i, we then have:

where Y; = [Yi1, Yia, ..., Yin,], € = [€i1,€:2,. .., ein,] and ©; = [Ty, A;].
The primary issue in the multilevel factor model is to identify the global and local factors, separately.
Suppose that we express the model (2) as

Yi =Gy +wy, uy = AiFy + ey, (7)

where the local factors are treated as the part of the error components. The first rg factors extracted
from the PC' estimation applied to the whole data Y; = [Y7,,...,Y%,]’, will be inconsistent estimates of
G because the weak correlation condition among the error components in u; = [t} ..., u,] is violated
due to the presence of the local factors (see Breitung and Eickmeier (2016)). Alternatively, if we apply
the PC estimation to each block Y; in (6), the factor space spanned by K; = [G, F] can be consistently
estimated up to rotation, though the global and local factors cannot be separately identified.!

IMoreover, the r* factors extracted from Y; in (3) are not necessarily consistent estimates of K+. Lemma 2 in
Freyaldenhoven (2021) establishes that the local factors can be consistently estimated only if the number of individuals
within that group is larger than v N.



A number of alternative methods have been developed to separately identify the global and local
factors. Wang (2008) proposed an iterative sequential approach. Given the estimated global factors and
loadings, denoted G and 1"1, then the local factors and loadings for each block i can be estimated from

the following PC' estimation: .

Given the estimated local factors and loadings, denoted ﬁ and Ki, then the global factors and loadings
can be updated by the following PC' estimation:

[xq_ﬁlfxg,...,YR_ﬁfo;% —G[T),....T]+e

This procedure will be repeated until convergence. However, this approach does not guarantee consistency
unless the initial estimates of the global factors and loadings are consistent, because the least square
objective function is not globally convex.

To get consistent initial estimates of the global factors, Breitung and Eickmeier (2016) and Choi
et al. (2018) propose the use of the canonical correlation analysis (C'C'A), where the canonical correlation
between f('\m and K, n is estimated using the PC' from any two blocks m and h. For simplicity assume
that rg, r, and rj, are known and set rg + r,, = r9 + r,. Then, we consider the following characteristic
equation:

(805 S = L8 ) v = 0 9)

where Sab (a,b =m,h) denotes the variance matrlx between K and K nh. We then obtain the solution ¢
by the (squared) canonical correlations between K and K, h. Since Km and K, n share the factor space
spanned by the global factors, the ry largest canonical correlations will be equal to one asymptotically.
Therefore, we can consistently estimate the global factors by G-= Em Vo where V70 is an (ro+7,) X 7o
matrix consisting of the characteristic vectors corresponding to the rqo largest characteristic roots. Next,
after projecting G out, we can consistently estimate the local factors and loadings. In practice, this
estimation proceeds iteratively until convergence. Breitung and Eickmeier (2016) and Choi et al. (2018)
suggest choosing the block pair (m, k) that yields the largest canonical correlation. Andreou et al. (2019)
develop an asymptotic theory for the estimated factors and loadings under rather stringent conditions,
though their theory can be applied to the case with the two blocks only.

However, the pairwise identification strategy, based on CC A, does not always produce the consistent
estimation of the global factors. For instance, consider a two-level factor model with three blocks (R = 3)
and rg = r; = 1 for ¢ = 1,2,3. Suppose that the first g{ld secor/lg blocks share the same local factor, and
we obtain the largest canonical correlation between K; and K5. Now, we are no longer sure whether
K, V)" produces the consistent estimate of the global factor or the (common) local factor. Furthermore,
the number of global factors tends to be overestimated. A few empirical studies show that some blocks,
that share the same geographic region, are subject to (common) regional factors. Hallin and Liska (2011)
find one common local factor between France and Germany in a three-country model using industrial
production indices for France, Germany and Italy. Alternatively, Rodriguez-Caballero and Caporin (2019)
consider the pairwise-common local factors by employing two parallel country classifications using the
Debt/GDP ratio and credit ratings, in which case CC' A cannot consistently estimate the global factors.
See also Moench et al. (2013) and Beck et al. (2016).

Hence, to overcome this important issue, we propose the GCC by incorporating the information
from all blocks simultaneously. Recently, Chen (2022) proposed a circular projection estimation (CPFE)
approach. The circular projection matrix is a successive product of the factor spaces of K;, given by



!
the product inside the bracket in {(Hil P (KZ)> (Hf;l P (Kl)ﬂ ¢ = ¢, where P(.) is the projection

matrix, and 7 and ¢ are the eigenvalue and eigenvector. Only if 7 = 1, then ¢ is a global factor. Hence,
the global factors can be estimated as v/T times the r( eigenvectors corresponding to the unit eigenvalues
of the circular projection matrix by replacing K; by f(\l The C'PFE does not suffer from the issue related
to the common local factors since it encompasses all blocks. By contrast, the GCC' estimates the global
factors by a linear combination of the factor spaces (see (19) below). This yields a simpler asymptotic
expansion of the global factors, which enables us to directly derive the asymptotic normal distribution of
the estimator of the global factors. Moreover, via the simulation studies, we show that GC'C' outperforms
CPE in all cases considered (see Section 4).

3 The Generalised Canonical Correlation Analysis

We begin with the standard canonical correlation analysis (CCA) by selecting any two blocks, h and m,
and letting K,,, and K} be T x (rg 4+ ry,) and T X (rg + rp,) matrices consisting of the global and local
factors. The CCA aims to find the linear combinations v,,; and vp; such that

(Umj, ;) = argmax Corr (K, U, Kpvp) . (10)
Um,Vh

subject to the restrictions

VK K.V, =1, . and VK, K,V;, =1, . (11)

where rmin = min{rg + 7m, 70 + 71}, Vin = [Umi, -y Umr ) and Vi, = [Op1, ..o, vpe ] I Ky and K
share the ro global factors, then there exists rg linear combinations such that their correlations are equal
to one or equivalently

K,V =K,V,° (12)

m

where V0 = [Upn1,. .., Vmr,] and V,° = [Up1,. .., Vhr,| are the matrices collecting such linear combina-
tions. We then solve the following characteristic equation:

(SmnSi Shm — €Smm)v =10

to obtain V7 that is the collection of characteristic vectors v corresponding to the ro largest characteristic
roots.

Notice, however, that CC' A cannot always identify the global factors in the presence of common local
factors. To address this important issue, we propose the generalised canonical correlation (GCC') analysis

by constructing the following T'(R — 1)R/2 x Zlel(ro + 7;) system-wide matrix:

K, -K, 0 0 .. 0 0
K, 0 -K; 0 .. 0 0

- . (13)
0 o0 0 0 ... Kp, —-Kp

where K; = |G, F;] for i = 1,..., R. We then find the kernel of ®, i.e. a set of vectors collected by the



matrix Q = [Q],..., Q] that satisfies:

KiQ:1 — K2Q» 0
KiQ1 — K3Qs3 0
Q= . = .
Kr-1Qr-1 — KrQr 0
To this end we consider the following singular value decomposition (SVD) of ®:
® = PAQ’ (14)

such that Q = PA, where P and Q are the TR(R—l)/QXZf;l(r0+rl) and Zf;l(ro—i-m) leR;l(T0+Tl)
orthonormal matrices, and A = diag{01,02,...,05°r (o4} is 2 S (ro+10) X S (o + 1) diagonal
matrix consisting of the singular values in ascending order. If we can find a set of vectors g and the
singular values § = 0 such that ®q = dp = 0, then we obtain Q by the set of vectors, q.

We establish the existence of the ry zero singular values and the corresponding eigenvectors, denoted
Q™ in the following proposition. 2 A direct example of Q™ is such that each Q}° = [I,.,, 0]’ is a selection
matrix. To rule out an infeasible case where the global factors can be expressed as a linear combination of
the local factors, we assume that Gag = Flag +---+ Frag ifand only if g =0, a1 =0, ...,agr =0,
which resembles the rank condition in Assumption A of Wang (2008).

. . R ) .
Proposition 1. There exists a Y., (ro + 71) x ro matriz, Q™ = [Q7,Q%’,..., Q'] containing the

right eigenvectors of ®, such that ®Q™ = 0 with the rq zero singular values. Moreover, the remaining
singular values of ® are larger than zero and of stochastic order Op(\/T),

From Proposition 1 we have:
K\Q)’ = K2Qy = - = KrQy (15)

which shows that the pairwise canonical correlation in (12) is simultaneously satisfied for all pairs of
the blocks. This important result demonstrates that all K,;Q;° for i = 1,..., R, obtained by the system
approach, can consistently estimate the factor space spanned by G.

Let ¥ = [K 1QY°,..., KrQ'Y] and consider the eigen-decomposition,

79V = LEL, (16)
where Z is a diagonal matrix containing the eigenvalues of T~ ¥ ¥’ in descending order.
Proposition 2. The first ro columns of L, denoted L™, consists of the factor space spanned by G.

Proposition 2 shows that the global factors can be identified by a linear combination of appropriately
rotated block factor spaces. Importantly, the factor space spanned by the ry global factors can be con-
sistently estimated so long as the factor spaces of K; are consistently estimated for i =1, ..., R.

The estimation algorithm proceeds as follows.

2We note that the solution Q;’s are equivalent to

R
(R, QY,....QR) = argmin > |G- K;W;|”,
Wi, Wa,...,Wg =}
which is more common in the GCC literature (see Yang et al. (2019)). Therefore, we name our approach after GCC' dispite
the slight difference in the problem formulation.



Estimation of global factors and loadings We first obtain the PC estimate of K; for each block ¢,

denoted f(\i, by VT times the rpax eigenvectors of Y;Y; corresponding to the ry.x largest eigenvalues,

where ryax > max;—1 . r{ro+ i} is a common positive integer. We then construct the TR(R —1)/2 x
Rrmax matrix, ® by replacing K; with K; in (13), and evaluate the SDV of ® as
& - PAG, an

where P and @ are the TR(R — 1)/2 X Rrmax and Rrmax X Rrmax orthonormal matrices, and A is the
Rrpax X Rrmax diagonal matrix consisting of the singular values in ascending order.

~ ~ 7! ~
Next, denote Q™ = [ S }0'} as the first ¢ columns of @, and construct the T' x Rry matrix,
T = ﬁléqo, cey ER@%} We consider the eigen decomposition,
T-'w¥ = LEL (18)
where L is a T x Rry orthonormal matrix and EisaTxT diagonal matrix consisting of the eigenvalues

in descending order. Then, from (18), we obtain the consistent estimator of the global factors, denoted
G, by the r( vectors of L corresponding to the 7o largest eigenvalues multiplied by v/7'; namely,

R
~ 1 ~n ~ 1 e~ o\~
G=—7=99'J"°=— (Y KQ'QK]||J" (19)
= (3
where J" = Lo (éT(J) - , L™ collects the first ro columns of L and E™ is an ro X ro diagonal matrix

consisting of the rqy largest eigenvalues of T-19¥ in descending order. _
Finally, the global factor loadings can be estimated by I'; = T7'Y;G.

Estimation of local factors and loadings For each block ¢ =1, ..., R, the local factors, denoted 1:'\‘1-7
can be consistently estimated by /T times the r; eigenvectors of 17217/ corresponding to the r; largest
eigenvalues, where f’] =Y, - C:‘f‘;

The local factor loadings can be estimated by KZ = T’ll//\'i’ﬁ- for each block i = 1,..., R.

4 Asymptotic Theory for the GCC Estimator

Section 4.1 establishes the consistency of estimates of factors and loadings based on the matrix perturba-
tion theory, assuming that the number of global and local factors, rg and r; are known for all 7. Section
4.2 develops a consistent selection criteria for determining the number of the global factors. In Section
4.3, we derive asymptotic normal distributions for the factors and loadings estimates.

4.1 Consistent estimation of factors and loadings
Let M be a finite constant. Following Bai and Ng (2002) and Choi et al. (2021), we assume:

Assumption A.

1. E(e;ji) =0 and E (|e;j¢|®) < M for all i, j and t.



2. LetE (N,fl Z;\Ll el-jseijt) = wj(s,t) for alli. Then, |w; n,(s,s)] < M andT~! Zstl Zle lwi(s, t)]
M for all t.

3. Let Eejteint) = Ti,(jk),t» With |T; Gkl < |7i,Giey| < M for all i and t. In addition, for each i, we
have N;~* Dot 2kt ‘Tiy(jk)| <M.

4. Let E(ejjieins) = i (jk),(ts)- For each i, we have

1 N; N, T T
N, T ZZ |Ti, (k) (ts) | S M
T j=1k=11t=1s=1
5. For everyi, t and s
N, 4
1 i
E [eijseijt — E(eijseijt)] <M
VN

Assumption B.

1. T7'G'G has distinct eigenvalues. Let K;; = (G}, FY,)'. For every i and t, we have E (K;;) = 0,
E(|Ki|!) < 00 and T KK, 5 Xk, where X, is positive definite.

2. For each m, h and t,

Assumption C.

1. il €7 < 00 and || Aij|| < X < 0o for all i and j, where 5 and X are constants.
2. For everyi=1,--- | R,

(a) rank (©;) = ro + r; where ©; = [T;, A;];

-1/, — —1 _
(b) N, @;0; = N, AT, A;AJ — XY, = |:2%1Ai S,

p ] which is a positive-definite
matriz;
(c) Xo,Xk, has distinct eigenvalues;

(d) XA, 2 F, has distinct eigenvalues.

Assumption D.  The global factors are uncorrelated to the local factors; for every i, T 'K!K; =
¥¢ O
0 Xp

7

} + O, (T‘1/2) where X and X g, are ro X ro and r; X r; full rank matrices.

<



Assumption A is an extended version of Assumption C in Bai and Ng (2002), which allows the
idiosyncratic errors to be serially and (weakly) cross-sectionally correlated within blocks. This is less
restrictive than the assumption made in Choi et al. (2018). Assumptions B and C are standard in the
literature. Assumption B.2 allows weak correlation between global/local factors and idiosyncratic errors.
Assumption C requires the global (local) factors to have non-trivial contributions to the variance of all
individuals within the corresponding block. Assumption D ensures that the global and local factors can
be separately identified. Notice that we do not require the orthogonality between global and local factors
for consistently estimating the global factors and their dimension, though we need Assumption D for
consistent estimation of I';, A;, F; and r;. More importantly, we allow the local factors to be correlated
or even identical across some blocks although some existing studies require the orthogonality among local
factors, e.g. Choi et al. (2018) and Han (2021). Nevertheless, the GCC estimator is shown to be valid in
the presence of the common local factors. We focus on the practical case with a fixed number of blocks
R, but the GCC can be valid even as R — 00.?

Lemma 1. Under Assumptions A-C, as N;,T — oo, we have:

1 1
— =0, (——),i=1,..,R,
\/T‘ p<CN1-T>

where f(\z 1§ the T X Tmax matriz of the PC' estimates given by VT times the Tmax e€igenvectors of
Y.Y, corresponding to the rmax largest eigenvalues, K; = |G, F;] is the T x (ro + r;) factors, H; is the

(ro + 1) X rmax rotation matriz, Cn,7 = min {\/Ni7 \/T}, and

o]0, (L)

1
vl
where ® is the T(R — 1)R/2 X Zlel(ro + r;) matriz defined in (13), ® is the T(R —1)R/2 X Rrmax

o~

matriz by replacing K; with ff\i, H = diag {Hl, ﬁQ’ cel, f{\R} s a 21111 (ro+71) X Rrmax block-diagonal
rotation matriz and Cx 7 = min{y/N,VT} with N = min{Ny, Na, ..., Ng}.

Lemma 1 establishes that as N;,T — oo, f{\z converges to their population counterpart up to a
rotation. The rotation matrix, H; is shown to exist in Bai and Ng (2002), but we do not need a specific
form since any full rank rotation matrix yields the observationally equivalent model.

Lemma 2. There exists an Rrmay X 1o matriz Q™ such that 'I>1/:I\QT0 = 0, where the rg singular values
are zero. The remaining singular values of ®H are larger than zero and of stochastic order Op(\/T).

Lemma 2 extends Proposition 1 to the case under the rotation incurred by the PC estimation, and
enables us to apply Lemma 3 below to ® for deriving the convergence rate of the estimated eigenvectors
under rotation. It also helps to estimate the number of global factors ro by counting the number of zero
singular values of ® (see Section 4.2).

While the consistency of the estimated eigenvalues are well-established, there are the two main issues
in establishing the consistency of the estimated eigenvectors. First, it is widely acknowledged that
the convergence of the eigenvectors may not be well-behaved under eigenvalue-multiplicity. Second,

3When R — oo, the identification of global factors is simpler because each block is asymptotically negligible and the
PC estimation can be applied to the whole data matrix.

10



convergence rates of the eigenvectors associated with zero eigenvalues are unclear according to Davis-
Kahan theorem (see Theorem 3.4 of Stewart and Sun (1990)).

In Lemma 3 we state the perturbation theory developed by Yu et al. (2015), that is a variant of the
Davis-Kahan Theorem, and necessary for deriving our consistency results.

Lemma 3. Let S and S be the p X p symmetric matrices with eigenvalues Ay > --- > A\, and ;\1 > >
5\1,, respectively. Fix 1 <r <s<pand setd=s—r+ 1. Assume that min{A._1 — A\, A\s — Asy1} >0,
where A\g = 00 and Apy1 = —o0. Let the p x d matrices V. = [v,, Up11,...,0s] and V= [0y Dpy1y .oy Ds)
have orthogonal columns, satisfying Lv; = A\jv; and f)f;j = \jo; for j =r,r+1,...,s. Then, there

exists a d X d orthogonal matriz O such that

22|55
Vo-v|<— .
H min{\._1 — A, As — Ast1}

The Davis-Kahan Theorem states that the eigenvectors converge to their population counterparts
corresponding to non-zero eigenvalues up to rotation under eigenvalue-multiplicity for any real symmetric
matrices. However, the stochastic bound provided by the Davis-Kahan Theorem cannot be applicable
to our case where the eigenvalues of interest are zero. Lemma 3 establishes that the convergence of the
eigenvectors still holds up to an orthogonal rotation even if the population eigenvalues are zero.

With Lemmas 1-3, we establish the consistency of the estimated global factors and loadings (up to
rotation) in Theorem 1.

Theorem 1. 1. Under Assumptions A-C, as N1, Na,...,Ng,T — oo, we have:
1 4 1
— |G — GHH =0 ()
VT H P CﬂT

2. Under Assumptions A-D, as N1, Ns,...,Ngr,T — oo, we have:

1 1
:O —_—
P (CNT>

T —H T

VNi

where H = T=Y2G'J™U is an ro x ro rotation matriz, J© = L™ (™)~ E" 4s an ro X 7o
diagonal matriz consisting of the ro non-zero eigenvalues of T"*GG’ in descending order, L™ is a
T x ro matriz of the corresponding eigenvectors, U is an ro X ro orthogonal matriz defined in (24),
and Cyr = min{y/N,VT} with N = min{Ny, Ny, ..., Ng}.

If the main focus is on the consistent estimation of the global factors (e.g. Del Negro and Otrok
(2007)), then an orthogonality between global and local factors is not required. This feature is more
general than existing studies that assume an orthogonality, see Wang (2008), Choi et al. (2018), Andreou
et al. (2019) and Han (2021). But, we still need to impose such an orthogonality for consistent estimation
of the global factor loadings.

Given consistent estimates of the global factors and loadings, we next establish the consistency of the
estimated local factors and loadings in Theorem 2.

Theorem 2. Under Assumptions A-D, as N;,T — oo, for eachi=1,..., R, we have:

1
=0 (CNT)

B - R

1
vd
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1

AN — #N
]\[Z 7 1 7

1
=% (CNT>

where ;%?: (ALA;/N;) (ﬁZ’F/T) ?;1 s an r; X r; rotation matriz, ?1 is an r; X v; diagonal matriz
consisting of the r; largest eigenvalues of ﬁf’;f’;’ in descending order, }A’Z =Y, — éfé, and Cn1 =
min{\/N, VT} with N = min{Ny, No, ..., Ng}.

We allow the local factors to be correlated or identical across some blocks, unlike many existing studies
that require orthogonality among the local factors, e.g. Choi et al. (2018) and Han (2021). Theorem 2
establishes that the GC'C' estimator is still consistent even in the presence of the pairwise common local
factors and the local factors common across some blocks.

4.2 Determining the number of global factors

We now develop the GCC criterion for identifying the number of global factors. Consider the diagonal
matrix, A from the SDV of ® defined in (17). Then, we evaluate the ratio of adjacent (squared) singular
values in a similar fashion as in Ahn and Horenstein (2013).
Let 31, ceey B Rraa. D€ the diagonal elements of A in ascending order. Then, we propose estimating
the number of global factors by
52
TAO,GCC = argmax 6]i+1 (20)

k=0,...;max Of

The main idea is that the ratio sharply separates the zero singular value with the positive one. Using
Lemma 2, we can show that 8, = O, (\/T/CﬂT> for k = 1,...,r¢ while &, = O, (\/T) for k£ =
ro+1,..., Rrmax, where Cyp = min{N,T} and N = min{Ny, Na, ..., Ng}. Hence, the ratio is bounded
fork=0,...,70 — L,rg + 1,..., "max, but it tends to infinity for k = rq.

To deal with the case with g = 0, we set the mock singular value as

Rrmax

. 1 .
b}

52 _
G==—
CﬂTerax 1

Since the average of squared singular values is of stochastic order O, (ﬁ ) , we have: 50 =0, (\/T /C ET> ,

that has the same stochastic order as & for k = 1,...,ro. Hence, 62/63 = O, (1) for 79 > 0 whilst
62/62 2 o for 19 = 0. This ensures that we do not overestimate o even for ro = 0.

Theorem 3. Under Assumptions A-C, we have:

lim Pr (7 =7r9)=1
o, Prfocee =To)

where To,gocc = argmax 5,%“/5,%, 5 << é )

Tmax — — YTmax
=0,...,7max

are the singular values of ® and
08 = (Cyr Rrmax) ™ 27 07,

The justification behind Theorem 3 lies in the sense of the matrix perturbation theory that the
eigenvalues converge to their population counterparts under a small perturbation term (see Stewart and
Sun (1990)). Notice that if our main focus is on the consistent estimation of rg, then an orthogonality
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between global and local factors is not required. This make the GCC criterion more general than existing
studies that require orthogonality, e.g. Andreou et al. (2019) and Han (2021).

Given 7, we can consistently estimate global factors and loadings, denoted G and f‘i. Then, the
number of local factors, r; can be consistently estimated by applying the existing approximate factor
model to Y; = Y; — GT'; for ¢ = 1,..., R, which has been extensively studied, e.g. Bai and Ng (2002),
Onatski (2010) and Ahn and Horenstein (2013). See Choi and Jeong (2019) for a comprehensive review.

Related literature Chen (2012) and Dias et al. (2013) develop the following information criteria to
determine the number of global and local factors:

R
PN 2
(fo,71,...,7) = argmin ZHYi—GkOI‘f“’—FfiAf” + penalty

ko,k1,....kr i=1

As described in Choi et al. (2021), however, these information criteria have two shortcomings. First, it
involves too many combinations of kg and k; even if R is mildly large. Second, it is nontrivial to construct
a proper penalty function that can discriminate the respective roles played by the global and local factors.

Andreou et al. (2019) derive the canonical correlation based test statistic given by £(r) — r where

£(r) = S5_y V0 and fy is the k-th largest characteristic root of (9). Let £(r) be the de-biased and

re-scaled version of £(r) — r. Then, it is shown that £(r) <4 N(0,1) for r =1,...,79. A sequence of tests
can be conducted from r = ryax to r = 1 so that ry can be estimated by

70,AGGR = max {'r 11 <7 < rmax, &(r) > zaNT}

where z, . is a threshold value depending on (N,T') and some tuning parameters. However, the main
weakness of their approach lies in that it can be applied to the data with the two blocks only.

Choi et al. (2021) develop consistent selection criteria based on the average canonical correlations
among all block pairs. Let £, be the r-th largest characteristic root of (9) between a block pair m
and h, and construct the average (squared) canonical correlation by §(r) = ﬁ 22;11 Zgzm 11 Lo
The following two selection criteria, CC'D and M CC, are proposed:

fo,cop = argmax §(r) — §(r+1)
7=0,...,"max+1
fo,mcc = max {0 <7 < rpax 0 1 — §(r) — C X penalty < 0}
where C' is a data dependent tuning parameter. C'C'D is consistent while imposing a slightly strong con-
dition that the average canonical correlation has an upper bound. M CC' does not require this condition
but 1 — §(r) needs to be modified by the product of a data dependent tuning parameter and a penalty
term. We conjecture that CC'D and M CC' can be consistent in the presence of multi-block common local
factors while they become inconsistent in the presence of the pairwise common local factors.*
Chen (2022) proposes a selection criteron based on the average residual sum of square (ARSS) from a

regression of CA;, on f{\l given by ARSS,. = % Zle E; (IT - P <f{\z)) Er, where Er is the eigenvector corre-

NN —~
sponding to the r-th largest eigenvalue of the circular projection matrix, [(Hf’_l P <K1)> (Hf:l P (Kl))} .

4For instance, if the two blocks share the pairwise common local factors, then the 7o + 1 largest canonical correlations
between such a block pair is equal to one, in which case CCD and MCC tend to select the rg + 1 global factors instead of
ro. We also observe that CC'D and M CC are sensitive to the excessively large rmax when the errors are serially correlated.
By contrast, in (unreported) simulations, we find that GCC' is generally insensitive to the coice of Tmax.

13



Chen suggests estimating ro by

7o,4rss = argmax Logistic(loglog(N) x ARSS, 1) — Logistic(loglog(N) x ARSS,)

r=1,...,Pmax

where the logistic function, Logistic(x) = P;/[1 + Aexp(—7z)] polarises ARSS, to 0 or 1 with A =
P /Py—1, PBhp=1073, P, =1 and 7 = 14. The ARSS can allow non-zero correlations between local
factors, but it does not cover the case with a zero global factor, implying that the ARSS estimator always
overestimates ro when ro = 0 (see the simulation evidence in Section 5).

4.3 Asymptotic distributions of the estimated factors and loadings

To develop the asymptotic distributions of the estimated factors and loadings, we need to impose slightly
stronger conditions than those required for consistency in Section 4.1. Following Bai (2003), we make
the additional assumptions.

Assumption E. For each i, we have limy, N_y0o N/N; = a; < M
Assumption F.
1. Z;F:l |wi N, (s,t)] < M for all i and t.

2. Let Tmny,(kj)t = E (emntenjt). For every t, we have |T(mny, (kj),tl < [Tmh),(kj)] < M. Moreover, for
every m, h, k, j, we have ZkN:l IT(mn), (k)| < M.

Assumption G.

1. For each m, h and t,

2

T Nj
H ZZ ms [€nksenkt — E(enksenkt)] <M
VN T s=1k=1
2. For each m, h and t, the (ro +r;) X (ro 4+ r;) matriz satisfies
2
T Np
7 2 D Kmibiseni| | <M
H NoT j=1
3. For each t, as Ny,...,Nr — 0o, we have
N
Eqy \/}VT Zj:ll B1je1je
Eaq L S22 85505
E,=| . | = VN2 3'1 €25 &N(O,Dﬁ”)
Eri A= 2 Orjen;y
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where

DY, Dy, iy,
Dgl) _ Dgll),t D;IZ),t Dég’,t
D), Daj, Dk,
is the covariance matriz with
N Ni
D e = Plm, oo (NN 2SS 000300 Bemiiennn) < M.
j=1k=1

4. For each i and j, as T — oo, we have:
1 < d
2
7 z; Gy (N Fy + ei5e) —= N(0,D)
=

T
1 d ®)
— F, €iit —> N 0, ]D)i'
\/T tzzl tCijt ( J )
where ID)E?) = plimT_)oonl ZZ:1 23:1 E [Gs (A;jﬂs + eijs) (Agjﬂt + eijt) G;] and
3 . T T
ng) = plzmT—)oo Zs:l Zt:l E (FitFi/seijSeijt)'

Assumption E imposes that N; is of the same order of magnitude as N for all ¢ = 1,..., R, similarly
to Choi et al. (2018). Assumptions F and G, corresponding to Assumptions E and F in Bai (2003), are
standard in the literature. Assumption F restricts the cross-sectional and serial dependence of the errors.
Notice that Assumption F.2 imposes limited cross-block dependence, which is not required in Assumption
A. Assumptions G.1 and G.2 are technical conditions for controlling the stochastic order of the bias terms
in the asymptotic expansions, though they are not too restrictive since they are summations of zero mean
random variables. Assumptions G.3 and G.4 are the central limit theorems that can be applied to several
mixing processes.

With Assumptions F and G, Lemma 6 establishes that some parts in the asymptotic expansion of

—

K;; achieve a convergence rate faster than O, (C N}T)v as previously shown in Lemma 1. This allows us

to refine the convergence rates of @”0 and L™ in Lemma 7 so that they are now O, (C;,%) instead of

Op (C&lT) as in the proof of Theorem 1. By applying these results, we are able to derive the asymptotic
normal distributions of the estimated factors and loadings in Theorems 4-7.

Theorem 4. Under Assumptions A-C and E-G, as N1,No,...,Nr,T — oo and \/N/T — 0, we have
for each t:

VN [ét _(H +B) Gt} - %H’I’@Et +op(1) % N (0, };H’I’(CDS)C’IH>

where H is an ro x ro rotation matriz defined in Theorem 1, T = [I,,,...,I.] is an Rro X ro matriz,
~ / -1 , -1
C = diag ( Nil]l’l (811\,(:)1) s ey NARH’R (61@(:’%) ) is an Rrg x Rrq block diagonal matriz with I; =
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[I,,,0]" an (ro +r;) x ro matriz, C = plile)m7NR)T_>oo(a, E: and ]D)El) are defined in Assumption G.3,

and B is an ro X ro matrix given by

R ~1
1 1 OUCH e’ 1
B=— —T L 1€ J"U =0,
R;VNil( N; > VN T (\/N>

where J™ and U are defined in Theorem 1 and (24).

Theorem 5. Under Assumptions A-G, as N1, Na,...,Ng, T — 0o and VT /N — 0, we have for each i
and j:

T
VT [% ~(H+B)"! %]} - Z (N F + eije) +o0p(1) -5 N (07H']1))£]?)H>

3\

where ]D)l(?) is defined in Assumption G.4.

Theorem 6. Under Assumptions A-G, as N1, Na,...,Ng,T — oo, and if /N;/T — 0 and 0 < N;/T <
o0, then we have for each t:

N;

o - (1 & A 1
VN (Fit — A Fy — Bit) =Y;! (T ; FF’> I ;Aijem 4N (0 YWD, WYy )

where Dgf)t = plz'mNiﬁooNf1 Zj\]:l Zgzl Aij AN E(€ijt€int) ts a the lower-right r; X r; matriz of ]D)S)t, and
Bi; is the bias term given by

T
. 1 ~ ~ 1 1
B, — N FLFL A8, =0 <>+0 <>
i T~ : FTUP\VUN PAVT

Z, C and E; are defined in Theorem 3. 'I';l and W, are defined in Lemma 11 and Xr,,, is defined in
Assumption C.2b.

Theorem 7. Under Assumptmns A-G, as N1, No,...,Nr, T — 00, and if \/T/NZ —0and0<T/N, <
oo, then we have each j =1,..., N;:

VT (Xij — N~ u) =

HMH

1t611t + Op ) i) N (07 (W:l)/DE‘?)Wz_l)

where ]D)Z(-?) is defined in Assumption G.4, %B;; is the bias term given by

T
—~1 ~ 1 1
B ji’;T E_ itSijt Op(\/ﬁ>+0p(ﬁ)

and W; is defined in Lemma 11.
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Theorems 4 and 5 establish that the estimates of the global factors and loadings follow the asymptotic
normal distributions. Unlike in Theorem 1, the rotation matrix has an additional term, B of order

O, (ﬂ -1/ 2), which does not affect the asymptotic variance matrices. To the best of our knowledge,
there is no studies that establish the asymptotic distributions of the global factors and loadings. One
exception is Andreou et al. (2019), but their theory only applies when R = 2.

Theorems 6 and 7 show that there are bias terms B and %;; of order O, (C&;) stemming from

the estimation error from the global components, §Z‘jt, that is the (¢, j) element of S, = GT, — C:‘f‘; A
similar result is documented by Andreou et al. (2019), who show that the asymptotic distribution of the
local factors is not centered. In principle, it is not straightforward to perform the bias correction unless
the global factors and loadings are known. Notice, however, that we derive our asymptotic theories under
weaker conditions than those imposed by Andreou et al. (2019); namely, we do not assume that the global
factors are orthogonal to each other, and the local factors are orthogonal within blocks.

This generality brings forth the rotation matrices in the asymptotic variances, as shown in Theorem 4
and 5. To deal with this issue, we use the wild bootstrap advanced by Gongalves and Perron (2014) for the
global factors. We also use a dependent bootstrapping method developed by Shao (2010) for the global
factor loadings to account for the potential serial correlation induced by the local factors as suggested in
Assumption G.4 and Theorem 5. The bootstrapped covariance matrices are not consistent estimates for
those in Theorems 4 and 5, because the bootstrap version of the rotation matrix H*(® changes in each
replication and does not necessarily match H. Therefore, we construct confidence intervals (CI) using the
percentile estimates based on the back-rotated estimates by

JN |:(H*(b)/ n B*(b)/)_l G _ @t} and VT [(H*(b) + B*(b)) 0 - :771']':| :

Since the resulting Cls are unaffected by the bootstrap rotation matrix, they should provide correct
coverage rates. See Appendix B for details.

5 Monte Carlo Simulation

Following Choi et al. (2021) and Han (2021), we generate the multilevel factor data as follows:
0 T
Yijt = Y13 Gt + V0N Fit + / Kbizeije = Z’ijGf + Vi Z A Fi + V Elizeise (21)
z=1 z=1
fori=1,...R,j=1,....,N;, and t = 1,...,T, where the superscript z denote the z-th factor and loading.
We generate the global factors/loadings, the local factors/loadings and idiosyncratic errors by
Gt = (ZSGthl + V¢, Vg ~ iid. N(O,Iro)

Fit = QSFE,t—l + Wi, Wit ~ iid. N(O,In) for i = 1, N .,R,
V5~ idd. N(0,1) for z =1,...,70; A} ~ iid. N(0,1) for z=1,...,7

€ijt = GeCiji—1 + Eijt + B E €ij—ht> €ije ~ 1id. N(0,1)
1<|h|<8
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We allow global and local factors to be serially correlated, but also idiosyncratic errors to be serially and
cross-sectionally correlated.

We control the noise-to-signal ratio by x. When x = 1, the variances associated with the global
factors, local factors and idiosyncratic errors are respectively given by

70
.
Var(y;Gi) = 3 Var(v;Gi) = 1= oz
G

1+ 1632
1—¢2

We then make the variance contribution of each component equalised for k = 1 (e.g. Choi et al. (2018)
and Han (2021)). For rq > 0, we set:

. o T . o 1—}—1652
n=() () me= () / (=)

while for ro = 0 we set: )
T 1+ 1683
f;1 =1 and ;5 = .

= rmann= () [ (K25)

We consider five DGPs for the following combinations of sample sizes: R € {3,10}, N; € {20, 50,100,200}
with Ny = --- = Ng and T € {50,100,200}. We fix (ro,7;) = (2,2) fori =1,..., R, ¢¢ = ¢r = 0.5 and
(8, e, k) = (0.1,0.5,1) under DGP1, which serves as the benchmark case. DGP2 is the same as DGP1
except that we allow the local factors to be identical for some blocks. To generate the pairwise common
local factors for R = 3, we set F\, = Fg,, F3 = F%, and F, = Fj,. For R = 10, we set F}, = --- = F4
and Fyj, = --- = F},, to allow the presence of multi-block common local factors. DGP3 considers the
noisy data with x = 3 while the other configurations remain the same as in DGP1. DGP4 and DGP5
replicate DGP1 but allow the local factors to be correlated. Specifically, we generate the local factors by

Var(X\;; Fit) ZV&T N ER) = _’“i¢2 and Var(ey;) =
F

Ft = O.E)Ft_l + Wy, wy ~ ii.d. N(O,QF)

where F; = [FY,,...,Fg,]" and w; = [w},,...,wh,]. We set the diagonal elements of Qp at 1, and
the off-diagonal elements (denoted wr) at 0.4 and 0.8 in DGP4 and DGP5, respectively. The number of
replications of each experiment is set at 1,000. R

We focus on the estimation of the global factors G and the number of the global factors 7g. Without
loss of generality we assume that the number of the global factors and local factors are known with
Tmax = 7o + r; for all i. To evaluate the precision of the estimated global factors, we report the trace
ratio defined as o R
tr {G'G(G’é)*G’G}

tr {G'G}

where tr{.} is the trace of a matrix. The more precise the estimated factors are, the higher the trace

TR (G) =

ratio is. If the global factors are perfectly estimated, then TR (é) = 1. For comparison, we also report

the results generated by the CCA by Andreou et al. (2019) and the CPE by Chen (2022). Since the
precision of I?’Z and 7; depend purely on the precision of G and 7o due to the sequential estimation, and
their properties are extensively studied by existing literature, we only focus on the performance of GCC
estimates for G and 7.
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Table 6 shows the average trace ratios over 1000 repetitions. For DGP1, all three approaches can
produce precise estimates of global factors. While GCC and C'PFE estimates are quite close to each other,
GCC substantially outperforms them, especially when N; and T are small. Under DGP2 where we allow
the common local factors across some blocks, CC A is shown to be inconsistent since the largest canonical
correlation between the two blocks does not necessarily refer to the presence of the global factors. On the
other hand, CPFE and GCC do not suffer from this issue, and they continue to be consistent while GCC
still outperforms CPE in all sample sizes. For DGP3, all three approaches are negatively affected by
the noisy data, but the performance of GC'C improves faster as the sample size increases than CC A and
CPE. We obtain qualitatively similar results under DGP4 and DGP5. Notice also that the performance
of GCC improves as the number of blocks, R increases while CPE does not display this property.’
Overall, we find that GCC' dominates CC A and C'PF in all cases we consider.

Table 6 about here

Next, we turn to the estimation of ry by GCC together with CCD and MCC advanced by Choi
et al. (2021) and ARSS by Chen (2022).5 Table 7 reports the average of #y over 1,000 replications and
the percentages of over- and under-estimation, denoted (O|U). For DGP1, all the four selection criteria
perform satisfactory unless the sample size is too small. Under DGP2, CCD and MCC are shown to
overestimate rg due to the presence of the pairwise common local factors in which case the canonical
correlation between the common local factors from such two blocks is expected to be equal to one. While
the performance of ARSS is adversely affected, it improves for large N; and T. We still find that GCC
outperforms ARSS. For R = 10, CCD becomes the most vulnerable to the common regional factors.
While MCC and ARSS can produce relatively precise estimates, GC'C outperforms them especially in a
small T. Under DGP3, we obtain mixed results. CC'D and M CC perform better than ARSS and GCC
for a small T whilst ARSS and GCC produce more precise estimates than CCD and MCC for a small
N;. All the four selection methods can correctly select g when N; and T beome large. For DGP4, CCD
can produce reliable estimates under the mild correlation between local factors while MCC' estimates
remain precise unless N; and T are small. ARSS underperforms when N; or T is small. GCC has a
similar performance to M C'C but its performance is much better in small samples. Under DGP5 where
the correlation between the local factors is extremely strong, CCD fails completely since the upper bound
condition is violated whilst ARSS does not show any sign of improvement. M CC' can select rg precisely
in large samples, but GCC still dominates with a faster convergence. Overall, we find that MCC, ARSS
and GCC' can be reliable selection criteria, although ARSS tends to over-estimate 79 when there is no
global factor in the data. Given that GCC does not rely upon the penalty function and the tuning
parameters, we conclude that GCC' is the most robust and reliable criterion.

Table 7 about here

As a robust check we repeat the simulation experiments for (rg,r;) = (1,1) and (ro,7;) = (3, 3), and
present the outcomes in Table 8 to 11. The results are qualitative similar to those with (rg,r;) = (2, 2).
As the number of factors in the data increases, we notice that the accuracy of the estimates becomes
slightly lower.

Tables 8-11 about here

5For example, under DGP3 with N; = 20 and T = 50, the trace ratios for CPE and GCC are 0.59 and 0.755 for R = 3
while they become 0.59 and 0.919 for R = 10.
6When implementing these alternative selection criteria, we follow the practical guidelines byChoi et al. (2021) and use

. e el
Pmax = max{ro +r1,...,70 + TR}
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Finally, we investigate whether the global factors and loadings estimated by GCC follow the asymp-
totic normal distribution. For convenience, we fix R = 3, (ro,7;) = (2,2), N; € {20,100,200} and
T € {50,200}, and consider the benchmark case where (¢g,¢r) = (0,0) and (8, ¢e, k) = (0,0, 1). Using
the known quantities in the asymptotic variances in Theorems 4 and 5, we standardise the estimates by

1 —1/2 R
<R2H'I'CD§”<C’IH) VN [Gt — (H' +B) Gt]

(o) VT 3, - By

We then compare our estimates with the standard normal density. In Figures 5 and 6 we display the
histograms for the first element of G; and #;; evaluated at ¢ = 1, j = N;/2 and t = T'/2. We find that
the standardised estimates are well centered and scaled, and tend to the standard normal density. As
N; and T increase, the approximation becomes more accurate, confirming the validity of our asymptotic
theory.

Figures 5 and 6 about here

We also propose a bootstrap approach to produce the valid confidence intervals for the estimated global
factors and loadings. In Appendix B, we conduct a simulation study using the bootstrap approach, and
find that the coverage rates of the bootstrap Cls are getting close to the nominal 95% as the sample size
increases.

6 Empirical Application

Using the multilevel factor model we apply the GCC approach to studying the national and regional
housing market cycles in England and Wales. Residential houses are the most valuable properties of the
households while house price fluctuations can put the financial system at a greater risk of default during
a recession. The housing sector is also directly related to employment, investment and consumption,
playing a central role in the business cycle (e.g. Leamer (2007)). While house prices are subject to
nation-wide shocks, such as the business cycle and credit liquidity, they are also determined by regional
characteristics such as local amenities and the land supply. Hence, te housing market cycle is likely to
exist at both national and regional levels.

From the website of Office of National Statistics HPSSA Dataset 14, we download the quarterly (mean)
house prices of four different types of properties, (detached, semi-detached, terraced and flats/maisonettes)
for 331 local authorities over the period 1996Q1 to 2021Q2. The local authorities belong to ten regions:
North East (NE), North West (NW), Yorkshire and the Humber (YH), East Midlands (EM), West Mid-
lands (WM), East of England (EE), London (LD), South East (SE), South West (SW) and Wales (WA).
Each “block” in the multilevel factor model is referred to as a region.

We construct the real house price growth in the jth local authority of the region 4 through deflating
the nominal house price by CPI and log-differencing it as follows:

- PRICE;; PRICE,;,
Tijt = 100 x log (C'Plt> — 100 x log (Cﬂt_l

By removing the series with missing observations, we end up with a balanced panel with R = 10,
N =312 N;=1300 and T = 102.

20



Table 1 displays the number of local authorities for each region as well as the mean and standard
deviation of m;;:. We observe that the average growth rates for NE, NW, YH and WA are lower than the
overall mean, those for EE, LD and SE higher than the overall mean, and those for EM, WM and SW
close to the mean. Notice that LD displays the highest mean growth and standard deviation.

Table 1 about here

We apply the GCC' approach to estimating the multilevel factor model for the standardised series,
denoted 7, with 10 regions, which is referred to as the national-regional model. By setting ryax = 5
and applying the GCC criterion in (20), we detect one global (national) factor.” Next, by applying BICs5
to each region,® we find that there is one local factor for NE, NW, YH, EE, LD, SE and WA whereas
no local factor is detected for EM, WM and SW (see Table 1). The existence of both global and local
factors clearly suggests that there are housing market cycles at both national and regional levels.

To measure the strength of the factors relative to idiosyncratic errors, we evaluate the relative impor-
tance ratios of the national and regional factors for region i by

Ni Ni
RIG; = NS (37 (T #);7;)) and RIF; = N 'S (X;jiij/ (T—lﬁ;jﬁij))
j=1

j=1

where 7r;; is the T'x 1 vector of the (standardised) real house price growth rates in the j-th local authority
of the region ¢. The results reported in Table 1 show that the global factor explains a considerable portion
of the variation, ranging between 29.6% (London) and 55.1% (South West) with a mean of 46.6%. The
large variance share explained by the national factor suggests that the house market in England and
Wales appears to be more integrated than the U.S. market where the national factor is dominated by the
regional factors (see Del Negro and Otrok (2007)). RIGs of YH, EM, WM, EE and SW are above average,
exhibiting that these regions are more responsive to national shocks. Interestingly, London is the least
sensitive region to the national factor. On the other hand, the regional contribution is much weaker as
its average relative importance ratio is only 8.3%. Still, the regional factor explains substantially larger
time variations of the house price inflation for London and South East respectively at 22.6% and 15.1%.

To avoid the issue that the estimated global and local factors are subject to rotation/sign inde-
terminacy, we report the time-varying behaviour of the average global (national) and local (regional)

=/

factor-components for each region i at time ¢ that are constructed by @;t = ';)';C:‘t and fit = Xiﬁt, where
q; = N * Zjvzl ~,;; and = I\ Z;V:ql Xq;j.g The trajectories of Gy; plotted in Figure 2, are highly
persistent but exhibit a typical “boom-bust-recover” pattern of the (recent) housing market cycle.!’ The
national factor-components initially displayed an upward trend until 2003Q3, followed by a long-term
downturn until 2009Q2. It then made a quick recovery and became relatively stable from 2012 till 2020
when the COVID19 pandemic erupted. We also observe a surge in the national factor-components during

7CCD and MCC by Choi et al. (2021) also select one global factor. This result is robust to the different values of rmax-.
8We have also applied alternative selection criteria, ICp2 by Bai and Ng (2002), ER by Ahn and Horenstein (2013) and
ED by Onatski (2010). First, ER surprisingly reports zero local factors for all regions whilst /Cp2 and ED tend to produce
more factors but the additional factors explain very small portions of variance. Second, BIC3 is shown to have good finite
sample performance, see Choi and Jeong (2019) and Choi et al. (2021).
9 As the (uniquely identified) factor-components are just scaled factors, they carry qualitatively the same information.
10The boom-bust pattern is consistent with the economic theory suggesting that agents are over-optimistic about the
fundamentals during a boom, rendering the growth continues to accelerate, whilst as the economy deteriorates following
the negative shock, their expectations of capital return are reversed, resulting in the house market collapse, which is further
worsened by foreclosures, see Kaplan et al. (2020) and Chodorow-Reich et al. (2021).
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the COVID19 period, which was mainly prompted by a tax relief policy introduced by the UK government
to boost the economy and improve liquidity.!!

Figure 2 about here

__ The first two figures in Figure 3 display the time-varying patterns of the regional factor-components
Fit, from which we can identify that the regional components of EE, LD and SE (solid lines) comove closely
(the upper panel) while those of NE, NW, YH and WA (dotted lines) tend to cluster together (the lower
panel). These clustering patterns are corroborated by the correlation matrix among the estimated regional
components in Table 2, showing that the first and second off-diagonal elements are close to one, but the
other off-diagonal ones are considerably smaller. Furthermore, we observe transparent discrepancies
between these two groups (referred to as Area 1 and Area 2). The regional factor-components in Area 1
appear to have an earlier turning point around 2000 than the global components during the boom, but
declined sharply during the financial crisis, Brexit and COVID19 period. On the other hand, the regional

components in Area 2 tend to move in an opposite direction, but remained remarkably stable since 2008.
Table 2 and Figure 3 about here

Next, we formally investigate an issue of whether there are areal factors common to some regions. We
first project the estimated global factors out from the data and obtain the residuals containing only the
local factors and errors, which form the new areal data. Then, we apply the GCC and MCC criterion
to these areal data consisting of the different combinations of regions. For example, if the local factors
of NE, NW, YH, and WA are common, then the number of common (areal) factors should be one, and
zero otherwise. Alternatively, we may consider a two-block model with Area 1 and Area 2 as blocks. If
the two areal factors are identical, then there should be one common factor. Otherwise, the number of
common factor is zero. The results in Table 3 confirm that the local factors are common within each
area, but the two areal factors are different. Thus, we can identify three areas, Area 1 (LD, EE and SW)
with one areal factor, Area 2 (NE, NW, YH and WA) with one areal factor, and Area 3 (EM, WM and
SW) with zero areal factor. Interestingly, these areas are adjacent geographically (see Figure 1). Notice
that the existence of an areal factor around London is not in line with the notion that the “London
factor” is pervasive nationally,'? because the main impact of London is more likely to be confined to its
neighbouring regions. In this regard, this finding may provide a support to the notion of “convergence
club” that the house prices in regions, that are closer and more distant to London, tend to converge
separately, e.g. Holmes and Grimes (2008) and Montagnoli and Nagayasu (2015).

Table 3 about here

Next, we estimate a national-areal model with 3 areas, and compare its estimation results with those
obtained from the national-regional model with 10 regions. It is remarkable that the correlation between
the global factors estimated from these two models is 0.996. Further, the local (areal) factor from Area 1
has correlations of 0.924, 0.974 and 0.977 with the local (regional) factors from EE, LD and SE, whereas
the areal factor from Area 2 has correlations of 0.917, 0.978, 0.941 and 0.955 with the regional factors
from NE, NW, YH, and W. This confirms the presence of the common local factors among some regions

1 The residential property buyers in the U.K. pay Stamp Duty Land Tax (SDLT). The first stage of the policy started
from July 2020 and ended at June 2021. The tax reduction is effectively raising the nil rate threshold of the property value
from £125,000 to £500,000. See https://www.gov.uk/guidance/stamp-duty-land-tax-temporary-reduced-rates. As the
housing demand was stimulated by the policy, the price was pushed up with the inelastic housing supply.

12Holly et al. (2011) propose a spatio-temporal model with the London price set as a common factor for all regions.
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in which case the standard CC A-based estimates of the global and local factors may be inconsistent. The
third panel in Figure 3 displays the areal factor components constructed by F,; = (N ! Z;v:“l i) Fat for
a = 1,2. These areal components follow the quite similar time-varying patterns to the clustered regional
components as shown in the first two figures in Figure 3.

To assess the information contents of the global/local factor components, we present the correlations
between the national/areal factor components and a list of macroeconomic and financial variables in
Table 5. The national components are positively correlated with the GDP growth, the number of build-
ings started and the New York house price growth rate, demonstrating the pro-cyclicality and possibly
strong connection to the international housing market. Moreover, the national component is negatively
correlated with the unemployment rate (the demand side), whilst they are negatively correlated with
the labour force in the construction sector (the supply side). The credit market condition also plays an
important role, as the national components are negatively correlated with the mortgage rate and the
20-year government bond yields while positively correlated with residential lending approvals. These
results are in line with the conventional view that the national housing market cycle is pro-cyclical and
closely related to economic fundamentals (see Chodorow-Reich et al. (2021)). By contrast, the areal
housing market cycles captured by the areal components display a heterogeneous and opposition pattern,
as shown in the last subplot of Figure 3. Although the areal component in Area 2 is still negatively
and positively correlated with the unemployment rate and the residential credit supply respectively, it is
positively correlated with the construction labour. Interestingly, the areal component in Area 1 shows
that even tight financial market/economy conditions do not seem to suppress the housing market cycle
surrounding Area 1. The opposite sign of the correlations reflect that the two areas react differently
to changes of financial market/economy conditions. We may therefore conclude that the existence of
such distinctive areal factors clearly indicates a housing market segmentation subject to a geographical
gradient.

Table 5 about here

Finally, we investigate another important issue called the South-North house price gap, which has
been a long-standing political concern. We collect the annual regional population data from Nomis
and construct the areal population by the average of the regional population.!> We also aggregate the
areal factor components into the annual ones. The first two figures in Figure 4 display the areal factor
components and the (lagged) population growth rate of in Area 1 and Area 2 respectively. We observe
that they move closely to each other with correlations of 0.304 and 0.44 respectively for Area 1 and Area
2. Next, we construct the population gap between the two areas, calculated as the population in Area
1 minus the population in Area 2. We then compare its growth rate with the difference (gap) between
their areal components. From the third panel in Figure 4, we observe that the growth rate of the (lagged)
population gap strongly comoves with the areal components gap with the remarkably high correlation
(0.8). This suggests that the growth rate of the previous population gap can become a strong predictor
for the areal components gap.'*

Figure 4 about here

13The regional population data can be found in https://www.nomisweb. co.uk.

MHoward and Liebersohn (2020) show that the expected income inequality may drive the divergence of the house prices
through the channel of rent expectation. Our results suggest that the widening population gap also contribute to the house
price gap.
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7 Conclusion

We have developed a novel approach based on the generalised canonical correlation (GCC) analysis
for consistently estimating the global/local factors and loadings in a multilevel factor model. We also
introduce a new selection criteria for the number of global factors. The Monte Carlo simulation shows
dominating performance of our approach. Our methodology is applied to analysing the house market in
England and Wales using a large disaggregated panel data of the real house price growth rates for the 331
local authorities over the period 1996Q1 to 2021Q. We find that the national factor explains about half
of the time series variation while the regional factors are less important but non-negligible. Moreover, we
show that the regional factors are common to some regions and hence suggesting a national-areal model
rather than a national-regional model.

Although we focus on the global-local specification, our approach can be extended to cover the mul-
tilevel factor model that has a more complicated grouping scheme. For example, the model in which the
individuals can be classified to more than two layers. See the parallel grouping in Breitung and Eickmeier
(2016) and the hierarchical grouping in Moench et al. (2013). Furthermore, if the block membership is
unknown, it is possible to estimate the block memberships using methods developed by Ando and Bai
(2017), Coroneo et al. (2020) and Uematsu and Yamagata (2022) and apply GCC' thereafter.
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Figure 1: Map of regions in England and Wales

North East

YorkShire and
the Humber

South West
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Table 1: Main Empirical Results over 1996Q1-2021Q2

Region N; Mean Std |7 RIG RIF
North East 48 0.692 3.238 | 1 0445 0.114
North West 153  0.823 3429 | 1 0.436 0.082
Yorkshire and The Humber | 84  0.848 3.2 1 0501 0.073
East Midlands 136 0.969 3.75 | 0 0.507 0.000
West Midlands 119 0912 2817 | 0 0.527 0.000
East of England 180  1.163 2.8 1 0501 0.092
London 122 145 4362 | 1 0.296 0.226
South East 256  1.138 2518 | 1 0456 0.151
South West 116  1.072 2843 | 0 0.551 0.000
Wales 86 0.875 3.829 | 1 0.437 0.094
Summary /Average 1300 1.037 3.237 0.466 0.083
N; is the number of local authorities in each region. Meand and Std represent

the mean and standard deviation of m;;; from each region j.
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7; is the number of
local factors estimated by BIC3 after projecting out one global factor selected by
GCC. RIG; and RIF; are the relative importance ratios of global and local fac-

tors for block 4, which are calculated as RIG; = N; ! Z;\j:Ll (ﬁyéjaij/T_lﬁ';jfrij) and
1N (R 1 =
RIF = N7V (XA /T w7y ).



Table 2: Correlation matrix among the regional factor components

NE NW YH W EE LD SE

NE |1 0.859 0.885 0.827 -0.59  -0.383 -0.512
NW | 0.859 1 0911 0946 -0.659 -0.471 -0.585
YH | 0.885 0911 1 0.884 -0.672 -0.531 -0.628
W 0.827 0946 0884 1 -0.628 -0.456 -0.559
EE |-0.59 -0.659 -0.672 -0.628 1 0.859  0.948
LD | -0.383 -0.471 -0.531 -0.456 0.859 1 0.927
SE | -0.512 -0.585 -0.628 -0.559 0.948 0.927 1

Table 3: Test of the number of com-
mon/\local factors from new blocks af-
ter G being projected out

New Blocks veoe  Taoo
NE, NW, YH, W | 1 1
EE, LD, SE 1 1
Area 1, Area 2 0 0

Table 4: Relative importance
ratios from the Nation-Area

model
Area 7 RIG  RIF
Areal | 1 0.447 0.132
Area 2 | 1 0429 0.104
Area 3 | 0 0.525 0.000
Avg 0.467 0.079
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Table 5: The correlations between factor components and macro variables

Obs  National Area 1 Area 2
GDP (Growth Rate) 102 0.135 0.055 0.006
IP (Growth Rate) 102 0.106 0.031 —0.047
CPI (Growth Rate) 102 —0.39** —0.156 0.003
Employment 102 0.198 —0.34 0.146
Unemployment 102 —0.439***  0.321 —0.241
Construction Labour (Log) 98 —0.304 —0.387"" 0.492***
Building Started (Log) 97 0.532*** —0.028 0.298
Residential Investment (Log) 98 —0.269 —0.428***  0.272
New York House Price (Growth Rate) 102 0.655*** —0.176 0.21
M1 (Growth Rate) 102 0.228 0.166 0.103
M3 (Growth Rate) 102 0.062 0.028 0.15
Residential Lending Approvals (Log) 102 0.238 —0.434***  0.467***
Mortgage Rate 58 —0.343 0.354 0.135
Inter Bank Lending Rate Overnight 98 0.371* 0.303 0.048
Inter Bank Lending Rate 3 Months 87 0.287 0.163 0.085
Government Zero Coupon Bond Yields 5 Years 102 0.064 0.074 0.078
Government Zero Coupon Bond Yields 10 Years 102 —0.257 0.019 0.04
Government Zero Coupon Bond Yields 20 Years | 100 —0.575"** —0.083 0.008

FHx O K* and * indicate 1%, 5% and 10% significance level respectively. The data of macro variables from GDP

to Unemployment rate are downloaded from the website of Office for National Statistics: https://www.ons.gov.uk/.
The financial variables from M1 to zero coupon bond yield are downloaded from the website of Bank of Endland:
https://www.bankofengland.co.uk/statistics/research-datasets.

Figure 2: Estimated national components
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Figure 3: Estimated regional components
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Areal component

Figure 4: Areal components and population
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Table 6: Average trace ratios of the global factor estimates with (¢¢, ¢r) = (0.5,0.5), (ro,r;) = (2,2)

R N; T
3 20 50
3 50 50
3 100 50
3 200 50
3 20 100
3 50 100
3 100 100
3 200 100
3 20 200
3 50 200
3 100 200
3 200 200
10 20 50
10 50 50
10 100 50
10 200 50

10 20 100
10 50 100
10 100 100
10 200 100
10 20 200
10 50 200
10 100 200
10 200 200

CCA CPE GCC

DGP1
(B. e, ) = (0.1,0.5,1)
benchmark

0.82 0.827  0.926
0.93 0.942 0.977
0.956 0.974 0.989
0.969 0.987 0.994
0.843 0.834 0.938
0.949 0.95 0.982
0.973 0.977  0.991
0.985 0.989 0.996
0.848 0.836  0.941
0.954 0.952 0.983
0.978 0.978  0.992
0.989 0.989 0.996
0.843 0.834 0.98

0.933 0.944 0.992
0.958 0.974 0.996
0.971 0.987 0.997
0.862 0.836 0.984
0.954 0.949 0.994
0.976 0.977 0.997
0.986 0.989 0.998
0.868 0.836 0.984
0.958 0.951 0.995
0.979 0.978  0.998
0.989 0.989 0.999

CCA CPE GCC
DGP2
(B, pe, k) = (0.1,0.5,1)

common local factors

0.637 0.809 0.885
0.661 0.941 0.971
0.655 0.973  0.988
0.658  0.987  0.993
0.626 0.818 0.9
0.654 0.949 0.98
0.663 0.977  0.991
0.666  0.988  0.995
0.617  0.82 0.909
0.649 0.951  0.982
0.659  0.978  0.992
0.664 0.989  0.996
0.677 0.758  0.97
0.709 0.932 0.991
0.722 0.973  0.996
0.721 0.986  0.997
0.671  0.759  0.978
0.715 0.947  0.994
0.728 0976  0.997
0.731  0.989  0.998
0.663 0.767 0.981
0.716  0.95 0.995
0.734 0977  0.998
0.736  0.989  0.999

CCA CPE GCC

DGP3
(B. e, ) = (0.1,0.5,3)
noisy data

0.595  0.59 0.755
0.727 0.744 0.861
0.838 0.863 0.929
0.904 0.931 0.962
0.606 0.585  0.789
0.772 0.761  0.898
0.904 0.906 0.961
0.953  0.957 0.982
0.614 0.586 0.812
0.8 0.785  0.916
0.921 0918 0.97

0.963 0.963 0.986
0.632  0.59 0.919
0.751 0.744 0.948
0.851 0.862 0.967
0.911 0.932 0.979
0.654 0.589  0.943
0.798 0.765  0.969
0.912 0.903 0.986
0.956 0.957  0.992
0.653 0.588 0.95

0.823 0.784 0.976
0.929 0.919 0.99

0.966 0.963 0.995

CCA CPE GCC

DGP4
(B, de, k) = (0.1,0.5,1)
wp =04

0.794 0.813  0.902
0.911 0.94 0.974
0.936 0.974 0.989
0.955 0.987 0.994
0.82 0.814 0.912
0.944 0.949 0.98

0.969 0.976  0.991
0.982 0.989 0.996
0.834 0.825 0.924
0.952  0.952 0.982
0.977 0.978  0.992
0.988 0.989 0.996
0.819 0.823  0.969
0.914 0.945 0.991
0.944 0974 0.995
0.956  0.987  0.997
0.851 0.829 0.978
0.949 0.949 0.994
0.972 0.976 0.997
0.983 0.989 0.998
0.854 0.832 0.982
0.956  0.951  0.995
0.978 0.978 0.998
0.989 0.989 0.999

CCA CPE GCC

DGP5
(B, e, k) = (0.1,0.5,1)
wrp =0.8

0.69 0.725 0.774
0.784 0.894 0.926
0.824 0.963 0.98

0.844 0.984 0.991
0.716  0.72 0.776
0.87 0.925 0.957
0.923 0.973 0.988
0.939 0.987 0.995
0.731 0.72 0.786
0.921 0.939 0.971
0.961 0.976  0.991
0.976  0.989 0.996
0.709 0.73 0.821
0.793 0.917 0.963
0.836  0.969  0.99

0.845 0.986  0.996
0.737 0.735 0.836
0.875 0.94 0.983
0.92 0.975 0.995
0.939 0.988 0.998
0.76 0.758  0.864
0.924 0.947 0.99

0.963 0.977 0.997
0.977 0.989 0.999

Each entry is the average of trace ratios over 1,000 replications. rg and r; are the true number of global factors and true number of local factors in

group ¢. We set 71 = -+

=7rR, and N; = --- = N where N; is the number of individuals in block 7. T is the number of time periods. ¢g and ¢ are

AR coefficients for the global and local factors. 3, ¢ and x control the cross-section correlation, serial correlation and noise-to-signal ratio.
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Table 7: Average estimates of the number of global factors with (¢¢, ¢r) = (0.5,0.5), (rg,r;) = (2,2)

CcCD Mcc ARSS GCC cCD MCC ARSS GCC CcCD Mcc ARSS GCC
DGP1 DGP2 DGP3
(B, de,r) = (0.1,0.5,1) (B, de,n) = (0.1,0.5,1) (B, de,n) = (0.1,0.5,3)

R N; T common local factors
3 20 50 2.041(4/0.6) 2.223(22.3|0) 4.329(89.8|0) 1.872(0|12.8) 3.028(99.3|0) 3.035(100]0) 5.496(99.5|0) 1.833(1.2]17.9) 1.551(14.1]39.6) 2.183(20(1.7) 4.478(91.7/0.1) 1.597(4.6|46.6)
3 50 50 2.002(0.2|0) 2(0]0) 3.745(86/0) 1.986(0|1.4) 3.002(100]0) 3(100]0) 4.915(98.3]0) 1.978(0(2.2) 1.923(3.3]10.1) 1.95(0.4|5.4) 3.914(89.7/0) 1.825(0.9]18.5)
3 100 50 2.001(0.1]0) 2(0]0) 4.661(98.2]0) 2(0.1]0.1) 3.002(100(0) 3(100]0) 5.755(100]0) 1.994(0(0.6) 1.962(1.1]4.9) 1.921(0(7.9) 4.88(99.3]0) 1.883(0.3]12)
3 200 50 2(0]0) 2(0]0) 5.899(100/0) 1.999(0]0.1) 3(100]0) 3(100]0) 6.881(100/0) 1.999(0]0.1) 1.961(0.1]4.1) 1.947(0|5.3) 6.077(100/0) 1.944(0]5.6)
3 20 100 1.999(0/0.1) 1.994(0/0.6) 2.029(2.9]0) 1.991(0]0.9) 3(100]0) 2.984(98.4|0) 3.324(72.4]0) 1.953(0(4.7) 1.227(0(46.1) 1.281(0(69.6) 2.052(5.4|0.6) 1.796(0.1]|20.5)
3 50 100 2(0]0) 2(0]0) 2.002(0.2]0) 2(0]0) 3(100]0) 3(100/0) 2.585(47.4|0) 2(0]0) 1.861(0[12.6) 1.6(0(39.7) 2.003(0.3]0) 1.991(0(0.9)
3 100 100 2(0]0) 2(0]0) 2(0]0) 2(0]0) 3(100]0) 3(100/0) 2.363(32.3/|0) 2(0]0) 1.994(0/0.6) 1.943(0|5.7) 2(0]0) 2(0/0)
3 200 100 2(0]0) 2(0]0) 2.021(2]0) 2(0]0) 3(100]0) 3(100[0) 2.512(42(0) 2(0]0) 2(0]0) 2(0]0) 2.026(2.6]0) 2(0]0)
3 20 200 1.998(0]0.2) 1.914(0|8.6) 2(0]0) 1.998(0(0.2) 2.999(99.9|0) 2.827(82.7|0) 2.661(50.7|0) 1.986(0[1.4) 0.913(0/62.2) 0.663(0/98.1) 1.999(0]0.1) 1.953(0]4.7)
3 50 200 2(0]0) 2(0]0) 2(0]0) 2(0]0) 3(100]0) 3(100]0) 2.309(29.2|0) 2(0]0) 1.862(0|11.5) 1.263(0(70.1) 2(0/0) 2(0/0)
3 100 200 2(0]0) 2(0]0) 2(0]0) 2(0]0) 3(100]0) 3(100/0) 2.15(14.9|0) 2(0]0) 2(0]0) 1.97(0|3) 2(0/0) 2(0/0)
3 200 200 2(0]0) 2(0]0) 2(0]0) 2(0]0) 3(100]0) 3(100/0) 2.048(4.8|0) 2(0]0) 2(0]0) 2(0]0) 2(0/0) 2(0/0)
10 20 50 2(0]0) 2.178(17.8|0) 2.001(0.1]0) 1.992(0]0.8) 2.779(77.8|0) 2.997(99.7|0) 2.507(50.4|0) 1.978(0(2.2) 1.281(0.7|40.5) 2.28(28|0) 1.937(0.4]6.7) 1.785(0]21.5)
10 50 50 2(0]0) 2(0]0) 2.001(0.1]0) 2(0]0) 2.955(95.5/0) 2.549(54.9|0) 2.244(24.2|0) 2(0]0) 1.95(0|5) 1.988(0[1.2) 1.999(0.1]0.2) 1.944(0]5.6)
10 100 50 2(0]0) 2(0]0) 2.048(4.6|0) 2(0]0) 2.945(94.5|0) 2.021(2.1]0) 2.36(32.4]0) 2(0]0) 1.984(0(1.6) 1.983(0[1.7) 2.044(3.9|0) 1.977(0]2.3)
10 200 50 2(0]0) 2(0]0) 2.986(56.1]0) 2(0]0) 2.393(39.3|0) 2(0/0) 3.537(66.6]0) 2(0]0) 1.997(0/0.3) 1.985(0[1.5) 3.25(64.3|0) 1.987(0(1.3)
10 20 100 2(0]0) 2(0]0) 2(0]0) 2(0]0) 2.006(0.6]0) 2(0/0) 2.046(4.6]0) 2(0]0) 1.529(0(24.8) 1.282(0|71.8) 1.922(0]7.8) 1.98(0]2)
10 50 100 2(0]0) 2(0]0) 2(0]0) 2(0]0) 2.063(6.3]0) 2(0/0) 2(0/0) 2(0]0) 1.975(0(2.4) 1.695(0[30.5) 2(0]0) 1.999(0(0.1)
10 100 100 2(0]0) 2(0]0) 2(0]0) 2(0]0) 2.056(5.6/0) 2(0/0) 2(0/0) 2(0]0) 1.999(0]0.1) 1.976(0]2.4) 2(0/0) 2(0/0)
10 200 100 2(0]0) 2(0]0) 2(0]0) 2(0]0) 2.04(4/0) 2(0/0) 2(0/0) 2(0]0) 2(0]0) 2(0]0) 2(0/0) 2(0/0)
10 20 200 2(0]0) 1.995(0]0.5) 2(0]0) 2(0]0) 2(0]0) 2(0/0) 2(0/0) 2(0]0) 0.98(0|53.4) 0.797(0/100) 1.921(0]7.9) 2(0/0)
10 50 200 2(0]0) 2(0]0) 2(0]0) 2(0]0) 2(0]0) 2(0]0) 2(0/0) 2(0]0) 1.983(0]1.5) 1.24(0|75.7) 2(0/0) 2(0/0)
10 100 200 2(0]0) 2(0]0) 2(0]0) 2(0]0) 2.001(0.1]0) 2(0/0) 2(0/0) 2(0]0) 2(0]0) 1.99(0|1) 2(0/0) 2(0/0)
10 200 200 2(0]0) 2(0]0) 2(0]0) 2(0]0) 2(0]0) 2(0/0) 2(0/0) 2(0]0) 2(0]0) 2(0]0) 2(0/0) 2(0/0)

cCD Mcc ARSS GCC cCD MCC ARSS GCC

DGP4 DGP5
(B, de,r) = (0.1,0.5,1) (B, de,n) = (0.1,0.5,1)

R N; T wp = 0.4 wp = 0.8
3 20 50 2.297(24.4|YB) 2.632(62.5|0) 4.703(97.8|0) 1.829(1.3]|18.5) 3.075(98.4|0) 3.039(99.8]0) 4.62(100]0) 2.576(69.9|12.8)
3 50 50 2.138(13.4|071) 2.08(8|0) 4.193(95.3]0) 1.978(0|2.2) 3.011(99.8|0) 2.997(99.7|0) 4.377(100/0) 2.438(48.9(5.3)
3 100 50 2.135(13.5|0) 2.009(0.9]0) 5.02(99.6/0) 1.996(0]0.4) 3.007(99.9]0) 2.973(97.3|0) 5.317(100|0) 2.15(17.8|2.8)
3 200 50 2.123(12.3|0) 2(0]0) 6.268(100(0) 2(0]0) 3.002(100]0) 2.875(87.5|0) 6.629(100|0) 2.014(2.2|0.8)
3 20 100 2.121(12.3|0.2) 1.998(0/0.2) 2.689(66.1]0) 1.948(0.5|5.7) 2.999(99.9|0) 2.95(95]0) 3.021(100/0) 2.921(94.2(2.1)
3 50 100 2.047(4.7]0) 2(0]0) 2.372(36.9]0) 1.999(0(0.1) 3(100]0) 2.976(97.6|0) 3.004(100/0) 2.772(77.3|0.1)
3 100 100 2.032(3.2|0) 2(0]0) 2.211(21.1]0) 2(0]0) 3(100]0) 2.891(89.1|0) 3(100/0) 2.305(30.5|0)
3 200 100 2.025(2.5]0) 2(0]0) 2.266(26]0) 2(0]0) 3(100]0) 2.585(58.5|0) 3.014(100/0) 2.044(4.4|0)
3 20 200 2.044(5.9|1.4) 1.928(0]7.1) 2.517(51.7/0) 1.986(0|1.4) 2.999(99.9|0) 2.598(59.9/0.1) 3(100]0) 2.994(99.5/0.1)
3 50 200 2.013(1.3|0) 2(0]0) 2.082(8.2|0) 2(0]0) 3(100]0) 2.769(76.9|0) 3(100/0) 2.937(93.7/0)
3 100 200 2.005(0.5/0) 2(0]0) 2.008(0.8/0) 2(0]0) 3(100]0) 2.412(41.2|0) 3(100/0) 2.491(49.1|0)
3 200 200 2.001(0.1|0) 2(0]0) 2.001(0.1]0) 2(0]0) 3(100]0) 2.045(4.5|0) 3(100/0) 2.041(4.1|0)
10 20 50 2.059(5.9|0) 2.882(88.2|0) 2.29(29.1/0.1) 1.962(0.5|4.3) 2.999(99.8|0) 3.018(100]0) 2.998(99.8|0) 2.904(92.21.8)
10 50 50 2.037(3.7/0) 2.036(3.6/0) 2.139(13.9]0) 2(0]0) 2.997(99.7/0) 2.999(99.9|0) 3(99.9/0) 2.661(66.9/0.8)
10 100 50 2.032(3.2|0) 2(0]0) 2.278(25.2|0) 2(0]0) 3(100]0) 2.993(99.3|0) 3.034(100]0) 2.265(26.8/0.3)
10 200 50 2.057(5.7]0) 2(0]0) 3.403(68.1]0) 2(0]0) 3(100]0) 2.907(90.7/|0) 4.049(100/0) 2.007(0.8]0.1)
10 20 100 2.04(4[0) 2(0|0) 2.024(2.4|0) 1.998(0(0.2) 3(100]0) 2.985(98.5|0) 3(100/0) 2.999(99.9|0)
10 50 100 2.004(0.4]0) 2(0]0) 2(0]0) 2(0]0) 3(100]0) 2.992(99.2|0) 3(100/0) 2.903(90.3|0)
10 100 100 2.009(0.9]0) 2(0]0) 2(0]0) 2(0]0) 3(100]0) 2.925(92.5|0) 3(100/0) 2.492(49.2|0)
10 200 100 2.005(0.5/0) 2(0]0) 2(0]0) 2(0]0) 3(100]0) 2.566(56.6/0) 3(100/0) 2.039(3.9]0)
10 20 200 2.006(0.6/0) 1.995(0]0.5) 2(0]0) 2(0]0) 3(100]0) 2.662(66.2|0) 3(100/0) 3(100]0)
10 50 200 2(0]0) 2(0]0) 2(0]0) 2(0]0) 3(100]0) 2.788(78.8|0) 3(100/0) 2.99(99|0)
10 100 200 2(0]0) 2(0]0) 2(0]0) 2(0]0) 3(100]0) 2.369(36.9|0) 3(100/0) 2.634(63.4|0)
10 200 200 2(0]0) 2(0]0) 2(0]0) 2(0]0) 3(100]0) 2.01(1]0) 3(100/0) 2.034(3.4/0)

The average of 79 over 1,000 replications is reported together with (O|U) inside the parenthesis, indicating the percentage of overestimation and underestimation. rg and r; are the true numbers
of global factors and local factors in group i. We set 11y = --- =rgr and N1 = --- = Ng, where R is the number of groups and N; is the number of individuals in block i. T is the number of time
periods. ¢g and ¢ are AR coefficients for the global and local factors. 8, ¢. and k control the cross-section correlation, serial correlation and noise-to-signal ratio.



Table 8: Average trace ratios of the global factor estimates with (¢¢, ¢r) = (0.5,0.5), (ro,r;) = (1,1)

cCA CPE GCC | CCA CPE GCC | CCA CPE GCC | CCA CPE GCC | CCA CPE GCC

DGP1 DGP2 DGP3 DGP4 DGP5
(57 (be:"{) = (01»0571) (:87(#)6"%) = (0170571) (5» (be:"{) = (01»0573) (:87(1)6"%) = (0170571) (B» ¢e,f€) = (01»05a1)
N; T common local factors wp =04 wp =0.8

20 50 0.936 0.927 0.973 | 0.623 0.927 0.97 0.771  0.697 0.864 | 0.933 0.925 0.972 | 0.882 0.903 0.949
50 50 0.971  0.976 0.991 0.639 0975 0.991 0.907 0.899 0.958 | 0.967 0.975 0.991 0.916 0.972  0.988
100 50 0.982 0.988 0.995 0.655 0.988 0.995 | 0.95 0.952  0.98 0.978 0988 0995 | 0.926 0.987 0.995
200 50 0.986 0.994 0998 | 0.658 0.994 0.998 | 0.97 0.976  0.989 | 0.984 0.994 0.998 | 0.939 0.993 0.997
20 100 | 0.947 0.933 0976 | 0.612 0.933 0.975 | 0.804 0.719 0.893 | 0.946 0932 0976 | 0.924 0.922 0.964
50 100 | 0.977 0.977  0.992 0.617 0977 0992 | 0.927 0915 0968 | 0977 0.976 0992 | 0963 0.975 0.991
100 100 | 0.988 0.989 0.996 | 0.648 0.989 0.996 | 0.964 0.962 0.986 | 0.988 0.989 0.996 | 0.973 0.989 0.996
200 100 | 0.993 0.995 0.998 | 0.656 0.995 0.998 | 0.98 0.982 0.993 | 0.992 0.994 0.998 | 0.978 0.994 0.998
20 200 | 0.95 0.937 0978 | 0.612 0.936 0.977 | 0.811 0.725 0.897 | 0.949 0934 0977 | 0.941 0.927 0.969
50 200 | 0.98 0.978  0.992 0.636 0.978 0.992 | 0.935 0.925 0.973 | 0.98 0.978 0.992 | 0.976 0.977 0.992
100 200 | 0.99 0.989 0.996 | 0.639 0.989 0.996 | 0.968 0.965 0.988 | 0.99 0.989 0.996 | 0.987 0.989 0.996
200 200 | 0.995 0.995 0.998 | 0.624 0.995 0.998 | 0.984 0983 0.994 | 0.994 0995 0.998 | 0.991 0.995 0.998
10 20 50 0.956  0.929  0.992 0.536  0.91 0.991 0.864 0.704  0.962 0.951 0.929 0.992 | 0.91 0.914 0.98
10 50 50 0977 0975 0997 | 0.547 0.975 0.997 | 0931 0.896 0.985 0.972 0975 0.997 | 0.93 0.975  0.996
10 100 50 0.984 0.988 0.998 | 0.547 0.988 0.998 | 0.958 0.954 0.991 0.98 0.988 0.998 | 0.939 0.988 0.998
10 200 50 0.986 0.994 0.999 | 0.57 0.994 0.999 | 0.972 0976 0.994 | 0.983 0.994 0.999 | 0.942 0.994 0.999
10 20 100 | 0.963 0.935 0.993 | 0.543 0.928 0.993 | 0.881 0.707 0.969 | 0.962 0.934 0.993 | 0.948 0.928 0.988
10 50 100 | 0.983 0.977 0.998 | 0.537 0.977 0.997 | 0.947 0915 0.99 0.981 0977 0997 | 0.966 0.977 0.997
10 100 100 | 0.99 0.989 0.999 | 0.523 0.989 0.999 | 0.97 0.962  0.995 0.989 0989 0.999 | 0976 0.989 0.999
10 200 100 | 0.994 0.995 0.999 | 0.544 0.994 0.999 | 0.983 0.981 0.997 | 0.993 0.994 0.999 | 0.977 0.994 0.999
10 20 200 | 0984 0.977 0.998 | 0.531 0.932 0.993 | 0.888 0.742 0.972 0.965 0.937 0.993 | 0.96 0.933 0.991
10 50 200 | 0.984 0977 0.998 | 0.562 0.978 0.998 | 0.951 0.924 0.992 0.984 0978 0.998 | 0.98 0.978  0.997
10 100 200 | 0.991 0.989 0.999 | 0.535 0.989 0.999 | 0.974 0.965 0.996 | 0.991 0989 0.999 | 0.988 0.989 0.999
10 200 200 | 0.995 0.995 0.999 | 0.548 0.995 0.999 | 0.986 0.983 0.998 | 0.995 0.995 0.999 | 0.992 0.995 0.999

Each entry is the average of trace ratios over 1,000 replications. rg and r; are the true numbers of the global factors and local factors in group i. We
set 11 =---=rg and N; = --- = N where N; is the number of individuals in block i. ¢5 and ¢ are AR coefficients for the global and local factors.
B, ¢e and k control the cross-section correlation, serial correlation and noise-to-signal ratio.
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Table 9: Average estimates of the number of the global factors with (¢¢, dr) = (0.5,0.5), (ro,r;) = (1,1)

cCD Mcc ARSS GCccC cCD MCC ARSS GCC cCD MCC ARSS GCcC
DGP1 DGP2 DGP3
(B, de,n) = (0.1,0.5,1) (B, de,n) = (0.1,0.5,1) (B, de,n) = (0.1,0.5,3)

R N; T common local factors
3 20 50 1.004(0.4|0) 1.445(44.1]0) 1.823(51.6/0) 1(0]0) 1.35(31.9]0) 2.003(97.9/0) 1.867(53.9]0) 1(0]0) 1.023(4.1]2.8) 1.652(63.7(0) 1.819(50.2|0) 1.003(0.2(0)
3 50 50 1(0]0) 1(0]0) 1.016(1.5|0) 1(0]0) 1.261(26]0) 1.219(21.9|0) 1.029(2.9]0) 1(0]0) 1.003(0.4]0.1) 1.014(1.4]0) 1.022(2.1]0) 0.999(0]0.1)
3 100 50 1.001(0.1]0) 1(0]0) 1.011(1.1]0) 1(0]0) 1.23(22.9]0) 1.025(2.5|0) 1.025(2.5|0) 1(0]0) 1.002(0.2]0) 1(0]0) 1.01(1]0) 1(0]0)
3 200 50 1.001(0.1]0) 1(0]0) 1.002(0.2|0) 1(0]0) 1.058(5.8]0) 1(0]0) 1.001(0.1]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0)
3 20 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.007(0.7|0) 1(0]0) 1.001(0.1|0) 1(0]0) 0.998(0]0.2) 0.999(0]0.1) 1(0]0) 1(0]0)
3 50 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.003(0.3|0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0)
3 100 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0)
3 200 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0|0)
3 20 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 0.997(0]0.3) 0.986(0]1.4) 1(0]0) 1(0]0)
3 50 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0)
3 100 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0/0) 1(0]0)
3 200 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0/0) 1(0]0)
10 20 50 1(0]0) 1.655(65.5]0) 1(0]0) 1(0]0) 1.96(96/0) 2.014(100]0) 1.633(63.3]0) 1(0]0) 0.993(0]0.7) 1.966(95.8|0) 1(0|0) 1(0]0)
10 50 50 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.988(98.8]0) 1.961(96.1|0) 1.023(2.3]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0)
10 100 50 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.972(97.2|0) 1.086(8.6/0) 1.012(1.2|0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0)
10 200 50 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.601(60.1]0) 1(0]0) 1.004(0.4|0) 1(0]0) 1(0]0) 1(0]0) 1(0/0) 1(0]0)
10 20 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.0385(3.5|0) 1(0]0) 1.01(1]0) 1(0]0)
10 50 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.077(7.7|0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0)
10 100 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.048(4.8]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0)
10 200 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.011(1.1]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0/0) 1(0/0) 1(0]0)
10 20 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 0.999(0]0.1) 1(0/0) 1(0]0)
10 50 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.002(0.2]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0/0) 1(0]0)
10 100 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0|0) 1(0]0)
10 200 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1(0/0) 1(0]0)

cCD Mcc ARSS GCccC CcCD MCC ARSS GCC

DGP4 DGP5
(B, de, ) = (0.1,0.5,1) (B, ¢e, ) = (0.1,0.5,1)

R N; T wp =0.4 wp =0.8
3 20 50 .016(1.3]0) 1.618(59.9|0) 2.127(66.4|0) 1(0]0) 1.824(73.5|0) 2.118(99.7/0) 2.487(100]0) 1.101(10.1]0)
3 50 50 1.002(0.2|0) 1.006(0.6]0) 1.08(7.8|0) 1(0]0) 1.86(83.5(0) 1.895(89.5|0) 1.991(98.1]0) 1.02(2|0)
3 100 50 1.003(0.3]|0) 1(0]0) 1.042(4.2|0) 1(0]0) 1.911(89.3]0) 1.609(60.9|0) 1.97(96.8]0) 1.007(0.7]|0)
3 200 50 1.006(0.6|0) 1(0]0) 1.011(1.1]0) 1(0]0) 1.927(92.5]0) 1.17(17|0) 1.274(27.3]0) 1.003(0.3]|0)
3 20 100 1(0]0) 1(0]0) 1.035(3.5(|0) 1(0]0) 1.951(95.1|0) 1.643(64.3|0) 2(100]0) 1.149(14.9]0)
3 50 100 1(0]0) 1(0]0) 1.001(0.1]0) 1(0]0) 1.968(96.8(0) 1.297(29.7|0) 1.991(99.1|0) 1.008(0.8/0)
3 100 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.973(97.3|0) 1.058(5.8/0) 1.678(67.8|0) 1.008(0.8/0)
3 200 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.971(97.1|0) 1(0]0) 1(0]0) 1(0]0)
3 20 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.992(99.2]0) 1.056(5.6]0) 2(100/0) 1.159(15.9]0)
3 50 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.999(99.9|0) 1.002(0.2/0) 1.998(99.8]0) 1.002(0.2/0)
3 100 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.998(99.8]0) 1(0]0) 1.237(23.7]0) 1(0]0)
3 200 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 2(100]0) 1(0]0) 1(0]0) 1(0]0)
10 20 50 1(0]0) 1.938(93.4]0) 1.008(0.8|0) 1(0]0) 1.724(72.4]0) 2.118(100]0) 1.965(96.5|0) 1.09(9|0)
10 50 50 1(0]0) 1.001(0.1]0) 1(0]0) 1(0]0) 1.879(87.9]0) 1.965(96.5|0) 1.803(80.3]0) 1.007(0.7]|0)
10 100 50 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.92(92(0) 1.666(66.6/0) 1.779(77.9]0) 1.001(0.1]|0)
10 200 50 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.959(95.9(0) 1.112(11.2]|0) 1.508(50.8|0) 1(0]0)
10 20 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.972(97.2|0) 1.709(70.9|0) 1.937(93.7|0) 1.153(15.3|0)
10 50 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.988(98.8(0) 1.251(25.1]0) 1.727(72.7|0) 1.002(0.2]0)
10 100 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.991(99.1|0) 1.016(1.6|0) 1.476(47.6|0) 1(0|0)
10 200 100 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.996(99.6|0) 1(0]0) 1(0]0) 1(0]0)
10 20 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.996(99.6|0) 1.025(2.5/0) 1.971(97.1]0) 1.138(13.8]0)
10 50 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 2(100]0) 1(0]0) 1.728(72.8]0) 1(0]0)
10 100 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 2(100]0) 1(0]0) 1.24(24(0) 1(0]0)
10 200 200 1(0]0) 1(0]0) 1(0]0) 1(0]0) 1.998(99.8]0) 1(0]0) 1(0]0) 1(0]0)

The average of 79 over 1,000 replications is reported together with (O|U) inside the parenthesis, indicating the percentage of overestimation and underestimation. rg and r;
are the true numbers of the global factors and local factors in group 7. We set 11 = --- = rgr and N1 = --- = Npg, where R is the number of groups and N; is the number of
individuals in block i. T is the number of time periods. ¢ and ¢ are AR coefficients for the global and local factors. 8, ¢ and k control the cross-section correlation, serial
correlation and noise-to-signal ratio.



Table 10: Average trace ratios of the global factor estimates with (¢¢, ¢r) = (0.5,0.5), (ro,r;) = (3,3)

cCA CPE GCC | CCA CPE GCC | CCA CPE GCC | CCA CPE GCC | CCA CPE GCC

DGP1 DGP2 DGP3 DGP4 DGP5
(57 (be:"{) = (01»0571) (:87(#)6"%) = (0170571) (5» (be:"{) = (01»0573) (:87(1)6"%) = (0170571) (B» ¢e,f€) = (01»05a1)
N; T common local factors wp =04 wp =0.8

20 50 0.741  0.768  0.881 0.56 0.743 0.826 | 0.531 0.547 0.69 0.707 0.735 0.825 | 0.666 0.696  0.753
50 50 0.867 0.903  0.955 0.611 0.894 0.938 | 0.611 0.894 0.938 | 0.83 0.889 0.936 | 0.731 0.803 0.835
100 50 0.921 0955 0979 | 0.624 0.953 0975 | 0.725 0.778 0.858 | 0.881 0.952 0.976 | 0.773 0.9 0.923
200 50 0.943 0978 0989 | 0.642 0.977 0988 | 0.803 0.863 0.913 | 0915 0.977 0.988 | 0.794 0.962 0.974
20 100 | 0.762 0.762 0.901 0.537  0.747  0.841 0.545 0.54 0.74 0.726  0.723 0.833 | 0.66 0.656  0.722
50 100 | 0.909 0.912 0.966 | 0.579 0.911 0.96 0.672 0.671  0.83 0.895 0.907 0.959 | 0.766 0.801 0.839
100 100 | 0.958 0.963 0.986 | 0.603 0.962 0.984 | 0.812 0.817 0.915 0.95 0.961 0.984 | 0.837 0.933 0.955
200 100 | 0975 0.982 0.993 | 0.612 0.982 0.992 | 0.912 0.92 0.963 | 0.969 0.982 0.993 | 0.876 0.977 0.988
20 200 | 0.767 0.758 0.909 | 0.518 0.748 0.85 0.55 0.54 0.771 0.729 0.716 0.838 | 0.649 0.628 0.693
50 200 | 0.92 0.919 0.97 0.549 0917 0.967 | 0.677 0.668  0.852 0.915 0916 0.968 | 0.784 0.8 0.841
100 200 | 0.964 0.965 0.987 | 0.59 0.965 0.987 | 0.85 0.848 0.94 0.962 0964 0.987 | 0.908 0.951 0.975
200 200 | 0.982 0.983 0.994 | 0.611 0983 0.994 | 0.938 0939 0.976 | 0.981 0.983 0.994 | 0.947 0.981 0.992
10 20 50 0.752  0.77 0.968 | 0.544 0.636 0.922 | 0.562 0.54 0.876 | 0.728 0.749 0.921 0.67 0.691  0.793
10 50 50 0.872 0.901 0984 | 0.569 0.824 0972 | 0.657 0.683 0.91 0.833 0.895 0974 | 0.741 0.82 0.87
10 100 50 0.925 0.956 0.991 0.569 0.934 0.989 | 0.736 0.787  0.932 0.888 0.954 0.99 0.775 0.919  0.949
10 200 50 0.943 0977 0994 | 0.578 0.973 0.994 | 0.807 0.866 0.949 | 0.917 0.978 0.994 | 0.802 0.969 0.985
10 20 100 | 0.779  0.768  0.975 0.513 0.594 0.946 | 0.577 0.536  0.922 0.747  0.74 0.939 | 0.674 0.654 0.757
10 50 100 | 0.915 0.913 0.99 0.542  0.87 0.986 | 0.685 0.67 0.946 | 0.896 0.912 0.987 | 0.765 0.815 0.87
10 100 100 | 0.959 0.963 0.995 0.556 0.958 0.995 | 0.821 0.819 0.969 | 0.95 0.962 0.995 | 0.849 0.947 0.979
10 200 100 | 0977 0.982 0.997 | 0.563 0.981 0.997 | 0.917 0.92 0.983 | 0.97 0.982 0.997 | 0.886 0.98 0.995
10 20 200 | 0.78 0.764 0.977 | 0.497 0.576 0.959 | 0.582 0.54 0.936 | 0.747 0.739 0.951 0.659 0.625 0.726
10 50 200 | 0.924 0.918 0.991 0.532 0.9 0.99 0.694 0.665 0.959 | 0.919 0.918 0.99 0.792 0.834 0.896
10 100 200 | 0966 0.965 0.996 | 0.534 0.963 0.996 | 0.859 0.848 0.981 0.964 0965 0.996 | 0.912 0.959 0.99
10 200 200 | 0.983 0.983 0.998 | 0.532 0.983 0.998 | 0.942 0.939 0.991 0.981 0983 0.998 | 0.949 0.982 0.997

Each entry is the average of trace ratio over 1,000 replications. r¢ and r; are the true numbers of the global factors and local factors in group ¢. We set
ry =---=rg and N1 =--- = N where N; is the number of individuals in block 7. T" is the number of time periods. ¢c and ¢ are AR coefficients
for the global and local factors. 8, ¢ and k control the cross-section correlation, serial correlation and noise-to-signal ratio.
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Table 11: Average estimates of the number of the global factors with (¢¢,¢r) = (0.5,0.5), (rg,r;) = (3,3)

cCD Mcc ARSS GCC cCD MCC ARSS GCC cCD MCC ARSS GCcC
DGP1 DGP2 DGP3
(B, be,r) = (0.1,0.5,1) (B, de,n) = (0.1,0.5,1) (B, be,r) = (0.1,0.5,3)
R N; T common local factors
3 20 50 3.045(13.3|11.6) 3.027(5.4|2.7) 3.373(29.1|1.3) 2.466(0.5|37.5) 3.843(42.6|4.7) 3.534(52.7/0.3) 3.686(49.9|0.7) 2.226(2.3|53.2) 1.087(7.6|78.8) 2.444(0.6|54.9) 3.111(30.5|27.8) 1.81(3.8|78.7)
3 50 50 3(2|2.1) 2.984(01.6) 3.02(2.8/0.8) 2.863(0.1|11.4) 3.508(20.8/0.8) 3.13(13.3|0.3) 3.072(8.1/0.9) 2.672(0.2|24.2) 3.508(20.8/0.8) 3.13(13.3]0.3) 3.072(8.1]0.9) 2.672(0.2|24.2)
3 100 50 3(0.3]0.3) 2.994(0/0.6) 3.003(0.5/0.2) 2.967(0(3.1) 3.189(7.1|0) 3.008(0.8|0) 3.041(4.3|0.2) 2.897(0(8.5) 2.251(2.1]60.9) 1.95(0(87.7) 2.243(0.3|66.3) 1.789(0.4(80.9)
3 200 50 3(0]0) 3(0]0) 3.001(0.1]0) 2.997(0/0.3) 3.034(1.3]0.1) 3(0.1]0.1) 3.014(1.5/0.1) 2.988(0[1.1) 2.147(0.2]69.4) 1.807(0]90.7) 2.181(0|70) 1.78(0.1]83.9)
3 20 100 2.885(0[10.9) 2.418(0[57.2) 2.968(0(3.2) 2.718(0[21) 2.913(1.7[11.1) 2.736(0(26.3) 2.946(0.7]6) 2.364(0.3]45) 0.158(0(98.6) 0.902(0]100) 1.828(0.1(81.8) 1.464(0(84.7)
3 50 100 2.997(0[0.3) 2.951(0[4.9) 2.997(0[0.3) 2.978(0[2.1) 2.996(0[0.4) 2.994(0(0.6) 2.998(0(0.2) 2.924(0(6.8) 1.006(0(90.3) 1.074(0|100) 1.598(0(92.4) 1.334(0(89.4)
3 100 100 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 2.998(0(0.2) 2.133(0(67.1) 1.549(0(96.6) 1.975(0(80) 1.871(0|75.8)
3 200 100 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 2.376(0]56.6) 1.951(0(85.8) 2.301(0|63.2) 2.114(0(68.1)
3 20 200 2.788(0|18.6) 1.861(0]93.7) 2.892(0(10.4) 2.737(0/20.8) 2.787(0.2|16.4) 2.102(0(82.3) 2.903(0(9.6) 2.43(0/40.2) 0.026(0]100) 0.084(0]100) 1.449(0]95) 0.851(0]95)
3 50 200 2.997(0/0.3) 2.863(0(13.7) 2.996(0/0.4) 2.993(0/0.7) 2.998(0/0.2) 2.969(0(3.1) 2.998(0/0.2) 2.975(0|2.4) 0.51(0]97.4) 0.401(0|100) 1.354(0]97.8) 0.97(0]92.9)
3 100 200 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 2.36(0]55.2) 1.366(0]97.5) 2.173(0|67.2) 2.197(0|57.1)
3 200 200 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 2.936(0/6.3) 2.883(0(8.7) 2.924(0(6.9) 2.913(0(6.9)
10 20 50 2.987(0.2|1.5) 3.015(1.6]0.1) 2.967(0]3.2) 2.905(0|7.3) 4.825(64.7/0) 4.008(97.9/0) 3.683(47.2|7.5) 2.561(1.2|30.2) 0.286(0.5(94) 2.689(0.1|31.2) 1.911(0.3(79) 1.96(0.2]68.2)
10 50 50 2.999(0/0.1) 2.999(0/0.1) 2.985(0[1.5) 2.978(0[1.7) 5.166(72.5/0) 3.565(56.4|0) 3.133(14.1|2.2) 2.846(0.2|11.9) 2.119(0.1]59.5) 2.162(0|81.7) 1.717(0]89.1) 1.922(0]69.9)
10 100 50 3(0]0) 2.998(0(0.2) 2.997(0[0.3) 2.995(0[0.5) 4.458(48.6]0) 3.001(0.1]0) 3.162(15.4|0) 2.997(0(0.3) 2.43(0.150.7) 2.133(0[81.1) 1.967(0[79.9) 1.979(0(|70)
10 200 50 3(0]0) 3(0]0) 3(0]0) 2.999(0[0.1) 4.458(48.6]0) 3.001(0.1]0) 3.162(15.4|0) 2.997(0[0.3) 2.362(0]56) 1.91(0[91.1) 2.065(0]75.5) 1.965(0|73.6)
10 20 100 2.987(0[1.1) 2.535(0(46.5) 2.91(0(8.2) 2.993(0(0.6) 3.015(0.9(1.2) 2.969(0[3.1) 2.901(9]20.3) 2.813(0.1]14.1) 0.014(0(99.9) 0.986(0]100) 1.443(0.3|94.2) 1.846(0|56.9)
10 50 100 2.999(0[0.1) 2.994(0(0.6) 2.997(0[0.3) 2.999(0[0.1) 3.144(4.8|0) 3(0]0) 3.003(0.9]0.6) 2.988(0[1.1) 1.044(0(88.4) 1.151(0|100) 1.346(0]97.2) 1.625(0]70.7)
10 100 100 3(0]0) 3(0]0) 3(01]0) 3(0]0) 3.099(3.3/0) 3(0]0) 3(0|0) 3(0|0) 2.372(0[59.1) 1.676(0]96.3) 1.75(0/86.8) 2.222(0[54.9)
10 200 100 3(0/0) 3(0]0) 3(0]0) 3(0]0) 3.117(3.9/0) 3(0]0) 3(0]0) 3(0]0) 2.538(0|45.4) 2.289(0/64.3) 2.348(0|57.2) 2.425(0(46.4)
10 20 200 2.996(0/0.4) 1.971(0]98.9) 2.896(0/9.8) 2.998(0/0.2) 2.989(0|1.1) 2.217(0|78.3) 2.786(3|23.8) 2.931(05.5) 0(0[100) 0.018(0]100) 1.399(0.3]94.8) 0.897(0|76.7)
10 50 200 3(0]0) 2.964(03.6) 2.999(0/0.1) 3(0]0) 3(0]0) 3(0]0) 2.999(0/0.1) 3(0]0) 0.32(0]97.1) 0.415(0]100) 1.282(0]98.2) 1.071(0|76.8)
10 100 200 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 2.647(0]35.1) 1.549(0]99.1) 2.144(0/60.8) 2.698(0(21.9)
10 200 200 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 3(0]0) 2.998(0/0.2) 2.986(0]1.3) 2.997(0/0.2) 2.998(0/0.2)
cCD Mcc ARSS GCcC cCD Mcc ARSS GCcC
DGP4 DGP5
(B, de,r) = (0.1,0.5,1) (B, de,n) = (0.1,0.5,1)
R N; T wp =0.4 wp =0.8
3 20 50 3.65(57.9|5.9) g 3.425(42.6/0.2) 4.104(86]0.1) 2.436(17.2|49.6) 4.026(91.2]0.1) 3.899(89.4|0) 4.19(98.8]0) 3.38(66|18.7)
3 50 50 3.57(54.5/0.9) 3.216(21.9/0.3) 3.657(65.2|0.2) 2.771(11.5|24.8) 4.003(99.1]0) 3.964(96.4|0) 3.999(99.6/0) 3.923(94.7|1.6)
3 100 50 3.516(51.1|0.2) 3.05(5.5/0.5) 3.674(67|0) 2.945(6.3|9.4) 4.002(99.8]0) 3.973(97.3|0) 3.993(99.5/0.2) 3.963(97.1/0.8)
3 200 50 3.454(45.5/0.1) 3.002(0.5/0.3) 3.66(66|0) 2.995(1.2|1.6) 3.998(99.8|0) 3.969(96.9|0) 3.783(80.3|1.9) 3.964(96.4|0)
3 20 100 3.462(59.3|10.4) 2.517(0.2]48) 3.735(75.3|1.8) 2.776(33.3|38.3) 3.947(94.8]0.1) 3.296(31.5|1.9) 3.972(97.2|0) 3.875(90.6|2.2)
3 50 100 3.539(54|0.1) 2.968(0.1]3.3) 3.495(49.6/0.1) 3.066(16.38.2) 3.998(99.8|0) 3.905(90.5|0) 3.998(99.8|0) 3.991(99.3|0.1)
3 100 100 3.427(42.7|0) 3(0]0) 3.26(26]0) 3.007(1.2]0.5) 4(100/0) 3.991(99.1|0) 3.907(92.4|1.5) 4(100(0)
3 200 100 3.344(34.4]0) 3(0]0) 3.27(27|0) 3(0]0) 4(100(0) 3.968(96.8]0) 3.826(83.4/0.7) 3.995(99.5(0)
3 20 200 3.399(62.9|14.6) 1.87(0]92.8) 3.694(72.2|2.7) 3.068(49.8|29.8) 3.922(92.2/0) 2.704(3.1|32.5) 3.948(94.9/0.1) 3.911(92.5|1.2)
3 50 200 3.545(54.6/0.1) 2.87(0[13) 3.264(26.6/0.2) 3.092(14.3|4.3) 4(10010) 3.698(70/0.2) 3.98(98.4/0.3) 3.999(99.9|0)
3 100 200 3.338(33.8|0) 3(0]0) 3.1(10/0) 3.001(0.1]0) 4(10010) 3.974(97.4|0) 3.881(89.6|1.5) 4(10010)
3 200 200 3.233(23.3|0) 3(0]0) 3.027(2.7|0) 3(0]0) 4(10010) 3.752(75.2|0) 3.985(98.5|0) 4(10010)
10 20 50 3.634(61.8/0.5) 3.635(63.5|0) 3.367(39.8|3.1) 2.925(28.1|25.6) 3.997(99.3|0) 3.994(99.4|0) 3.957(95.8/0.1) 3.927(95.3|1.6)
10 50 50 3.531(53.2]0.1) 3.207(20.7|0) 3.113(12.7|1.4) 2.933(10.3|13.1) 4(10010) 3.993(99.3|0) 3.983(98.3|0) 3.988(99/0.2)
10 100 50 3.465(46.5|0) 3.027(2.7/0) 3.125(12.7/0.2) 2.981(3.3|4.5) 4(10010) 3.998(99.8|0) 3.998(99.8|0) 3.994(99.4|0)
10 200 50 3.421(42.110) 3(0.1]0.1) 3.11(11]0) 2.991(0[0.9) 4(100(0) 3.987(98.7|0) 3.992(99.2|0) 3.98(98]0)
10 20 100 3.685(69.4]0.9) 2.675(0(32.5) 3.027(11.2|8) 3.496(58.3|5.8) 3.998(99.8|0) 3.302(30.3|0.1) 3.915(92|0.4) 3.996(99.6|0)
10 50 100 3.523(52.3]0) 2.999(0[0.1) 3.005(0.9]0.4) 3.094(10]0.5) 4(100/0) 3.982(98.2|0) 3.993(99.3|0) 4(100/0)
10 100 100 3.384(38.4|0) 3(0]0) 3.002(0.2|0) 3.003(0.3|0) 4(100/0) 3.999(99.9]0) 4(100(0) 4(100/0)
10 200 100 3.287(28.7/0) 3(0]0) 3.003(0.3|0) 3(0]0) 4(10010) 3.98(98|0) 3.998(99.8|0) 3.994(99.4|0)
10 20 200 3.827(84.7|1.2) 1.989(0]98.2) 2.904(3.2|11.6) 3.776(78.8/0.8) 3.998(99.8|0) 2.857(0(14.3) 3.938(94.2|0.4) 4(10010)
10 50 200 3.603(60.3|0) 2.959(0(4.1) 2.998(0/0.2) 3.072(7.3/0.1) 4(10010) 3.823(82.3|0) 4(10010) 4(10010)
10 100 200 3.278(27.8|0) 3(0]0) 3(0]0) 3(0]0) 4(10010) 3.991(99.1|0) 3.998(99.8|0) 4(10010)
10 200 200 3.19(19]0) 3(0]0) 3(0]0) 3(0]0) 4(100]0) 3.796(79.6/0) 4(100]0) 4(100]0)

Che average of 79 over 1,000 replications is reported together with (O|U) inside the parenthesis, indicating the percentage of overestimation and underestimation. rg and r; are the true numbers of the
lobal factors and local factors in group . We set r;1 = --- =rg and N; = --- = N, where R is the number of groups and N; is the number of individuals in block i. T is the number of time periods.
¢ and ¢ are AR coefficients for the global and local factors. 3, ¢e and k control the cross-section correlation, serial correlation and noise-to-signal ratio.



Figure 5: Asymptotic normality of the first element of ét evaluated at T'/2

o 2
N,=20, T=50

r

0
N;=20, T=200

0 2
N;=100, 1 =50

0 2
N;=100, 1 =200

IS

2

0 2
N, =200, T=50

2

9 2
N, =200, T=200

The data is simulated using R = 3, (ro, ) = (2,2), (¢a, ¢r) = (0,0) and (B, ¢e, k) = (0,0,1). Standard normal density is superimposed.



Figure 6: Asymptotic normality of the first element of 7;; evaluated at ¢ = 1 and NN;/2
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The data is simulated using R = 3, (ro, ;) = (2,2), (¢a, ¢r) = (0,0) and (B, ¢e, k) = (0,0,1). Standard normal density is superimposed.
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Appendices

A Proofs

We use the following facts throughout the proofs. By Assumption B.1, we have: ||T*1/2GH = 0,(1)
and ||T~Y2F;|| = O,(1) for all i = 1,...,R. By Assumptions C.1, we have: HNfl/QI‘i = 0p(1) and

||

aX¥v = a) v where v is the eigenvector associated with the eigenvalue A and a is a non-zero real number.

= 0p(1) for all i =1, ..., R. The eigenvectors of a real n x n matrix 3 is scale invariant since

Proof of Proposition 1.
Using K; = [G, F;] for i = 1,..., R, we can be express the matrix ® in (13) as

G FB -G —-F 0 0 ... 0 0 0 0
G F; 0 0 -G —-F; ... 0 0 0 0

P = .
0 O 0 0 0 0 ... G Fr_1, -G -—Fg

Let

LA , , iy
Qp° :[“ﬁ ]a“d Q°  =[Q",Qy.....QY]

(ro+11) %70 0 SR (rotr1)xTo

where (1 / \/ﬁ) A is any ro X ro orthogonal matrix. For each i, it is easily see that

LA
xQ-le.r]| Vi* | -cB (22)
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where B = (1/\/R> A. This shows that ®Q™ = 0. Since Q™'Q™ = I,,, Q™ can serve as the right

eigenvectors in the SVD of ®. Consequently, we obtain

o1

b2
®Q™ = P . =0

8o

where P" is the corresponding left eigenvectors. As P" is non-zero, it follows that §; = --- = dr = 0.
This establishes that the first g smallest singular values are zero.

We now show that the rest of the singular V/alues are larger than zero by contradiction. Suppose that
there exists an eigenvector g+ = [qf-’, cee qﬁ’] , satisfying ®q+ = 0, Q"'q+ = 0 and q*-'q- = 1, where
g = [inJ-’, tiL’]/. Noting ®q = 0, we have:

GqSt + Fqft = Gqi'+ + Fqf* for any h and m.
It follows that

R R
R(GqS' + Fngh') =Y (Gqf* + Fiqf") =Y Fiq/™*.
=1 i=1

where the second equality holds as a result of Q™'q+ = B’ Zil g%+ = 0. Consequently, we have

1 1
G|l= GL :Fm 1— = Fl F FL'

By construction, we must have ¢S+ = ¢f'+ = ... = g5+ = 0 for all m. Hence, g = 0. This contra-
dicts the definition of an eigenvector. Since the singular values are non-negative, the remaining singular
values of ® are larger than zero. By Assumption B.1, we have T~ 1/2K; = O, (1) for all i such that

® =0, (\/T) Using ®q = Jdp and the fact that the eigenvectors p and g are bounded, we have:
Oro+5 = Op (\/T) for j =1,..., Rrmax — To- Q.E.D

Proof of Proposition 2
Using (22) we obtain:

1 1 1
—¥ = [K|Q",..., KpQ?l= —=[GB,... GB 23
\/T \/T [ 1% RQR] T [ ] ( )
which yields
v GG’
= =LEL
T T

where 2 is a diagonal matrix with the first r¢ elements non-zero and the remaining elements zero. Finally,

it follows that /L=
1 To(Er0)
L= —G|—————
VT ( vT )

where ™ is the diagonal matrix consisting of ry non-zero diagonal elements of Z. The full rank matrix
inside the bracket is a rotation matrix. Q.E.D

42



Proof of Lemma 1
Since Assumptions A-D in Bai and Ng (2002) are satisfied, the stated result follows from Theorem 1 of
Bai and Ng (2002).

Q.E.D
Proof of Lemma 2

Let Q!° = H . Q7 where I/-T{ is the Moore-Penrose inverse of I/-TZ Since ro+1; < rmax for all 4, by the

(]
Tmax XT0

property of the Moore-Penrose inverse, it follows that I/J\j{\f =TI ir,- Let Q0 =[Q1,..., _g"}/.
Rrmax XT0
Then, we obtain

PHQ™ = Q™ = POA™

Along the same arguments in Proof of Proposition 1, we obtain the desired result.

Q.E.D
Proof of Lemma 3
See the proof of Theorem 2 in Yu et al. (2015).

Q.E.D

Lemma 4. Under Assumption A-C, as N1, Na,...,Ng,T — 0o, we have:
1
= O _—
! (CNT>
1

wleel-o(ar)
TVN; - P\ Cnr
where Cy 7 = min{\/N, T} with N = min{Ny, Na,..., Ng}

Proof
1. Using the Cauchy-Schwarz inequality, we obtain:

= [ ) e

The first term is of stochastic order O, (Cl?fiLT) by Lemma 1. For the second term, we have:

[1 1 &
— _ 2
= NhTtT' {eIhEh} = W Zzehjt

j=1t=1

1. For every m and h,
1

T/ Ny,

— o~ I
(Km - KmHm) €p

2. For each i,
é”ei

o~ o~ / o~ o~
(Km . KmHm) e K, - K, H,

1
H \/NhTeh

Since E(e%jt) = O(1), the above term is Op(1). Combining the two terms, we obtain the required result.
2. Using equation (19) and f{\m = f{\m — Kmf-I\m + KmiI\m, we have:

~

G/ei

S {0 (R KoL) @ (R KT

m=1

1
- TYNT
P o~ o~ ~ o~ ~ o~ o~ o~ o~ !
+ T (Ko~ K Hp) QK ei+ TV Ko Hu Qi (K — KnHo) e

1
VN,
YTV K, H, Q0 ﬁ{annei} H
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where (2:0 = Q’;Uéfo’. We note that Hf”] = Op(1) since Lo'Lo = I, and T-12% = Op(1). The
first term of RHS is bounded by O, (C&%) x Op (C&IT) by Lemma 1.1 and Lemma 4.1. The second

term is bounded by O, (T‘1/2C&}) by Lemma 1.1 and the fact that (N,,T)~/?|| K’ e;]| = O,(1) under

Assumption B2. The third term is bounded by O, (C&;) by Lemma 4.1. The last term is bounded by

O,(T~1/2) since (N,,T)~'/?| K/, ei|| = O,(1) under Assumption B.2. The proof completes by combining
all these results.
Q.E.D
Proof of Theorem 1
By Lemma 1, we have:
1~ ~ — — 1
—es - H’<I>’<I>HH =0, (=——
T H P\ Cnr
Furthermore, by Lemma 2 and Lemma 3, we obtain:
. _ 1~ o~ - 1
HQTO - Q’”ODH <0,(1) x = H@’@ - H’(I»’i’HH =0, (——
T Cnr
where D is an rg x g orthogonal matrix. Then, using the definition Q™ = f—I\i_ Q" and (22), it follows
for each 7 that

. L 1 o~ ~
\KiQ;-“O = KiHiQ;OD’ == HKngo - GBDH

1
77|
K@ - kEQ - KEQ! - KEQ!D)|
1 1 N - 1
_ ro _ ?ODH -0 <)
\/7 ’ T ’ g QZ P CET

where the inequalities hold due to the Cauchy-Schwarz inequality, and the last equality follows from
Lemma 1 and the fact that HC/Z" =0,(1)

TO

= Op(1). Using this convergence rate, we obtain:

Euiﬂ Al
T T

R
Z K.Q"QK, - —GBDDBG’

1 apom =, 1
~K,Q"Q" K| - —GG'
T Ql QZ 3 T

i 1
< _ L
_; Or (CNT>

where the inequality follows from the Cauchy-Schwarz inequality. Applying Lemma 3 to the above
equation, we obtain

|e - zrv| = 0, (1) (24)

Cnr

where U is an ro x ro orthogonal matrix!®. Finally, by definition of G and Proposition 2, we conclude

that
% Hé—GHH =0, (CINT> (25)

151f the ro largest eigenvalues of GG’ /T are distinct, each column of Lo converges to its population counterpart in L0
up to sign. In such a case, U is an rg X rg diagonal matrix whose diagonal elements are either 1 or —1.
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where H = T-1/2G'L°E™~1U is a rotation matrix.
For the global factor loadings in block i, we have:

~

I = ZG@Y, = ZG'(GT, + FA[ +e) = =G [(G ~GH + GH-l) T, + FA, + ei]

Multiplying both sides of the above equation by 1/4/N; and rearranging the results, we have:

1 1 = 1 -~
F,A! G’
N Tr AT V)

The first term of RHS is bounded by Op(C'&T) due to (25). The second term is bounded as

|

(f; _H- 1r’) (G—éH-l) T

(26)

(&' - cH+ GH) FA;

1
TVN,

< HT\}F (é’ - GH)’EA;

T\ﬁ

G'F,A!

+’ Nlm
o) o))

where the inequality follows from the Cauchy-Schwarz inequality and the second to last equalities use
Lemma 1 and Assumptioin D. The last term of (27) is bounded by O, (C’;,%) due to Lemma 4.2. Then,

1 a 1
T, -H'T}|=0 ()
V' N; P\ Cnr
Q.E.D
Lemma 5. Under Assumptions A-C, as N1, Ns, ..., Ng,T — 0o, we have for eachi=1,... R:
=0,(1
H \/W % z ;D( )
2. .
Aelll =0,01
H NZT i€i P( )
’ 1 1 1 1
s o, (Y eo, () vo ()
H NVT ( ' "\Cnrv/N; "\VN; "A\VT
Proof
1.
1 1
1 1 N; N; 2 N; N; T 2
ol A !
H \/Wriei = \/ﬁ tr ; €ijYij kz:l%keik T Z:: kz:: ”%k Zezktez]t
Taking expectations of the term inside the bracket, by Assumption A.3 and C.1, we have:
ZZ’YU'VHC Zezktezjt NT ZZ’Y”'Y'MC ZTz (jk) =
] 1 k=1 j=1k=1
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2. The proof is similar to part 1 and therefore omitted.
3. From (26) we have:

U /
G'e;e;

1 1 1
G'FAle, +
NAT N,TVT N, TVT

The first term is bounded by O, (C&lT Ni_1/2> by Theorem 1 and Lemma 5.1. The second term is

(B -m'T}) ) = !

= NiT\/Té/ (G- GH")rie; +

bounded by O, (C’&lTNi_l/Q) due to (27) and Lemma 5.2. Using (19), the third term can be written as

R

~ 1 - 1 ~ 1 A~

G'eie; = ——L"e;e; = N-TJWT ( E K,,LQTWOQQ’K,’,) ee;
v m=1

Following the proof of Theorem 1 in Bai and Ng (2002), we have for each m:

o) ()

1 —~
—— ||K] e;e€!
N,TVT H "
Therefore, it follows that

1 . 1 1
——_||Glee|| =0 o, —
NiTﬁH cici ”(\/Ni)jL p(ﬁ)

The proof completes by combining the above results.

Q.E.D
Proof of Theorem 2
By construction, we have the following relation for each i:

A, =

N, T (Yi B éf;) (Y B éﬂ')/ﬁi

Replacing Y; with Y; = GI', + F;A] + e;, we obtain:

1

AT, -
N, T

N N R
(Sz' + FA; + 61‘) (Si + FA; + 61‘) F;

. N . ~1
where S; = GI'; — GT';. Multiplying both sides by <F/FMT) (I‘gl"i/Ni)_l and rearranging terms:

~\ —1
=~ 1 1 ~ [ F'F, AMAN T
F; '_I—Fi) = FiAie; +eAF| + eie)) F; | = —
( I \/TNiT( e +e T+ ee;) < T ) ( N

~ —1
1 1 /a~ - . . N\ ~ [ F'F, AAN T
— (8,8 +8,A,F + Sie. + F'A'S Z—S’-)Fi i i
+\/TNiT(S '+ S;A;F/ + ;e\ + F/A'S! + ;8 ( = ) (Ni)

The stochastic bound of the first term is O,(Cy4) by Theorem 1 of Bai and Ng (2002) and the fact that

(Fz’l?‘,/T) and (I';T;/N;) are bounded and invertible (see Proposition 1 of Bai (2003)).
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Next, we study the terms in the the second line of the above equation. Using the relation that
S, = Gr, - GT, = GI', - (é —GH+ GH) (f; —HT 4 H—lr;)

_ (@ _ GH) (f; - H*lr;) - (c?* - GH) H-'T, - GH (f“; - H*Fi—) , (28)

we obtain:
T =5 A;Z:-%NT (G -cm) (T -1 1)) F
_ %NtT (G GH) IR — LTA;TGH( - H—lr’) F

By Theorem 1, it follows that

=

|F,

1 1 1 1
=0 | = |10 | ——= 10| ———=== | =0 | =——==
H fNT 3 (CJ%NNZ-T) I (CNNM-T) I <CNT¢NiT> 3 (CNTIN@T>

Using (28), it follows that

=P SAFE =~ (G- ) (B - E T ARE,
- % NiT (G - G) W TAFE - \f (T) - H7'1}) AF/F,

Therefore, by Theorem 1,

1 1 1 1
S,AF/F;|| =0, | =—— Op | =— Op| 5— ) =0p | 5—
H\fNT (C]QVT>+ p<CNT)Jr p<CNT> p(CNT)
From (28) we obtain:
1 5 0A P ~/ —17v I
— N H) (T —H'T") ¢ F,
Jr SR = =z (G- o) (F-HT) el R

1 1 ~ ~ ~ ~
- =57 (G- GH)H 'Ie[F, - GH (T}~ H™'T}) e/ F;

L
VT N;T
The first term is bounded by O,, (C’&}) [Op (N 1/2) +0, ( 1/2)} due to Theorem 1 and Lemma 5.3.

The second term is bounded by N[l/zOp (C&T) due to Theorem 1 and Lemma 5.1. The last term is
bounded by O, (N 1 2) + O, (T~1/?). Consequently, we have:

1
=0 (CNT)

S
SZEZE

1
ﬁNiT’

47



It is straightforward to show that %ﬁ ‘ (28):
L pagr - L L pa (f’. - H—lr’.)/ (c? - G]HI)/IT“
T NlT 7 (R Al \/TNz [3 ) [3 [3 7

- Jr A ) (6 6H) B

11 1 1 1 1
VT N,T — O (CJQVT>+O (CN >+Op (CNT) =Cr (CNT>

Combining all the results, we conclude that

(f; - H*1F§>/H’G’f‘i

Using Theorem 1, we obtain:

PPN
iSiFi

)]

Next, for each i, the estimated factor loadings are:

~ 1 ~ o
A= ZF (Y - Gr’)

Plugging Y; = GT',+ F;A+e;, F; = F; — ﬁiﬁ/fi\*l +ﬁi<%/’?1 and (28) into the above equation, we obtain:

\/%(K;—;Z*A;):—T\}ﬁﬁ;(é—aﬂ) (f;—H—lr;) Tf (G GH) -1
TW (P —m'ry) T\ﬁ F/(F - FA2 ) A +T1N-ﬁi/ei

The first three terms are bounded by O, (C&%), O, (C’NT) and O, (C&%p) by Theorem 1. The fourth

term is bounded by O, (C’NT) from (29). The last term can be written as

F/

1~
Fle;, = F, - F,.J0;

TVN; " T\/ ( ) T\/

The first term is bounded by O, (C&%) that follows from Lemma B1 of Bai (2003) with a slight modifi-

cation. The second term is bounded by O, (T~1/?) using the fact that (NiT)fl/2 | Fie;|| = Op(1) under
Assumption B.2. Collecting all the terms, we conclude that

-0 (o)

Q.E.D
Proof of Theorem 3
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By Lemmas 1 and 2 and using the continuity of the singular values, we have:

\/TOP(C&}) fork=1,...,r9
Sk = Op(\/T) fork=ro+1,..., Rrmax
C310, (VT) for k =0
If ro > 0, we have:
3 O,(Cnr) for k = rg
lim k1 _ 0,(1)  fork=ro+1,..., Rromax
NN, T =00 gy 0,(1) for k=0,1,...,70 — 1

On the other hand, if rop = 0, we have:

. Ok+1 0,(1)  fork=1,..., Rrmax
Ni,..Na,T=oo §. | Op(Cnr) for k=0

As Cny1 — 00, the ratio 8k+1/5k attains maximum at k = rg. Thus, the desired results follows.

Q.E.D
Lemma 6. Let Cn, 7 = min{y/N;,VT}. Under Assumptions A-C and F-G, we have:
1. For each i and t, as N;, T — oo, we have:
L1 SN 1~ 1=
Ky -HK; =V, ( Z Kiwi(s,t) + ; Kisist + 7 2 Kisnise + Z; Kisui,st>

where E = (©.0;/N;) (K{f{\Z/T) ‘Affl is an (ro+1;) X (ro+1;) matriz with ‘A/, being the diagonal

matrix consisting of the first ro +r; eigenvalues of (N;T) LYY, in descending order. In addition,
(a) TS T Kiwils,t) = O, (T-12Cy)) where wi(s,t) = E (Ni_l Zjvz‘l eijseijt);
(b) T~ Z;F:l f{\isCi,st =0, (Ni_l/QCX,lT> where (; ot = Ni_leg'se,;.t —w;(s,t);
(¢c) T71 Zstl E’isni,st =

(@) T' S0 Kiopise =

( 1/2) where 1; s = N[lKgs(Bge,-,t;
( 1/2

-1 ! /
) where p; st = N; K., ©le; s

2. Let ’7/1\’,z =7-1/2 (Ki — I/if{\l) For each i, as N;,T — oo, we have:

R0 () +or ()

3. As Np,, T — o0, for each m and h, we have: T’l/Q’ﬁ,:nKh =0, (C&iT).

4. As Ny, Np, T — o0, for each m and h, we have: T71/27A2/mf(\h =0, (C’;,iT)
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5. As Np,, T — o0, for each m, h and j, we have: T—1/2 R mehj = Op (CNzT)

Proof
1. For each ¢, by the definition of PC, we have KV, = (N;T)"'Y;Y;K,. By plugging (6) into this
equation, we obtain:

2 IT _ 1 o T 1 -1
K, - K:H, = (NiTeZQZKZ-KZ +— K©®eK, + NTe e K; ) % (30)

NiT

Let f(\it — I/I\iKit be the t—th row vector of f(\l — Kjf\, Then, the proof follows directly from Lemma
A.2 in Bai (2003).
2. For each ¢, we have:

i =1ir {1 (-/K\z - Kz-/H\'L)/ (K Kzﬁz>} =
{32 (R ) (- At | 30| |

Combining the terms of (a)-(d) in Lemma 6.1, the results follows immediately.
3. Consider the term,

R 1 T T
%R%K (T ZZ mswm S, t Kht T2 ZZKmSC’m stKht

. t=1 s=1 .
Z Z msTlm, st K Z Z mstm, StKht)

where Hf/,;lH — 0,(1) by Lemma 8. Let T-'/?R! K, = V7' (X1 + X2+ X3+ X4). X1 can be

written as

7

T T T T

1

ﬁZZ( ~H Kms) (s, 1) Ky + H, ZZ st (s, KL, = X1.1 + X1.2
t=1 s=1 s=1

By the Cauchy-Schwarz inequality, we have:

1/2 P 1/2
2 1
) (Rt i)

t=1 s=1

T
|X11) < —= (1 DIED D [N

t=1 s=1

1 1 1 1 1
:O+O:O+O)
o (o) o (e ) v =0 (o) o (e
where we used Lemma 6.1, Assumption B.1 and the fact that 71 2;\1 Zle lwm (s,t)|? = O(1) (see Bai
and Ng (2002) Lemma 1.(i)). The expected value of X1.2 without H],, is bounded by

Tgii ol D1 (1Bl B (180 2) " < M (;iiwm@,m) ~o(3)

t=1 s=1
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under Assumption B.1 and Assumption A.2. Therefore, we obtain: | X1| = O, (C]QiT).
Next, by the Cauchy-Schwarz inequality, X 2 is bounded by

o\ 1/2 1/2
1 T Nm 1 T )
Ix2) < | 5 T2§ T 2 O Koms [emisemst = Blemgicmie) <T§ K )
s=1j=1 t=1

~or ()

under Assumptions G.1 and B.1.
X3 can be expressed as

T
- % SN ( ms — H K. ms) N5t Ky + HY, " ZZKmsnm o Kh = X3.1+ X3.2

t=1 s=1 t=1 s=1

Applying the Cauchy-Schwarz inequality to X 3.1, we obtain:

1/2 2\ 1/2
1 Z 9 1 X
HX31|| < <TZHKWS _Hyanms ) TZKhtnm,st
s=1 t=1
The second part can be expressed as
) T ) T o\ 1/2 ) o\ 1/2
T Z T Z Khtnm,st Z N T Z Khthse j€mjt
s=1 t=1 8:1 m
N o\ 1/2
T
m 1
||KmsH K mj€mjt =0 ()
Z N T ;; ht jemj p \/W

under Assumptions B.1 and G.2. Hence, || X3.1|| = O, (C&iT) Op (Nn_ll/ZT’l/Q). For X 3.2, we have:

1 G 1
X3.2:?;K K;MN ;Z:: 1 iOmiemit = O, (m)

by Assumption G.2. Therefore, | X 3| = O, (N,ZI/QT_IQ).
Following similar steps, we obtain: X4 = O, (N;ll/zT_l/z) Collecting all these results, we obtain:

T-12R. K, = 0, (Cx 1).
1 1 1 1

T RnE = R, (K~ KnHn) + S Ron K H)
By Lemmas 6.2 and 6.3, it follows that 7-/2R! K, = O, (CN27)-

o1



5. Consider
1 =R 1 T T T T
ﬁnmehj = Vn:1 (TQ ;g mswm S, t ehgt g; msCm st€hjt
1 r T 1 T T
+ ﬁ Z Z Kmsnm,stehjt Ti Z Z msHm, Stehﬁ>
t=1 s=1 t=1 s=1

where H‘Afnjl = O,(1) by Lemma 8. Let T*1/27€;nehj — V7L (X1 + X2+ X3+ X4). As the first term
X1 is of order O, (C’JQ?”T), the proof is the same as that of X1 in Lemma 6. The second term is equal to

T T T T
1 1
=52 ( s — H' Kms> Cmstnsi + Hiy s 3" KnsGmysinje = X214+ X2.2
t=1s

t=1 s=1 =1
Using the Cauchy-Schwarz inequality, we have:

1/2

) 1/2 ) ) 2
) T Z (T ZCm,stehjt>

s=1 t=1

T
1 —~ —~
221 < (30 || Kons — Hy Ko,
< (13- 2
Notice that by Assumption A.5,

1 « 1o 1 R 1
T Cm,s Ehjt = = V| T~ [emksemkt - E(emksemk‘t)} Chjt = @) (>
T ; it t; VN, \ VN, ’ "\ VN,

Using Lemma 6.2, we show that

1 1
X221 =0, ——— O, | —
2l =0, (Jxmre—) +0 (52

In addition, by Assumption G.1,

2

b
I
—

T N,
1 m 1
T 2 : E § = _
XQ 2= H \/7T <\/T e Kms emksemkt E(emksemkt)]> eh]t = Op < NmT)

Combining these two terms, we have X2 = OP(C’JQTZ”T). Next, we can rewrite X'3 as

T T
1
) msfH, K, nmsteh]t+Hm Kmsnm @tehjt_X31+X32
T2 T2

t=1 s=1 t=1 s=1
By the Cauchy-Schwarz inequality, we have:

1/2

1= = A S ’
||X31H S (T Z HKms - Hy/nKms > T Z (T an,stehjt>
s=1 s=1 t=1
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Notice that

1 & 1 1 <& 1 In 1
— m,s it — 7Kms* I em m it =0 e
7o = N TEwa; ““%W ()

Using Lemma 6.2, we have:

1 1
X31) =0, (—=—=—)+0, ().
=0 (o) <o (w)

For the second part, by Assumption F.2, we have:

T N,
=, (1 1 = 1
! ! — _
X32=H, ( ;:1 KmsKmS> N >N Ouremieene = O, (Nm>

t=1 k=1

Combining these two terms, we obtain X3 = O, (C&iT). The proof of X4 is similar to that of A'3.
Finally, we conclude that T*I/Qﬁ;nehj =0, (C&i/T).

Q.E.D
Lemma 7. Under Assumptions A-C and E-G, as Ny,...,Ngr,T — oo, we have:
1.
1 H@@ - ﬁ'@’@ﬁH o, (-2 wadr-grp=0, (-
T p C2ﬁ7T 7 [ p CQET
2.

F#e - ; L :
oo -—ww|=0,—— and HL’""—L”’UH:O _
T P C} 1 P C3r

where Oy v = min{y/N,VT} and N = min{Ny, No, ..., Ng}.

Proof R
1. By definition of ®, we have:

(R-1DK/K, -K\K, ... ~K!Kp
lag_ L ~-K}K, (R-1)K,K, ... ~-KiKr
T T :
~K,K, -K,K;, ... (R—-1)K,Kg

Using (30) and the definition of R; in Lemma 6.2, we obtain:

188 - LHSOH + A + Ay + Ay
T T
where -, . -, - ., e
(R-DR\EH  —RJGH, . ~R,KpHp
B -y - 1| -RKH: (R-)REH, ~R,KrHp
VT :
~R K H, ~“RLK.H, ... (R—1)RyKrHpn
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and

~/ ~

(R—-1)R, R, -RR, .. -RRg
A~/ A~ A~/ ~ ~/ ~
: “R,Ri  (R-1D)RyR» ... —RoRn
3 = .
~RLR, “RiR, ... (R-1D)RRnr

Using Lemma 6.3 and the fact that H; is 0,(1), we have A = 1&'2 =0, (C’&?p) Furthermore, by Lemma
6.2, we have 1&3 =0, (C’&%)

2. By definition of T and WU, we have:

[roe twe < 3
T T -

i=1

1~ ~ o~ — 1
~K,.Q"Q"'K, - —GG
T Ql Q’L K3 T

Using f{\z = f{\l — Kif-\L + KifI\i, we have:

o~ o~ [~

~ I~ —~\ ~
. 1 (K. - K1) Q

S | — - ~
“KO0PQ"'K - ~GG' = ‘(KifKiH,-) K,Q;
~K.Q QK| - 7GG' = ~Q ) K.Q: +

— —~

T T

Y

The first two terms are bounded by O, (CR,?T) by Lemmas 6.3 and 6.4. Using él = I/{\ileiD +
O, (C;,fT), the remaining terms can be expressed as

GG 1 GG
D'B ——BD+ 0O () —
T "\ CRr T
Notice that oc o
! o/ . _
‘ D'B T BD T H 0

since D and B are orthogonal matrices. Therefore, we conclude that

1o~ 1 1
\IJ’\II—‘II’\IIH =0, —=—
HT T P Cir

By Lemma 3 and Assumption B.1, we have Hffo — LTOUH =0, (C&%) where U is defined in (24).
Q.E.D

Lemma 8. Under Assumptions A-C and F-G, as N;,T — oo, we have for each i:

1.

]./\ 1 — o~
~ K| VY| K, =V, 5V,
T 1<NiT >

where V; is a diagonal matriz consisting of the eigenvalues of 3o, Xk, .
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KK, (0,0,\ KK,
T ( N; T
3. e
pthﬂT—)ooT =Q;
The (ro + r;) X (ro + 7;) matriz Q; is given by Q; = VZ-I/Q’P;E(gj/z and invertible, where V; is
the diagonal matriz consisting of the eigenvalues of ngzngf and P; is the corresponding
eigenvector matriz such that PiP; /T = L 1, .
4- -
plimNi,TﬁooHi = Hz
where H; = $o,Q, V7.
Proof.
The proof follows the same lines from Proposition 1 and Lemma A.3 in Bai (2003) and is thus omitted.

Q.E.D
Proof of Theorem 4
From (19), we have for each t:

R
~ 1 -~ ~ o~~~
G, - —\/T(ETO)_lLTO’ <§ :KZ-Q;."OQ;“O'Kit>

Using the asymptotic expansions in Lemma 7.1 and Lemma 7.2:

and keeping the term up to order O, (C’&%)7 we have:

~ 1 ~ —~ 1
L =L"U+0, | 4—|,Q=H;'Q"D+0, | =
CQT CﬂT
1
— 7U Ero 71Lr0/
_U@E=")

1
+0, | =5
VT ’ (CM)
where we use that (E7)~1U’ = U(E")~! because both matrices are diagonal. Replacing T-12K; with
T-12K,H, + R, the above equation can be written as

G

R o - ;o
> KH'Q Q! (Hi_l) K
=1

R

N 1 N

G —H' Y (H;l) Ky +UEo- Lo
=1

R /
S RHQrQY (H') K,
i=1

where we use K;Q!° =GB, B=R1'A, QI° = [R_lA’,O]/, BQ!* =R '[I,,,0] = R7'I/ and A is an
orthogonal matrix. From the asymptotic expansion in Lemma 6.1, it follows that 77! Zil Kn; o and
(NiT)*leiGiKgKiVi_l are dominant terms in K;; — H/K;; and R, respectively. So we have:

T

DU 1 _ 1

Ky=HK;+V,'— > KK ©e;,+0 ()
N,T ~ "\ C%.r
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and
~ 1

Ri= \FNT

Plugging these expressions into (31) and multiplying both sides by VN, we can show that
~ ! /]- & / Tr—1 /A—l N 1 £l _ ’ 1 Ni
x/N(Gt ~H Gt) —H E;Hi (Hi ) Vi w f;KisKis —Ni;%eijt

R
N 1 1 KK, VN
Usro—lpro, [ — — ; V—1H—111 G:i+0, | =o—
- VN R VAT T e o

Using ﬁl = (©,0,/N;) (K{?MT) ‘7[1 from Lemma 6.1 and rearranging terms, the above equation can

L @ KRV 0, (o
CVNiT

be simplified to

VN (G- (| +B)G,) = H' Z]I’\/>< (:)i)l

R —1
1 1 @.0, e’
B=— Bl (A i€ yropy.
R;\/Niz( ) S

Following Lemmas 5 and 8, it is straightforward to show that B = O, (ﬂ -t/ 2).

Finally, we achieve the desired result that

where

. 1 .
VN (Gt — (H'+B) Gt) = HT'CE; +0,(1)

where Z = [I,...,I.,]" is an Rrg X ro matrix, Cis a Rro x Rro block diagonal matrix given by

Ny (©181)
N1 1 N1

o)
Il

—1
N 1/ ®%L0r
N, R Ngr

and E; is an Rrg X 1 vector given by

N
E] [ v 2521 Onenr
Eoy A 0600
E,=| | = VN2 1.1 3 €27 ﬁN(O,DEl))
Ere T i Orjenje

Using Assumptions C.2b and E, we have:
a1 3o
1

1/2}1’ o,
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Therefore,

VN [ét — (H' +B) Gt] 4N <0 RQH'Z’CM’IH)

Q.E.D

Lemma 9. Under Assumptions A-G, as Ny,...,Ng,T — 0o, we have:

1. For each i, we have T! [C:” -G (H+ E)}/Ki =0, (C&%);

2. For each i and j, we have T™! [CAJ -G (H+ B)} eij =0, (CNT)

Proof _
Using K” — H K + H ! K, we can write (31) as

G, — (H +B)G, = H’% éﬂg (ﬁ;l)' (Et _ I’f;Kit)

2
i=1 CﬂT

R !
N - - 1
+EO LYY RHQrQY (H;l) (Kit - H{Kit) +0, < )

Therefore, for Lemma 9.1, we have:

ﬂ \

T R 1 T
Z[G,— (' +B) G| K{t—H’ >, (H ) Z(ff\mtfﬁénKmt)K{t

m: t=1

1 1
m=rg,— 1T —1 r
L zro—lpror Z R m Qm ,0’ ( ™ ) Z ( mt — H Kmt) Kzt + O <C]2VT>

m=1 t:l

By Lemma 6.2, 7! Zt L ( i — H' Kmt) K/, =0, (C’X,iT). Then, the required result follows.

We can prove Lemma 9.2 along similar arguments using Lemma 6.5.
Q.E.D
Proof of Theorem 5 R R R
For each i and j, we have 7;; = T-'G'Y;;. Using (5) and G = G—G (H + B) ' +G(H+B) ", we have

Jy — (H+B) ", = %é’ (G-GE+B) |+ %é’FiAij + %é’eij
Using G =G - G (H+ B) + G (H+ B), the above equation can be written as
i — (H+B) oy = % {C:‘—G(HJrIB%)}I {G—C:‘(HJrIB%)_l] s
+%(H+IB%)’G’ {G—@(HJrIB%)*l] i+ = {@fG(HnL]B%)}/FiAij

11~ /
+T[G—G(H+IB%)] eij + (]HI+IB%)GF)\”+ L H+BY Gy
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The first term is bounded by O, (ﬂ 71) by Theorem 4. The second to fourth terms are O, (C&%) by

Lemma 9. Then, we obtain:

~ - 1 1
¥i; — (H+B) 1'7ij:(H+B)/G/(E)‘ij+eij)+0p< )

T Cir
Multiplying both sides by /T, we have:

T
_ . 1
VT [3 — H+B) ] = H > Gi (N Fu + cije) +0,(1) <5 N (0,F/DH)
t=1

using Assumption G.4 and the fact that B = O, (Mflﬁ).
Q.E.D

Lemma 10. Under Assumptions A-G, as N;, T — oo, we have for each i, j and t:

~

Sige = = [3i — H+B) " ] (G- (' +B)G) — oy [(H+B) | (G- (0 +B) G)

-G, (H+B) [7;; - (H+B) " 7] =0, (\;N) o (\/1?>

where §ijt is the (t,j) element of 8; = GT — CA%’IA“:

Proof.
Using the expansions G = G — G (H+B) + G(H+B) and T, = T, — (H+B) ' T}, + (H + B) ' T, the
result follows from Theorems 4 and 5.

Q.E.D

Lemma 11. Under Assumptions A-G, for each i, as N;, T — oo, we have:

1.
1~ 1 55\ & =
7 (Nz—TYiYil> F=",%7,
where 171 =Y, — C:‘f‘; and X; is a diagonal matriz consisting of the eigenvalues of 35,3, .
. F'F; (AA;\ F'F
o) e
3.

. E/Fi
plszi,T—moT:Wi

The r; xr; matric W; is given by W; = T}”L;E;j/z and invertible, where X; is also an r; xr; diag-
onal matriz consisting of the eigenvalues of Ell\/izEFiE}\/iZ, and L; is the corresponding eigenvector
matriz such that L.L;)T = I,...
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—

plimNmT—N)o% = J;
where ;= S, WX = W;l.

Proof.
As S = op(1), the proof follows directly from Proposition 1 and Lemma A.3 in Bai (2003) with slight
modification.

Q.E.D
Proof of Theorem 6.
By construction of PC, we have

M)

= %7 (§,»§{ + F,A'S! + e;8! + S;A;F/ + F,A'A;F! + e;A;F| + S;e, + F;Ale, + e;e ) FY !

where §; = GT', — GT,. Therefore, we have

ﬁit—f/f?FitZ

~ 1 ~ o~ A
TllNT<ZF S’L.t

=1 S

!

R

T T T
RS+ Y BBl Y BN zps)
s=1 s=

I\Mﬂ

s=1 1
T
s=

a ! <IN 1_ <N 1
<T Z 1swz S, t Z isCi,st + ? Z isn;k’st + T Z isﬂ;‘k,st> (32)
s=1 s=1 s=1

N \

1

Where S = (ALA;/N;) (FIF;)T) ?71, S;, is the N; x 1 vector of S; (the t-th row vector), Nist =

N F/,Ale;, and wise = N;i 1Fz’tA’ez s- wi(s,t) and ¢; o are defined in Lemma 6.1.
To analyse the first part of (32), we let

s\

T T T
NiT (ZlF 5.5 Z Zﬁ S; e i.t+ZESF A8 ”+Zﬂse;.5§i.t> _
5= s=1 s=1 s=

X1+ X2+ F3+ 24+ Z5.

Using ﬁis = ES — ﬁg’?ﬂ-s + ﬁg’?ﬂ-s and by Theorem 1.2, we obtain:

=

1
N.T

[M]=

21 =

1 1
( is L%ﬂ/Fzs) SZJSSUt + %/NT Z ZFZSS”SSW O <C12VT>

1 s=1j=1

V)
Il

1j

Similarly,

1 T N;
NT ZZF SijsAl; F.

T N;
ZZ (‘l/ﬁl‘g 7‘%/’?1?19) Svjs)\/ 1t+%/
s=1 j=1

The first term is O, ( Oy 7 ) by Theorem 2.1 and Lemma 10. Using Lemma 10, we can express the second
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_ 1 T N; ,
% NZT Z FZSSZ_]S)\'L]'Et -
s=1j=1
1 N; 1 T
— _/7 — /
N T ,
7 /
_%M;T;Fw (G~ @ +B)Gi) (H+B) X, Fy
— M — 7 > F.G}(H+B) bij — (H+B)™ ’Yij} AijFit
v j=1 s=1

The first term of the above expression is O, (C’&ZT) [Op (T’l/z) + 0, (Mfl)] by Lemma 9.1 and Theorem
5. The second term is O, (C&QT) by Lemma 9.1 while the last term is O, (Tﬁl/z) [Op (T’I/Q) + 0, (ﬁfl)}
by Assumption D. Therefore, we obtain: 22 =0, (C&QT) Using Es = I?'is - %/’?Fzs —l—%/’?Fis, we have:

T
23 = NtT Z (ES - %?FZS) Sijseijt + %/ Z ZESSZjSert

s=1j=1 s=1j=1

The first term is bounded by O,, (C&%) by Theorem 2.1 and Lemma 10. The second term can be written
as

<
Il

—
@
Il

—

The first term of the above equation is O, (C’&%) [Op (T*I/Q) + 0, (ﬂfl)] by Lemma 9.1 and Theorem
5. The second term is O, (C&%) by Lemma 9.1 and the last term is O, (T*1/2) [Op (T’1/2) + 0, (ﬁfl)]
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by Assumption D. Collecting these terms, we have 2°3 = O, (C’&QT) Next, consider

2

i

T
NlT Z (-Fzs jf -Fzs) ezys Ut + %/ Z ZESGUS iyt

s=1j=1 191;1

.
I

The first term of the above equation is of order O, (C&%) by Theorem 2.1 and Lemma 10. For the

second term, we have:
o\ —1/2 -1/2
1
= O _—
P (ﬁcNT>

N.
1 s |2
N, 2 |Sue
74]:1

where the last equality follows from Assumption B2 and Lemma 10.
Collecting the results above, (32) becomes

is€Cijs

+x! lXT:AW(S t)+lzT:ﬁC vt+lzT:1?'unfk XT: "w L
A T 18w\ T 1851,8 T 18 l,ét % 1,5t P CQET

s=1 s=1 s=1 s=1

It then follows that

-ﬁt—%?ﬂt:?; NT

&Mﬂ
"q>

1
FZSA/SHJFT 11 ZFMHHLO <02 )
NT

Then, the proof is the same as that of Lemma 6.1. Let B;; be the bias term given by

B = ?;1 N

1 -
TZF F/ A'S
s=1

Under Assumption G3, it follows that

H \

T N;
VN E*ﬁﬂ - B; ( > L Aijeije + op(1)
( t t t) ; m; j€ijt T Op

d, (0‘!‘ W, DO W )

i,t

Q.E.D

Lemma 12. Under the assumptions in Theorem 6, we have for each i and j:

% (R~ Fi) F.=0, (C;VT>
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where §¢j = Gvij — C:"%J

Proof.
1. Using (32), we have:

T
L/ 2\ 1 - U ’
T(E-—Fij‘ﬁ) F, = Z(Fit_t%pipit) F;, =

1 T T R
* Ti Z Z FZS/‘% sth,t>

By Lemma 11, we have 'Y = Op(1). The second part of the above equation is of order O, (C&QT) The

proof is the same as that of Lemma 6.3 and therefore is not repeated here.
We focus on the first part, which can be written as T (Ql + Q2+ 93+ 94+ 95). As a result of

Lemma 10, Q1 = O, (C’NT). Using Es =F;, — %’Fis + :%’j F;,, we have:

N, T ,

N’.
1 o , (FF\ — 1 . ., (F/F,
_ NiT}: (F fij) Sijs N, ( = ) A S > FiuSuN (5

j=1s=1

Note that FF;/T = O,(1) by Assumption B1. The first term is O, (C&%) by Theorem 6 and Lemma
10. Combining Lemmas 9 and 10, Theorems 4 and 5, and Assumption D, we have: 7! 23:1 Fq;sgijs =
O, (C&%), so the second term is also O, (C’ ) We then obtain Q2 = ( N?F) Along similar argu-

ments, it is easily seen that Q3 to Q5 have stochastic order O, C’;,T .

2. The proof is similar to part 1 of the lemma and therefore omitted.
3. The result follows from Theorem 6 and Lemma 10.
Q.E.D
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Proof of Theorem 7.
Usmg)\ —FY”,Y —Sw—i—F)\U—i—eU and F; = F; — FL%” —|—ij , we obtain:
3 o1 1= 5 o1 1=, 1 ~a
Aij = Aig = S F (Fz - FJ ) Aij + e + 5 FiSi
Replacing E by E — Fijg’?—k FV%/’Q\, we get:
N o1 1/ =\ o 1 o
Aij = A Aig = T (Fi - szfi) (Fi - Fz%) Aij + 7 Fi <E - Fi«%”i)
L1 - AN AN A
T (F F%) €;j + T (F, — Fl%) Si; + %,TFL!SU + jfi/fﬂ/eij
Then, by Theorem 6, Lemma 12 and Assumption D, it follows that

. T
S 1 A .
Aij = A Ny = %ﬁilf ZF“Sijt + ‘%ﬂilf Zﬂteiﬁ o (CJQVT>

t=1 t=1

Let %;; be the bias term given by
T
1 ~
%’Lj == %,f t_g - EfSZﬁ

By Lemma 10.4 and Assumption G.4, we finally obtain

VT (R = 2 Ny = #5) = %, XT: Fue +op(1) 5 N (0, (W) DYw; 1)

Q.E.D

B Bootstrap confidence intervals for the global factors and load-
ings

We outline the bootstrap procedure for constructing consistent confidence intervals for the estimates of
global factors and loadings. Although their asymptotic distributions are well-established, they are not
readily applicable in practice. The asymptotic covariance matrices derived in Theorems 4 and 5 are
subject to the rotation matrix H, which is unknown and cannot be estimated. Moreover, we cannot use
bootstrap to consistently estimate the variances, because the bootstrap version of the rotation matrix
H*(®) varies in each replication b.

It is still possible to construct valid ClIs for the global factors and loadings since H*(®) can be replaced
by known quantities in the bootstrap world. The back-rotated bootstrap factors and loadings have the
same asymptotic covariance matrices over all replications b = 1,..., B, as shown in (33) and (35). This
enables us to construct Cls based on the percentile estimates. For simplicity we assume that the error
terms are cross-sectionally and serially uncorrelated.'®In Theorem 5, the asymptotic covariance matrix
of 4;; depends on the time series variation of the local factors Fj;. Therefore, we should also bootstrap

16This is mainly because we make the algorithm computationally tractable.
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the local factors in addition to the error term. This step will affect the bootstrap rotation matrix I/-f:(b)

as well as the covariance matrix in Theorem 4, which contains the bootstrap version of f{\i, denoted El*
If the local factors are also bootstrapped, I/(\';‘ is not consistent for K, i, which results in different limiting
distributions of @Z ®) across each repetition. Therefore, the bootstrapping for @t and #;; should be done,
separately. R

We now outline the different bootstrap algorithms for for Gy and 7;; for b=1,...,B.
Bootstrapping the global factors

1. For each 4, j and t, construct e;‘j(f) = éijtf:j(f) where é;j1 = yiji — ﬁgjét A Ft and &;; (b)
iid. N(0,1).

#(b)

2. Generate the re-sampled data by y; *0) = %@t + )\ th + e -

3. Apply the estimation procedure developed in Section 3 to the re-sampled data, and obtain the
bootstrap estimates, denoted K ®) and G; ®),

4. Repeat Steps 1-3 for B times.

The consistency and asymptotic normality of the GCC' estimators for the re-sampled model are
achieved since Step 1 does not change the validity of Assumptions A-G. In order to have consistent
estimates of the bootstrap covariance matrices, we assume cross-section independence of the error terms
e;jt. For each b=1,..., B, we have

~ % ~ 1 ~ *
V IN |:(;t (b) - (H*(b)/ + B*(b)/> Gt] H*(b)/z /C*Et (b) Op(l)
N ( R ( / e 1) / (b)>

where H*®) = U*®) with U*®) = 7-1G*O'G + 0, (c;v )17, and

-1 ~
'@ ®e -~
]II % i JTOU*(b)
e SNAETL LN

& 74 . [Ny (©8:) 8,6, "
with ®; = T~'Y/K,;. Moreover, C* = diag < Nﬂlﬂ’l ( A 1) s s NAR]I’R ( ﬁ,}j) > and D} being

a block diagonal matrix as

D}y 0(1) .0
0 D 0
D@ = 22,
S e
0 0 ... DyY)

~, ~ ~ ~ ~ —1 ~
7Using Theorem 4, we have H*®) = T7-1/2G" JroUu*(®) where J™© = L™ <ET0> and E"0 is an rg X rg diagonal
matrix consisting of the r¢ non-zero eigenvalues of T-1GG’'. Because T-1G'G = I, it follows that Ero = I,,. Using
Lro = T-1/2@, it follows that H*®) = U*®). Using Lemma 7, it is straightforward that U*®) = T-1G'G*®) +0, (CNT)
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with

*,(1
Dn‘,(t) = plimy;, imoo N Z 02] E(e fyt) <M.

Notice that we cannot consistently estimate the covariance matrix in Theorem 4 in general. This is
mainly because H*®) does not necessarily converge to H as the rotation matrix is subject to the data
dependent matrix U*(® | which does not always coincide with the population counterpart U. In tis regard,
we follow Gongalves and Perron (2014) and construct the ClIs using the percentile estimates based on

71 ~ ~
VN [(H*(”)’ + B*(W) G — Gt} 4N <0 ﬁz’c* 1><c*’z) (33)
which keeps the bootstrap covariance free from the rotation matrix. Let
B S ~
Pt - g (F [(or o) 60 - & 7).

be the empirical distribution function where 1 is the indicator function. The 1 — « CI is given by

l:ét a2 ét _ Ch\/aﬁ/z} (34)

where g, /2 = ﬁgt_ (a/2) and q1_q/2 = D; _1(1 — «/2) are the inverse function of DG evaluated at a/2
and 1 — /2 respectively.

We outline the bootstrap algorithm for the global factor loadings:
Bootstrapping the global factor loadings

1. For each 7, j and t, let e;-kj(t) = emaw(t) where &;;; = y;jt — 'y{jét — X;jﬁt and E:ﬁ)) ~ iid. N(0,1).

2. Construct the re-sampled local factors as

ft*(b)forz—l SRz=1,...,mt=1,...,T.

RO < B

it

k,*x(b) . C . . . . . .
Wiy ®) is drawn from a zero mean normal distribution independent across i and k with covariance

18

* * t_
Cov ( ko (6) wk’ (b)) = Bartlett (lks> fort,s=1,...,T

where Bartlett is the Bartlett kernel function and I¥ is a bandwidth parameter.'®

3. Construct the re-sampled data as yij(t =7 Gt—i—X *(b)—&—elj(f) where /" = [FL*®)  prox®y,

4. Estimate the model from the re-sampled data using the procedure developed in Section 3 and obtain

the bootstrap version estimates 'yl ),

5. Repeat Step 1-4 for B times.

18The bandwidth parameter can be chosen following the data dependent approach developed by Andrews (1991).
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Step 2 follows the dependent wild bootstrap developed by Shao (2010), which accounts for times series
dependence of the local factors. We can also consider other block bootstrapping methods to preserve the
serial correlation structure of the local factors. For each b =1,..., B, we have:

T
= * * -1 =~ * 1 ~ 3 * *
JT [%j(b) _ (H ®) 4B (b)) ,Yij] —H (b)/ﬁ ZGt (A;jFit(b) i eij(tb)) +0,(1)
t=1
i> N <O7H*(b)/D:}(2)H*(b))

e D = iy TS S [Go (8B 20) (8 o 01) 1) For s s
explained before, we construct the CI based on

VT {(H*U’) + B*(b)) 70 - fm} N (0, D;.*J’.("’)) (35)

to eliminate the rotational indeterminacy. Recall that the rotation matrix H*(®) is a diagonal matrix with
elements +1, so H*H*(®) = I, . Let

D, (1) =3 i 1 (VT [(5® + B ) 5, 5, < 7).

be the empirical distribution function. The 1 — « CI is given by

~ da/2 ~ di1—a/2
[')’ij_ \//Ta7ij_ \FT/ ] (36)

where g, /0 = ﬁ:;;l(aﬂ) and q1_q/2 = ﬁ;;j_l(l — a/2) are the inverse functions of 23::1 evaluated at
a/2 and 1 — /2 respectively.

A simulation is conducted to examine the validity of our bootstrapping procedure. We use the same
DGP as in Section 5 in which we fix R = 3 and (ro,7;) = (2,2) and (8, ¢, x) = (0,0,1). The sample
size varies as N; € {20,50,100,200} with Ny = --- = Ng and T € {50,100,200}. Moreover, we allow
(6G,0r) = (0,0) and (¢G,0r) = (0.5,0.5) to address the potential serial correlation induced by the
local factors. We focus on the first element of @t and 7;; evaluated at ¢t = T/2 and ¢ = 1, j = N;/2,
respectively. The bootstrapped Cls are generated by (34) or (36). For comparison, the CIs generated by
theoretical (infeasible) variances of 4 and 5 are also reported. We choose the significance level a = 0.05
throughout the study.

Each entry of Table 12 is the coverage rate calculated as the ratios of ClIs that contains the true factors
or loadings over 1000 repetitions. The top panel of Table 12 shows that the infeasible CIs for the global
factors have coverage rates around 0.95 whilst the coverage rates of the bootstrapped Cls increase as the
sample size increases. The bottom panel of Table 12 presents the results for the global factor loadings.
On one hand, it seems that the infeasible Cls are unaffected by the serial correlation of the factors and
become closer to 0.95 as the sample size grows. On the other hand, the bootstrapped Cls performs better
under non-zero serial correlation of the factors, although both of them become to 0.95 eventually. The
above investigation confirms that the bootstrapped Cls are reliable.
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Table 12: Coverage rates for the bootstrap CIs with R = 3,
(TQ,Ti) = (2a 2) and (67 ¢67 ’%) = (0707 1)

Global factors

(¢c,or) = (0,0) (¢a,¢r) = (0.5,0.5)
N; T  Infeasible Bootstrap | Infeasible Bootstrap

20 50 0.939 0.874 0.943 0.894
50 50 0.947 0.923 0.932 0.898
100 50 0.942 0.911 0.952 0.936
200 50 0.943 0.921 0.935 0.925
20 100 0.942 0.902 0.956 0.896
50 100 0.949 0.923 0.939 0.907
100 100 0.953 0.934 0.953 0.933
200 100 0.946 0.925 0.942 0.935
20 200 0.95 0.901 0.957 0.904
50 200 0.954 0.921 0.945 0.929
100 200 0.945 0.93 0.949 0.931
200 200 0.951 0.93 0.948 0.929

Global factor loadings

(¢c, or) = (0,0) (¢c,or) = (0.5,0.5)
N; T  Infeasible Bootstrap | Infeasible Bootstrap

20 50 0972 0.925 0.963 0.897
50 50 0.961 0.915 0.966 0.862
100 50 0.974 0.922 0.979 0.909
200 50  0.965 0.916 0.978 0.887
20 100 0.955 0.931 0.960 0.910
50 100 0.963 0.929 0.958 0.915
100 100 0.966 0.934 0.956 0.909
200 100 0.9678 0.936 0.967 0.914
20 200 0.951 0.933 0.930 0.911
50 200 0.937 0.926 0.955 0.932
100 200 0.958 0.942 0.959 0.931
200 200 0.955 0.936 0.951 0.929

Each entry shows the coverage rate calculated as the ratios of Cls that
contains the true factors or loadings over 1000 repetitions. The infeasible
ClIs are generated by the theoretical asymptotic distributions in Theorem
4 or 5, and the bootstrap Cls are generated by the by (34) or (36). We
report the CIs for the first global factor and loading, evaluated at t = 7'/2
and i = 1, j = N, /2 respectively. 7o and r; are the true number of global
factors and true number of local factors in group i. We set ry = --- =rg.
We set N1 = --- = Nr where N; is the number of individuals in block 7. T
is the number of time periods. ¢g and ¢ are the AR coefficients for the
global and local factors. 8, ¢e and k control the cross-section correlation,
serial correlation and noise-to-signal ratio.
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