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1 Introduction

In a data-rich environment with large cross-section units and time periods, the factor model is a useful
technique for dimension reduction, e.g. Chamberlain and Rothschild (1982), Stock and Watson (2002)
and Bai and Ng (2002). Recently, the multilevel factor models have gained increasing attention, in which
the factors are not only pervasive (i.e. common to all groups) but also semi-pervasive (i.e. common to a
subset of groups only). They are referred to as the global and local factors, respectively. Kose et al. (2003)
advance the multilevel factor model for characterising the global business cycle, documenting evidence
that the global factors play an important role in explaining macroeconomic activities. Barrot and Serven
(2018) find that the common factors are the main driving force behind advanced-country capital flows
whilst idiosyncratic components dominate the emerging/developing country capital flows. Andreou et al.
(2019) show that the industrial production is still the most important workhorse in the US economy,
using the two-block factor model with a mixed-frequency data.

Although the principal component (PC) estimation is a popular method in the single-level factor
model, it is not directly applicable to the multilevel setting, because it can only estimate the whole
factor space consistently but fails to separately identify the global and local factors. This renders the
estimation of the multilevel factor model a challenging issue. Wang (2008) proposes a sequential PC
approach which updates the global and local factors iteratively, though this approach does not guarantee
convergence to the global minimum unless the initial estimate is consistent. Breitung and Eickmeier
(2016) and Choi et al. (2018) propose the use of the canonical correlation analysis (CCA) for obtaining
an initial consistent estimate of the global factors by employing CCA using any two blocks. Once the
(estimated) global factors are projected out, the local factors can be consistently estimated for each block.
The global and local factors are iteratively updated until convergence.

Consider, however, the more general multilevel factor models in which some blocks share the common
regional factors, see for example, Moench et al. (2013) and Beck et al. (2016). Another case is provided
by Hallin and Lǐska (2011) and Rodŕıguez-Caballero and Caporin (2019), where the blocks share the
pairwise common local factors. In such cases, CCA does not always produce consistent estimate of the
global factors because the common local factors can be misidentified as the global factors.

As the main contribution, we propose the generalised canonical correlation analysis (GCC), which
extends the standard CCA using any two blocks through constructing the system-wide matrix, denoted
Φ, that contains all the factor spaces from all blocks. As the pairwise canonical correlation between
any two blocks is now satisfied simultaneously for all pairs of the blocks, this approach is shown to
overcome the aforementioned issue associated with the common local factors. Moreover, unlike most
existing studies, GCC is computationally convenient as it does not involve any iteration.

We provide an asymptotic theory that establishes the consistency of the estimated factors and loadings
based on the matrix perturbation theory, and derives the asymptotic normal distributions of the factors
and loadings estimates. Andreou et al. (2019) develop an asymptotic theory for the factors and loadings
estimators under rather stringent conditions, though their theory can be applied to the case with the two
blocks only. In this regard, we highlight that our theories are derived under fairly standard assumptions,
and the GCC approach can be applied to the more general cases.

Furthermore, we develop a GCC-based consistent selection criteria for identifying the number of the
global factors by evaluating the ratios of adjacent singular values of the matrix Φ. As shown by Han
(2021), the standard approaches for selecting the number of factors (r0) in the single-level factor literature
(e.g. Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013)), fail to generate reliable model
selection in the multilevel case. Recently, a few approaches have been proposed to deal with an issue of
consistently estimating r0 under the multilevel setting. Andreou et al. (2019) propose a testing procedure
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by deriving the asymptotic distribution of the canonical correlation between the factor spaces in a two
block model. Choi et al. (2021) develop consistent selection criteria for determining the number of the
global factors based on the average pairwise canonical correlation among all blocks. Chen (2022) proposes
a selection criteron based on the average residual sum of square (ARSS) from a regression of (estimated)
global factors on the factor spaces in each block. It is important to notice that our approach does
not require either the orthogonality between the global and local factors or the selection of any tuning
parameters. This makes the GCC criterion more general than existing studies.

Via Monte Carlo simulations, we first focus on the consistent estimation of the global factors and the
number of the global factors, finding that GCC outperforms the CCA approach by Andreou et al. (2019)
and Choi et al. (2021), and the circular projection matrix estimation (CPE) approach by Chen (2022)
under all experiments we consider. Next, we document evidence that the GCC estimator of the global
factors and loadings is well-centered and tends to the standard normal density, confirming the validity of
our asymptotic theory.

We apply the GCC approach to estimating the multilevel factor model and characterising the national
and regional housing market cycles in England and Wales using a large disaggregated panel data of the
real house price growth rates for the 331 local authorities over the period 1996Q1 to 2021Q2. The main
empirical findings are summarised as follows:

We first detect one global (national) factor, one local factor in the seven regions (NE, NW, YH, EE,
LD, SE and WA) but no local factor in the three regions (EM, WM and SW) (see Table 1). Second,
the national factor explains a considerable portion of the hosue price inflation variation with a mean of
46.6% while the regional factor contribution is much weaker with its average at 8.3% only. This suggests
that the house market in England and Wales appears to be more integrated than the U.S. market (e.g.
Del Negro and Otrok (2007)). Third, we can identify that the regional factor components of EE, LD and
SE (Area 1) co-move closely while those of NE, NW, YH and WA (Area 2) tend to cluster, confirming
that the regional factors are common across some regions. Fourth, the national housing market cycle
captured by the global factor components displays a typical boom-bust-recover behaviour, which is in
line with the conventional view that the national housing market cycle is pro-cyclical and closely related
to economic fundamentals (e.g. Chodorow-Reich et al. (2021)). By contrast, the regional housing market
cycles captured by the regional/areal factor components display a heterogeneous and opposition pattern
unrelated to fundamentals, demonstrating a housing market segmentation in the North and the South.
Finally, we document evidence that the growth rate of the (lagged) population gap between areas strongly
comoves with the areal components gap, suggesting that the population gap growth may be an important
driver behind the regional house price gap.

The rest of the paper is structured as follows. Section 2 introduces the multilevel factor model and
provides a review of the related literature. Section 3 proposes the novel GCC approach and presents
the main estimation algorithms. Section 4 develops the asymptotic of the GCC estimator. We also
advance a new selection criterion for identifying the number of the global factors. Section 5 reports
Monte Carlo simulation results. Section 6 presents an empirical application to the house price inflation
data in England and Wales. Section 7 offers concluding remarks. The mathematical proofs, the additional
simulation results and theoretical derivations are relegated to the Online Appendix.

2 The Multilevel Factor Model

Consider the multilevel factor model:

yijt = γ′
ijGt + λ′

ijFit + eijt, i = 1, ..., R, j = 1, ..., Ni, t = 1, ..., T (1)
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where Gt =
[
G1

t , ..., G
r0
t

]′
is the r0 × 1 vector of the global factors, Fit =

[
F 1
it, ..., F

ri
it

]′
is the ri × 1

vector of the local factors in the block i, γij and λij are the corresponding factor loadings, and eijt is
the idiosyncratic error. Stacking (1) across the Ni individuals in block i, we have:

Yit = ΓiGt +ΛiFit + eit, (2)

where Yit
Ni×1

= [yi1t, ..., yiNit]
′, eit

Ni×1
= [ei1t, ..., eiNit]

′, Γi
Ni×r0

= (γi1, ...,γiNi)
′ and Λi

Ni×ri

= [λi1, ...,λiNi ]
′.

The model can also be written as
Yt = Θ+K+

t + et, (3)

where

Yt
N×1

=

 Y1t

...
YRt

 , et
N×1

=

 e1t
...

eRt

 , K+
t

r+×1

=


Gt

F1t

...
FRt

 , Θ+

N×r+
=


Γ1 Λ1 0 · · · 0
Γ2 0 Λ2 · · · 0
...

...
...

. . .
...

ΓR 0 0 · · · ΛR


with N =

∑R
i=1 Ni and r+ = r0 +

∑R
i=1 ri. Further, the model is written in a matrix form:

Y = K+Θ+′ + e, (4)

where Y
T×N

= [Y1, ...,YT ]
′
, K+

T×r+
= [K1, ...,KT ]

′
, and e

T×N
= [e1, ..., eT ]

′
.

Alternatively, stacking (1) over time period t, we can rewrite the model as

Yij = Gγij + Fiλij + eij = Kiθij + eij (5)

where Yij
T×1

= [yij1, ..., yijT ]
′
, eij

T×1

= [eij1, ..., eijT ]
′
, G

T×r0
= [G1, ...,GT ]

′
, Fi

T×ri

= [Fi1, ...,FiT ]
′
, θij =[

γ′
ij ,λ

′
ij

]′
and Ki = [G,Fi]. For each block i, we then have:

Yi = GΓ′
i + FiΛ

′
i + ei = KiΘ

′
i + ei (6)

where Yi = [Yi1,Yi2, . . . ,YiNi
], ei = [ei1, ei2, . . . , eiNi

] and Θi = [Γi,Λi].
The primary issue in the multilevel factor model is to identify the global and local factors, separately.

Suppose that we express the model (2) as

Yit = ΓiGt + uit, uit = ΛiFit + eit, (7)

where the local factors are treated as the part of the error components. The first r0 factors extracted
from the PC estimation applied to the whole data Yt = [Y ′

1t, . . . ,Y
′
Rt]

′
, will be inconsistent estimates of

Gt because the weak correlation condition among the error components in ut = [u′
1t, . . . ,u

′
Rt]

′
is violated

due to the presence of the local factors (see Breitung and Eickmeier (2016)). Alternatively, if we apply
the PC estimation to each block Yi in (6), the factor space spanned by Ki = [G,F ] can be consistently
estimated up to rotation, though the global and local factors cannot be separately identified.1

1Moreover, the r+ factors extracted from Yt in (3) are not necessarily consistent estimates of K+. Lemma 2 in
Freyaldenhoven (2021) establishes that the local factors can be consistently estimated only if the number of individuals
within that group is larger than

√
N .
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A number of alternative methods have been developed to separately identify the global and local
factors. Wang (2008) proposed an iterative sequential approach. Given the estimated global factors and

loadings, denoted Ĝ and Γ̂i, then the local factors and loadings for each block i can be estimated from
the following PC estimation:

Yi − ĜΓ̂′
i = FiΛ

′
i + ei (8)

Given the estimated local factors and loadings, denoted F̂i and Λ̂i, then the global factors and loadings
can be updated by the following PC estimation:[

Y1 − F̂1Λ̂
′
1, . . . ,YR − F̂RΛ̂

′
R

]
= G [Γ′

1, . . . ,Γ
′
R] + e

This procedure will be repeated until convergence. However, this approach does not guarantee consistency
unless the initial estimates of the global factors and loadings are consistent, because the least square
objective function is not globally convex.

To get consistent initial estimates of the global factors, Breitung and Eickmeier (2016) and Choi
et al. (2018) propose the use of the canonical correlation analysis (CCA), where the canonical correlation

between K̂m and K̂h is estimated using the PC from any two blocks m and h. For simplicity assume
that r0, rm and rh are known and set r0 + rm = r0 + rh. Then, we consider the following characteristic
equation: (

ŜmhŜ
−1
hh Ŝhm − ℓŜmm

)
v = 0 (9)

where Ŝab (a, b = m,h) denotes the variance matrix between K̂m and K̂h. We then obtain the solution ℓ

by the (squared) canonical correlations between K̂m and K̂h. Since K̂m and K̂h share the factor space
spanned by the global factors, the r0 largest canonical correlations will be equal to one asymptotically.

Therefore, we can consistently estimate the global factors by Ĝ = K̂mV r0
m , where V r0

m is an (r0+rm)×r0
matrix consisting of the characteristic vectors corresponding to the r0 largest characteristic roots. Next,
after projecting Ĝ out, we can consistently estimate the local factors and loadings. In practice, this
estimation proceeds iteratively until convergence. Breitung and Eickmeier (2016) and Choi et al. (2018)
suggest choosing the block pair (m,h) that yields the largest canonical correlation. Andreou et al. (2019)
develop an asymptotic theory for the estimated factors and loadings under rather stringent conditions,
though their theory can be applied to the case with the two blocks only.

However, the pairwise identification strategy, based on CCA, does not always produce the consistent
estimation of the global factors. For instance, consider a two-level factor model with three blocks (R = 3)
and r0 = ri = 1 for i = 1, 2, 3. Suppose that the first and second blocks share the same local factor, and

we obtain the largest canonical correlation between K̂1 and K̂2. Now, we are no longer sure whether

K̂1V
r0
1 produces the consistent estimate of the global factor or the (common) local factor. Furthermore,

the number of global factors tends to be overestimated. A few empirical studies show that some blocks,
that share the same geographic region, are subject to (common) regional factors. Hallin and Lǐska (2011)
find one common local factor between France and Germany in a three-country model using industrial
production indices for France, Germany and Italy. Alternatively, Rodŕıguez-Caballero and Caporin (2019)
consider the pairwise-common local factors by employing two parallel country classifications using the
Debt/GDP ratio and credit ratings, in which case CCA cannot consistently estimate the global factors.
See also Moench et al. (2013) and Beck et al. (2016).

Hence, to overcome this important issue, we propose the GCC by incorporating the information
from all blocks simultaneously. Recently, Chen (2022) proposed a circular projection estimation (CPE)
approach. The circular projection matrix is a successive product of the factor spaces of Ki, given by
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the product inside the bracket in

[(∏R
i=1 P (Ki)

)′ (∏R
i=1 P (Ki)

)]
ζ = πζ, where P (.) is the projection

matrix, and π and ζ are the eigenvalue and eigenvector. Only if π = 1, then ζ is a global factor. Hence,
the global factors can be estimated as

√
T times the r0 eigenvectors corresponding to the unit eigenvalues

of the circular projection matrix by replacing Ki by K̂i. The CPE does not suffer from the issue related
to the common local factors since it encompasses all blocks. By contrast, the GCC estimates the global
factors by a linear combination of the factor spaces (see (19) below). This yields a simpler asymptotic
expansion of the global factors, which enables us to directly derive the asymptotic normal distribution of
the estimator of the global factors. Moreover, via the simulation studies, we show that GCC outperforms
CPE in all cases considered (see Section 4).

3 The Generalised Canonical Correlation Analysis

We begin with the standard canonical correlation analysis (CCA) by selecting any two blocks, h and m,
and letting Km and Kh be T × (r0 + rm) and T × (r0 + rh) matrices consisting of the global and local
factors. The CCA aims to find the linear combinations vmj and vhj such that

(vmj ,vhj) = argmax
vm,vh

Corr (Kmvm,Khvh) . (10)

subject to the restrictions

V ′
mK ′

mKmVm = Irmin
and V ′

hK
′
hKhVh = Irmin

(11)

where rmin = min{r0 + rm, r0 + rh}, Vm = [vm1, . . . ,vmrmin ] and Vh = [vh1, . . . ,vhrmin ]. If Km and Kh

share the r0 global factors, then there exists r0 linear combinations such that their correlations are equal
to one or equivalently

KmV r0
m = KhV

r0
h (12)

where V r0
m = [vm1, . . . ,vmr0 ] and V r0

h = [vh1, . . . ,vhr0 ] are the matrices collecting such linear combina-
tions. We then solve the following characteristic equation:(

SmhS
−1
hhShm − ℓSmm

)
v = 0

to obtain V r0
m that is the collection of characteristic vectors v corresponding to the r0 largest characteristic

roots.
Notice, however, that CCA cannot always identify the global factors in the presence of common local

factors. To address this important issue, we propose the generalised canonical correlation (GCC) analysis

by constructing the following T (R− 1)R/2×
∑R

l=1(r0 + rl) system-wide matrix:

Φ =


K1 −K2 0 0 . . . 0 0
K1 0 −K3 0 . . . 0 0

...
0 0 0 0 . . . KR−1 −KR

 (13)

where Ki = [G,Fi] for i = 1, ..., R. We then find the kernel of Φ, i.e. a set of vectors collected by the
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matrix Q = [Q′
1, . . . ,Q

′
R]

′ that satisfies:

ΦQ =


K1Q1 −K2Q2

K1Q1 −K3Q3

...
KR−1QR−1 −KRQR

 =


0
0
...
0


To this end we consider the following singular value decomposition (SVD) of Φ:

Φ = P∆Q′ (14)

such thatΦQ = P∆, where P andQ are the TR(R−1)/2×
∑R

l=1(r0+rl) and
∑R

l=1(r0+rl)×
∑R

l=1(r0+rl)

orthonormal matrices, and ∆ = diag{δ1, δ2, . . . , δ∑R
l=1(r0+rl)

} is a
∑R

l=1(r0+ rl)×
∑R

l=1(r0+ rl) diagonal
matrix consisting of the singular values in ascending order. If we can find a set of vectors q and the
singular values δ = 0 such that Φq = δp = 0, then we obtain Q by the set of vectors, q.

We establish the existence of the r0 zero singular values and the corresponding eigenvectors, denoted
Qr0 in the following proposition. 2 A direct example of Qr0 is such that each Qr0

i = [Ir0 ,0]
′
is a selection

matrix. To rule out an infeasible case where the global factors can be expressed as a linear combination of
the local factors, we assume that Gα0 = F1α1+ · · ·+FRαR if and only if α0 = 0, α1 = 0, . . . ,αR = 0,
which resembles the rank condition in Assumption A of Wang (2008).

Proposition 1. There exists a
∑R

l=1(r0 + rl) × r0 matrix, Qr0 = [Qr0′
1 ,Qr0′

2 , . . . ,Qr0′
R ]′ containing the

right eigenvectors of Φ, such that ΦQr0 = 0 with the r0 zero singular values. Moreover, the remaining
singular values of Φ are larger than zero and of stochastic order Op(

√
T ).

From Proposition 1 we have:

K1Q
r0
1 = K2Q

r0
2 = · · · = KRQ

r0
R (15)

which shows that the pairwise canonical correlation in (12) is simultaneously satisfied for all pairs of
the blocks. This important result demonstrates that all KiQ

r0
i for i = 1, ..., R, obtained by the system

approach, can consistently estimate the factor space spanned by G.
Let Ψ = [K1Q

r0
1 , . . . ,KRQ

r0
R ] and consider the eigen-decomposition,

T−1ΨΨ′ = LΞL′, (16)

where Ξ is a diagonal matrix containing the eigenvalues of T−1ΨΨ′ in descending order.

Proposition 2. The first r0 columns of L, denoted Lr0 , consists of the factor space spanned by G.

Proposition 2 shows that the global factors can be identified by a linear combination of appropriately
rotated block factor spaces. Importantly, the factor space spanned by the r0 global factors can be con-
sistently estimated so long as the factor spaces of Ki are consistently estimated for i = 1, ..., R.

The estimation algorithm proceeds as follows.

2We note that the solution Qi’s are equivalent to

(
Qr0

1 ,Qr0
2 , . . . ,Qr0

R

)
= argmin

W1,W2,...,WR

R∑
i=1

∥G−KiWi∥2 ,

which is more common in the GCC literature (see Yang et al. (2019)). Therefore, we name our approach after GCC dispite
the slight difference in the problem formulation.
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Estimation of global factors and loadings We first obtain the PC estimate of Ki for each block i,

denoted K̂i, by
√
T times the rmax eigenvectors of YiY

′
i corresponding to the rmax largest eigenvalues,

where rmax ≥ maxi=1,...,R{r0 + ri} is a common positive integer. We then construct the TR(R− 1)/2×
Rrmax matrix, Φ̂ by replacing Ki with K̂i in (13), and evaluate the SDV of Φ̂ as

Φ̂ = P̂ ∆̂Q̂′, (17)

where P̂ and Q̂ are the TR(R − 1)/2× Rrmax and Rrmax × Rrmax orthonormal matrices, and ∆̂ is the
Rrmax ×Rrmax diagonal matrix consisting of the singular values in ascending order.

Next, denote Q̂r0 =
[
Q̂r0′

1 , . . . , Q̂r0′
R

]′
as the first r0 columns of Q̂, and construct the T ×Rr0 matrix,

Ψ̂ =
[
K̂1Q̂

r0
1 , . . . , K̂RQ̂

r0
R

]
. We consider the eigen decomposition,

T−1Ψ̂Ψ̂′ = L̂Ξ̂L̂′ (18)

where L̂ is a T ×Rr0 orthonormal matrix and Ξ̂ is a T ×T diagonal matrix consisting of the eigenvalues
in descending order. Then, from (18), we obtain the consistent estimator of the global factors, denoted

Ĝ, by the r0 vectors of L̂ corresponding to the r0 largest eigenvalues multiplied by
√
T ; namely,

Ĝ =
1√
T
Ψ̂Ψ̂′Ĵr0 =

1√
T

(
R∑
i=1

K̂iQ̂
r0
i Q̂r0′

i K̂ ′
i

)
Ĵr0 (19)

where Ĵr0 = L̂r0
(
Ξ̂r0
)−1

, L̂r0 collects the first r0 columns of L̂ and Ξ̂r0 is an r0 × r0 diagonal matrix

consisting of the r0 largest eigenvalues of T−1Ψ̂Ψ̂′ in descending order.
Finally, the global factor loadings can be estimated by Γ̂i = T−1Y ′

i Ĝ.

Estimation of local factors and loadings For each block i = 1, ..., R, the local factors, denoted F̂i,
can be consistently estimated by

√
T times the ri eigenvectors of ŶiŶ

′
i corresponding to the ri largest

eigenvalues, where Ŷi = Yi − ĜΓ̂′
i.

The local factor loadings can be estimated by Λ̂i = T−1Ŷ ′
i F̂i for each block i = 1, ..., R.

4 Asymptotic Theory for the GCC Estimator

Section 4.1 establishes the consistency of estimates of factors and loadings based on the matrix perturba-
tion theory, assuming that the number of global and local factors, r0 and ri are known for all i. Section
4.2 develops a consistent selection criteria for determining the number of the global factors. In Section
4.3, we derive asymptotic normal distributions for the factors and loadings estimates.

4.1 Consistent estimation of factors and loadings

Let M be a finite constant. Following Bai and Ng (2002) and Choi et al. (2021), we assume:

Assumption A.

1. E(eijt) = 0 and E
(
|eijt|8

)
≤ M for all i, j and t.
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2. Let E
(
N−1

i

∑Ni

j=1 eijseijt

)
= ωi(s, t) for all i. Then, |ωi,Ni

(s, s)| ≤ M and T−1
∑T

s=1

∑T
t=1 |ωi(s, t)| ≤

M for all t.

3. Let E(eijteikt) = τi,(jk),t, with |τi,(jk),t| ≤ |τi,(jk)| < M for all i and t. In addition, for each i, we

have N−1
i

∑Ni

j=1

∑Ni

k=1

∣∣τi,(jk)∣∣ ≤ M.

4. Let E(eijteiks) = τi,(jk),(ts). For each i, we have

1

NiT

Ni∑
j=1

Ni∑
k=1

T∑
t=1

T∑
s=1

|τi,(jk),(ts)| ≤ M

5. For every i, t and s

E


∣∣∣∣∣∣ 1√

Ni

Ni∑
j=1

[eijseijt − E(eijseijt)]

∣∣∣∣∣∣
4
 ≤ M

Assumption B.

1. T−1G′G has distinct eigenvalues. Let Kit = (G′
t,F

′
it)

′
. For every i and t, we have E (Kit) = 0,

E
(
∥Kit∥4

)
< ∞ and T−1K ′

iKi
p→ ΣKi

where ΣKi
is positive definite.

2. For each m, h and t,

E

 1

Nm

Nm∑
j=1

∥∥∥∥∥ 1√
T

T∑
t=1

Khtemjt

∥∥∥∥∥
2
 ≤ M

Assumption C.

1. ∥γij∥ ≤ γ̄ < ∞ and ∥λij∥ ≤ λ̄ < ∞ for all i and j, where γ̄ and λ̄ are constants.

2. For every i = 1, · · · , R,

(a) rank (Θi) = r0 + ri where Θi = [Γi,Λi];

(b) N−1
i Θ′

iΘi = N−1
i

[
Γ′
iΓi Γ′

iΛi

Λ′
iΓi Λ′

iΛi

]
−→ ΣΘi

=

[
ΣΓi ΣΓiΛi

Σ′
ΓiΛi

ΣΛi

]
which is a positive-definite

matrix;

(c) ΣΘi
ΣKi

has distinct eigenvalues;

(d) ΣΛi
ΣFi

has distinct eigenvalues.

Assumption D. The global factors are uncorrelated to the local factors; for every i, T−1K ′
iKi =[

ΣG 0
0 ΣFi

]
+Op

(
T−1/2

)
where ΣG and ΣFi

are r0 × r0 and ri × ri full rank matrices.
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Assumption A is an extended version of Assumption C in Bai and Ng (2002), which allows the
idiosyncratic errors to be serially and (weakly) cross-sectionally correlated within blocks. This is less
restrictive than the assumption made in Choi et al. (2018). Assumptions B and C are standard in the
literature. Assumption B.2 allows weak correlation between global/local factors and idiosyncratic errors.
Assumption C requires the global (local) factors to have non-trivial contributions to the variance of all
individuals within the corresponding block. Assumption D ensures that the global and local factors can
be separately identified. Notice that we do not require the orthogonality between global and local factors
for consistently estimating the global factors and their dimension, though we need Assumption D for
consistent estimation of Γi, Λi, Fi and ri. More importantly, we allow the local factors to be correlated
or even identical across some blocks although some existing studies require the orthogonality among local
factors, e.g. Choi et al. (2018) and Han (2021). Nevertheless, the GCC estimator is shown to be valid in
the presence of the common local factors. We focus on the practical case with a fixed number of blocks
R, but the GCC can be valid even as R → ∞.3

Lemma 1. Under Assumptions A–C, as Ni, T → ∞, we have:

1√
T

∥∥∥K̂i −KiĤi

∥∥∥ = Op

(
1

CNiT

)
, i = 1, ..., R,

where K̂i is the T × rmax matrix of the PC estimates given by
√
T times the rmax eigenvectors of

YiY
′
i corresponding to the rmax largest eigenvalues, Ki = [G,Fi] is the T × (r0 + ri) factors, Ĥi is the

(r0 + ri)× rmax rotation matrix, CNiT = min
{√

Ni,
√
T
}
, and

1√
T

∥∥∥Φ̂−ΦĤ
∥∥∥ = Op

(
1

CN,T

)
where Φ is the T (R − 1)R/2 ×

∑R
l=1(r0 + rl) matrix defined in (13), Φ̂ is the T (R − 1)R/2 × Rrmax

matrix by replacing Ki with K̂i, Ĥ = diag
{
Ĥ1, Ĥ2, . . . , ĤR

}
is a

∑R
l=1(r0+rl)×Rrmax block-diagonal

rotation matrix and CN,T = min{
√
N,

√
T} with N = min{N1, N2, . . . , NR}.

Lemma 1 establishes that as Ni, T → ∞, K̂i converges to their population counterpart up to a

rotation. The rotation matrix, Ĥi is shown to exist in Bai and Ng (2002), but we do not need a specific
form since any full rank rotation matrix yields the observationally equivalent model.

Lemma 2. There exists an Rrmax × r0 matrix Q̄r0 such that ΦĤQ̄r0 = 0, where the r0 singular values

are zero. The remaining singular values of ΦĤ are larger than zero and of stochastic order Op(
√
T ).

Lemma 2 extends Proposition 1 to the case under the rotation incurred by the PC estimation, and
enables us to apply Lemma 3 below to Φ̂ for deriving the convergence rate of the estimated eigenvectors
under rotation. It also helps to estimate the number of global factors r0 by counting the number of zero
singular values of Φ̂ (see Section 4.2).

While the consistency of the estimated eigenvalues are well-established, there are the two main issues
in establishing the consistency of the estimated eigenvectors. First, it is widely acknowledged that
the convergence of the eigenvectors may not be well-behaved under eigenvalue-multiplicity. Second,

3When R → ∞, the identification of global factors is simpler because each block is asymptotically negligible and the
PC estimation can be applied to the whole data matrix.
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convergence rates of the eigenvectors associated with zero eigenvalues are unclear according to Davis-
Kahan theorem (see Theorem 3.4 of Stewart and Sun (1990)).

In Lemma 3 we state the perturbation theory developed by Yu et al. (2015), that is a variant of the
Davis-Kahan Theorem, and necessary for deriving our consistency results.

Lemma 3. Let S and Ŝ be the p× p symmetric matrices with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥
λ̂p, respectively. Fix 1 ≤ r ≤ s ≤ p and set d = s− r + 1. Assume that min{λr−1 − λr, λs − λs+1} > 0,

where λ0 = ∞ and λp+1 = −∞. Let the p× d matrices V = [vr, vr+1, . . . , vs] and V̂ = [v̂r, v̂r+1, . . . , v̂s]

have orthogonal columns, satisfying Σvj = λjvj and Σ̂v̂j = λj v̂j for j = r, r + 1, . . . , s. Then, there

exists a d× d orthogonal matrix Ô such that

∥∥∥V̂ Ô − V
∥∥∥ ≤

23/2
∥∥∥Ŝ − S

∥∥∥
min{λr−1 − λr, λs − λs+1}

.

The Davis-Kahan Theorem states that the eigenvectors converge to their population counterparts
corresponding to non-zero eigenvalues up to rotation under eigenvalue-multiplicity for any real symmetric
matrices. However, the stochastic bound provided by the Davis-Kahan Theorem cannot be applicable
to our case where the eigenvalues of interest are zero. Lemma 3 establishes that the convergence of the
eigenvectors still holds up to an orthogonal rotation even if the population eigenvalues are zero.

With Lemmas 1–3, we establish the consistency of the estimated global factors and loadings (up to
rotation) in Theorem 1.

Theorem 1. 1. Under Assumptions A–C, as N1, N2, . . . , NR, T → ∞, we have:

1√
T

∥∥∥Ĝ−GH
∥∥∥ = Op

(
1

CNT

)

2. Under Assumptions A–D, as N1, N2, . . . , NR, T → ∞, we have:

1√
Ni

∥∥∥Γ̂′
i −H−1Γ′

i

∥∥∥ = Op

(
1

CNT

)
where H = T−1/2G′Jr0U is an r0 × r0 rotation matrix, Jr0 = Lr0(Ξr0)−1, Ξr0 is an r0 × r0
diagonal matrix consisting of the r0 non-zero eigenvalues of T−1GG′ in descending order, Lr0 is a
T × r0 matrix of the corresponding eigenvectors, U is an r0 × r0 orthogonal matrix defined in (24),
and CNT = min{

√
N,

√
T} with N = min{N1, N2, . . . , NR}.

If the main focus is on the consistent estimation of the global factors (e.g. Del Negro and Otrok
(2007)), then an orthogonality between global and local factors is not required. This feature is more
general than existing studies that assume an orthogonality, see Wang (2008), Choi et al. (2018), Andreou
et al. (2019) and Han (2021). But, we still need to impose such an orthogonality for consistent estimation
of the global factor loadings.

Given consistent estimates of the global factors and loadings, we next establish the consistency of the
estimated local factors and loadings in Theorem 2.

Theorem 2. Under Assumptions A–D, as Ni, T → ∞, for each i = 1, . . . , R, we have:

1√
T

∥∥∥F̂i − FiĤi

∥∥∥ = Op

(
1

CNT

)
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1√
Ni

∥∥∥Λ̂′
i − Ĥ −1

i Λ′
i

∥∥∥ = Op

(
1

CNT

)
where Ĥi = (Λ′

iΛi/Ni)
(
F̂ ′
iF/T

)
Υ̂−1

i is an ri × ri rotation matrix, Υ̂i is an ri × ri diagonal matrix

consisting of the ri largest eigenvalues of 1
NiT

ŶiŶ
′
i in descending order, Ŷi = Yi − ĜΓ̂′

i, and CN,T =

min{
√
N,

√
T} with N = min{N1, N2, . . . , NR}.

We allow the local factors to be correlated or identical across some blocks, unlike many existing studies
that require orthogonality among the local factors, e.g. Choi et al. (2018) and Han (2021). Theorem 2
establishes that the GCC estimator is still consistent even in the presence of the pairwise common local
factors and the local factors common across some blocks.

4.2 Determining the number of global factors

We now develop the GCC criterion for identifying the number of global factors. Consider the diagonal
matrix, ∆̂ from the SDV of Φ̂ defined in (17). Then, we evaluate the ratio of adjacent (squared) singular
values in a similar fashion as in Ahn and Horenstein (2013).

Let δ̂1, . . . , δ̂Rrmax
be the diagonal elements of ∆̂ in ascending order. Then, we propose estimating

the number of global factors by

r̂0,GCC = argmax
k=0,...,rmax

δ̂2k+1

δ̂2k
(20)

The main idea is that the ratio sharply separates the zero singular value with the positive one. Using

Lemma 2, we can show that δ̂k = Op

(√
T/CNT

)
for k = 1, . . . , r0 while δ̂k = Op

(√
T
)

for k =

r0+1, . . . , Rrmax, where CNT = min{N,T} and N = min{N1, N2, . . . , NR}. Hence, the ratio is bounded
for k = 0, . . . , r0 − 1, r0 + 1, . . . , rmax, but it tends to infinity for k = r0.

To deal with the case with r0 = 0, we set the mock singular value as

δ̂20 =
1

CNTRrmax

Rrmax∑
k=1

δ̂2k

Since the average of squared singular values is of stochastic orderOp

(√
T
)
, we have: δ̂0 = Op

(√
T/CNT

)
,

that has the same stochastic order as δ̂k for k = 1, . . . , r0. Hence, δ̂21/δ̂
2
0 = Op(1) for r0 > 0 whilst

δ̂21/δ̂
2
0

p→ ∞ for r0 = 0. This ensures that we do not overestimate r0 even for r0 = 0.

Theorem 3. Under Assumptions A–C, we have:

lim
N1,...,NR,T→∞

Pr (r̂0,GCC = r0) = 1

where r̂0,GCC = argmax
k=0,...,rmax

δ̂2k+1/δ̂
2
k, δ̂1 ≤ · · · ≤ δ̂rmax

≤ · · · ≤ δ̂rmax
are the singular values of Φ̂ and

δ̂20 = (CNTRrmax)
−1
∑Rrmax

l=1 δ̂2l .

The justification behind Theorem 3 lies in the sense of the matrix perturbation theory that the
eigenvalues converge to their population counterparts under a small perturbation term (see Stewart and
Sun (1990)). Notice that if our main focus is on the consistent estimation of r0, then an orthogonality
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between global and local factors is not required. This make the GCC criterion more general than existing
studies that require orthogonality, e.g. Andreou et al. (2019) and Han (2021).

Given r̂0, we can consistently estimate global factors and loadings, denoted Ĝ and Γ̂i. Then, the
number of local factors, ri can be consistently estimated by applying the existing approximate factor
model to Ŷi = Yi − ĜΓ̂′

i for i = 1, ..., R, which has been extensively studied, e.g. Bai and Ng (2002),
Onatski (2010) and Ahn and Horenstein (2013). See Choi and Jeong (2019) for a comprehensive review.

Related literature Chen (2012) and Dias et al. (2013) develop the following information criteria to
determine the number of global and local factors:

(r̂0, r̂1, . . . , r̂i) = argmin
k0,k1,...,kR

R∑
i=1

∥∥∥Yi − Ĝk0Γ̂k0′
i − F̂ ki

i Λ̂ki′
i

∥∥∥2 + penalty

As described in Choi et al. (2021), however, these information criteria have two shortcomings. First, it
involves too many combinations of k0 and ki even if R is mildly large. Second, it is nontrivial to construct
a proper penalty function that can discriminate the respective roles played by the global and local factors.

Andreou et al. (2019) derive the canonical correlation based test statistic given by ξ̂(r) − r where

ξ̂(r) =
∑r

k=1

√
ℓ̂k and ℓ̂k is the k-th largest characteristic root of (9). Let ξ̃(r) be the de-biased and

re-scaled version of ξ̂(r)− r. Then, it is shown that ξ̃(r)
d→ N(0, 1) for r = 1, . . . , r0. A sequence of tests

can be conducted from r = rmax to r = 1 so that r0 can be estimated by

r̂0,AGGR = max
{
r : 1 ≤ r ≤ rmax, ξ̃(r) ≥ zαNT

}
where zαNT

is a threshold value depending on (N,T ) and some tuning parameters. However, the main
weakness of their approach lies in that it can be applied to the data with the two blocks only.

Choi et al. (2021) develop consistent selection criteria based on the average canonical correlations

among all block pairs. Let ℓ̂mh,r be the r-th largest characteristic root of (9) between a block pair m

and h, and construct the average (squared) canonical correlation by ŝ(r) = 2
R(R−1)

∑R−1
m=1

∑R
h=m+1 ℓ̂mh,r.

The following two selection criteria, CCD and MCC, are proposed:

r̂0,CCD = argmax
r=0,...,rmax+1

ŝ(r)− ŝ(r + 1)

r̂0,MCC = max {0 ≤ r ≤ rmax : 1− ŝ(r)− C × penalty < 0}
where C is a data dependent tuning parameter. CCD is consistent while imposing a slightly strong con-
dition that the average canonical correlation has an upper bound. MCC does not require this condition
but 1 − ŝ(r) needs to be modified by the product of a data dependent tuning parameter and a penalty
term. We conjecture that CCD and MCC can be consistent in the presence of multi-block common local
factors while they become inconsistent in the presence of the pairwise common local factors.4

Chen (2022) proposes a selection criteron based on the average residual sum of square (ARSS) from a

regression of ζ̂r on K̂i given by ARSSr = 1
R

∑R
i=1 ζ̂

′
r

(
IT − P

(
K̂i

))
ζ̂r, where ζ̂r is the eigenvector corre-

sponding to the r-th largest eigenvalue of the circular projection matrix,

[(∏R
i=1 P

(
K̂i

))′ (∏R
i=1 P

(
K̂i

))]
.

4For instance, if the two blocks share the pairwise common local factors, then the r0 + 1 largest canonical correlations
between such a block pair is equal to one, in which case CCD and MCC tend to select the r0 + 1 global factors instead of
r0. We also observe that CCD and MCC are sensitive to the excessively large rmax when the errors are serially correlated.
By contrast, in (unreported) simulations, we find that GCC is generally insensitive to the coice of rmax.
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Chen suggests estimating r0 by

r̂0,ARSS = argmax
r=1,...,rmax

Logistic(log log(N)×ARSSr+1)− Logistic(log log(N)×ARSSr)

where the logistic function, Logistic(x) = P1/[1 + A exp(−τx)] polarises ARSSr to 0 or 1 with A =
P1/P0 − 1, P0 = 10−3, P1 = 1 and τ = 14. The ARSS can allow non-zero correlations between local
factors, but it does not cover the case with a zero global factor, implying that the ARSS estimator always
overestimates r0 when r0 = 0 (see the simulation evidence in Section 5).

4.3 Asymptotic distributions of the estimated factors and loadings

To develop the asymptotic distributions of the estimated factors and loadings, we need to impose slightly
stronger conditions than those required for consistency in Section 4.1. Following Bai (2003), we make
the additional assumptions.

Assumption E. For each i, we have limNi,N→∞ N/Ni = αi ≤ M

Assumption F.

1.
∑T

s=1 |ωi,Ni
(s, t)| < M for all i and t.

2. Let τ(mh),(kj),t = E (emktehjt). For every t, we have |τ(mh),(kj),t| ≤ |τ(mh),(kj)| ≤ M. Moreover, for

every m,h, k, j, we have
∑Nm

k=1 |τ(mh),(kj)| ≤ M.

Assumption G.

1. For each m, h and t,

E

∥∥∥∥∥ 1√
NhT

T∑
s=1

Nh∑
k=1

Kms [ehksehkt − E(ehksehkt)]

∥∥∥∥∥
2
 ≤ M

2. For each m, h and t, the (r0 + ri)× (r0 + ri) matrix satisfies

E


∥∥∥∥∥∥ 1√

NhT

T∑
t=1

Nh∑
j=1

Kmtθ
′
hjehjt

∥∥∥∥∥∥
2
 ≤ M

3. For each t, as N1, . . . , NR → ∞, we have

Et =


E1t

E2t

...
ERt

 =


1√
N1

∑N1

j=1 θ1je1jt
1√
N2

∑N2

j=1 θ2je2jt
...

1√
NR

∑NR

j=1 θRjeRjt

 d−→ N
(
0,D(1)

t

)
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where

D(1)
t =


D(1)

11,t D(1)
12,t . . . D(1)

1R,t

D(1)
21,t D(1)

22,t . . . D(1)
2R,t

...

D(1)
R1,t D(1)

R2,t . . . D(1)
RR,t


is the covariance matrix with

D(1)
mh,t = plimNm,Nh→∞(NmNh)

−1/2
Nm∑
j=1

Nh∑
k=1

θmjθ
′
hkE(emjtehkt) ≤ M.

4. For each i and j, as T → ∞, we have:

1√
T

T∑
t=1

Gt

(
λ′
ijFit + eijt

) d−→ N(0,D(2)
ij )

1√
T

T∑
t=1

Fteijt
d−→ N(0,D(3)

ij )

where D(2)
ij = plimT→∞T−1

∑T
s=1

∑T
t=1 E

[
Gs

(
λ′
ijFis + eijs

) (
λ′
ijFit + eijt

)
G′

t

]
and

D(3)
ij = plimT→∞

∑T
s=1

∑T
t=1 E (FitF

′
iseijseijt).

Assumption E imposes that Ni is of the same order of magnitude as N for all i = 1, ..., R, similarly
to Choi et al. (2018). Assumptions F and G, corresponding to Assumptions E and F in Bai (2003), are
standard in the literature. Assumption F restricts the cross-sectional and serial dependence of the errors.
Notice that Assumption F.2 imposes limited cross-block dependence, which is not required in Assumption
A. Assumptions G.1 and G.2 are technical conditions for controlling the stochastic order of the bias terms
in the asymptotic expansions, though they are not too restrictive since they are summations of zero mean
random variables. Assumptions G.3 and G.4 are the central limit theorems that can be applied to several
mixing processes.

With Assumptions F and G, Lemma 6 establishes that some parts in the asymptotic expansion of

K̂it achieve a convergence rate faster than Op

(
C−1

NiT

)
, as previously shown in Lemma 1. This allows us

to refine the convergence rates of Q̂r0 and L̂r0 in Lemma 7 so that they are now Op

(
C−2

NT

)
instead of

Op

(
C−1

NT

)
as in the proof of Theorem 1. By applying these results, we are able to derive the asymptotic

normal distributions of the estimated factors and loadings in Theorems 4-7.

Theorem 4. Under Assumptions A–C and E–G, as N1, N2, . . . , NR, T → ∞ and
√
N/T → 0, we have

for each t:

√
N
[
Ĝt − (H′ + B′)Gt

]
=

1

R
H′I ′ĈEt + op(1)

d−→ N

(
0,

1

R2
H′I ′CD(1)

t C′IH
)

where H is an r0 × r0 rotation matrix defined in Theorem 1, I = [Ir0 , . . . , Ir0 ]
′ is an Rr0 × r0 matrix,

Ĉ = diag

(√
N
N1

I′1
(

Θ′
1Θ1

N1

)−1

, ...,
√

N
NR

I′R
(

Θ′
RΘR

NR

)−1
)

is an Rr0 ×Rr0 block diagonal matrix with Ii =

15



[Ir0 ,0]
′
an (r0 + ri) × r0 matrix, C = plimN1,...,NR,T→∞Ĉ, Et and D(1)

t are defined in Assumption G.3,
and B is an r0 × r0 matrix given by

B =
1

R

R∑
i=1

√
1

Ni
I′i
(
Θ′

iΘi

Ni

)−1
Θ′

ie
′
i√

NiT
Jr0U = Op

(
1√
N

)
where Jr0 and U are defined in Theorem 1 and (24).

Theorem 5. Under Assumptions A–G, as N1, N2, . . . , NR, T → ∞ and
√
T/N → 0, we have for each i

and j:

√
T
[
γ̂ij − (H+ B)−1

γij

]
= H′ 1√

T

T∑
t=1

Gt

(
λ′
ijFit + eijt

)
+ op(1)

d−→ N
(
0,H′D(2)

ij H
)

where D(2)
ij is defined in Assumption G.4.

Theorem 6. Under Assumptions A–G, as N1, N2, . . . , NR, T → ∞, and if
√
Ni/T → 0 and 0 < Ni/T <

∞, then we have for each t:

√
Ni

(
F̂it − Ĥ ′

i Fit −Bit

)
= Υ̂−1

i

(
1

T

T∑
s=1

F̂isF
′
is

)
1√
Ni

Ni∑
j=1

λijeijt
d−→ N

(
0,Υ−1

i WiD(4)
ii,tW

′
iΥ

−1
i

)

where D(4)
ii,t = plimNi→∞N−1

i

∑Ni

j=1

∑Ni

k=1 λijλ
′
ikE(eijteikt) is a the lower-right ri×ri matrix of D(1)

ii,t, and
Bit is the bias term given by

Bit = Υ̂−1
i

1

NiT

T∑
s=1

F̂isF
′
isΛ

′
iŜi.t = Op

(
1√
N

)
+Op

(
1√
T

)
I, C and Et are defined in Theorem 3. Υ−1

i and Wi are defined in Lemma 11 and ΣΓiΛi
is defined in

Assumption C.2b.

Theorem 7. Under Assumptions A–G, as N1, N2, . . . , NR, T → ∞, and if
√
T/Ni → 0 and 0 < T/Ni <

∞, then we have each j = 1, . . . , Ni:

√
T
(
λ̂ij − Ĥ −1

i λij − Bij

)
= Ĥ ′

i

1

T

T∑
t=1

Fiteijt + op(1)
d−→ N

(
0,
(
W−1

i

)′ D(3)
ij W−1

i

)
where D(3)

ij is defined in Assumption G.4, Bij is the bias term given by

Bij = Ĥ ′
i

1

T

T∑
t=1

FitŜijt = Op

(
1√
N

)
+Op

(
1√
T

)
and Wi is defined in Lemma 11.
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Theorems 4 and 5 establish that the estimates of the global factors and loadings follow the asymptotic
normal distributions. Unlike in Theorem 1, the rotation matrix has an additional term, B of order

Op

(
N−1/2

)
, which does not affect the asymptotic variance matrices. To the best of our knowledge,

there is no studies that establish the asymptotic distributions of the global factors and loadings. One
exception is Andreou et al. (2019), but their theory only applies when R = 2.

Theorems 6 and 7 show that there are bias terms Bit and Bij of order Op

(
C−1

NT

)
stemming from

the estimation error from the global components, Ŝijt, that is the (t, j) element of Ŝi = GΓ′
i − ĜΓ̂′

i. A
similar result is documented by Andreou et al. (2019), who show that the asymptotic distribution of the
local factors is not centered. In principle, it is not straightforward to perform the bias correction unless
the global factors and loadings are known. Notice, however, that we derive our asymptotic theories under
weaker conditions than those imposed by Andreou et al. (2019); namely, we do not assume that the global
factors are orthogonal to each other, and the local factors are orthogonal within blocks.

This generality brings forth the rotation matrices in the asymptotic variances, as shown in Theorem 4
and 5. To deal with this issue, we use the wild bootstrap advanced by Gonçalves and Perron (2014) for the
global factors. We also use a dependent bootstrapping method developed by Shao (2010) for the global
factor loadings to account for the potential serial correlation induced by the local factors as suggested in
Assumption G.4 and Theorem 5. The bootstrapped covariance matrices are not consistent estimates for
those in Theorems 4 and 5, because the bootstrap version of the rotation matrix H∗(b) changes in each
replication and does not necessarily match H. Therefore, we construct confidence intervals (CI) using the
percentile estimates based on the back-rotated estimates by

√
N

[(
H∗(b)′ + B∗(b)′

)−1

Ĝ
∗(b)
t − Ĝt

]
and

√
T
[(

H∗(b) + B∗(b)
)
γ̂
∗(b)
ij − γ̂ij

]
.

Since the resulting CIs are unaffected by the bootstrap rotation matrix, they should provide correct
coverage rates. See Appendix B for details.

5 Monte Carlo Simulation

Following Choi et al. (2021) and Han (2021), we generate the multilevel factor data as follows:

yijt = γ′
ijGt +

√
θi1λ

′
ijFit +

√
κθi2eijt =

r0∑
z=1

γz
ijG

z
t +

√
θi1

ri∑
z=1

λz
ijF

z
it +

√
κθi2eijt (21)

for i = 1, ..., R, j = 1, ..., Ni, and t = 1, ..., T , where the superscript z denote the z-th factor and loading.
We generate the global factors/loadings, the local factors/loadings and idiosyncratic errors by

Gt = ϕGGt−1 + vt, vt ∼ i.i.d. N(0, Ir0)

Fit = ϕFFi,t−1 +wit, wit ∼ i.i.d. N(0, Iri) for i = 1, . . . , R,

γZ
ij ∼ i.i.d. N(0, 1) for z = 1, . . . , r0; λ

z
ij ∼ i.i.d. N(0, 1) for z = 1, . . . , ri

eijt = ϕeeij,t−1 + εijt + β
∑

1≤|h|≤8

εi,j−h,t, εijt ∼ i.i.d. N(0, 1)

17



We allow global and local factors to be serially correlated, but also idiosyncratic errors to be serially and
cross-sectionally correlated.

We control the noise-to-signal ratio by κ. When κ = 1, the variances associated with the global
factors, local factors and idiosyncratic errors are respectively given by

V ar(γ′
ijGt) =

r0∑
z=1

V ar(γz
ijG

z
t ) =

r0
1− ϕ2

G

,

V ar(λ′
ijFit) =

ri∑
z=1

V ar(λz
ijF

z
it) =

ri
1− ϕ2

F

and V ar(eijt) =
1 + 16β2

1− ϕ2
e

.

We then make the variance contribution of each component equalised for κ = 1 (e.g. Choi et al. (2018)
and Han (2021)). For r0 > 0, we set:

θi1 =

(
r0

1− ϕ2
G

)(
ri

1− ϕ2
F

)
and θi2 =

(
r0

1− ϕ2
G

)/(
1 + 16β2

1− ϕ2
e

)
.

while for r0 = 0 we set:

θi1 = 1 and θi2 =

(
ri

1− ϕ2
G

)/(
1 + 16β2

1− ϕ2
e

)
.

We consider five DGPs for the following combinations of sample sizes: R ∈ {3, 10}, Ni ∈ {20, 50, 100, 200}
with N1 = · · · = NR and T ∈ {50, 100, 200}. We fix (r0, ri) = (2, 2) for i = 1, . . . , R, ϕG = ϕF = 0.5 and
(β, ϕe, κ) = (0.1, 0.5, 1) under DGP1, which serves as the benchmark case. DGP2 is the same as DGP1
except that we allow the local factors to be identical for some blocks. To generate the pairwise common
local factors for R = 3, we set F 1

1t = F 1
2t, F

2
1t = F 2

3t and F 2
2t = F 2

3t. For R = 10, we set F 1
1t = · · · = F 1

5t

and F 1
6t = · · · = F 1

10t to allow the presence of multi-block common local factors. DGP3 considers the
noisy data with κ = 3 while the other configurations remain the same as in DGP1. DGP4 and DGP5
replicate DGP1 but allow the local factors to be correlated. Specifically, we generate the local factors by

Ft = 0.5Ft−1 +wt, wt ∼ i.i.d. N (0,ΩF )

where Ft = [F ′
1t, . . . ,F

′
Rt]

′
and wt = [w′

1t, . . . ,w
′
Rt]

′
. We set the diagonal elements of ΩF at 1, and

the off-diagonal elements (denoted ωF ) at 0.4 and 0.8 in DGP4 and DGP5, respectively. The number of
replications of each experiment is set at 1,000.

We focus on the estimation of the global factors Ĝ and the number of the global factors r̂0. Without
loss of generality we assume that the number of the global factors and local factors are known with
rmax = r0 + ri for all i. To evaluate the precision of the estimated global factors, we report the trace
ratio defined as

TR
(
Ĝ
)
=

tr
{
G′Ĝ(Ĝ′Ĝ)−1Ĝ′G

}
tr {G′G}

where tr{.} is the trace of a matrix. The more precise the estimated factors are, the higher the trace

ratio is. If the global factors are perfectly estimated, then TR
(
Ĝ
)
= 1. For comparison, we also report

the results generated by the CCA by Andreou et al. (2019) and the CPE by Chen (2022). Since the

precision of F̂i and r̂i depend purely on the precision of Ĝ and r̂0 due to the sequential estimation, and
their properties are extensively studied by existing literature, we only focus on the performance of GCC
estimates for Ĝ and r̂0.
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Table 6 shows the average trace ratios over 1000 repetitions. For DGP1, all three approaches can
produce precise estimates of global factors. While GCC and CPE estimates are quite close to each other,
GCC substantially outperforms them, especially when Ni and T are small. Under DGP2 where we allow
the common local factors across some blocks, CCA is shown to be inconsistent since the largest canonical
correlation between the two blocks does not necessarily refer to the presence of the global factors. On the
other hand, CPE and GCC do not suffer from this issue, and they continue to be consistent while GCC
still outperforms CPE in all sample sizes. For DGP3, all three approaches are negatively affected by
the noisy data, but the performance of GCC improves faster as the sample size increases than CCA and
CPE. We obtain qualitatively similar results under DGP4 and DGP5. Notice also that the performance
of GCC improves as the number of blocks, R increases while CPE does not display this property.5

Overall, we find that GCC dominates CCA and CPE in all cases we consider.

Table 6 about here

Next, we turn to the estimation of r0 by GCC together with CCD and MCC advanced by Choi
et al. (2021) and ARSS by Chen (2022).6 Table 7 reports the average of r̂0 over 1,000 replications and
the percentages of over- and under-estimation, denoted (O|U). For DGP1, all the four selection criteria
perform satisfactory unless the sample size is too small. Under DGP2, CCD and MCC are shown to
overestimate r0 due to the presence of the pairwise common local factors in which case the canonical
correlation between the common local factors from such two blocks is expected to be equal to one. While
the performance of ARSS is adversely affected, it improves for large Ni and T . We still find that GCC
outperforms ARSS. For R = 10, CCD becomes the most vulnerable to the common regional factors.
While MCC and ARSS can produce relatively precise estimates, GCC outperforms them especially in a
small T . Under DGP3, we obtain mixed results. CCD and MCC perform better than ARSS and GCC
for a small T whilst ARSS and GCC produce more precise estimates than CCD and MCC for a small
Ni. All the four selection methods can correctly select r0 when Ni and T beome large. For DGP4, CCD
can produce reliable estimates under the mild correlation between local factors while MCC estimates
remain precise unless Ni and T are small. ARSS underperforms when Ni or T is small. GCC has a
similar performance to MCC but its performance is much better in small samples. Under DGP5 where
the correlation between the local factors is extremely strong, CCD fails completely since the upper bound
condition is violated whilst ARSS does not show any sign of improvement. MCC can select r0 precisely
in large samples, but GCC still dominates with a faster convergence. Overall, we find that MCC, ARSS
and GCC can be reliable selection criteria, although ARSS tends to over-estimate r0 when there is no
global factor in the data. Given that GCC does not rely upon the penalty function and the tuning
parameters, we conclude that GCC is the most robust and reliable criterion.

Table 7 about here

As a robust check we repeat the simulation experiments for (r0, ri) = (1, 1) and (r0, ri) = (3, 3), and
present the outcomes in Table 8 to 11. The results are qualitative similar to those with (r0, ri) = (2, 2).
As the number of factors in the data increases, we notice that the accuracy of the estimates becomes
slightly lower.

Tables 8–11 about here
5For example, under DGP3 with Ni = 20 and T = 50, the trace ratios for CPE and GCC are 0.59 and 0.755 for R = 3

while they become 0.59 and 0.919 for R = 10.
6When implementing these alternative selection criteria, we follow the practical guidelines byChoi et al. (2021) and use

r̂max = max{ ̂r0 + r1, . . . , ̂r0 + rR}.
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Finally, we investigate whether the global factors and loadings estimated by GCC follow the asymp-
totic normal distribution. For convenience, we fix R = 3, (r0, ri) = (2, 2), Ni ∈ {20, 100, 200} and
T ∈ {50, 200}, and consider the benchmark case where (ϕG, ϕF ) = (0, 0) and (β, ϕe, κ) = (0, 0, 1). Using
the known quantities in the asymptotic variances in Theorems 4 and 5, we standardise the estimates by(

1

R2
H′I ′CD(1)

t C′IH
)−1/2 √

N
[
Ĝt − (H′ + B′)Gt

]
(
H′D(2)

ij H
)−1/2 √

T
[
γ̂ij − (H+ B)−1

γij

]
We then compare our estimates with the standard normal density. In Figures 5 and 6 we display the
histograms for the first element of Ĝt and γ̂ij evaluated at i = 1, j = Ni/2 and t = T/2. We find that
the standardised estimates are well centered and scaled, and tend to the standard normal density. As
Ni and T increase, the approximation becomes more accurate, confirming the validity of our asymptotic
theory.

Figures 5 and 6 about here

We also propose a bootstrap approach to produce the valid confidence intervals for the estimated global
factors and loadings. In Appendix B, we conduct a simulation study using the bootstrap approach, and
find that the coverage rates of the bootstrap CIs are getting close to the nominal 95% as the sample size
increases.

6 Empirical Application

Using the multilevel factor model we apply the GCC approach to studying the national and regional
housing market cycles in England and Wales. Residential houses are the most valuable properties of the
households while house price fluctuations can put the financial system at a greater risk of default during
a recession. The housing sector is also directly related to employment, investment and consumption,
playing a central role in the business cycle (e.g. Leamer (2007)). While house prices are subject to
nation-wide shocks, such as the business cycle and credit liquidity, they are also determined by regional
characteristics such as local amenities and the land supply. Hence, te housing market cycle is likely to
exist at both national and regional levels.

From the website of Office of National Statistics HPSSA Dataset 14, we download the quarterly (mean)
house prices of four different types of properties, (detached, semi-detached, terraced and flats/maisonettes)
for 331 local authorities over the period 1996Q1 to 2021Q2. The local authorities belong to ten regions:
North East (NE), North West (NW), Yorkshire and the Humber (YH), East Midlands (EM), West Mid-
lands (WM), East of England (EE), London (LD), South East (SE), South West (SW) and Wales (WA).
Each “block” in the multilevel factor model is referred to as a region.

We construct the real house price growth in the jth local authority of the region i through deflating
the nominal house price by CPI and log-differencing it as follows:

πijt = 100× log

(
PRICEijt

CPIt

)
− 100× log

(
PRICEij,t−1

CPIt−1

)
By removing the series with missing observations, we end up with a balanced panel with R = 10,
N =

∑10
i=1 Ni = 1300 and T = 102.

20



Table 1 displays the number of local authorities for each region as well as the mean and standard
deviation of πijt. We observe that the average growth rates for NE, NW, YH and WA are lower than the
overall mean, those for EE, LD and SE higher than the overall mean, and those for EM, WM and SW
close to the mean. Notice that LD displays the highest mean growth and standard deviation.

Table 1 about here

We apply the GCC approach to estimating the multilevel factor model for the standardised series,
denoted π̃ijt, with 10 regions, which is referred to as the national-regional model. By setting rmax = 5
and applying the GCC criterion in (20), we detect one global (national) factor.7 Next, by applying BIC3

to each region,8 we find that there is one local factor for NE, NW, YH, EE, LD, SE and WA whereas
no local factor is detected for EM, WM and SW (see Table 1). The existence of both global and local
factors clearly suggests that there are housing market cycles at both national and regional levels.

To measure the strength of the factors relative to idiosyncratic errors, we evaluate the relative impor-
tance ratios of the national and regional factors for region i by

RIGi = N−1
i

Ni∑
j=1

(
γ̂′
ij γ̂ij/

(
T−1π̃′

ijπ̃ij

))
and RIFi = N−1

i

Ni∑
j=1

(
λ̂′
ijλ̂ij/

(
T−1π̃′

ijπ̃ij

))
where π̃ij is the T×1 vector of the (standardised) real house price growth rates in the j-th local authority
of the region i. The results reported in Table 1 show that the global factor explains a considerable portion
of the variation, ranging between 29.6% (London) and 55.1% (South West) with a mean of 46.6%. The
large variance share explained by the national factor suggests that the house market in England and
Wales appears to be more integrated than the U.S. market where the national factor is dominated by the
regional factors (see Del Negro and Otrok (2007)). RIGs of YH, EM, WM, EE and SW are above average,
exhibiting that these regions are more responsive to national shocks. Interestingly, London is the least
sensitive region to the national factor. On the other hand, the regional contribution is much weaker as
its average relative importance ratio is only 8.3%. Still, the regional factor explains substantially larger
time variations of the house price inflation for London and South East respectively at 22.6% and 15.1%.

To avoid the issue that the estimated global and local factors are subject to rotation/sign inde-
terminacy, we report the time-varying behaviour of the average global (national) and local (regional)

factor-components for each region i at time t that are constructed by Ĝit = ¯̂γ
′
iĜt and F̂it =

¯̂
λ
′
iF̂it, where

¯̂γi = N−1
i

∑Ni

j=1 γ̂ij and
¯̂
λi = N−1

i

∑Ni

j=1 λ̂ij .
9 The trajectories of Ĝit plotted in Figure 2, are highly

persistent but exhibit a typical “boom-bust-recover” pattern of the (recent) housing market cycle.10 The
national factor-components initially displayed an upward trend until 2003Q3, followed by a long-term
downturn until 2009Q2. It then made a quick recovery and became relatively stable from 2012 till 2020
when the COVID19 pandemic erupted. We also observe a surge in the national factor-components during

7CCD and MCC by Choi et al. (2021) also select one global factor. This result is robust to the different values of rmax.
8We have also applied alternative selection criteria, ICp2 by Bai and Ng (2002), ER by Ahn and Horenstein (2013) and

ED by Onatski (2010). First, ER surprisingly reports zero local factors for all regions whilst ICp2 and ED tend to produce
more factors but the additional factors explain very small portions of variance. Second, BIC3 is shown to have good finite
sample performance, see Choi and Jeong (2019) and Choi et al. (2021).

9As the (uniquely identified) factor-components are just scaled factors, they carry qualitatively the same information.
10The boom-bust pattern is consistent with the economic theory suggesting that agents are over-optimistic about the

fundamentals during a boom, rendering the growth continues to accelerate, whilst as the economy deteriorates following
the negative shock, their expectations of capital return are reversed, resulting in the house market collapse, which is further
worsened by foreclosures, see Kaplan et al. (2020) and Chodorow-Reich et al. (2021).
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the COVID19 period, which was mainly prompted by a tax relief policy introduced by the UK government
to boost the economy and improve liquidity.11

Figure 2 about here

The first two figures in Figure 3 display the time-varying patterns of the regional factor-components
F̂it, from which we can identify that the regional components of EE, LD and SE (solid lines) comove closely
(the upper panel) while those of NE, NW, YH and WA (dotted lines) tend to cluster together (the lower
panel). These clustering patterns are corroborated by the correlation matrix among the estimated regional
components in Table 2, showing that the first and second off-diagonal elements are close to one, but the
other off-diagonal ones are considerably smaller. Furthermore, we observe transparent discrepancies
between these two groups (referred to as Area 1 and Area 2). The regional factor-components in Area 1
appear to have an earlier turning point around 2000 than the global components during the boom, but
declined sharply during the financial crisis, Brexit and COVID19 period. On the other hand, the regional
components in Area 2 tend to move in an opposite direction, but remained remarkably stable since 2008.

Table 2 and Figure 3 about here

Next, we formally investigate an issue of whether there are areal factors common to some regions. We
first project the estimated global factors out from the data and obtain the residuals containing only the
local factors and errors, which form the new areal data. Then, we apply the GCC and MCC criterion
to these areal data consisting of the different combinations of regions. For example, if the local factors
of NE, NW, YH, and WA are common, then the number of common (areal) factors should be one, and
zero otherwise. Alternatively, we may consider a two-block model with Area 1 and Area 2 as blocks. If
the two areal factors are identical, then there should be one common factor. Otherwise, the number of
common factor is zero. The results in Table 3 confirm that the local factors are common within each
area, but the two areal factors are different. Thus, we can identify three areas, Area 1 (LD, EE and SW)
with one areal factor, Area 2 (NE, NW, YH and WA) with one areal factor, and Area 3 (EM, WM and
SW) with zero areal factor. Interestingly, these areas are adjacent geographically (see Figure 1). Notice
that the existence of an areal factor around London is not in line with the notion that the “London
factor” is pervasive nationally,12 because the main impact of London is more likely to be confined to its
neighbouring regions. In this regard, this finding may provide a support to the notion of “convergence
club” that the house prices in regions, that are closer and more distant to London, tend to converge
separately, e.g. Holmes and Grimes (2008) and Montagnoli and Nagayasu (2015).

Table 3 about here

Next, we estimate a national-areal model with 3 areas, and compare its estimation results with those
obtained from the national-regional model with 10 regions. It is remarkable that the correlation between
the global factors estimated from these two models is 0.996. Further, the local (areal) factor from Area 1
has correlations of 0.924, 0.974 and 0.977 with the local (regional) factors from EE, LD and SE, whereas
the areal factor from Area 2 has correlations of 0.917, 0.978, 0.941 and 0.955 with the regional factors
from NE, NW, YH, and W. This confirms the presence of the common local factors among some regions

11The residential property buyers in the U.K. pay Stamp Duty Land Tax (SDLT). The first stage of the policy started
from July 2020 and ended at June 2021. The tax reduction is effectively raising the nil rate threshold of the property value
from £125,000 to £500,000. See https://www.gov.uk/guidance/stamp-duty-land-tax-temporary-reduced-rates. As the
housing demand was stimulated by the policy, the price was pushed up with the inelastic housing supply.

12Holly et al. (2011) propose a spatio-temporal model with the London price set as a common factor for all regions.
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in which case the standard CCA-based estimates of the global and local factors may be inconsistent. The
third panel in Figure 3 displays the areal factor components constructed by F̂at = (N−1

a

∑Na

j=1 λ̂
′
aj)F̂at for

a = 1, 2. These areal components follow the quite similar time-varying patterns to the clustered regional
components as shown in the first two figures in Figure 3.

To assess the information contents of the global/local factor components, we present the correlations
between the national/areal factor components and a list of macroeconomic and financial variables in
Table 5. The national components are positively correlated with the GDP growth, the number of build-
ings started and the New York house price growth rate, demonstrating the pro-cyclicality and possibly
strong connection to the international housing market. Moreover, the national component is negatively
correlated with the unemployment rate (the demand side), whilst they are negatively correlated with
the labour force in the construction sector (the supply side). The credit market condition also plays an
important role, as the national components are negatively correlated with the mortgage rate and the
20-year government bond yields while positively correlated with residential lending approvals. These
results are in line with the conventional view that the national housing market cycle is pro-cyclical and
closely related to economic fundamentals (see Chodorow-Reich et al. (2021)). By contrast, the areal
housing market cycles captured by the areal components display a heterogeneous and opposition pattern,
as shown in the last subplot of Figure 3. Although the areal component in Area 2 is still negatively
and positively correlated with the unemployment rate and the residential credit supply respectively, it is
positively correlated with the construction labour. Interestingly, the areal component in Area 1 shows
that even tight financial market/economy conditions do not seem to suppress the housing market cycle
surrounding Area 1. The opposite sign of the correlations reflect that the two areas react differently
to changes of financial market/economy conditions. We may therefore conclude that the existence of
such distinctive areal factors clearly indicates a housing market segmentation subject to a geographical
gradient.

Table 5 about here

Finally, we investigate another important issue called the South-North house price gap, which has
been a long-standing political concern. We collect the annual regional population data from Nomis
and construct the areal population by the average of the regional population.13 We also aggregate the
areal factor components into the annual ones. The first two figures in Figure 4 display the areal factor
components and the (lagged) population growth rate of in Area 1 and Area 2 respectively. We observe
that they move closely to each other with correlations of 0.304 and 0.44 respectively for Area 1 and Area
2. Next, we construct the population gap between the two areas, calculated as the population in Area
1 minus the population in Area 2. We then compare its growth rate with the difference (gap) between
their areal components. From the third panel in Figure 4, we observe that the growth rate of the (lagged)
population gap strongly comoves with the areal components gap with the remarkably high correlation
(0.8). This suggests that the growth rate of the previous population gap can become a strong predictor
for the areal components gap.14

Figure 4 about here

13The regional population data can be found in https://www.nomisweb.co.uk.
14Howard and Liebersohn (2020) show that the expected income inequality may drive the divergence of the house prices

through the channel of rent expectation. Our results suggest that the widening population gap also contribute to the house
price gap.
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7 Conclusion

We have developed a novel approach based on the generalised canonical correlation (GCC) analysis
for consistently estimating the global/local factors and loadings in a multilevel factor model. We also
introduce a new selection criteria for the number of global factors. The Monte Carlo simulation shows
dominating performance of our approach. Our methodology is applied to analysing the house market in
England and Wales using a large disaggregated panel data of the real house price growth rates for the 331
local authorities over the period 1996Q1 to 2021Q. We find that the national factor explains about half
of the time series variation while the regional factors are less important but non-negligible. Moreover, we
show that the regional factors are common to some regions and hence suggesting a national-areal model
rather than a national-regional model.

Although we focus on the global-local specification, our approach can be extended to cover the mul-
tilevel factor model that has a more complicated grouping scheme. For example, the model in which the
individuals can be classified to more than two layers. See the parallel grouping in Breitung and Eickmeier
(2016) and the hierarchical grouping in Moench et al. (2013). Furthermore, if the block membership is
unknown, it is possible to estimate the block memberships using methods developed by Ando and Bai
(2017), Coroneo et al. (2020) and Uematsu and Yamagata (2022) and apply GCC thereafter.
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Figure 1: Map of regions in England and Wales
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Table 1: Main Empirical Results over 1996Q1–2021Q2

Region Ni Mean Std r̂i RIG RIF
North East 48 0.692 3.238 1 0.445 0.114
North West 153 0.823 3.429 1 0.436 0.082
Yorkshire and The Humber 84 0.848 3.2 1 0.501 0.073
East Midlands 136 0.969 3.75 0 0.507 0.000
West Midlands 119 0.912 2.817 0 0.527 0.000
East of England 180 1.163 2.8 1 0.501 0.092
London 122 1.45 4.362 1 0.296 0.226
South East 256 1.138 2.518 1 0.456 0.151
South West 116 1.072 2.843 0 0.551 0.000
Wales 86 0.875 3.829 1 0.437 0.094
Summary/Average 1300 1.037 3.237 0.466 0.083

Ni is the number of local authorities in each region. Meand and Std represent
the mean and standard deviation of πijt from each region j. r̂i is the number of
local factors estimated by BIC3 after projecting out one global factor selected by
GCC. RIGi and RIFi are the relative importance ratios of global and local fac-

tors for block i, which are calculated as RIGi = N−1
i

∑Ni
j=1

(
γ̂′
ij γ̂ij/T

−1π̃′
ijπ̃ij

)
and

RIFi = N−1
i

∑Ni
j=1

(
λ̂′
ijλ̂ij/T

−1π̃′
ijπ̃ij

)
.
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Table 2: Correlation matrix among the regional factor components

NE NW YH W EE LD SE
NE 1 0.859 0.885 0.827 -0.59 -0.383 -0.512
NW 0.859 1 0.911 0.946 -0.659 -0.471 -0.585
YH 0.885 0.911 1 0.884 -0.672 -0.531 -0.628
W 0.827 0.946 0.884 1 -0.628 -0.456 -0.559
EE -0.59 -0.659 -0.672 -0.628 1 0.859 0.948
LD -0.383 -0.471 -0.531 -0.456 0.859 1 0.927
SE -0.512 -0.585 -0.628 -0.559 0.948 0.927 1

Table 3: Test of the number of com-
mon local factors from new blocks af-
ter Ĝ being projected out

New Blocks r̂MCC r̂GCC

NE, NW, YH, W 1 1
EE, LD, SE 1 1
Area 1, Area 2 0 0

Table 4: Relative importance
ratios from the Nation-Area
model

Area r̂i RIG RIF
Area 1 1 0.447 0.132
Area 2 1 0.429 0.104
Area 3 0 0.525 0.000
Avg 0.467 0.079
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Table 5: The correlations between factor components and macro variables

Obs National Area 1 Area 2
GDP (Growth Rate) 102 0.135 0.055 0.006
IP (Growth Rate) 102 0.106 0.031 −0.047
CPI (Growth Rate) 102 −0.39∗∗ −0.156 0.003
Employment 102 0.198 −0.34 0.146
Unemployment 102 −0.439∗∗∗ 0.321 −0.241
Construction Labour (Log) 98 −0.304 −0.387∗∗ 0.492∗∗∗

Building Started (Log) 97 0.532∗∗∗ −0.028 0.298
Residential Investment (Log) 98 −0.269 −0.428∗∗∗ 0.272
New York House Price (Growth Rate) 102 0.655∗∗∗ −0.176 0.21
M1 (Growth Rate) 102 0.228 0.166 0.103
M3 (Growth Rate) 102 0.062 0.028 0.15
Residential Lending Approvals (Log) 102 0.238 −0.434∗∗∗ 0.467∗∗∗

Mortgage Rate 58 −0.343 0.354 0.135
Inter Bank Lending Rate Overnight 98 0.371∗ 0.303 0.048
Inter Bank Lending Rate 3 Months 87 0.287 0.163 0.085
Government Zero Coupon Bond Yields 5 Years 102 0.064 0.074 0.078
Government Zero Coupon Bond Yields 10 Years 102 −0.257 0.019 0.04
Government Zero Coupon Bond Yields 20 Years 100 −0.575∗∗∗ −0.083 0.008

∗∗∗, ∗∗ and ∗ indicate 1%, 5% and 10% significance level respectively. The data of macro variables from GDP
to Unemployment rate are downloaded from the website of Office for National Statistics: https://www.ons.gov.uk/.
The financial variables from M1 to zero coupon bond yield are downloaded from the website of Bank of Endland:
https://www.bankofengland.co.uk/statistics/research-datasets.

Figure 2: Estimated national components
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Figure 3: Estimated regional components
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Figure 4: Areal components and population
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Table 6: Average trace ratios of the global factor estimates with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (2, 2)

CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC
DGP1 DGP2 DGP3 DGP4 DGP5

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 3) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)
R Ni T benchmark common local factors noisy data ωF = 0.4 ωF = 0.8
3 20 50 0.82 0.827 0.926 0.637 0.809 0.885 0.595 0.59 0.755 0.794 0.813 0.902 0.69 0.725 0.774
3 50 50 0.93 0.942 0.977 0.661 0.941 0.971 0.727 0.744 0.861 0.911 0.94 0.974 0.784 0.894 0.926
3 100 50 0.956 0.974 0.989 0.655 0.973 0.988 0.838 0.863 0.929 0.936 0.974 0.989 0.824 0.963 0.98
3 200 50 0.969 0.987 0.994 0.658 0.987 0.993 0.904 0.931 0.962 0.955 0.987 0.994 0.844 0.984 0.991
3 20 100 0.843 0.834 0.938 0.626 0.818 0.9 0.606 0.585 0.789 0.82 0.814 0.912 0.716 0.72 0.776
3 50 100 0.949 0.95 0.982 0.654 0.949 0.98 0.772 0.761 0.898 0.944 0.949 0.98 0.87 0.925 0.957
3 100 100 0.973 0.977 0.991 0.663 0.977 0.991 0.904 0.906 0.961 0.969 0.976 0.991 0.923 0.973 0.988
3 200 100 0.985 0.989 0.996 0.666 0.988 0.995 0.953 0.957 0.982 0.982 0.989 0.996 0.939 0.987 0.995
3 20 200 0.848 0.836 0.941 0.617 0.82 0.909 0.614 0.586 0.812 0.834 0.825 0.924 0.731 0.72 0.786
3 50 200 0.954 0.952 0.983 0.649 0.951 0.982 0.8 0.785 0.916 0.952 0.952 0.982 0.921 0.939 0.971
3 100 200 0.978 0.978 0.992 0.659 0.978 0.992 0.921 0.918 0.97 0.977 0.978 0.992 0.961 0.976 0.991
3 200 200 0.989 0.989 0.996 0.664 0.989 0.996 0.963 0.963 0.986 0.988 0.989 0.996 0.976 0.989 0.996
10 20 50 0.843 0.834 0.98 0.677 0.758 0.97 0.632 0.59 0.919 0.819 0.823 0.969 0.709 0.73 0.821
10 50 50 0.933 0.944 0.992 0.709 0.932 0.991 0.751 0.744 0.948 0.914 0.945 0.991 0.793 0.917 0.963
10 100 50 0.958 0.974 0.996 0.722 0.973 0.996 0.851 0.862 0.967 0.944 0.974 0.995 0.836 0.969 0.99
10 200 50 0.971 0.987 0.997 0.721 0.986 0.997 0.911 0.932 0.979 0.956 0.987 0.997 0.845 0.986 0.996
10 20 100 0.862 0.836 0.984 0.671 0.759 0.978 0.654 0.589 0.943 0.851 0.829 0.978 0.737 0.735 0.836
10 50 100 0.954 0.949 0.994 0.715 0.947 0.994 0.798 0.765 0.969 0.949 0.949 0.994 0.875 0.94 0.983
10 100 100 0.976 0.977 0.997 0.728 0.976 0.997 0.912 0.903 0.986 0.972 0.976 0.997 0.92 0.975 0.995
10 200 100 0.986 0.989 0.998 0.731 0.989 0.998 0.956 0.957 0.992 0.983 0.989 0.998 0.939 0.988 0.998
10 20 200 0.868 0.836 0.984 0.663 0.767 0.981 0.653 0.588 0.95 0.854 0.832 0.982 0.76 0.758 0.864
10 50 200 0.958 0.951 0.995 0.716 0.95 0.995 0.823 0.784 0.976 0.956 0.951 0.995 0.924 0.947 0.99
10 100 200 0.979 0.978 0.998 0.734 0.977 0.998 0.929 0.919 0.99 0.978 0.978 0.998 0.963 0.977 0.997
10 200 200 0.989 0.989 0.999 0.736 0.989 0.999 0.966 0.963 0.995 0.989 0.989 0.999 0.977 0.989 0.999

Each entry is the average of trace ratios over 1,000 replications. r0 and ri are the true number of global factors and true number of local factors in
group i. We set r1 = · · · = rR, and N1 = · · · = NR where Ni is the number of individuals in block i. T is the number of time periods. ϕG and ϕF are
AR coefficients for the global and local factors. β, ϕe and κ control the cross-section correlation, serial correlation and noise-to-signal ratio.
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Table 7: Average estimates of the number of global factors with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (2, 2)

CCD MCC ARSS GCC CCD MCC ARSS GCC CCD MCC ARSS GCC
DGP1 DGP2 DGP3

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 3)
R Ni T common local factors
3 20 50 2.041(4|0.6) 2.223(22.3|0) 4.329(89.8|0) 1.872(0|12.8) 3.028(99.3|0) 3.035(100|0) 5.496(99.5|0) 1.833(1.2|17.9) 1.551(14.1|39.6) 2.183(20|1.7) 4.478(91.7|0.1) 1.597(4.6|46.6)
3 50 50 2.002(0.2|0) 2(0|0) 3.745(86|0) 1.986(0|1.4) 3.002(100|0) 3(100|0) 4.915(98.3|0) 1.978(0|2.2) 1.923(3.3|10.1) 1.95(0.4|5.4) 3.914(89.7|0) 1.825(0.9|18.5)
3 100 50 2.001(0.1|0) 2(0|0) 4.661(98.2|0) 2(0.1|0.1) 3.002(100|0) 3(100|0) 5.755(100|0) 1.994(0|0.6) 1.962(1.1|4.9) 1.921(0|7.9) 4.88(99.3|0) 1.883(0.3|12)
3 200 50 2(0|0) 2(0|0) 5.899(100|0) 1.999(0|0.1) 3(100|0) 3(100|0) 6.881(100|0) 1.999(0|0.1) 1.961(0.1|4.1) 1.947(0|5.3) 6.077(100|0) 1.944(0|5.6)
3 20 100 1.999(0|0.1) 1.994(0|0.6) 2.029(2.9|0) 1.991(0|0.9) 3(100|0) 2.984(98.4|0) 3.324(72.4|0) 1.953(0|4.7) 1.227(0|46.1) 1.281(0|69.6) 2.052(5.4|0.6) 1.796(0.1|20.5)
3 50 100 2(0|0) 2(0|0) 2.002(0.2|0) 2(0|0) 3(100|0) 3(100|0) 2.585(47.4|0) 2(0|0) 1.861(0|12.6) 1.6(0|39.7) 2.003(0.3|0) 1.991(0|0.9)
3 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 3(100|0) 2.363(32.3|0) 2(0|0) 1.994(0|0.6) 1.943(0|5.7) 2(0|0) 2(0|0)
3 200 100 2(0|0) 2(0|0) 2.021(2|0) 2(0|0) 3(100|0) 3(100|0) 2.512(42|0) 2(0|0) 2(0|0) 2(0|0) 2.026(2.6|0) 2(0|0)
3 20 200 1.998(0|0.2) 1.914(0|8.6) 2(0|0) 1.998(0|0.2) 2.999(99.9|0) 2.827(82.7|0) 2.661(50.7|0) 1.986(0|1.4) 0.913(0|62.2) 0.663(0|98.1) 1.999(0|0.1) 1.953(0|4.7)
3 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 3(100|0) 2.309(29.2|0) 2(0|0) 1.862(0|11.5) 1.263(0|70.1) 2(0|0) 2(0|0)
3 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 3(100|0) 2.15(14.9|0) 2(0|0) 2(0|0) 1.97(0|3) 2(0|0) 2(0|0)
3 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 3(100|0) 2.048(4.8|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 20 50 2(0|0) 2.178(17.8|0) 2.001(0.1|0) 1.992(0|0.8) 2.779(77.8|0) 2.997(99.7|0) 2.507(50.4|0) 1.978(0|2.2) 1.281(0.7|40.5) 2.28(28|0) 1.937(0.4|6.7) 1.785(0|21.5)
10 50 50 2(0|0) 2(0|0) 2.001(0.1|0) 2(0|0) 2.955(95.5|0) 2.549(54.9|0) 2.244(24.2|0) 2(0|0) 1.95(0|5) 1.988(0|1.2) 1.999(0.1|0.2) 1.944(0|5.6)
10 100 50 2(0|0) 2(0|0) 2.048(4.6|0) 2(0|0) 2.945(94.5|0) 2.021(2.1|0) 2.36(32.4|0) 2(0|0) 1.984(0|1.6) 1.983(0|1.7) 2.044(3.9|0) 1.977(0|2.3)
10 200 50 2(0|0) 2(0|0) 2.986(56.1|0) 2(0|0) 2.393(39.3|0) 2(0|0) 3.537(66.6|0) 2(0|0) 1.997(0|0.3) 1.985(0|1.5) 3.25(64.3|0) 1.987(0|1.3)
10 20 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.006(0.6|0) 2(0|0) 2.046(4.6|0) 2(0|0) 1.529(0|24.8) 1.282(0|71.8) 1.922(0|7.8) 1.98(0|2)
10 50 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.063(6.3|0) 2(0|0) 2(0|0) 2(0|0) 1.975(0|2.4) 1.695(0|30.5) 2(0|0) 1.999(0|0.1)
10 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.056(5.6|0) 2(0|0) 2(0|0) 2(0|0) 1.999(0|0.1) 1.976(0|2.4) 2(0|0) 2(0|0)
10 200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.04(4|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 20 200 2(0|0) 1.995(0|0.5) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 0.98(0|53.4) 0.797(0|100) 1.921(0|7.9) 2(0|0)
10 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.983(0|1.5) 1.24(0|75.7) 2(0|0) 2(0|0)
10 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.001(0.1|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.99(0|1) 2(0|0) 2(0|0)
10 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)

CCD MCC ARSS GCC CCD MCC ARSS GCC
DGP4 DGP5

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)
R Ni T ωF = 0.4 ωF = 0.8
3 20 50 2.297(24.4|0.8) 2.632(62.5|0) 4.703(97.8|0) 1.829(1.3|18.5) 3.075(98.4|0) 3.039(99.8|0) 4.62(100|0) 2.576(69.9|12.8)
3 50 50 2.138(13.4|0.1) 2.08(8|0) 4.193(95.3|0) 1.978(0|2.2) 3.011(99.8|0) 2.997(99.7|0) 4.377(100|0) 2.438(48.9|5.3)
3 100 50 2.135(13.5|0) 2.009(0.9|0) 5.02(99.6|0) 1.996(0|0.4) 3.007(99.9|0) 2.973(97.3|0) 5.317(100|0) 2.15(17.8|2.8)
3 200 50 2.123(12.3|0) 2(0|0) 6.268(100|0) 2(0|0) 3.002(100|0) 2.875(87.5|0) 6.629(100|0) 2.014(2.2|0.8)
3 20 100 2.121(12.3|0.2) 1.998(0|0.2) 2.689(66.1|0) 1.948(0.5|5.7) 2.999(99.9|0) 2.95(95|0) 3.021(100|0) 2.921(94.2|2.1)
3 50 100 2.047(4.7|0) 2(0|0) 2.372(36.9|0) 1.999(0|0.1) 3(100|0) 2.976(97.6|0) 3.004(100|0) 2.772(77.3|0.1)
3 100 100 2.032(3.2|0) 2(0|0) 2.211(21.1|0) 2(0|0) 3(100|0) 2.891(89.1|0) 3(100|0) 2.305(30.5|0)
3 200 100 2.025(2.5|0) 2(0|0) 2.266(26|0) 2(0|0) 3(100|0) 2.585(58.5|0) 3.014(100|0) 2.044(4.4|0)
3 20 200 2.044(5.9|1.4) 1.928(0|7.1) 2.517(51.7|0) 1.986(0|1.4) 2.999(99.9|0) 2.598(59.9|0.1) 3(100|0) 2.994(99.5|0.1)
3 50 200 2.013(1.3|0) 2(0|0) 2.082(8.2|0) 2(0|0) 3(100|0) 2.769(76.9|0) 3(100|0) 2.937(93.7|0)
3 100 200 2.005(0.5|0) 2(0|0) 2.008(0.8|0) 2(0|0) 3(100|0) 2.412(41.2|0) 3(100|0) 2.491(49.1|0)
3 200 200 2.001(0.1|0) 2(0|0) 2.001(0.1|0) 2(0|0) 3(100|0) 2.045(4.5|0) 3(100|0) 2.041(4.1|0)
10 20 50 2.059(5.9|0) 2.882(88.2|0) 2.29(29.1|0.1) 1.962(0.5|4.3) 2.999(99.8|0) 3.018(100|0) 2.998(99.8|0) 2.904(92.2|1.8)
10 50 50 2.037(3.7|0) 2.036(3.6|0) 2.139(13.9|0) 2(0|0) 2.997(99.7|0) 2.999(99.9|0) 3(99.9|0) 2.661(66.9|0.8)
10 100 50 2.032(3.2|0) 2(0|0) 2.278(25.2|0) 2(0|0) 3(100|0) 2.993(99.3|0) 3.034(100|0) 2.265(26.8|0.3)
10 200 50 2.057(5.7|0) 2(0|0) 3.403(68.1|0) 2(0|0) 3(100|0) 2.907(90.7|0) 4.049(100|0) 2.007(0.8|0.1)
10 20 100 2.04(4|0) 2(0|0) 2.024(2.4|0) 1.998(0|0.2) 3(100|0) 2.985(98.5|0) 3(100|0) 2.999(99.9|0)
10 50 100 2.004(0.4|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 2.992(99.2|0) 3(100|0) 2.903(90.3|0)
10 100 100 2.009(0.9|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 2.925(92.5|0) 3(100|0) 2.492(49.2|0)
10 200 100 2.005(0.5|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 2.566(56.6|0) 3(100|0) 2.039(3.9|0)
10 20 200 2.006(0.6|0) 1.995(0|0.5) 2(0|0) 2(0|0) 3(100|0) 2.662(66.2|0) 3(100|0) 3(100|0)
10 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 2.788(78.8|0) 3(100|0) 2.99(99|0)
10 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 2.369(36.9|0) 3(100|0) 2.634(63.4|0)
10 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 2.01(1|0) 3(100|0) 2.034(3.4|0)

The average of r̂0 over 1,000 replications is reported together with (O|U) inside the parenthesis, indicating the percentage of overestimation and underestimation. r0 and ri are the true numbers
of global factors and local factors in group i. We set r1 = · · · = rR and N1 = · · · = NR, where R is the number of groups and Ni is the number of individuals in block i. T is the number of time
periods. ϕG and ϕF are AR coefficients for the global and local factors. β, ϕe and κ control the cross-section correlation, serial correlation and noise-to-signal ratio.

32



Table 8: Average trace ratios of the global factor estimates with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (1, 1)

CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC
DGP1 DGP2 DGP3 DGP4 DGP5

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 3) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)
R Ni T common local factors ωF = 0.4 ωF = 0.8
3 20 50 0.936 0.927 0.973 0.623 0.927 0.97 0.771 0.697 0.864 0.933 0.925 0.972 0.882 0.903 0.949
3 50 50 0.971 0.976 0.991 0.639 0.975 0.991 0.907 0.899 0.958 0.967 0.975 0.991 0.916 0.972 0.988
3 100 50 0.982 0.988 0.995 0.655 0.988 0.995 0.95 0.952 0.98 0.978 0.988 0.995 0.926 0.987 0.995
3 200 50 0.986 0.994 0.998 0.658 0.994 0.998 0.97 0.976 0.989 0.984 0.994 0.998 0.939 0.993 0.997
3 20 100 0.947 0.933 0.976 0.612 0.933 0.975 0.804 0.719 0.893 0.946 0.932 0.976 0.924 0.922 0.964
3 50 100 0.977 0.977 0.992 0.617 0.977 0.992 0.927 0.915 0.968 0.977 0.976 0.992 0.963 0.975 0.991
3 100 100 0.988 0.989 0.996 0.648 0.989 0.996 0.964 0.962 0.986 0.988 0.989 0.996 0.973 0.989 0.996
3 200 100 0.993 0.995 0.998 0.656 0.995 0.998 0.98 0.982 0.993 0.992 0.994 0.998 0.978 0.994 0.998
3 20 200 0.95 0.937 0.978 0.612 0.936 0.977 0.811 0.725 0.897 0.949 0.934 0.977 0.941 0.927 0.969
3 50 200 0.98 0.978 0.992 0.636 0.978 0.992 0.935 0.925 0.973 0.98 0.978 0.992 0.976 0.977 0.992
3 100 200 0.99 0.989 0.996 0.639 0.989 0.996 0.968 0.965 0.988 0.99 0.989 0.996 0.987 0.989 0.996
3 200 200 0.995 0.995 0.998 0.624 0.995 0.998 0.984 0.983 0.994 0.994 0.995 0.998 0.991 0.995 0.998
10 20 50 0.956 0.929 0.992 0.536 0.91 0.991 0.864 0.704 0.962 0.951 0.929 0.992 0.91 0.914 0.98
10 50 50 0.977 0.975 0.997 0.547 0.975 0.997 0.931 0.896 0.985 0.972 0.975 0.997 0.93 0.975 0.996
10 100 50 0.984 0.988 0.998 0.547 0.988 0.998 0.958 0.954 0.991 0.98 0.988 0.998 0.939 0.988 0.998
10 200 50 0.986 0.994 0.999 0.57 0.994 0.999 0.972 0.976 0.994 0.983 0.994 0.999 0.942 0.994 0.999
10 20 100 0.963 0.935 0.993 0.543 0.928 0.993 0.881 0.707 0.969 0.962 0.934 0.993 0.948 0.928 0.988
10 50 100 0.983 0.977 0.998 0.537 0.977 0.997 0.947 0.915 0.99 0.981 0.977 0.997 0.966 0.977 0.997
10 100 100 0.99 0.989 0.999 0.523 0.989 0.999 0.97 0.962 0.995 0.989 0.989 0.999 0.976 0.989 0.999
10 200 100 0.994 0.995 0.999 0.544 0.994 0.999 0.983 0.981 0.997 0.993 0.994 0.999 0.977 0.994 0.999
10 20 200 0.984 0.977 0.998 0.531 0.932 0.993 0.888 0.742 0.972 0.965 0.937 0.993 0.96 0.933 0.991
10 50 200 0.984 0.977 0.998 0.562 0.978 0.998 0.951 0.924 0.992 0.984 0.978 0.998 0.98 0.978 0.997
10 100 200 0.991 0.989 0.999 0.535 0.989 0.999 0.974 0.965 0.996 0.991 0.989 0.999 0.988 0.989 0.999
10 200 200 0.995 0.995 0.999 0.548 0.995 0.999 0.986 0.983 0.998 0.995 0.995 0.999 0.992 0.995 0.999

Each entry is the average of trace ratios over 1,000 replications. r0 and ri are the true numbers of the global factors and local factors in group i. We
set r1 = · · · = rR and N1 = · · · = NR where Ni is the number of individuals in block i. ϕG and ϕF are AR coefficients for the global and local factors.
β, ϕe and κ control the cross-section correlation, serial correlation and noise-to-signal ratio.
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Table 9: Average estimates of the number of the global factors with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (1, 1)

CCD MCC ARSS GCC CCD MCC ARSS GCC CCD MCC ARSS GCC
DGP1 DGP2 DGP3

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 3)
R Ni T common local factors
3 20 50 1.004(0.4|0) 1.445(44.1|0) 1.823(51.6|0) 1(0|0) 1.35(31.9|0) 2.003(97.9|0) 1.867(53.9|0) 1(0|0) 1.023(4.1|2.8) 1.652(63.7|0) 1.819(50.2|0) 1.003(0.2|0)
3 50 50 1(0|0) 1(0|0) 1.016(1.5|0) 1(0|0) 1.261(26|0) 1.219(21.9|0) 1.029(2.9|0) 1(0|0) 1.003(0.4|0.1) 1.014(1.4|0) 1.022(2.1|0) 0.999(0|0.1)
3 100 50 1.001(0.1|0) 1(0|0) 1.011(1.1|0) 1(0|0) 1.23(22.9|0) 1.025(2.5|0) 1.025(2.5|0) 1(0|0) 1.002(0.2|0) 1(0|0) 1.01(1|0) 1(0|0)
3 200 50 1.001(0.1|0) 1(0|0) 1.002(0.2|0) 1(0|0) 1.058(5.8|0) 1(0|0) 1.001(0.1|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
3 20 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.007(0.7|0) 1(0|0) 1.001(0.1|0) 1(0|0) 0.998(0|0.2) 0.999(0|0.1) 1(0|0) 1(0|0)
3 50 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.003(0.3|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
3 100 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
3 200 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
3 20 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 0.997(0|0.3) 0.986(0|1.4) 1(0|0) 1(0|0)
3 50 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
3 100 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
3 200 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
10 20 50 1(0|0) 1.655(65.5|0) 1(0|0) 1(0|0) 1.96(96|0) 2.014(100|0) 1.633(63.3|0) 1(0|0) 0.993(0|0.7) 1.966(95.8|0) 1(0|0) 1(0|0)
10 50 50 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.988(98.8|0) 1.961(96.1|0) 1.023(2.3|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
10 100 50 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.972(97.2|0) 1.086(8.6|0) 1.012(1.2|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
10 200 50 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.601(60.1|0) 1(0|0) 1.004(0.4|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
10 20 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.035(3.5|0) 1(0|0) 1.01(1|0) 1(0|0)
10 50 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.077(7.7|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
10 100 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.048(4.8|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
10 200 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.011(1.1|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
10 20 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 0.999(0|0.1) 1(0|0) 1(0|0)
10 50 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.002(0.2|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
10 100 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
10 200 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)

CCD MCC ARSS GCC CCD MCC ARSS GCC
DGP4 DGP5

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)
R Ni T ωF = 0.4 ωF = 0.8
3 20 50 1.016(1.3|0) 1.618(59.9|0) 2.127(66.4|0) 1(0|0) 1.824(73.5|0) 2.118(99.7|0) 2.487(100|0) 1.101(10.1|0)
3 50 50 1.002(0.2|0) 1.006(0.6|0) 1.08(7.8|0) 1(0|0) 1.86(83.5|0) 1.895(89.5|0) 1.991(98.1|0) 1.02(2|0)
3 100 50 1.003(0.3|0) 1(0|0) 1.042(4.2|0) 1(0|0) 1.911(89.3|0) 1.609(60.9|0) 1.97(96.8|0) 1.007(0.7|0)
3 200 50 1.006(0.6|0) 1(0|0) 1.011(1.1|0) 1(0|0) 1.927(92.5|0) 1.17(17|0) 1.274(27.3|0) 1.003(0.3|0)
3 20 100 1(0|0) 1(0|0) 1.035(3.5|0) 1(0|0) 1.951(95.1|0) 1.643(64.3|0) 2(100|0) 1.149(14.9|0)
3 50 100 1(0|0) 1(0|0) 1.001(0.1|0) 1(0|0) 1.968(96.8|0) 1.297(29.7|0) 1.991(99.1|0) 1.008(0.8|0)
3 100 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.973(97.3|0) 1.058(5.8|0) 1.678(67.8|0) 1.008(0.8|0)
3 200 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.971(97.1|0) 1(0|0) 1(0|0) 1(0|0)
3 20 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.992(99.2|0) 1.056(5.6|0) 2(100|0) 1.159(15.9|0)
3 50 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.999(99.9|0) 1.002(0.2|0) 1.998(99.8|0) 1.002(0.2|0)
3 100 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.998(99.8|0) 1(0|0) 1.237(23.7|0) 1(0|0)
3 200 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 2(100|0) 1(0|0) 1(0|0) 1(0|0)
10 20 50 1(0|0) 1.938(93.4|0) 1.008(0.8|0) 1(0|0) 1.724(72.4|0) 2.118(100|0) 1.965(96.5|0) 1.09(9|0)
10 50 50 1(0|0) 1.001(0.1|0) 1(0|0) 1(0|0) 1.879(87.9|0) 1.965(96.5|0) 1.803(80.3|0) 1.007(0.7|0)
10 100 50 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.92(92|0) 1.666(66.6|0) 1.779(77.9|0) 1.001(0.1|0)
10 200 50 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.959(95.9|0) 1.112(11.2|0) 1.508(50.8|0) 1(0|0)
10 20 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.972(97.2|0) 1.709(70.9|0) 1.937(93.7|0) 1.153(15.3|0)
10 50 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.988(98.8|0) 1.251(25.1|0) 1.727(72.7|0) 1.002(0.2|0)
10 100 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.991(99.1|0) 1.016(1.6|0) 1.476(47.6|0) 1(0|0)
10 200 100 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.996(99.6|0) 1(0|0) 1(0|0) 1(0|0)
10 20 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.996(99.6|0) 1.025(2.5|0) 1.971(97.1|0) 1.138(13.8|0)
10 50 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 2(100|0) 1(0|0) 1.728(72.8|0) 1(0|0)
10 100 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 2(100|0) 1(0|0) 1.24(24|0) 1(0|0)
10 200 200 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1.998(99.8|0) 1(0|0) 1(0|0) 1(0|0)

The average of r̂0 over 1,000 replications is reported together with (O|U) inside the parenthesis, indicating the percentage of overestimation and underestimation. r0 and ri
are the true numbers of the global factors and local factors in group i. We set r1 = · · · = rR and N1 = · · · = NR, where R is the number of groups and Ni is the number of
individuals in block i. T is the number of time periods. ϕG and ϕF are AR coefficients for the global and local factors. β, ϕe and κ control the cross-section correlation, serial
correlation and noise-to-signal ratio.
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Table 10: Average trace ratios of the global factor estimates with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (3, 3)

CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC
DGP1 DGP2 DGP3 DGP4 DGP5

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 3) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)
R Ni T common local factors ωF = 0.4 ωF = 0.8
3 20 50 0.741 0.768 0.881 0.56 0.743 0.826 0.531 0.547 0.69 0.707 0.735 0.825 0.666 0.696 0.753
3 50 50 0.867 0.903 0.955 0.611 0.894 0.938 0.611 0.894 0.938 0.83 0.889 0.936 0.731 0.803 0.835
3 100 50 0.921 0.955 0.979 0.624 0.953 0.975 0.725 0.778 0.858 0.881 0.952 0.976 0.773 0.9 0.923
3 200 50 0.943 0.978 0.989 0.642 0.977 0.988 0.803 0.863 0.913 0.915 0.977 0.988 0.794 0.962 0.974
3 20 100 0.762 0.762 0.901 0.537 0.747 0.841 0.545 0.54 0.74 0.726 0.723 0.833 0.66 0.656 0.722
3 50 100 0.909 0.912 0.966 0.579 0.911 0.96 0.672 0.671 0.83 0.895 0.907 0.959 0.766 0.801 0.839
3 100 100 0.958 0.963 0.986 0.603 0.962 0.984 0.812 0.817 0.915 0.95 0.961 0.984 0.837 0.933 0.955
3 200 100 0.975 0.982 0.993 0.612 0.982 0.992 0.912 0.92 0.963 0.969 0.982 0.993 0.876 0.977 0.988
3 20 200 0.767 0.758 0.909 0.518 0.748 0.85 0.55 0.54 0.771 0.729 0.716 0.838 0.649 0.628 0.693
3 50 200 0.92 0.919 0.97 0.549 0.917 0.967 0.677 0.668 0.852 0.915 0.916 0.968 0.784 0.8 0.841
3 100 200 0.964 0.965 0.987 0.59 0.965 0.987 0.85 0.848 0.94 0.962 0.964 0.987 0.908 0.951 0.975
3 200 200 0.982 0.983 0.994 0.611 0.983 0.994 0.938 0.939 0.976 0.981 0.983 0.994 0.947 0.981 0.992
10 20 50 0.752 0.77 0.968 0.544 0.636 0.922 0.562 0.54 0.876 0.728 0.749 0.921 0.67 0.691 0.793
10 50 50 0.872 0.901 0.984 0.569 0.824 0.972 0.657 0.683 0.91 0.833 0.895 0.974 0.741 0.82 0.87
10 100 50 0.925 0.956 0.991 0.569 0.934 0.989 0.736 0.787 0.932 0.888 0.954 0.99 0.775 0.919 0.949
10 200 50 0.943 0.977 0.994 0.578 0.973 0.994 0.807 0.866 0.949 0.917 0.978 0.994 0.802 0.969 0.985
10 20 100 0.779 0.768 0.975 0.513 0.594 0.946 0.577 0.536 0.922 0.747 0.74 0.939 0.674 0.654 0.757
10 50 100 0.915 0.913 0.99 0.542 0.87 0.986 0.685 0.67 0.946 0.896 0.912 0.987 0.765 0.815 0.87
10 100 100 0.959 0.963 0.995 0.556 0.958 0.995 0.821 0.819 0.969 0.95 0.962 0.995 0.849 0.947 0.979
10 200 100 0.977 0.982 0.997 0.563 0.981 0.997 0.917 0.92 0.983 0.97 0.982 0.997 0.886 0.98 0.995
10 20 200 0.78 0.764 0.977 0.497 0.576 0.959 0.582 0.54 0.936 0.747 0.739 0.951 0.659 0.625 0.726
10 50 200 0.924 0.918 0.991 0.532 0.9 0.99 0.694 0.665 0.959 0.919 0.918 0.99 0.792 0.834 0.896
10 100 200 0.966 0.965 0.996 0.534 0.963 0.996 0.859 0.848 0.981 0.964 0.965 0.996 0.912 0.959 0.99
10 200 200 0.983 0.983 0.998 0.532 0.983 0.998 0.942 0.939 0.991 0.981 0.983 0.998 0.949 0.982 0.997

Each entry is the average of trace ratio over 1,000 replications. r0 and ri are the true numbers of the global factors and local factors in group i. We set
r1 = · · · = rR and N1 = · · · = NR where Ni is the number of individuals in block i. T is the number of time periods. ϕG and ϕF are AR coefficients
for the global and local factors. β, ϕe and κ control the cross-section correlation, serial correlation and noise-to-signal ratio.
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Table 11: Average estimates of the number of the global factors with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (3, 3)

CCD MCC ARSS GCC CCD MCC ARSS GCC CCD MCC ARSS GCC
DGP1 DGP2 DGP3

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 3)
R Ni T common local factors
3 20 50 3.045(13.3|11.6) 3.027(5.4|2.7) 3.373(29.1|1.3) 2.466(0.5|37.5) 3.843(42.6|4.7) 3.534(52.7|0.3) 3.686(49.9|0.7) 2.226(2.3|53.2) 1.087(7.6|78.8) 2.444(0.6|54.9) 3.111(30.5|27.8) 1.81(3.8|78.7)
3 50 50 3(2|2.1) 2.984(0|1.6) 3.02(2.8|0.8) 2.863(0.1|11.4) 3.508(20.8|0.8) 3.13(13.3|0.3) 3.072(8.1|0.9) 2.672(0.2|24.2) 3.508(20.8|0.8) 3.13(13.3|0.3) 3.072(8.1|0.9) 2.672(0.2|24.2)
3 100 50 3(0.3|0.3) 2.994(0|0.6) 3.003(0.5|0.2) 2.967(0|3.1) 3.189(7.1|0) 3.008(0.8|0) 3.041(4.3|0.2) 2.897(0|8.5) 2.251(2.1|60.9) 1.95(0|87.7) 2.243(0.3|66.3) 1.789(0.4|80.9)
3 200 50 3(0|0) 3(0|0) 3.001(0.1|0) 2.997(0|0.3) 3.034(1.3|0.1) 3(0.1|0.1) 3.014(1.5|0.1) 2.988(0|1.1) 2.147(0.2|69.4) 1.807(0|90.7) 2.181(0|70) 1.78(0.1|83.9)
3 20 100 2.885(0|10.9) 2.418(0|57.2) 2.968(0|3.2) 2.718(0|21) 2.913(1.7|11.1) 2.736(0|26.3) 2.946(0.7|6) 2.364(0.3|45) 0.158(0|98.6) 0.902(0|100) 1.828(0.1|81.8) 1.464(0|84.7)
3 50 100 2.997(0|0.3) 2.951(0|4.9) 2.997(0|0.3) 2.978(0|2.1) 2.996(0|0.4) 2.994(0|0.6) 2.998(0|0.2) 2.924(0|6.8) 1.006(0|90.3) 1.074(0|100) 1.598(0|92.4) 1.334(0|89.4)
3 100 100 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 2.998(0|0.2) 2.133(0|67.1) 1.549(0|96.6) 1.975(0|80) 1.871(0|75.8)
3 200 100 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 2.376(0|56.6) 1.951(0|85.8) 2.301(0|63.2) 2.114(0|68.1)
3 20 200 2.788(0|18.6) 1.861(0|93.7) 2.892(0|10.4) 2.737(0|20.8) 2.787(0.2|16.4) 2.102(0|82.3) 2.903(0|9.6) 2.43(0|40.2) 0.026(0|100) 0.084(0|100) 1.449(0|95) 0.851(0|95)
3 50 200 2.997(0|0.3) 2.863(0|13.7) 2.996(0|0.4) 2.993(0|0.7) 2.998(0|0.2) 2.969(0|3.1) 2.998(0|0.2) 2.975(0|2.4) 0.51(0|97.4) 0.401(0|100) 1.354(0|97.8) 0.97(0|92.9)
3 100 200 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 2.36(0|55.2) 1.366(0|97.5) 2.173(0|67.2) 2.197(0|57.1)
3 200 200 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 2.936(0|6.3) 2.883(0|8.7) 2.924(0|6.9) 2.913(0|6.9)
10 20 50 2.987(0.2|1.5) 3.015(1.6|0.1) 2.967(0|3.2) 2.905(0|7.3) 4.825(64.7|0) 4.008(97.9|0) 3.683(47.2|7.5) 2.561(1.2|30.2) 0.286(0.5|94) 2.689(0.1|31.2) 1.911(0.3|79) 1.96(0.2|68.2)
10 50 50 2.999(0|0.1) 2.999(0|0.1) 2.985(0|1.5) 2.978(0|1.7) 5.166(72.5|0) 3.565(56.4|0) 3.133(14.1|2.2) 2.846(0.2|11.9) 2.119(0.1|59.5) 2.162(0|81.7) 1.717(0|89.1) 1.922(0|69.9)
10 100 50 3(0|0) 2.998(0|0.2) 2.997(0|0.3) 2.995(0|0.5) 4.458(48.6|0) 3.001(0.1|0) 3.162(15.4|0) 2.997(0|0.3) 2.43(0.1|50.7) 2.133(0|81.1) 1.967(0|79.9) 1.979(0|70)
10 200 50 3(0|0) 3(0|0) 3(0|0) 2.999(0|0.1) 4.458(48.6|0) 3.001(0.1|0) 3.162(15.4|0) 2.997(0|0.3) 2.362(0|56) 1.91(0|91.1) 2.065(0|75.5) 1.965(0|73.6)
10 20 100 2.987(0|1.1) 2.535(0|46.5) 2.91(0|8.2) 2.993(0|0.6) 3.015(0.9|1.2) 2.969(0|3.1) 2.901(9|20.3) 2.813(0.1|14.1) 0.014(0|99.9) 0.986(0|100) 1.443(0.3|94.2) 1.846(0|56.9)
10 50 100 2.999(0|0.1) 2.994(0|0.6) 2.997(0|0.3) 2.999(0|0.1) 3.144(4.8|0) 3(0|0) 3.003(0.9|0.6) 2.988(0|1.1) 1.044(0|88.4) 1.151(0|100) 1.346(0|97.2) 1.625(0|70.7)
10 100 100 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3.099(3.3|0) 3(0|0) 3(0|0) 3(0|0) 2.372(0|59.1) 1.676(0|96.3) 1.75(0|86.8) 2.222(0|54.9)
10 200 100 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3.117(3.9|0) 3(0|0) 3(0|0) 3(0|0) 2.538(0|45.4) 2.289(0|64.3) 2.348(0|57.2) 2.425(0|46.4)
10 20 200 2.996(0|0.4) 1.971(0|98.9) 2.896(0|9.8) 2.998(0|0.2) 2.989(0|1.1) 2.217(0|78.3) 2.786(3|23.8) 2.931(0|5.5) 0(0|100) 0.018(0|100) 1.399(0.3|94.8) 0.897(0|76.7)
10 50 200 3(0|0) 2.964(0|3.6) 2.999(0|0.1) 3(0|0) 3(0|0) 3(0|0) 2.999(0|0.1) 3(0|0) 0.32(0|97.1) 0.415(0|100) 1.282(0|98.2) 1.071(0|76.8)
10 100 200 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 2.647(0|35.1) 1.549(0|99.1) 2.144(0|60.8) 2.698(0|21.9)
10 200 200 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 2.998(0|0.2) 2.986(0|1.3) 2.997(0|0.2) 2.998(0|0.2)

CCD MCC ARSS GCC CCD MCC ARSS GCC
DGP4 DGP5

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)
R Ni T ωF = 0.4 ωF = 0.8
3 20 50 3.65(57.9|5.9) 3.425(42.6|0.2) 4.104(86|0.1) 2.436(17.2|49.6) 4.026(91.2|0.1) 3.899(89.4|0) 4.19(98.8|0) 3.38(66|18.7)
3 50 50 3.57(54.5|0.9) 3.216(21.9|0.3) 3.657(65.2|0.2) 2.771(11.5|24.8) 4.003(99.1|0) 3.964(96.4|0) 3.999(99.6|0) 3.923(94.7|1.6)
3 100 50 3.516(51.1|0.2) 3.05(5.5|0.5) 3.674(67|0) 2.945(6.3|9.4) 4.002(99.8|0) 3.973(97.3|0) 3.993(99.5|0.2) 3.963(97.1|0.8)
3 200 50 3.454(45.5|0.1) 3.002(0.5|0.3) 3.66(66|0) 2.995(1.2|1.6) 3.998(99.8|0) 3.969(96.9|0) 3.783(80.3|1.9) 3.964(96.4|0)
3 20 100 3.462(59.3|10.4) 2.517(0.2|48) 3.735(75.3|1.8) 2.776(33.3|38.3) 3.947(94.8|0.1) 3.296(31.5|1.9) 3.972(97.2|0) 3.875(90.6|2.2)
3 50 100 3.539(54|0.1) 2.968(0.1|3.3) 3.495(49.6|0.1) 3.066(16.3|8.2) 3.998(99.8|0) 3.905(90.5|0) 3.998(99.8|0) 3.991(99.3|0.1)
3 100 100 3.427(42.7|0) 3(0|0) 3.26(26|0) 3.007(1.2|0.5) 4(100|0) 3.991(99.1|0) 3.907(92.4|1.5) 4(100|0)
3 200 100 3.344(34.4|0) 3(0|0) 3.27(27|0) 3(0|0) 4(100|0) 3.968(96.8|0) 3.826(83.4|0.7) 3.995(99.5|0)
3 20 200 3.399(62.9|14.6) 1.87(0|92.8) 3.694(72.2|2.7) 3.068(49.8|29.8) 3.922(92.2|0) 2.704(3.1|32.5) 3.948(94.9|0.1) 3.911(92.5|1.2)
3 50 200 3.545(54.6|0.1) 2.87(0|13) 3.264(26.6|0.2) 3.092(14.3|4.3) 4(100|0) 3.698(70|0.2) 3.98(98.4|0.3) 3.999(99.9|0)
3 100 200 3.338(33.8|0) 3(0|0) 3.1(10|0) 3.001(0.1|0) 4(100|0) 3.974(97.4|0) 3.881(89.6|1.5) 4(100|0)
3 200 200 3.233(23.3|0) 3(0|0) 3.027(2.7|0) 3(0|0) 4(100|0) 3.752(75.2|0) 3.985(98.5|0) 4(100|0)
10 20 50 3.634(61.8|0.5) 3.635(63.5|0) 3.367(39.8|3.1) 2.925(28.1|25.6) 3.997(99.3|0) 3.994(99.4|0) 3.957(95.8|0.1) 3.927(95.3|1.6)
10 50 50 3.531(53.2|0.1) 3.207(20.7|0) 3.113(12.7|1.4) 2.933(10.3|13.1) 4(100|0) 3.993(99.3|0) 3.983(98.3|0) 3.988(99|0.2)
10 100 50 3.465(46.5|0) 3.027(2.7|0) 3.125(12.7|0.2) 2.981(3.3|4.5) 4(100|0) 3.998(99.8|0) 3.998(99.8|0) 3.994(99.4|0)
10 200 50 3.421(42.1|0) 3(0.1|0.1) 3.11(11|0) 2.991(0|0.9) 4(100|0) 3.987(98.7|0) 3.992(99.2|0) 3.98(98|0)
10 20 100 3.685(69.4|0.9) 2.675(0|32.5) 3.027(11.2|8) 3.496(58.3|5.8) 3.998(99.8|0) 3.302(30.3|0.1) 3.915(92|0.4) 3.996(99.6|0)
10 50 100 3.523(52.3|0) 2.999(0|0.1) 3.005(0.9|0.4) 3.094(10|0.5) 4(100|0) 3.982(98.2|0) 3.993(99.3|0) 4(100|0)
10 100 100 3.384(38.4|0) 3(0|0) 3.002(0.2|0) 3.003(0.3|0) 4(100|0) 3.999(99.9|0) 4(100|0) 4(100|0)
10 200 100 3.287(28.7|0) 3(0|0) 3.003(0.3|0) 3(0|0) 4(100|0) 3.98(98|0) 3.998(99.8|0) 3.994(99.4|0)
10 20 200 3.827(84.7|1.2) 1.989(0|98.2) 2.904(3.2|11.6) 3.776(78.8|0.8) 3.998(99.8|0) 2.857(0|14.3) 3.938(94.2|0.4) 4(100|0)
10 50 200 3.603(60.3|0) 2.959(0|4.1) 2.998(0|0.2) 3.072(7.3|0.1) 4(100|0) 3.823(82.3|0) 4(100|0) 4(100|0)
10 100 200 3.278(27.8|0) 3(0|0) 3(0|0) 3(0|0) 4(100|0) 3.991(99.1|0) 3.998(99.8|0) 4(100|0)
10 200 200 3.19(19|0) 3(0|0) 3(0|0) 3(0|0) 4(100|0) 3.796(79.6|0) 4(100|0) 4(100|0)

The average of r̂0 over 1,000 replications is reported together with (O|U) inside the parenthesis, indicating the percentage of overestimation and underestimation. r0 and ri are the true numbers of the
global factors and local factors in group i. We set r1 = · · · = rR and N1 = · · · = NR, where R is the number of groups and Ni is the number of individuals in block i. T is the number of time periods.
ϕG and ϕF are AR coefficients for the global and local factors. β, ϕe and κ control the cross-section correlation, serial correlation and noise-to-signal ratio.
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Figure 5: Asymptotic normality of the first element of Ĝt evaluated at T/2

The data is simulated using R = 3, (r0, ri) = (2, 2), (ϕG, ϕF ) = (0, 0) and (β, ϕe, κ) = (0, 0, 1). Standard normal density is superimposed.
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Figure 6: Asymptotic normality of the first element of γ̂ij evaluated at i = 1 and Ni/2

The data is simulated using R = 3, (r0, ri) = (2, 2), (ϕG, ϕF ) = (0, 0) and (β, ϕe, κ) = (0, 0, 1). Standard normal density is superimposed.
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Appendices

A Proofs

We use the following facts throughout the proofs. By Assumption B.1, we have:
∥∥T−1/2G

∥∥ = Op(1)

and
∥∥T−1/2Fi

∥∥ = Op(1) for all i = 1, ..., R. By Assumptions C.1, we have:
∥∥∥N−1/2

i Γi

∥∥∥ = Op(1) and∥∥∥N−1/2
i Λi

∥∥∥ = Op(1) for all i = 1, ..., R. The eigenvectors of a real n×n matrix Σ is scale invariant since

aΣv = aλv where v is the eigenvector associated with the eigenvalue λ and a is a non-zero real number.

Proof of Proposition 1.
Using Ki = [G,Fi] for i = 1, ..., R, we can be express the matrix Φ in (13) as

Φ =


G F1 −G −F2 0 0 . . . 0 0 0 0
G F1 0 0 −G −F3 . . . 0 0 0 0

...
0 0 0 0 0 0 . . . G FR−1 −G −FR


Let

Qr0
i

(r0+ri)×r0

=

[ 1√
R
A

0

]
and Qr0∑R

l=1(r0+rl)×r0

=
[
Qr0′

1 ,Qr0′
2 , . . . ,Qr0′

R

]′
where

(
1/

√
R
)
A is any r0 × r0 orthogonal matrix. For each i, it is easily see that

KiQ
r0
i = [G,Fi]

[ 1√
R
A

0

]
= GB (22)
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where B =
(
1/
√
R
)
A. This shows that ΦQr0 = 0. Since Qr0′Qr0 = Ir0 , Q

r0 can serve as the right

eigenvectors in the SVD of Φ. Consequently, we obtain

ΦQr0 = P r0


δ1

δ2
. . .

δr0

 = 0

where P r0 is the corresponding left eigenvectors. As P r0 is non-zero, it follows that δ1 = · · · = δR = 0.
This establishes that the first r0 smallest singular values are zero.

We now show that the rest of the singular values are larger than zero by contradiction. Suppose that
there exists an eigenvector q⊥ =

[
q⊥′
1 , . . . , q⊥′

R

]′
, satisfying Φq⊥ = 0, Qr0′q⊥ = 0 and q⊥′q⊥ = 1, where

q⊥
i =

[
qG⊥′
i , qF⊥′

i

]′
. Noting Φq⊥ = 0, we have:

GqG⊥
m + FmqF⊥

m = GqG⊥
h + Fhq

F⊥
h for any h and m.

It follows that

R
(
GqG⊥

m + FmqF⊥
m

)
=

R∑
i=1

(
GqG⊥

i + Fiq
F⊥
i

)
=

R∑
i=1

Fiq
F⊥
i .

where the second equality holds as a result of Qr0′q⊥ = B′∑R
i=1 q

G⊥
i = 0. Consequently, we have

G

(
1

R
qG⊥
m

)
= Fm

(
1− 1

R

)
qF⊥
m +

∑
h̸=m

Fhq
F⊥
h .

By construction, we must have qG⊥
m = qF⊥

1 = · · · = qF⊥
R = 0 for all m. Hence, q⊥ = 0. This contra-

dicts the definition of an eigenvector. Since the singular values are non-negative, the remaining singular
values of Φ are larger than zero. By Assumption B.1, we have T−1/2Ki = Op(1) for all i such that

Φ = Op

(√
T
)
. Using Φq = δp and the fact that the eigenvectors p and q are bounded, we have:

δr0+j = Op

(√
T
)
for j = 1, ..., Rrmax − r0. Q.E.D

Proof of Proposition 2
Using (22) we obtain:

1√
T
Ψ =

1√
T

[K1Q
r0
1 , . . . ,KRQ

r0
R ] =

1√
T

[GB, . . . ,GB] (23)

which yields
ΨΨ′

T
=

GG′

T
= LΞL′

where Ξ is a diagonal matrix with the first r0 elements non-zero and the remaining elements zero. Finally,
it follows that

Lr0 =
1√
T
G

(
G′Lr0(Ξr0)−1

√
T

)
where Ξr0 is the diagonal matrix consisting of r0 non-zero diagonal elements of Ξ. The full rank matrix
inside the bracket is a rotation matrix. Q.E.D
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Proof of Lemma 1
Since Assumptions A–D in Bai and Ng (2002) are satisfied, the stated result follows from Theorem 1 of
Bai and Ng (2002).

Q.E.D
Proof of Lemma 2
Let Q̄r0

i
rmax×r0

= Ĥ−
i Qr0

i where Ĥ−
i is the Moore-Penrose inverse of Ĥi. Since r0+ri ≤ rmax for all i, by the

property of the Moore-Penrose inverse, it follows that ĤiĤ
−
i = Ir0+ri . Let Q̄r0

Rrmax×r0

=
[
Q̄r0′

1 , . . . , Q̄r0′
R

]′
.

Then, we obtain

ΦĤQ̄r0 = ΦQr0 = P r0∆r0

Along the same arguments in Proof of Proposition 1, we obtain the desired result.
Q.E.D

Proof of Lemma 3
See the proof of Theorem 2 in Yu et al. (2015).

Q.E.D

Lemma 4. Under Assumption A–C, as N1, N2, . . . , NR, T −→ ∞, we have:

1. For every m and h,
1

T
√
Nh

∥∥∥∥(K̂m −KmĤm

)′
eh

∥∥∥∥ = Op

(
1

CNT

)
2. For each i,

1

T
√
Ni

∥∥∥Ĝ′ei

∥∥∥ = Op

(
1

CNT

)
where CN,T = min{

√
N,

√
T} with N = min{N1, N2, . . . , NR}

Proof
1. Using the Cauchy-Schwarz inequality, we obtain:

1

T
√
Nh

∥∥∥∥(K̂m −KmĤm

)′
eh

∥∥∥∥ ≤
∥∥∥∥ 1√

T

(
K̂m −KmĤm

)∥∥∥∥∥∥∥∥ 1√
NhT

eh

∥∥∥∥
The first term is of stochastic order Op

(
C−1

NmT

)
by Lemma 1. For the second term, we have:

∥∥∥∥ 1√
NhT

eh

∥∥∥∥ =

√
1

NhT
tr {e′heh} =

√√√√ 1

NhT

Nh∑
j=1

T∑
t=1

e2hjt

Since E(e2hjt) = O(1), the above term is Op(1). Combining the two terms, we obtain the required result.

2. Using equation (19) and K̂m = K̂m −KmĤm +KmĤm, we have:

1

T
√
Ni

∥∥∥Ĝ′ei

∥∥∥ =
1

T
√
NiT

∥∥∥∥∥
R∑

m=1

{
Ĵr0′

(
K̂m −KmĤm

)
Q̃r0

m

(
K̂m −KmĤm

)′
ei

+ Ĵr0′
(
K̂m −KmĤm

)
Q̃r0

mĤ ′
mK ′

mei + Ĵr0′KmĤmQ̃r0
m

(
K̂m −KmĤm

)′
ei

+Ĵr0′KmĤmQ̃r0
mĤ ′

mK ′
mei

}∥∥∥
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where Q̃r0
i = Q̂r0

i Q̂r0′
i . We note that

∥∥∥Ĵr0

∥∥∥ = Op(1) since L̂r0′L̂r0 = Ir0 and T−1/2Ψ̂ = Op(1). The

first term of RHS is bounded by Op

(
C−1

NT

)
× Op

(
C−1

NT

)
by Lemma 1.1 and Lemma 4.1. The second

term is bounded by Op

(
T−1/2C−1

NT

)
by Lemma 1.1 and the fact that (NmT )−1/2∥K ′

mei∥ = Op(1) under

Assumption B2. The third term is bounded by Op

(
C−1

NT

)
by Lemma 4.1. The last term is bounded by

Op(T
−1/2) since (NmT )−1/2∥K ′

mei∥ = Op(1) under Assumption B.2. The proof completes by combining
all these results.

Q.E.D
Proof of Theorem 1
By Lemma 1, we have:

1

T

∥∥∥Φ̂′Φ̂− Ĥ ′Φ′ΦĤ
∥∥∥ = Op

(
1

CNT

)
Furthermore, by Lemma 2 and Lemma 3, we obtain:∥∥∥Q̂r0 − Q̄r0D

∥∥∥ ≤ Op(1)×
1

T

∥∥∥Φ̂′Φ̂− Ĥ ′Φ′ΦĤ
∥∥∥ = Op

(
1

CNT

)
where D is an r0 × r0 orthogonal matrix. Then, using the definition Q̄r0 = Ĥ−

i Qr0 and (22), it follows
for each i that

1√
T

∥∥∥K̂iQ̂
r0
i −KiĤiQ̄

r0
i D

∥∥∥ =
1√
T

∥∥∥K̂iQ̂
r0
i −GBD

∥∥∥
≤ 1√

T

∥∥∥K̂iQ̂
r0
i −KiĤiQ̂

r0
i +KiĤiQ̂

r0
i −KiĤiQ̄

r0
i D

∥∥∥
≤ 1√

T

∥∥∥K̂i −KiĤi

∥∥∥∥∥∥Q̂r0
i

∥∥∥+ 1√
T

∥∥∥KiĤi

∥∥∥∥∥∥Q̂r0
i − Q̄r0

i D
∥∥∥ = Op

(
1

CNT

)
where the inequalities hold due to the Cauchy-Schwarz inequality, and the last equality follows from

Lemma 1 and the fact that
∥∥∥Q̂r0

i

∥∥∥ = Op(1) and
∥∥∥Ĥi

∥∥∥ = Op(1). Using this convergence rate, we obtain:∥∥∥∥∥Ψ̂Ψ̂′

T
− ΨΨ′

T

∥∥∥∥∥ =

∥∥∥∥∥ 1T
R∑
i=1

K̂iQ̂
r0
i Q̂r0′

i K̂ ′
i −

R

T
GBDD′B′G′

∥∥∥∥∥
≤

R∑
i=1

∥∥∥∥ 1T K̂iQ̂
r0
i Q̂r0′

i K̂ ′
i −

1

T
GG′

∥∥∥∥ = Op

(
1

CNT

)
where the inequality follows from the Cauchy-Schwarz inequality. Applying Lemma 3 to the above
equation, we obtain ∥∥∥L̂r0 −Lr0U

∥∥∥ = Op

(
1

CNT

)
(24)

where U is an r0 × r0 orthogonal matrix15. Finally, by definition of Ĝ and Proposition 2, we conclude
that

1√
T

∥∥∥Ĝ−GH
∥∥∥ = Op

(
1

CNT

)
(25)

15If the r0 largest eigenvalues of GG′/T are distinct, each column of L̂r0 converges to its population counterpart in Lr0

up to sign. In such a case, U is an r0 × r0 diagonal matrix whose diagonal elements are either 1 or −1.
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where H = T−1/2G′Lr0Ξr0,−1U is a rotation matrix.
For the global factor loadings in block i, we have:

Γ̂′
i =

1

T
Ĝ′Yi =

1

T
Ĝ′ (GΓ′

i + FiΛ
′
i + ei) =

1

T
Ĝ′
[(

G− ĜH−1 + ĜH−1
)
Γ′
i + FiΛ

′
i + ei

]
Multiplying both sides of the above equation by 1/

√
Ni and rearranging the results, we have:

1√
Ni

(
Γ̂′
i −H−1Γ′

i

)
=

1

T
√
Ni

Ĝ′
(
G− ĜH−1

)
Γ′
i +

1

T
√
Ni

Ĝ′FiΛ
′
i +

1

T
√
Ni

Ĝ′ei (26)

The first term of RHS is bounded by Op(C
−1
NT ) due to (25). The second term is bounded as∥∥∥∥ 1

T
√
Ni

Ĝ′FiΛ
′
i

∥∥∥∥ =

∥∥∥∥ 1

T
√
Ni

(
Ĝ′ −GH+GH

)′
FiΛ

′
i

∥∥∥∥
≤
∥∥∥∥ 1

T
√
Ni

(
Ĝ′ −GH

)′
FiΛ

′
i

∥∥∥∥+ ∥∥∥∥ 1

T
√
Ni

H′G′FiΛ
′
i

∥∥∥∥
= Op

(
1

CNT

)
+Op

(
1√
T

)
= Op

(
1

CNT

)
(27)

where the inequality follows from the Cauchy-Schwarz inequality and the second to last equalities use

Lemma 1 and Assumptioin D. The last term of (27) is bounded by Op

(
C−1

NT

)
due to Lemma 4.2. Then,

1√
Ni

∥∥∥Γ̂′
i −H−1Γ′

i

∥∥∥ = Op

(
1

CNT

)
Q.E.D

Lemma 5. Under Assumptions A–C, as N1, N2, . . . , NR, T −→ ∞, we have for each i = 1, . . . , R:
1. ∥∥∥∥ 1√

NiT
Γ′
ie

′
i

∥∥∥∥ = Op(1)

2. ∥∥∥∥ 1√
NiT

Λ′
ie

′
i

∥∥∥∥ = Op(1)

3. ∥∥∥∥ 1

Ni

√
T

(
Γ̂′
i −H−1Γ′

i

)
e′i

∥∥∥∥ = Op

(
1

CNT

√
Ni

)
+Op

(
1√
Ni

)
+Op

(
1√
T

)
Proof
1. ∥∥∥∥ 1√

NiT
Γ′
ie

′
i

∥∥∥∥ =
1√
NiT

tr


Ni∑
j=1

eijγ
′
ij

Ni∑
k=1

γike
′
ik


 1

2

=

 1

NiT

Ni∑
j=1

Ni∑
k=1

γ′
ijγik

T∑
t=1

eikteijt

 1
2

Taking expectations of the term inside the bracket, by Assumption A.3 and C.1, we have:

E

 1

NiT

Ni∑
j=1

Ni∑
k=1

γ′
ijγik

T∑
t=1

eikteijt

 ≤ 1

NiT

Ni∑
j=1

Ni∑
k=1

γ′
ijγik

T∑
t=1

τi,(jk) = O(1)
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2. The proof is similar to part 1 and therefore omitted.
3. From (26) we have:

1

Ni

√
T

(
Γ̂′
i −H−1Γ′

i

)
e′i =

1

NiT
√
T
Ĝ′
(
G− ĜH−1

)
Γ′
ie

′
i +

1

NiT
√
T
Ĝ′FiΛ

′
ie

′
i +

1

NiT
√
T
Ĝ′eie

′
i

The first term is bounded by Op

(
C−1

NTN
−1/2
i

)
by Theorem 1 and Lemma 5.1. The second term is

bounded by Op

(
C−1

NTN
−1/2
i

)
due to (27) and Lemma 5.2. Using (19), the third term can be written as

1

NiT
√
T
Ĝ′eie

′
i =

1

NiT
L̂r0′eie

′
i =

1

NiT
Ĵr0′ 1

T

(
R∑

m=1

K̂mQ̂r0
mQ̂r0′

m K̂ ′
m

)
eie

′
i

Following the proof of Theorem 1 in Bai and Ng (2002), we have for each m:

1

NiT
√
T

∥∥∥K̂ ′
meie

′
i

∥∥∥ = Op

(
1√
Ni

)
+Op

(
1√
T

)
Therefore, it follows that

1

NiT
√
T

∥∥∥Ĝ′eie
′
i

∥∥∥ = Op

(
1√
Ni

)
+Op

(
1√
T

)
The proof completes by combining the above results.

Q.E.D
Proof of Theorem 2
By construction, we have the following relation for each i:

F̂iΥ̂i =
1

NiT

(
Yi − ĜΓ̂′

i

)(
Yi − ĜΓ̂′

i

)′
F̂i

Replacing Yi with Yi = GΓ′
i + FiΛ

′
i + ei, we obtain:

F̂iΥ̂i =
1

NiT

(
Ŝi + FiΛ

′
i + ei

)(
Ŝi + FiΛ

′
i + ei

)′
F̂i

where Ŝi = GΓ′
i − ĜΓ̂′

i. Multiplying both sides by
(
F ′
i F̂i/T

)−1

(Γ′
iΓi/Ni)

−1
and rearranging terms:

1√
T

(
F̂iĤ

−1
i − Fi

)
=

1√
T

1

NiT
(FiΛ

′
iei + eiΛiF

′
i + eie

′
i) F̂i

(
F ′
i F̂i

T

)−1(
Λ′

iΛi

Ni

)−1

+
1√
T

1

NiT

(
ŜiŜ

′
i + ŜiΛiF

′
i + Ŝie

′
i + F ′

iΛ
′Ŝ′

i + eiŜ
′
i

)
F̂i

(
F ′
i F̂i

T

)−1(
Λ′

iΛi

Ni

)−1

The stochastic bound of the first term is Op(C
−1
NT ) by Theorem 1 of Bai and Ng (2002) and the fact that(

F ′
i F̂i/T

)
and (Γ′

iΓi/Ni) are bounded and invertible (see Proposition 1 of Bai (2003)).
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Next, we study the terms in the the second line of the above equation. Using the relation that

Ŝi = GΓ′
i − ĜΓ̂′

i = GΓ′
i −
(
Ĝ−GH+GH

)(
Γ̂′
i −H−1Γ′

i +H−1Γ′
i

)
= −

(
Ĝ−GH

)(
Γ̂′
i −H−1Γ′

i

)
−
(
Ĝ−GH

)
H−1Γ′

i −GH
(
Γ̂′
i −H−1Γ′

i

)
, (28)

we obtain:

1√
T

1

NiT
ŜiŜ

′
iF̂i = − 1√

T

1

NiT

(
Ĝ−GH

)(
Γ̂′
i −H−1Γ′

i

)
F̂i

− 1√
T

1

NiT

(
Ĝ−GH

)
H−1Γ′

iF̂i −
1√
T

1

NiT
GH

(
Γ̂′
i −H−1Γ′

i

)
F̂i

By Theorem 1, it follows that∥∥∥∥ 1√
T

1

NiT
ŜiŜ

′
iF̂i

∥∥∥∥ = Op

(
1

C2
NT

√
NiT

)
+Op

(
1

CNT

√
NiT

)
+Op

(
1

CNT

√
NiT

)
= Op

(
1

CNT

√
NiT

)
Using (28), it follows that

1√
T

1

NiT
ŜiΛiF

′
i F̂i = − 1√

T

1

NiT

(
Ĝ−GH

)(
Γ̂′
i −H−1Γ′

i

)
ΛiF

′
i F̂i

− 1√
T

1

NiT

(
Ĝ−GH

)
H−1Γ′

iΛiF
′
i F̂i −

1√
T

1

NiT
GH

(
Γ̂′
i −H−1Γ′

i

)
ΛiF

′
i F̂i

Therefore, by Theorem 1,∥∥∥∥ 1√
T

1

NiT
ŜiΛiF

′
i F̂i

∥∥∥∥ = Op

(
1

C2
NT

)
+Op

(
1

CNT

)
+Op

(
1

CNT

)
= Op

(
1

CNT

)
From (28) we obtain:

1√
T

1

NiT
Ŝie

′
iF̂i = − 1√

T

1

NiT

(
Ĝ−GH

)(
Γ̂′
i −H−1Γ′

i

)
e′iF̂i

− 1√
T

1

NiT

(
Ĝ−GH

)
H−1Γ′

ie
′
iF̂i −

1√
T

1

NiT
GH

(
Γ̂′
i −H−1Γ′

i

)
e′iF̂i

The first term is bounded by Op

(
C−1

NT

) [
Op

(
N

−1/2
i

)
+Op

(
T−1/2

)]
due to Theorem 1 and Lemma 5.3.

The second term is bounded by N
−1/2
i Op

(
C−1

NT

)
due to Theorem 1 and Lemma 5.1. The last term is

bounded by Op

(
N

−1/2
i

)
+Op

(
T−1/2

)
. Consequently, we have:

1√
T

1

NiT

∥∥∥Ŝie
′
iF̂i

∥∥∥ = Op

(
1

CNT

)
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It is straightforward to show that 1√
T

1
NiT

∥∥∥eiŜ′
iF̂i

∥∥∥ has the same stochastic order. Using (28):

1√
T

1

NiT
F ′
iΛ

′
iŜ

′
iF̂i = − 1√

T

1

NiT
F ′
iΛ

′
i

(
Γ̂′
i −H−1Γ′

i

)′ (
Ĝ−GH

)′
F̂i

− 1√
T

1

NiT
F ′
iΛ

′
iΓi

(
H−1

)′ (
Ĝ−GH

)′
F̂i −

1√
T

1

NiT
F ′
iΛ

′
i

(
Γ̂′
i −H−1Γ′

i

)′
H′G′F̂i

Using Theorem 1, we obtain:

1√
T

1

NiT

∥∥∥F ′
iΛ

′
iŜ

′
iF̂i

∥∥∥ = Op

(
1

C2
NT

)
+Op

(
1

CNT

)
+Op

(
1

CNT

)
= Op

(
1

CNT

)
Combining all the results, we conclude that

1√
T

∥∥∥F̂i − FiĤi

∥∥∥ = Op

(
1

CNT

)
. (29)

Next, for each i, the estimated factor loadings are:

Λ̂′
i =

1

T
F̂ ′
i

(
Yi − ĜΓ̂′

)
Plugging Yi = GΓ′

i+FiΛ
′
i+ei, Fi = Fi− F̂iĤ

−1
i + F̂iĤ

−1
i and (28) into the above equation, we obtain:

1√
Ni

(
Λ̂′

i − Ĥ −1
i Λ′

i

)
= − 1

T
√
Ni

F̂ ′
i

(
Ĝ−GH

)(
Γ̂′
i −H−1Γ′

i

)
− 1

T
√
Ni

F̂ ′
i

(
Ĝ−GH

)
H−1Γ′

i

− 1

T
√
Ni

F̂ ′
iGH

(
Γ̂′
i −H−1Γ′

i

)
+

1

T
√
Ni

F̂ ′
i

(
Fi − F̂iĤ

−1
i

)
Λ′

i +
1

T
√
Ni

F̂ ′
iei

The first three terms are bounded by Op

(
C−2

NT

)
, Op

(
C−1

NT

)
and Op

(
C−1

NT

)
by Theorem 1. The fourth

term is bounded by Op

(
C−1

NT

)
from (29). The last term can be written as

1

T
√
Ni

F̂ ′
iei =

1

T
√
Ni

(
F̂i − FiĤi

)′
ei +

1

T
√
Ni

Ĥ ′
i F

′
iei

The first term is bounded by Op

(
C−2

NT

)
that follows from Lemma B1 of Bai (2003) with a slight modifi-

cation. The second term is bounded by Op

(
T−1/2

)
using the fact that (NiT )

−1/2 ∥Fiei∥ = Op(1) under
Assumption B.2. Collecting all the terms, we conclude that

1√
Ni

(
Λ̂′

i − Ĥ −1
i Λ′

i

)
= Op

(
1

CNT

)
Q.E.D

Proof of Theorem 3
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By Lemmas 1 and 2 and using the continuity of the singular values, we have:

δ̂k =


√
TOp(C

−1
NT ) for k = 1, . . . , r0

Op

(√
T
)

for k = r0 + 1, . . . , Rrmax

C−1
NTOp

(√
T
)

for k = 0

If r0 > 0, we have:

lim
N1,...,NR,T→∞

δ̂k+1

δ̂k
=

 Op(CNT ) for k = r0
Op(1) for k = r0 + 1, . . . , Rrmax

Op(1) for k = 0, 1, . . . , r0 − 1

On the other hand, if r0 = 0, we have:

lim
N1,...,NR,T→∞

δ̂k+1

δ̂k
=

{
Op(1) for k = 1, . . . , Rrmax

Op(CNT ) for k = 0

As CNT → ∞, the ratio δ̂k+1/δ̂k attains maximum at k = r0. Thus, the desired results follows.
Q.E.D

Lemma 6. Let CNi,T = min{
√
Ni,

√
T}. Under Assumptions A-C and F–G, we have:

1. For each i and t, as Ni, T → ∞, we have:

K̂it − Ĥ ′
iKit = V̂ −1

i

(
1

T

T∑
s=1

K̂isωi(s, t) +
1

T

T∑
s=1

K̂isζi,st +
1

T

T∑
s=1

K̂isηi,st +
1

T

T∑
s=1

K̂isµi,st

)

where Ĥi = (Θ′
iΘi/Ni)

(
K ′

iK̂i/T
)
V̂ −1
i is an (r0+ri)× (r0+ri) matrix with V̂i being the diagonal

matrix consisting of the first r0 + ri eigenvalues of (NiT )
−1YiY

′
i in descending order. In addition,

(a) T−1
∑T

s=1 K̂isωi(s, t) = Op

(
T−1/2C−1

NiT

)
where ωi(s, t) = E

(
N−1

i

∑Ni

j=1 eijseijt

)
;

(b) T−1
∑T

s=1 K̂isζi,st = Op

(
N

−1/2
i C−1

NiT

)
where ζi,st = N−1

i e′i.sei.t − ωi(s, t);

(c) T−1
∑T

s=1 K̂isηi,st = Op

(
N

−1/2
i

)
where ηi,st = N−1

i K ′
isΘ

′
iei.t;

(d) T−1
∑T

s=1 K̂isµi,st = Op

(
N

−1/2
i C−1

NiT

)
where µi,st = N−1

i K ′
itΘ

′
iei.s

2. Let R̂i = T−1/2
(
Ki − K̂iĤi

)
. For each i, as Ni, T → ∞, we have:

∥∥∥R̂i

∥∥∥ = Op

(
1√

TCNiT

)
+Op

(
1√
Ni

)

3. As Nm, T → ∞, for each m and h, we have: T−1/2R̂
′
mKh = Op

(
C−2

NmT

)
.

4. As Nm, Nh, T → ∞, for each m and h, we have: T−1/2R̂
′
mK̂h = Op

(
C−2

NmT

)
.
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5. As Nm, T → ∞, for each m, h and j, we have: T−1/2R̂
′
mehj = Op

(
C−2

NmT

)
.

Proof
1. For each i, by the definition of PC, we have K̂iV̂i = (NiT )

−1Y ′
i YiK̂i. By plugging (6) into this

equation, we obtain:

K̂i −KiĤi =

(
1

NiT
eiΘiK

′
iK̂i +

1

NiT
KiΘ

′
ie

′
iK̂i +

1

NiT
eie

′
iK̂i

)
V̂ −1
i (30)

Let K̂it − ĤiKit be the t−th row vector of K̂i −KiĤi. Then, the proof follows directly from Lemma
A.2 in Bai (2003).
2. For each i, we have:∥∥∥∥ 1√

T

(
K̂i −KiĤi

)∥∥∥∥2 = tr

{
1

T

(
K̂i −KiĤi

)′ (
K̂i −KiĤi

)}
=

tr

{
1

T

T∑
t=1

(
K̂it − Ĥ ′

iKit

)(
K̂it − Ĥ ′

iKit

)′}
=

1

T

T∑
t=1

∥∥∥K̂it − Ĥ ′
iKit

∥∥∥2
Combining the terms of (a)-(d) in Lemma 6.1, the results follows immediately.
3. Consider the term,

1√
T
R̂′

mKh = V̂ −1
m

(
1

T 2

T∑
t=1

T∑
s=1

K̂msωm(s, t)K ′
ht +

1

T 2

T∑
t=1

T∑
s=1

K̂msζm,stK
′
ht

+
1

T 2

T∑
t=1

T∑
s=1

K̂msηm,stK
′
ht +

1

T 2

T∑
t=1

T∑
s=1

K̂msµm,stK
′
ht

)

where
∥∥∥V̂ −1

m

∥∥∥ = Op(1) by Lemma 8. Let T−1/2R̂′
mKh = V̂ −1

m (X1+X2+X3+X4). X1 can be

written as

1

T 2

T∑
t=1

T∑
s=1

(
K̂ms − Ĥ ′

mKms

)
ωm(s, t)K ′

ht + Ĥ ′
m

1

T 2

T∑
t=1

T∑
s=1

Kmsωm(s, t)K ′
ht = X1.1+X1.2

By the Cauchy-Schwarz inequality, we have:

∥X1.1∥ ≤ 1√
T

(
1

T

T∑
t=1

1

T

T∑
s=1

∥∥∥K̂ms − Ĥ ′
mKms

∥∥∥2)1/2(
1

T

T∑
t=1

T∑
s=1

|ωm(s, t)|2 ∥Kht∥2
)1/2

=

[
Op

(
1√
Nm

)
+Op

(
1√

TCNmT

)]
1√
T

= Op

(
1√
NmT

)
+Op

(
1

TCNmT

)
where we used Lemma 6.1, Assumption B.1 and the fact that T−1

∑T
t=1

∑T
s=1 |ωm(s, t)|2 = O(1) (see Bai

and Ng (2002) Lemma 1.(i)). The expected value of X1.2 without Ĥ ′
m, is bounded by

1

T 2

T∑
t=1

T∑
s=1

|ωm(s, t)|E
(
∥Kms∥2

)1/2
E
(
∥Kht∥2

)1/2
≤ M 1

T

(
1

T

T∑
t=1

T∑
s=1

|ωm(s, t)|

)
= O

(
1

T

)
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under Assumption B.1 and Assumption A.2. Therefore, we obtain: ∥X1∥ = Op

(
C−2

NmT

)
.

Next, by the Cauchy-Schwarz inequality, X2 is bounded by

∥X2∥ ≤

 1

NmT 2

T∑
t=1

∥∥∥∥∥∥ 1√
NmT

T∑
s=1

Nm∑
j=1

Kms [emjsemjt − E(emjsemjt)]

∥∥∥∥∥∥
2


1/2(
1

T

T∑
t=1

∥Kht∥2
)1/2

= Op

(
1√
NmT

)
under Assumptions G.1 and B.1.

X3 can be expressed as

X3 =
1

T 2

T∑
t=1

T∑
s=1

(
K̂ms − Ĥ ′

mKms

)
ηm,stK

′
ht + Ĥ ′

m

1

T 2

T∑
t=1

T∑
s=1

Kmsηm,stK
′
ht = X3.1+X3.2

Applying the Cauchy-Schwarz inequality to X3.1, we obtain:

∥X3.1∥ ≤

(
1

T

T∑
s=1

∥∥∥K̂ms − Ĥ ′
mKms

∥∥∥2)1/2
 1

T

T∑
s=1

∥∥∥∥∥ 1T
T∑

t=1

Khtηm,st

∥∥∥∥∥
2
1/2

The second part can be expressed as

 1

T

T∑
s=1

∥∥∥∥∥ 1T
T∑

t=1

Khtηm,st

∥∥∥∥∥
2
1/2

=

 1

T

T∑
s=1

∥∥∥∥∥ 1

NmT

T∑
t=1

KhtK
′
msθmjemjt

∥∥∥∥∥
2
1/2

≤

 1

T

T∑
s=1

∥Kms∥2
∥∥∥∥∥∥ 1

NmT

T∑
t=1

Nm∑
j=1

K ′
htθmjemjt

∥∥∥∥∥∥
2


1/2

= Op

(
1√
NmT

)

under Assumptions B.1 and G.2. Hence, ∥X3.1∥ = Op

(
C−1

NmT

)
Op

(
N

−1/2
m T−1/2

)
. For X3.2, we have:

X3.2 =
1

T

T∑
s=1

KmsK
′
ms

1

NmT

T∑
t=1

Nm∑
j=1

K ′
htθmjemjt = Op

(
1√
NmT

)

by Assumption G.2. Therefore, ∥X3∥ = Op

(
N

−1/2
m T−1/2

)
.

Following similar steps, we obtain: X4 = Op

(
N

−1/2
m T−1/2

)
. Collecting all these results, we obtain:

T−1/2R̂
′
mKh = Op

(
C−2

NmT

)
.

4.
1√
T
R̂mK̂h =

1√
T
R̂m

(
K̂h −KhĤh

)
+

1√
T
R̂mKhĤh

By Lemmas 6.2 and 6.3, it follows that T−1/2R̂′
mK̂h = Op

(
C−2

NmT

)
.
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5. Consider

1√
T
R̂

′
mehj = V̂ −1

m

(
1

T 2

T∑
t=1

T∑
s=1

K̂msωm(s, t)ehjt +
1

T 2

T∑
t=1

T∑
s=1

K̂msζm,stehjt

+
1

T 2

T∑
t=1

T∑
s=1

K̂msηm,stehjt +
1

T 2

T∑
t=1

T∑
s=1

K̂msµm,stehjt

)

where
∥∥∥V̂ −1

m

∥∥∥ = Op(1) by Lemma 8. Let T−1/2R̂′
mehj = V̂ −1

m (X1 + X2 + X3 + X4). As the first term

X1 is of order Op

(
C−2

NmT

)
, the proof is the same as that of X1 in Lemma 6. The second term is equal to

X2 =
1

T 2

T∑
t=1

T∑
s=1

(
K̂ms − Ĥ ′

mKms

)
ζm,stehjt + Ĥ ′

m

1

T 2

T∑
t=1

T∑
s=1

Kmsζm,stehjt = X2.1 + X2.2

Using the Cauchy-Schwarz inequality, we have:

∥X2.1∥ ≤

(
1

T

T∑
s=1

∥∥∥K̂ms − Ĥ ′
mKms

∥∥∥2)1/2
 1

T

T∑
s=1

(
1

T

T∑
t=1

ζm,stehjt

)2
1/2

Notice that by Assumption A.5,

1

T

T∑
t=1

ζm,stehjt =
1

T

T∑
t=1

1√
Nm

(
1√
Nm

Nm∑
k=1

[emksemkt − E(emksemkt)]

)
ehjt = Op

(
1√
Nm

)
Using Lemma 6.2, we show that

∥X2.1∥ = Op

(
1√

NmTCNmT

)
+Op

(
1

Nm

)
In addition, by Assumption G.1,

X2.2 = Ĥ ′
m

1√
NmT

1

T

T∑
t=1

(
1√
NmT

T∑
s=1

Nm∑
k=1

Kms [emksemkt − E(emksemkt)]

)
ehjt = Op

(
1√
NmT

)

Combining these two terms, we have X2 = Op(C
−2
NmT ). Next, we can rewrite X3 as

X3 =
1

T 2

T∑
t=1

T∑
s=1

(
K̂ms − Ĥ ′

mKms

)
ηm,stehjt + Ĥ ′

m

1

T 2

T∑
t=1

T∑
s=1

Kmsηm,stehjt = X3.1 + X3.2

By the Cauchy-Schwarz inequality, we have:

∥X3.1∥ ≤

(
1

T

T∑
s=1

∥∥∥K̂ms − Ĥ ′
mKms

∥∥∥2)1/2
 1

T

T∑
s=1

(
1

T

T∑
t=1

ηm,stehjt

)2
1/2
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Notice that

1

T

T∑
t=1

ηm,stehjt =
1√
Nm

Kms
1

T

T∑
t=1

(
1√
Nm

Nm∑
k=1

θmkemkt

)
ehjt = Op

(
1√
Nm

)
Using Lemma 6.2, we have:

∥X3.1∥ = Op

(
1√

NmTCNmT

)
+Op

(
1

Nm

)
.

For the second part, by Assumption F.2, we have:

X3.2 = Ĥ ′
m

(
1

T

T∑
s=1

KmsK
′
ms

)
1

NmT

T∑
t=1

Nm∑
k=1

θmkemktehjt = Op

(
1

Nm

)
Combining these two terms, we obtain X3 = Op

(
C−2

NmT

)
. The proof of X4 is similar to that of X3.

Finally, we conclude that T−1/2R̂′
mehj = Op

(
C−2

NmT

)
.

Q.E.D

Lemma 7. Under Assumptions A–C and E–G, as N1, . . . , NR, T → ∞, we have:

1.
1

T

∥∥∥Φ̂′Φ̂− Ĥ ′Φ′ΦĤ
∥∥∥ = Op

(
1

C2
N,T

)
and Q̂r0

i − Q̄r0
i D = Op

(
1

C2
NT

)
2.

1

T

∥∥∥Ψ̂′Ψ̂−Ψ′Ψ
∥∥∥ = Op

(
1

C2
N,T

)
and

∥∥∥L̂r0 −Lr0U
∥∥∥ = Op

(
1

C2
NT

)

where CN,T = min{
√
N,

√
T} and N = min{N1, N2, . . . , NR}.

Proof
1. By definition of Φ̂, we have:

1

T
Φ̂′Φ̂ =

1

T


(R− 1)K̂ ′

1K̂1 −K̂ ′
1K̂2 . . . −K̂ ′

1K̂R

−K̂ ′
2K̂1 (R− 1)K̂ ′

2K̂2 . . . −K̂ ′
RK̂R

...

−K̂ ′
RK̂1 −K̂ ′

RK̂1 . . . (R− 1)K̂ ′
RK̂R


Using (30) and the definition of R̂i in Lemma 6.2, we obtain:

1

T
Φ̂′Φ̂ =

1

T
Ĥ ′Φ′ΦĤ + Â1 + Â2 + Â3

where

Â1 = Â′
2 =

1√
T


(R− 1)R̂

′
1K1Ĥ1 −R̂

′
1K2Ĥ2 . . . −R̂

′
1KRĤR

−R̂
′
2K1Ĥ1 (R− 1)R̂

′
2K2Ĥ2 . . . −R̂

′
2KRĤR

...

−R̂
′
RK1Ĥ1 −R̂

′
RK2Ĥ2 . . . (R− 1)R̂

′
RKRĤR
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and

Â3 =


(R− 1)R̂

′
1R̂1 −R̂1R̂

′
2 . . . −R̂

′
1R̂R

−R̂
′
2R̂1 (R− 1)R̂

′
2R̂2 . . . −R̂

′
2R̂R

...

−R̂
′
RR̂1 −R̂RR̂

′
2 . . . (R− 1)R̂

′
RR̂R


Using Lemma 6.3 and the fact that Ĥi is Op(1), we have Â1 = Â′

2 = Op

(
C−2

NT

)
. Furthermore, by Lemma

6.2, we have Â3 = Op

(
C−2

NT

)
.

2. By definition of Ψ̂ and Ψ, we have:∥∥∥∥ 1T Ψ̂′Ψ̂− 1

T
Ψ′Ψ

∥∥∥∥ ≤
R∑
i=1

∥∥∥∥ 1T K̂iQ̂
r0
i Q̂r0′

i K̂ ′
i −

1

T
GG′

∥∥∥∥
Using K̂i = K̂i −KiĤi +KiĤi, we have:

1

T
K̂iQ̂

r0
i Q̂r0′

i K̂ ′
i −

1

T
GG′ =

1

T
Q̂′

i

(
K̂i −KiĤi

)′
K̂iQ̂i +

1

T
Q̂′

iĤ
′
iK̂

′
i

(
K̂i −KiĤi

)
Q̂i

+
1

T
Q̂′

iĤ
′
iK

′
iKiĤiQ̂i −

1

T
GG′

The first two terms are bounded by Op

(
C−2

NiT

)
by Lemmas 6.3 and 6.4. Using Q̂i = Ĥ−1

i QiD +

Op

(
C−2

NiT

)
, the remaining terms can be expressed as

D′B′G
′G

T
BD +Op

(
1

C2
NiT

)
− G′G

T

Notice that ∥∥∥∥D′B′G
′G

T
BD − G′G

T

∥∥∥∥ = 0

since D and B are orthogonal matrices. Therefore, we conclude that∥∥∥∥ 1T Ψ̂′Ψ̂− 1

T
Ψ′Ψ

∥∥∥∥ = Op

(
1

C2
NT

)

By Lemma 3 and Assumption B.1, we have
∥∥∥L̂r0 −Lr0U

∥∥∥ = Op

(
C−2

NT

)
where U is defined in (24).

Q.E.D

Lemma 8. Under Assumptions A–C and F–G, as Ni, T → ∞, we have for each i:

1.
1

T
K̂ ′

i

(
1

NiT
YiY

′
i

)
K̂i = V̂i

p−→ Vi

where Vi is a diagonal matrix consisting of the eigenvalues of ΣΘi
ΣKi

.
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2.
K̂ ′

iKi

T

(
Θ′

iΘi

Ni

)
K ′

iK̂i

T

p−→ Vi

3.

plimNi,T→∞
K̂ ′

iKi

T
= Qi

The (r0 + ri) × (r0 + ri) matrix Qi is given by Qi = V
1/2
i P ′

iΣ
−1/2
Θi

and invertible, where Vi is

the diagonal matrix consisting of the eigenvalues of Σ
1/2
Θi

ΣKiΣ
1/2
Θi

and Pi is the corresponding

eigenvector matrix such that P ′
iPi/T = Ir0+ri .

4.

plimNi,T→∞Ĥi = Hi

where Hi = ΣΘiQ′
iV

−1
i .

Proof.
The proof follows the same lines from Proposition 1 and Lemma A.3 in Bai (2003) and is thus omitted.

Q.E.D
Proof of Theorem 4
From (19), we have for each t:

Ĝt =
1√
T
(Ξ̂r0)−1L̂r0′

(
R∑
i

K̂iQ̂
r0
i Q̂r0′

i K̂it

)
Using the asymptotic expansions in Lemma 7.1 and Lemma 7.2:

L̂r0 = Lr0U +Op

(
1

C2
NT

)
, Q̂r0

i = Ĥ−1
i Qr0

i D +Op

(
1

C2
NT

)

and keeping the term up to order Op

(
C−2

NT

)
, we have:

Ĝt =
1√
T
U(Ξr0)−1Lr0′

[
R∑
i=1

K̂iĤ
−1
i Qr0

i Qr0′
i

(
Ĥ−1

i

)′
K̂it

]
+Op

(
1

C2
NT

)

where we use that (Ξr0)−1U ′ = U(Ξr0)−1 because both matrices are diagonal. Replacing T−1/2K̂i with

T−1/2KiĤi + R̂i, the above equation can be written as

Ĝt = H′ 1

R

R∑
i=1

I′i
(
Ĥ−1

i

)′
K̂it +UΞr0,−1Lr0′

[
R∑
i=1

R̂iĤ
−1
i Qr0

i Qr0′
i

(
Ĥ−1

i

)′
K̂it

]
+Op

(
1

C2
NT

)
(31)

where we use KiQ
r0
i = GB, B = R−1A, Qr0

i =
[
R−1A′,0

]′
, BQr0

i = R−1 [Ir0 ,0] = R−1I′i and A is an

orthogonal matrix. From the asymptotic expansion in Lemma 6.1, it follows that T−1
∑T

s=1 K̂isηi,st and

(NiT )
−1eiΘiK

′
iK̂iV̂

−1
i are dominant terms in K̂it − Ĥ ′

iKit and R̂i, respectively. So we have:

K̂it = Ĥ ′
iKit + V̂ −1

i

1

NiT

T∑
s=1

K̂isK
′
isΘ

′
iei.t +Op

(
1

C2
NiT

)
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and

R̂i =
1√
T

1

NiT
eiΘiK

′
iK̂iV̂

−1
i +Op

(
1

C2
NiT

)
Plugging these expressions into (31) and multiplying both sides by

√
N , we can show that

√
N
(
Ĝt −H′Gt

)
= H′ 1

R

R∑
i=1

I′i
(
Ĥ−1

i

)′
V̂ −1
i

√
N

Ni

(
1

T

T∑
s=1

K̂isK
′
is

)
1√
Ni

Ni∑
j=1

θijeijt

+UΞr0,−1Lr0′
√

N

Ni

1

R

R∑
i=1

1√
NiT

eiΘi
K ′

iK̂i

T
V̂ −1
i Ĥ−1

i IiGt +Op

( √
N

C2
NT

)

Using Ĥi = (Θ′
iΘi/Ni)

(
K ′

iK̂i/T
)
V̂ −1
i from Lemma 6.1 and rearranging terms, the above equation can

be simplified to

√
N
(
Ĝt − (H′ + B′)Gt

)
= H′ 1

R

R∑
i=1

I′i

√
N

Ni

(
Θ′

iΘi

Ni

)−1
1√
Ni

Ni∑
j=1

θijeijt + op(1).

where

B =
1

R

R∑
i=1

√
1

Ni
I′i
(
Θ′

iΘi

Ni

)−1
Θ′

ie
′
i√

NiT
Jr0U .

Following Lemmas 5 and 8, it is straightforward to show that B = Op

(
N−1/2

)
.

Finally, we achieve the desired result that

√
N
(
Ĝt − (H′ + B′)Gt

)
=

1

R
H′I ′ĈEt + op(1)

where I = [Ir0 , . . . , Ir0 ]
′ is an Rr0 × r0 matrix, Ĉ is a Rr0 ×Rr0 block diagonal matrix given by

Ĉ =


√

N
N1

I′1
(

Θ′
1Θ1

N1

)−1

. . . √
N
N1

I′R
(

Θ′
RΘR

NR

)−1

 ,

and Et is an Rr0 × 1 vector given by

Et =


E1t

E2t

...
ERt

 =


1√
N1

∑N1

j=1 θ1je1jt
1√
N2

∑N2

j=1 θ2je2jt
...

1√
NR

∑NR

j=1 θRjeRjt

 d−→ N
(
0,D(1)

t

)

Using Assumptions C.2b and E, we have:

Ĉ p−→ C =


α
1/2
1 I′1ΣΘ1

. . .

α
1/2
R I′RΣΘR
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Therefore,
√
N
[
Ĝt − (H′ + B′)Gt

]
d−→ N

(
0,

1

R2
H′I ′CDtC′IH

)
.

Q.E.D

Lemma 9. Under Assumptions A–G, as N1, . . . , NR, T → ∞, we have:

1. For each i, we have T−1
[
Ĝ−G (H+ B)

]′
Ki = Op

(
C−2

NT

)
;

2. For each i and j, we have T−1
[
Ĝ−G (H+ B)

]′
eij = Op

(
C−2

NT

)
.

Proof
Using K̂it − Ĥ ′

iKit + Ĥ ′
iKit, we can write (31) as

Ĝt − (H′ + B′)Gt = H′ 1

R

R∑
i=1

I′i
(
Ĥ−1

i

)′ (
K̂it − Ĥ ′

iKit

)
+Ξr0,−1Lr0′

R∑
i=1

R̂iĤ
−1
i Qr0

i Qr0′
i

(
Ĥ−1

i

)′ (
K̂it − Ĥ ′

iKit

)
+Op

(
1

C2
NT

)

Therefore, for Lemma 9.1, we have:

1

T

T∑
t=1

[
Ĝt − (H′ + B′)Gt

]
K ′

it = H′ 1

R

R∑
m=1

I′m
(
Ĥ−1

m

)′ 1
T

T∑
t=1

(
K̂mt − Ĥ ′

mKmt

)
K ′

it

+Ξr0,−1Lr0′
R∑

m=1

R̂mĤ−1
m Qr0

mQr0′
m

(
Ĥ−1

m

)′ 1
T

T∑
t=1

(
K̂mt − Ĥ ′

mKmt

)
K ′

it +Op

(
1

C2
NT

)

By Lemma 6.2, T−1
∑T

t=1

(
K̂mt − Ĥ ′

mKmt

)
K ′

it = Op

(
C−2

NmT

)
. Then, the required result follows.

We can prove Lemma 9.2 along similar arguments using Lemma 6.5.
Q.E.D

Proof of Theorem 5
For each i and j, we have γ̂ij = T−1Ĝ′Yij . Using (5) and G = G− Ĝ (H+ B)−1

+ Ĝ (H+ B)−1
, we have

γ̂ij − (H+ B)−1
γij =

1

T
Ĝ′
[
G− Ĝ (H+ B)−1

]
γij +

1

T
Ĝ′Fiλij +

1

T
Ĝ′eij

Using Ĝ = Ĝ−G (H+ B) +G (H+ B), the above equation can be written as

γ̂ij − (H+ B)−1
γij =

1

T

[
Ĝ−G (H+ B)

]′ [
G− Ĝ (H+ B)−1

]
γij

+
1

T
(H+ B)′ G′

[
G− Ĝ (H+ B)−1

]
γij +

1

T

[
Ĝ−G (H+ B)

]′
Fiλij

+
1

T

[
Ĝ−G (H+ B)

]′
eij +

1

T
(H+ B)′ G′Fiλij +

1

T
(H+ B)′ G′eij
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The first term is bounded by Op

(
N−1

)
by Theorem 4. The second to fourth terms are Op

(
C−2

NT

)
by

Lemma 9. Then, we obtain:

γ̂ij − (H+ B)−1
γij =

1

T
(H+ B)′ G′ (Fiλij + eij) +Op

(
1

C2
NT

)

Multiplying both sides by
√
T , we have:

√
T
[
γ̂ij − (H+ B)−1

γij

]
= H′ 1√

T

T∑
t=1

Gt

(
λ′
ijFit + eijt

)
+ op(1)

d−→ N
(
0,H′D(2)

ij H
)

using Assumption G.4 and the fact that B = Op

(
N−1/2

)
.

Q.E.D

Lemma 10. Under Assumptions A-G, as Ni, T → ∞, we have for each i, j and t:

Ŝijt = −
[
γ̂ij − (H+ B)−1

γij

]′ (
Ĝt − (H′ + B′)Gt

)
− γ′

ij

[
(H+ B)−1

]′ (
Ĝt − (H′ + B′)Gt

)
−G′

t (H+ B)
[
γ̂ij − (H+ B)−1

γij

]
= Op

(
1√
N

)
+Op

(
1√
T

)
where Ŝijt is the (t, j) element of Ŝi = GΓ′

i − ĜΓ̂′
i.

Proof.
Using the expansions Ĝ = Ĝ−G (H+ B) +G (H+ B) and Γ̂′

i = Γ̂′
i − (H+ B)−1

Γ′
i + (H+ B)−1

Γ′
i, the

result follows from Theorems 4 and 5.
Q.E.D

Lemma 11. Under Assumptions A–G, for each i, as Ni, T → ∞, we have:

1.
1

T
F̂ ′
i

(
1

NiT
ŶiŶ

′
i

)
F̂i = Υ̂i

p−→ Υi

where Ŷi = Yi − ĜΓ̂′
i and Υi is a diagonal matrix consisting of the eigenvalues of ΣΛiΣFi .

2.
F̂ ′
iFi

T

(
Λ′

iΛi

Ni

)
F ′
i F̂i

T

p−→ Υi

3.

plimNi,T→∞
F̂ ′
iFi

T
= Wi

The ri×ri matrix Wi is given by Wi = Υ
1/2
i L′

iΣ
−1/2
Λi

and invertible, where Υi is also an ri×ri diag-

onal matrix consisting of the eigenvalues of Σ
1/2
Λi

ΣFiΣ
1/2
Λi

, and Li is the corresponding eigenvector

matrix such that L′
iLi/T = Iri .
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4.

plimNi,T→∞Ĥi = Hi

where Hi = ΣΛiW′
iΥ

−1
i = W−1

i .

Proof.
As Ŝi = op(1), the proof follows directly from Proposition 1 and Lemma A.3 in Bai (2003) with slight
modification.

Q.E.D
Proof of Theorem 6.
By construction of PC, we have

F̂i =
1

NiT

(
ŜiŜ

′
i + FiΛ

′
iŜ

′
i + eiŜ

′
i + ŜiΛiF

′
i + FiΛ

′
iΛiF

′
i + eiΛiF

′
i + Ŝie

′
i + FiΛ

′
ie

′
i + eie

′
i

)
F̂iΥ̂

−1

where Ŝi = GΓ′
i − ĜΓ̂′

i. Therefore, we have

F̂it − Ĥ ′
i Fit =

Υ̂−1
i

1

NiT

(
T∑

s=1

F̂isŜ
′
i.sŜi.t +

T∑
s=1

F̂isŜ
′
i.sΛiFit +

T∑
s=1

F̂isŜ
′
i.sei.t +

T∑
s=1

F̂isF
′
isΛ

′
iŜi.t +

T∑
s=1

F̂ise
′
i.sŜi.t

)

+ Υ̂−1
i

(
1

T

T∑
s=1

F̂isωi(s, t) +
1

T

T∑
s=1

F̂isζi,st +
1

T

T∑
s=1

F̂isη
∗
i,st +

1

T

T∑
s=1

F̂isµ
∗
i,st

)
(32)

where Ĥi = (Λ′
iΛi/Ni) (F

′
iFi/T ) Υ̂

−1
i , Ŝi.t is the Ni × 1 vector of Ŝi (the t-th row vector), η∗i,st =

N−1
i F ′

isΛ
′
iei.t and µ∗

i,st = N−1
i F ′

itΛ
′
iei.s. ωi(s, t) and ζi,st are defined in Lemma 6.1.

To analyse the first part of (32), we let

1

NiT

(
T∑

s=1

F̂isŜ
′
i.sŜi.t +

T∑
s=1

F̂isŜ
′
i.sΛ̂iFit +

T∑
s=1

F̂isŜ
′
i.sei.t +

T∑
s=1

F̂isF
′
isΛ

′
iŜi.t +

T∑
s=1

F̂ise
′
i.sŜi.t

)
=

X 1 + X 2 + X 3 + X 4 + X 5.

Using F̂is = F̂is − Ĥ ′
i Fis + Ĥ ′

i Fis and by Theorem 1.2, we obtain:

X 1 =
1

NiT

T∑
s=1

Ni∑
j=1

(
F̂is − Ĥ ′

i Fis

)
ŜijsŜijt + Ĥ ′

i

1

NiT

T∑
s=1

Ni∑
j=1

FisŜijsŜijt = Op

(
1

C2
NT

)

Similarly,

X 2 =
1

NiT

T∑
s=1

Ni∑
j=1

(
F̂is − Ĥ ′

i Fis

)
Ŝijsλ

′
ijFit + Ĥ ′

i

1

NiT

T∑
s=1

Ni∑
j=1

FisŜijsλ
′
ijFit

The first term is Op

(
C−2

NT

)
by Theorem 2.1 and Lemma 10. Using Lemma 10, we can express the second
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term as

Ĥ ′
i

1

NiT

T∑
s=1

Ni∑
j=1

FisŜijsλ
′
ijFit =

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

Fis

(
Ĝt − (H′ + B′)Gt

)′ [
γ̂ij − (H+ B)−1

γij

]
λ′
ijFit

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

Fis

(
Ĝt − (H′ + B′)Gt

)′
(H+ B)−1

γijλ
′
ijFit

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

FisG
′
t (H+ B)′

[
γ̂ij − (H+ B)−1

γij

]
λ′
ijFit

The first term of the above expression is Op

(
C−2

NT

) [
Op

(
T−1/2

)
+Op

(
N−1

)]
by Lemma 9.1 and Theorem

5. The second term isOp

(
C−2

NT

)
by Lemma 9.1 while the last term isOp

(
T−1/2

) [
Op

(
T−1/2

)
+Op

(
N−1

)]
by Assumption D. Therefore, we obtain: X 2 = Op

(
C−2

NT

)
. Using F̂is = F̂is− Ĥ ′

i Fis+ Ĥ ′
i Fis, we have:

X 3 =
1

NiT

T∑
s=1

Ni∑
j=1

(
F̂is − Ĥ ′

i Fis

)
Ŝijseijt + Ĥ ′

i

1

NiT

T∑
s=1

Ni∑
j=1

FisŜijseijt

The first term is bounded by Op

(
C−2

NT

)
by Theorem 2.1 and Lemma 10. The second term can be written

as

Ĥ ′
i

1

NiT

T∑
s=1

Ni∑
j=1

FisŜijseijt =

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

Fis

(
Ĝt − (H′ + B′)Gt

)′ [
γ̂ij − (H+ B)−1

γij

]
eijt

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

Fis

(
Ĝt − (H′ + B′)Gt

)′
(H+ B)−1

γijeijt

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

FisG
′
t (H+ B)′

[
γ̂ij − (H+ B)−1

γij

]
eijt

The first term of the above equation is Op

(
C−2

NT

) [
Op

(
T−1/2

)
+Op

(
N−1

)]
by Lemma 9.1 and Theorem

5. The second term is Op

(
C−2

NT

)
by Lemma 9.1 and the last term is Op

(
T−1/2

) [
Op

(
T−1/2

)
+Op

(
N−1

)]
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by Assumption D. Collecting these terms, we have X 3 = Op

(
C−2

NT

)
. Next, consider

X 5 =
1

NiT

T∑
s=1

Ni∑
j=1

(
F̂is − Ĥ ′

i Fis

)
eijsŜijt + Ĥ ′

i

1

NiT

T∑
s=1

Ni∑
j=1

FiseijsŜijt

The first term of the above equation is of order Op

(
C−2

NT

)
by Theorem 2.1 and Lemma 10. For the

second term, we have:

∥X 5∥ ≤
∥∥∥Ĥi

∥∥∥ 1√
T

 1

Ni

Ni∑
j=1

∥∥∥∥∥ 1√
T

T∑
s=1

Fiseijs

∥∥∥∥∥
2
−1/2 1

Ni

Ni∑
j=1

∣∣∣Ŝijt

∣∣∣2
−1/2

= Op

(
1√

TCNT

)

where the last equality follows from Assumption B2 and Lemma 10.
Collecting the results above, (32) becomes

F̂it − Ĥ ′
i Fit = Υ̂−1

i

1

NiT

T∑
s=1

F̂isF
′
isΛ

′
iŜi.t

+ Υ̂−1
i

(
1

T

T∑
s=1

F̂isωi(s, t) +
1

T

T∑
s=1

F̂isζi,st +
1

T

T∑
s=1

F̂isη
∗
i,st +

1

T

T∑
s=1

F̂isµ
∗
i,st

)
+Op

(
1

C2
NT

)

It then follows that

F̂it − Ĥ ′
i Fit = Υ̂−1

i

1

NiT

T∑
s=1

F̂isF
′
isΛ

′
iŜi.t + Υ̂−1

i

1

T

T∑
s=1

F̂isη
∗
i,st +Op

(
1

C2
NT

)

Then, the proof is the same as that of Lemma 6.1. Let Bit be the bias term given by

Bit = Υ̂−1
i

1

NiT

T∑
s=1

F̂isF
′
isΛ

′
iŜi.t

Under Assumption G3, it follows that

√
Ni

(
F̂it − Ĥ ′

i Fit −Bit

)
= Υ̂−1

i

(
1

T

T∑
s=1

F̂isF
′
is

)
1√
Ni

Ni∑
j=1

λijeijt + op(1)

d−→ N
(
0,Υ−1

i WiD(3)
ii,tW

′
iΥ

−1
i

)
Q.E.D

Lemma 12. Under the assumptions in Theorem 6, we have for each i and j:

1.
1

T

(
F̂i − FiĤi

)′
Fi = Op

(
1

C2
NT

)
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2.
1

T

(
F̂i − FiĤi

)′
eij = Op

(
1

C2
NT

)

3.
1

T

(
F̂i − FiĤi

)′
Ŝij = Op

(
1

C2
NT

)
where Ŝij = Gγij − Ĝγ̂ij.

Proof.
1. Using (32), we have:

1

T

(
F̂i − FiĤi

)′
Fi =

1

T

T∑
t=1

(
F̂it − Ĥ ′

i Fit

)
F ′
it =

Υ̂−1
i

1

NiT 2

(
T∑

s=1

T∑
t=1

F̂isŜ
′
i.sŜi.tF

′
it +

T∑
s=1

T∑
t=1

F̂isŜ
′
i.sΛiFitF

′
it

+

T∑
s=1

T∑
t=1

F̂isŜ
′
i.sei.tF

′
it +

T∑
s=1

T∑
t=1

F̂isF
′
isΛ

′
iŜi.tF

′
it +

T∑
s=1

T∑
t=1

F̂ise
′
i.sŜi.tF

′
it

)

+ Υ̂−1
i

(
1

T 2

T∑
s=1

T∑
t=1

F̂isωi(s, t)F
′
it +

1

T 2

T∑
s=1

T∑
t=1

F̂isζi,stF
′
it +

1

T 2

T∑
s=1

T∑
t=1

F̂isη
∗
i,stF

′
it

+
1

T 2

T∑
s=1

T∑
t=1

F̂isµ
∗
i,stF

′
it

)

By Lemma 11, we have Υ̂i = Op(1). The second part of the above equation is of order Op

(
C−2

NT

)
. The

proof is the same as that of Lemma 6.3 and therefore is not repeated here.
We focus on the first part, which can be written as Υ̂−1

i (Q1 +Q2 +Q3 +Q4 +Q5). As a result of

Lemma 10, Q1 = Op

(
C−2

NT

)
. Using F̂is = F̂is − Ĥ ′

i Fis + Ĥ ′
i Fis, we have:

Q2 =
1

NiT

Ni∑
j=1

T∑
s=1

(
F̂is − Ĥ ′

i Fis

)
Ŝijsλ

′
ij

(
F ′
iFi

T

)
+ Ĥ ′

i

1

NiT

Ni∑
j=1

T∑
s=1

FisŜijsλ
′
ij

(
F ′
iFi

T

)

Note that F ′
iFi/T = Op(1) by Assumption B1. The first term is Op

(
C−2

NT

)
by Theorem 6 and Lemma

10. Combining Lemmas 9 and 10, Theorems 4 and 5, and Assumption D, we have: T−1
∑T

s=1 FisŜijs =

Op

(
C−2

NT

)
, so the second term is also Op

(
C−2

NT

)
. We then obtain Q2 =

(
C−2

NT

)
. Along similar argu-

ments, it is easily seen that Q3 to Q5 have stochastic order Op

(
C−2

NT

)
.

2. The proof is similar to part 1 of the lemma and therefore omitted.
3. The result follows from Theorem 6 and Lemma 10.

Q.E.D
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Proof of Theorem 7.
Using λ̂i = F̂ ′

i Ŷij , Ŷij = Ŝij + Fiλij + eij and Fi = Fi − F̂iĤ
−1
i + F̂iĤ

−1
i , we obtain:

λ̂ij − Ĥ −1
i λij =

1

T
F̂ ′
i

(
Fi − F̂iĤ

−1
i

)
λij +

1

T
F̂ ′
ieij +

1

T
F̂ ′
i Ŝij

Replacing F̂i by F̂i − FiĤi + FiĤi, we get:

λ̂ij − Ĥ −1
i λij =

1

T

(
F̂i − FiĤi

)′ (
Fi − F̂iĤi

)
λij + Ĥ ′

i

1

T
F ′
i

(
Fi − F̂iĤi

)
+

1

T

(
F̂i − FiĤi

)′
eij +

1

T

(
F̂i − FiĤi

)′
Ŝij + Ĥ ′

i

1

T
F ′
i Ŝij + Ĥ ′

i

1

T
F ′
ieij

Then, by Theorem 6, Lemma 12 and Assumption D, it follows that

λ̂ij − Ĥ −1
i λij = Ĥ ′

i

1

T

T∑
t=1

FitŜijt + Ĥ ′
i

1

T

T∑
t=1

Fiteijt +Op

(
1

C2
NT

)

Let Bij be the bias term given by

Bij = Ĥ ′
i

1

T

T∑
t=1

FitŜijt.

By Lemma 10.4 and Assumption G.4, we finally obtain

√
T
(
λ̂ij − Ĥ −1

i λij − Bij

)
= Ĥ ′

i

1

T

T∑
t=1

Fiteijt + op(1)
d−→ N

(
0,
(
W−1

i

)′ D(3)
ij W−1

i

)
Q.E.D

B Bootstrap confidence intervals for the global factors and load-
ings

We outline the bootstrap procedure for constructing consistent confidence intervals for the estimates of
global factors and loadings. Although their asymptotic distributions are well-established, they are not
readily applicable in practice. The asymptotic covariance matrices derived in Theorems 4 and 5 are
subject to the rotation matrix H, which is unknown and cannot be estimated. Moreover, we cannot use
bootstrap to consistently estimate the variances, because the bootstrap version of the rotation matrix
H∗(b) varies in each replication b.

It is still possible to construct valid CIs for the global factors and loadings since H∗(b) can be replaced
by known quantities in the bootstrap world. The back-rotated bootstrap factors and loadings have the
same asymptotic covariance matrices over all replications b = 1, . . . , B, as shown in (33) and (35). This
enables us to construct CIs based on the percentile estimates. For simplicity we assume that the error
terms are cross-sectionally and serially uncorrelated.16In Theorem 5, the asymptotic covariance matrix
of γ̂ij depends on the time series variation of the local factors Fit. Therefore, we should also bootstrap

16This is mainly because we make the algorithm computationally tractable.
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the local factors in addition to the error term. This step will affect the bootstrap rotation matrix Ĥ
∗(b)
i

as well as the covariance matrix in Theorem 4, which contains the bootstrap version of K̂i, denoted K̂∗
i .

If the local factors are also bootstrapped, K̂∗
i is not consistent for K̂i, which results in different limiting

distributions of Ĝ
∗(b)
t across each repetition. Therefore, the bootstrapping for Ĝt and γ̂ij should be done,

separately.
We now outline the different bootstrap algorithms for for Ĝt and γ̂ij for b = 1, . . . , B.

Bootstrapping the global factors

1. For each i, j and t, construct e
∗(b)
ijt = êijtε

∗(b)
ijt where êijt = yijt − γ̂′

ijĜt − λ̂′
ijF̂it and ε

∗(b)
ijt ∼

i.i.d. N(0, 1).

2. Generate the re-sampled data by y
∗(b)
ijt = γ̂′

ijĜt + λ̂′
ijF̂it + e

∗(b)
ijt .

3. Apply the estimation procedure developed in Section 3 to the re-sampled data, and obtain the

bootstrap estimates, denoted K̂
∗(b)
i and Ĝ

∗(b)
t .

4. Repeat Steps 1–3 for B times.

The consistency and asymptotic normality of the GCC estimators for the re-sampled model are
achieved since Step 1 does not change the validity of Assumptions A-G. In order to have consistent
estimates of the bootstrap covariance matrices, we assume cross-section independence of the error terms
eijt. For each b = 1, . . . , B, we have

√
N
[
Ĝ

∗(b)
t −

(
H∗(b)′ + B∗(b)′

)
Ĝt

]
=

1

R
H∗(b)′I ′Ĉ∗E∗(b)

t + op(1)

d−→ N

(
0,

1

R2
H∗(b)′I ′Ĉ∗D∗,(1)

t Ĉ∗′IH∗(b)
)
,

where H∗(b) = U∗(b) with U∗(b) = T−1Ĝ∗(b)′Ĝ+Op

(
C−1

NT

)
17, and

B∗(b) =
1

R

R∑
i=1

√
1

Ni
I′i

(
Θ̂′

iΘ̂i

Ni

)−1
Θ̂′

iê
′
i√

NiT
Ĵr0U∗(b)

with Θ̂i = T−1Y ′
i K̂i. Moreover, Ĉ∗ = diag

(√
N
N1

I′1
(

Θ̂′
1Θ̂1

N1

)−1

, ...,
√

N
NR

I′R
(

Θ̂′
RΘ̂R

NR

)−1
)

and D∗
t being

a block diagonal matrix as

D∗,(1)
t =


D∗,(1)

11,t 0 . . . 0

0 D∗,(1)
22,t . . . 0

...

0 0 . . . D∗,(1)
RR,t



17Using Theorem 4, we have H∗(b) = T−1/2Ĝ′Ĵr0U∗(b) where Ĵr0 = L̂r0
(
Ξ̂r0

)−1
and Ξ̂r0 is an r0 × r0 diagonal

matrix consisting of the r0 non-zero eigenvalues of T−1ĜĜ′. Because T−1Ĝ′Ĝ = Ir0 , it follows that Ξ̂r0 = Ir0 . Using

L̂r0 = T−1/2Ĝ, it follows that H∗(b) = U∗(b). Using Lemma 7, it is straightforward that U∗(b) = T−1Ĝ′Ĝ∗(b)+Op

(
C−2

NT

)
.

64



with

D∗,(1)
ii,t = plimNi→∞

1

Ni

Ni∑
j=1

θ̂ij θ̂
′
ijE(ê2ijt) ≤ M.

Notice that we cannot consistently estimate the covariance matrix in Theorem 4 in general. This is
mainly because H∗(b) does not necessarily converge to H as the rotation matrix is subject to the data
dependent matrix U∗(b), which does not always coincide with the population counterpart U . In tis regard,
we follow Gonçalves and Perron (2014) and construct the CIs using the percentile estimates based on

√
N

[(
H∗(b)′ + B∗(b)′

)−1

Ĝ
∗(b)
t − Ĝt

]
d−→ N

(
0,

1

R2
I ′Ĉ∗D∗,(1)

t Ĉ∗′I
)
, (33)

which keeps the bootstrap covariance free from the rotation matrix. Let

D̂∗
Gt

(τ) =
1

B

B∑
b=1

1

(√
N

[(
H∗(b)′ + B∗(b)′

)−1

Ĝ
∗(b)
t − Ĝt

]
≤ τ

)
.

be the empirical distribution function where 1 is the indicator function. The 1− α CI is given by[
Ĝt −

qα/2√
N

, Ĝt −
q1−α/2√

N

]
(34)

where qα/2 = D̂∗,−1
Gt

(α/2) and q1−α/2 = D̂∗,−1
Gt

(1− α/2) are the inverse function of D̂∗
Gt

evaluated at α/2
and 1− α/2 respectively.

We outline the bootstrap algorithm for the global factor loadings:
Bootstrapping the global factor loadings

1. For each i, j and t, let e
∗(b)
ijt = êijtε

∗(b)
ijt where êijt = yijt− γ̂′

ijĜt− λ̂′
ijF̂it and ε

∗(b)
ijt ∼ i.i.d. N(0, 1).

2. Construct the re-sampled local factors as

F
k,∗(b)
it = F̂ z

it · ω
k,∗(b)
it for i = 1, . . . , R, z = 1, . . . , ri, t = 1, . . . , T.

ω
k,∗(b)
it is drawn from a zero mean normal distribution independent across i and k with covariance

Cov
(
ω
k,∗(b)
it , ω

k,∗(b)
is

)
= Bartlett

(
t− s

lki

)
for t, s = 1, . . . , T

where Bartlett is the Bartlett kernel function and lki is a bandwidth parameter.18

3. Construct the re-sampled data as y
∗(b)
ijt = γ̂′

ijĜt+λ̂′
ijF

∗(b)
it +e

∗(b)
ijt where F

∗(b)
it = [F

1,∗(b)
it , . . . , F

ri,∗(b)
it ]′.

4. Estimate the model from the re-sampled data using the procedure developed in Section 3 and obtain

the bootstrap version estimates γ̂
∗(b)
ij .

5. Repeat Step 1–4 for B times.

18The bandwidth parameter can be chosen following the data dependent approach developed by Andrews (1991).
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Step 2 follows the dependent wild bootstrap developed by Shao (2010), which accounts for times series
dependence of the local factors. We can also consider other block bootstrapping methods to preserve the
serial correlation structure of the local factors. For each b = 1, . . . , B, we have:

√
T

[
γ̂
∗(b)
ij −

(
H∗(b) + B∗(b)

)−1

γ̂ij

]
= H∗(b)′ 1√

T
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Ĝt
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)
+ op(1)

d−→ N
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0,H∗(b)′D∗,(2)
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)

where D∗,(2)
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t=1 E

[
Ĝs

(
λ̂′
ijF̂is + êijs

)(
λ̂′
ijF̂it + êijt

)
Ĝ′

t

]
. For the same reason

explained before, we construct the CI based on

√
T
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H∗(b) + B∗(b)
)
γ̂
∗(b)
ij − γ̂ij

]
d−→ N

(
0,D∗,(2)

ij

)
(35)

to eliminate the rotational indeterminacy. Recall that the rotation matrix H∗(b) is a diagonal matrix with
elements ±1, so H∗(b)H∗(b)′ = Ir0 . Let

D̂∗
γij

(τ) =
1

B

B∑
b=1

1

(√
T
[(

H∗(b) + B∗(b)
)
γ̂
∗(b)
ij − γ̂ij

]
≤ τ

)
.

be the empirical distribution function. The 1− α CI is given by[
γ̂ij −

qα/2√
T
, γ̂ij −

q1−α/2√
T

]
(36)

where qα/2 = D̂∗,−1
γij

(α/2) and q1−α/2 = D̂∗,−1
γij

(1 − α/2) are the inverse functions of D̂∗,−1
γij

evaluated at
α/2 and 1− α/2 respectively.

A simulation is conducted to examine the validity of our bootstrapping procedure. We use the same
DGP as in Section 5 in which we fix R = 3 and (r0, ri) = (2, 2) and (β, ϕe, κ) = (0, 0, 1). The sample
size varies as Ni ∈ {20, 50, 100, 200} with N1 = · · · = NR and T ∈ {50, 100, 200}. Moreover, we allow
(ϕG, ϕF ) = (0, 0) and (ϕG, ϕF ) = (0.5, 0.5) to address the potential serial correlation induced by the

local factors. We focus on the first element of Ĝt and γ̂ij evaluated at t = T/2 and i = 1, j = Ni/2,
respectively. The bootstrapped CIs are generated by (34) or (36). For comparison, the CIs generated by
theoretical (infeasible) variances of 4 and 5 are also reported. We choose the significance level α = 0.05
throughout the study.

Each entry of Table 12 is the coverage rate calculated as the ratios of CIs that contains the true factors
or loadings over 1000 repetitions. The top panel of Table 12 shows that the infeasible CIs for the global
factors have coverage rates around 0.95 whilst the coverage rates of the bootstrapped CIs increase as the
sample size increases. The bottom panel of Table 12 presents the results for the global factor loadings.
On one hand, it seems that the infeasible CIs are unaffected by the serial correlation of the factors and
become closer to 0.95 as the sample size grows. On the other hand, the bootstrapped CIs performs better
under non-zero serial correlation of the factors, although both of them become to 0.95 eventually. The
above investigation confirms that the bootstrapped CIs are reliable.
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Table 12: Coverage rates for the bootstrap CIs with R = 3,
(r0, ri) = (2, 2) and (β, ϕe, κ) = (0, 0, 1)

Global factors
(ϕG, ϕF ) = (0, 0) (ϕG, ϕF ) = (0.5, 0.5)

Ni T Infeasible Bootstrap Infeasible Bootstrap
20 50 0.939 0.874 0.943 0.894
50 50 0.947 0.923 0.932 0.898
100 50 0.942 0.911 0.952 0.936
200 50 0.943 0.921 0.935 0.925
20 100 0.942 0.902 0.956 0.896
50 100 0.949 0.923 0.939 0.907
100 100 0.953 0.934 0.953 0.933
200 100 0.946 0.925 0.942 0.935
20 200 0.95 0.901 0.957 0.904
50 200 0.954 0.921 0.945 0.929
100 200 0.945 0.93 0.949 0.931
200 200 0.951 0.93 0.948 0.929

Global factor loadings
(ϕG, ϕF ) = (0, 0) (ϕG, ϕF ) = (0.5, 0.5)

Ni T Infeasible Bootstrap Infeasible Bootstrap
20 50 0.972 0.925 0.963 0.897
50 50 0.961 0.915 0.966 0.862
100 50 0.974 0.922 0.979 0.909
200 50 0.965 0.916 0.978 0.887
20 100 0.955 0.931 0.960 0.910
50 100 0.963 0.929 0.958 0.915
100 100 0.966 0.934 0.956 0.909
200 100 0.9678 0.936 0.967 0.914
20 200 0.951 0.933 0.930 0.911
50 200 0.937 0.926 0.955 0.932
100 200 0.958 0.942 0.959 0.931
200 200 0.955 0.936 0.951 0.929

Each entry shows the coverage rate calculated as the ratios of CIs that
contains the true factors or loadings over 1000 repetitions. The infeasible
CIs are generated by the theoretical asymptotic distributions in Theorem
4 or 5, and the bootstrap CIs are generated by the by (34) or (36). We
report the CIs for the first global factor and loading, evaluated at t = T/2
and i = 1, j = Ni/2 respectively. r0 and ri are the true number of global
factors and true number of local factors in group i. We set r1 = · · · = rR.
We set N1 = · · · = NR where Ni is the number of individuals in block i. T
is the number of time periods. ϕG and ϕF are the AR coefficients for the
global and local factors. β, ϕe and κ control the cross-section correlation,
serial correlation and noise-to-signal ratio.
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