

The Shale Boom and Green Innovation: Impact of Low Energy Prices on Corporate Patents

Jin Soo Han¹ (Joint work with Jiyong Park², and Yongjiin Park³)

> 1 KAIST Business School 2 University of Georgia 3 City University of Hong Kong

Yearly global surface temperature and atmospheric carbon dioxide (1850-2022)

- Trends
 - 424 ppm in 2023
 - CO₂ concentration increases at 2-3 ppm annually

• Scientists peg 450 ppm as a red line

AT EQUILIBRIUM							
Stabilization level (in ppm CO ₂ e)	2°C	3°C	4°C	5°C	6°C	7°C	
450	78	18	3	1	0	0	
500	96	44	11	3	1	0	
550	99	69	24	7	2	1	
650	100	94	58	24	9	4	
750	100	99	82	47	22	9	

TABLE 1—LIKELIHOOD (IN PERCENTAGE) OF EXCEEDING A TEMPERATURE INCREASE AT EQUILIBRIUM

IPCC, 2018

• Why is 2°C or above tragic?

IPCC, 2023

IPCC, 2023

 Limiting warming to 1.5 °C to 2°C involves dramatic reductions in GHG emissions

Limiting warming to 1.5 °C to 2°C involves dramatic reductions in

GHG emissions

- However, international cooperation and policy are lagging behind •
- "Orderly phase out of unabated fossil fuel" \rightarrow "Transition away from fossil fuel" •

Cop28 draft climate deal criticised as 'grossly insufficient' and 'incoherent'

Text now being considered by governments calls for 'reducing both consumption and production of fossil fuels'

O Activists attend a protest at the Cop climate conference. Photograph: Thaiar Al-faulari/Bautary A draft deal to cut global fossil fuel production is "grossly insufficient" and "incoherent" and will not stop the world from facing dangerous climate breakdown, according to delegates at the UN's Cop28 summit.

The text put forward by the summit presidency after 10 days of wrangling was received with concern and anger by many climate experts and politicians, though others welcomed elements of the draft including the first

of found fourly

Cedric Schuster of Samoa, chair of

"We will not sign our death certificate. We cannot sign on not have strong commitments on phasing out fossil fuels."

The Cop28 presidency released a draft text in the early evening on Monday, which called for "reducing both consumption and production of fossil fuels, in a just, orderly and equitable manner, so as to achieve net zero by, before or around 2050, in keeping with the science".

The text avoids highly contentious calls for a "phase-out" or "phase-down" of fossil fuels, which have been the focus of deep disagreement among the more than 190 countries meeting in Dubai.

But instead of requiring fossil fuel producers to cut their output, it frames such reductions as optional, by calling on countries to "take actions that could include" reducing fossil fuels. "That one word 'could' just kills

everything," said Eamon Ryan, Ireland's environment minister, adding that the EU could walk out of the talks if the text did not improve.

"We can't accept this text," Ryan said. "It's not anywhere near ambitious enough. It's not broad enough. It's not what parties have been calling for ... we have to stitch climate justice into every part of this text and we are not anywhere near that yet."

The text is expected to form the key outcome of this fortnight of fraught talks on the future of climate action, which are scheduled to end on Tue morning in the United Arab Emirates.

- Researchers argue that technological innovation is one of the most promising instruments through which firms can tackle climate change
 - Popp et al. (2020),

"Innovation and entrepreneurship

in the energy sector."

National Bureau of Economic Research

- Policy makers are also interested
 - Jake Sullivan, Security advisor, White house
 - 1. Computing-related technologies
 - 2. Bio-technologies
 - 3. Clean energy technologies

• But then, is there enough incentive to invest in green technology?

 The Shale boom created a downward pressure in oil and gas prices

• Horizontal drilling and hydraulic fracking opened the era of shale oil

• The development of Shale fields led to the boom of oil and gas

production

U.S. liquefied natural gas net exports

billion cubic feet per day

- The Shale boom's economic prosperity came at the expense of the environment
 - Min (2020) finds that mining employment shocked by the shale boom reduced support for environmental policies
 - Acemoglu et al. (2023)
 - Short run: the Shale boom reduces carbon emissions by inducing substitution away from coal
 - Long run: the Shale boom discourages clean energy innovation of the energy sector
- What about the industrial sector that is responsible for 40% of global GHG emissions?

- The industrial sector does not rely on oil and gas entirely
- Depending on whether cheap oil and gas can substitute the existing input, investment into green R&D will decrease or increase

Research Question

 Does the U.S. shale boom impact the green innovation of non-energy firms?

• What types of green innovation are affected by the shale boom?

• What mechanisms led to the adjustment of corporate green innovation upon the shale boom?

Theoretical Predictions

- We formalize our idea that "depending on whether cheap oil and gas can substitute the existing input, investment into green R&D will decrease or increase"
- Define a representatitive firm's profit maximization as:

$$\max_{\{C,G,R_C,R_G\}} p_Y Y(C,G,R_C,R_G) - c_C R_C - c_G R_G - p_C C - p_G G$$

where $Y = \left(\lambda_C R_C^{\beta} C^{\rho} + \lambda_G R_G^{\beta} G^{\rho}\right)^{\frac{1}{\rho}}$ and $A_s = \lambda_s (R_s)^{\beta} \forall s = C, G$

- Similar to Acemoglu (2003) "Skill premia" framework
- $R_s \forall s = C, G$ denotes R&D, C denotes convential energy, G denotes green energy
- FOC's yield: $\frac{\partial \log\left(\frac{R_C}{R_G}\right)}{\partial \log\left(\frac{p_C}{p_G}\right)} = -\frac{\rho}{1-\rho-\beta}$
- We can show the sign depends on ρ : substitubaility between C and G

Emprical Findings

- Does the U.S. shale boom impact the green innovation of non-energy firms?
- What types of green innovation are affected by the shale boom?
 - Green production \downarrow
 - Green transportation, green infrastructure not affected

- What mechanisms led to the adjustment of corporate green innovation upon the shale boom?
 - "Green production \downarrow " is more salient for goods producers, energy-intensive firms, and oil & gas dependent firms

Literature Review

- Many factors influence corporate green innovation
 - (i) external environments and market conditions
 - Market competition, size: Bansal and Roth (2000), Wang et al. (2021), Noailly and Ryfisch (2015)
 - Consumer pressure: Popp (2019)
 - Energy prices: Acemoglu et al. (2023)
 - (ii) corporate governance
 - EI-Kassar and Singh (2019), Amore and Bennedsen (2016), He and Jiang (2019)
 - (iii) public policies and regulations
 - Aguilera-Caracuel and Ortiz-de-Mandojana (2013), Brunnermeier and Cohen (2003), Weng et al. (2015), Fabrizi et al. (2018), Kesidou and Wu (2020), Krass et al. (2013)

Theory Model

• Define a representative firm's profit maximization as:

$$\max_{\{C,G,R_{C},R_{G}\}} p_{Y}Y(C,G,R_{C},R_{G}) - c_{C}R_{C} - c_{G}R_{G} - p_{C}C - p_{G}G$$

where
$$Y = \left(\lambda_C R_C^{\beta} C^{\rho} + \lambda_G R_G^{\beta} G^{\rho}\right)^{\frac{1}{\rho}}$$
 and $A_s = \lambda_s (R_s)^{\beta} \forall s = C, G$

- *R_s* denotes R&D, *C* denotes convential energy, *G* denotes green energy
- Note that CRS implies that $\beta + \rho < 1$
- Note that we assume that the price of input energy p_s are exogenous, implying that non-energy firms are not large enough to affect energy input prices
- Also, c_s are exogenous, implying that labor market is competitive and reponsive

Theory Model

• FOC's yield:
$$\frac{\partial \log\left(\frac{R_C}{R_G}\right)}{\partial \log\left(\frac{p_C}{p_G}\right)} = -\frac{\rho}{1-\rho-\beta}$$

• In a CES function, ρ specifies the substitutability between the inputs, *C* and *G*

– Substitute: $\rho > 0$; complement: $\rho < 0$

- If *C* and *G* are substitutes, $\rho > 0 \Rightarrow -\left(\frac{\rho}{1-\rho}\right) < 0 \Rightarrow -\frac{\rho}{1-\rho-\beta} < 0$ $\Rightarrow \frac{\partial \log\left(\frac{R_C}{R_G}\right)}{\partial \log\left(\frac{p_C}{p_G}\right)} < 0$
- If $\frac{p_C}{P_G} \downarrow$, then the firm wants $\frac{c}{G} \uparrow$ (i.e., use more *C* relative to *G*). Since input substitution is flexible (i.e., $\sigma > 1$), an increase in $\frac{c}{G}$ yields more Y. Since productivities augment yields, the firm wants higher productivity from *C* (i.e., $\frac{A_C}{A_G} \uparrow \Rightarrow \frac{R_C}{R_G} \uparrow$)
- If *C* and *G* are complements, an increase in $\frac{C}{G}$ does not yield more Y. Then, the firm wants higher productivity from *G*

- USPTO (US Patent and Trademark Office)
- 2000 ~ 2016
 - Obtained through 2019 but restricted to 2016 due to the rightcensorship
 - Median lag in patent granting is 2.9 years
- Cooperative Patent Classification (CPC) class of Y
 - a dedicated classification scheme for climate change-related technologies

- Operation-oriented green innovation
 - green production (Y02P)
 - green transportation (Y02T)
 - green infrastructure
 - green building (Y02B)
 - green information and communication technology (ICT) equipment (Y02D)
- Non-operation-oriented green innovation (i.e., direct climate change mitigation)
 - adaptation to climate change (Y02A)
 - pollutant management (e.g., capture and storage of GHGs and waste management) (Y02C and Y02W)
 - green energy (e.g., renewable energy and smart grid) (Y02E and Y04S).

Green production (Y02P)

CPCCOOPERATIVE PATENT CLASSIFICATIONY02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS

NOTE

This subclass <u>covers</u> climate change mitigation technologies in any kind of industrial processing or production activity, including the agroalimentary industry, agriculture, fishing, ranching and the like.

Y02P 10/00 Technologies related to metal processing Y02P 20/00 Technologies relating to chemical industry Y02P 30/00 Technologies relating to oil refining and petrochemical industry Y02P 40/00 Technologies relating to the processing of minerals Y02P 60/00 Technologies relating to agriculture, livestock or agroalimentary industries Y02P 70/00 Climate change mitigation technologies in the production process for final industrial or consumer products Y02P 80/00 Climate change mitigation technologies for sector-wide applications Y02P 90/00 Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation

Green production (Y02P)

CPC Y02P

COOPERATIVE PATENT CLASSIFICAT CLIMATE CHANGE MITIGATION TECHNOLO

Technologies relating to oil refining and petrochemical industry

NOTE

+	Y02P 10/00	Technologies related to metal processing	(21)	Appl. No.:	15/764
-	Y02P 20/00	Technologies relating to chemical industry	(22)	PCT Filed:	Oct. 17
-	Y02P 20/10	. Process efficiency	(86)	PCT No.:	PCT/E
	Y02P 20/129	Energy recovery, e.g. by cogeneration, H_2 recovery or pre		§ 371 (c)(1),	
	Y02P 20/133	Renewable energy sources, e.g. sunlight		(2) Date:	Mar. 2
-	Y02P 20/141	. Feedstock	(87)	PCT Pub. No.:	WO20
	Y02P 20/143	the feedstock being recycled material, e.g. plastics		PCT Pub. Date:	May 4
	Y02P 20/145	the feedstock being materials of biological origin	(65)	Р	rior Pu
-	Y02P 20/151	. Reduction of greenhouse gas [GHG] emissions, e.g. CO2		US 2019/00552	07 A1
	Y02P 20/155	Perfluorocarbons [PFC]; Hydrofluorocarbons [HFC]; Hydi	(30)	Foreig	ı Applic
		[CFC]	Oc	t. 28, 2015 (JI	P)
	Y02P 20/156	Methane [CH ₄]	(51)	Int. Cl.	
	Y02P 20/20	. Improvements relating to chlorine production	(52)	C07D 277/66	(
	Y02P 20/30	. Improvements relating to adipic acid or caprolactam produ	(52)	CPC	C07D 2
	Y02P 20/40	. Improvements relating to fluorochloro hydrocarbon, e.g. ch	(58)	Field of Classi	fication
-	Y02P 20/50	. Improvements relating to the production of bulk chemicals		CPC	file for
	Y02P 20/52	using catalysts, e.g. selective catalysts		See application	ine ioi
	Y02P 20/54	using solvents, e.g. supercritical solvents or ionic liquids			
	Y02P 20/55	Design of synthesis routes, e.g. reducing the use of auxili	ary or	protecting g	roups
	Y02P 20/582	Recycling of unreacted starting or intermediate materials			
	Y02P 20/584	Recycling of catalysts			
	Y02P 20/59	Biological synthesis; Biological purification			

Y02P 30/00

	(12)	Unite ^{Okumu}	ed ra e	States Patent at al.	(10) (45)	Patent No.: U Date of Patent:	US 10,472,338 B2 Nov. 12, 2019
	(54)	METHOI [¹⁸ F]FLU	D FC TEN	PR PRODUCING IETAMOL	(56)	Reference	s Cited
uction (Y02P)	(71)	Applicant	CF	Healthcare Limited		U.S. PATENT D	OCUMENTS
	(/1)	мррисана	Buc	ckinghamshire (GB); Nihon	8,3	23,616 B2* 12/2012 B	rady A61K 51/0453
DATIVE DATENT OF ASSIERCATION			Me	di-Physics Co., Ltd., Tokyo (JP)	8,9	69,580 B2* 3/2015 H	orn A61K 51/0402
E CHANGE MITIGATION TECHNOLOGIES IN THE	(72)	Inventors:	Yul Tor Ma	ki Okumura, Tokyo (JP); Gota noya, Tokyo (JP); Tomoyuki tsunami, Tokyo (JP)	9,1 9,3	26,961 B2 * 9/2015 St 46,771 B2 * 5/2016 H	orey C07D 277/66 orn A61K 51/0402
	(73)	Assignees	: GE	HEALTHCARE LIMITED,		FOREIGN PATENT	DOCUMENTS
			Buo MF	ckinghamshire (GB); NIHON CDI-PHYSICS CO., LTD., Tokvo	WO WO	2004083195 A1 2006133732 A1	9/2004 2/2006
is subclass <u>covers</u> climate change mitigation techno			(JP)	WO WO	2007020400 A1 2011044406 A2	2/2007 4/2011
oduction activity, including the agroalimentary indus	(*)	Notice:	Sub	ject to any disclaimer, the term of this	WO	2017071980 A1	5/2017
			U.S	S.C. 154(b) by 0 days.		OTHER PUBL	ICATIONS
ogies related to metal processing	(21)	Appl. No.	:	15/764,309	Liu et al.	Food Chemistry 204 (20	16) 56-61. (Year: 2016).*
ogies relating to chemical industry	(22)	PCT Filed	1:	Oct. 17, 2016	Burdge e 2000).*	t al. British Journal of Nutri	ition (2000), 84, 781-787. (Year:
s efficiency	(86)	PCT No.:		PCT/EP2016/074840	GE Han (Year: 20	dbook: "Strategies for Pr 010).*	otein Purification Handbook".
y recovery, e.g. by cogeneration, H ₂ recovery or pre		§ 371 (c)((1),		Internatio	onal Search Report and the Searching Authority or the	e Written Opinion of the Inter-
wable energy sources, e.g. sunlight		(2) Date:		Mar. 28, 2018	Appl. No	b. PCT/EP2016/074840, da	ited Nov. 28, 2016.
ock	(87)	PCT Pub.	No.:	WO2017/071980	* cited	by examiner	
edstock being recycled material, e.g. plastics		PCT Pub.	Date	:: May 4, 2017	Primary	<i>Examiner</i> — Golam M	[Shameem
edstock being materials of biological origin	(65)		1	Prior Publication Data	(74) Att	torney, Agent, or Firm -	- Arent Fox LLP
ion of greenhouse gas [GHG] emissions, e.g. CO_2		US 2019/0	0055:	207 A1 Feb. 21, 2019	(57)	ABSTR	ACT
iorocarbons [PFC]; Hydrofluorocarbons [HFC]; Hydi	(30)	F	oreig	n Application Priority Data	Provide the step	d is a method for produ	cing flutemetamol including
	Oc	et. 28, 2015	(J	P) 2015-211413	a predet	ermined general formul	a with a radioactive fluoride
ane [CH ₄]	(51)	Int. Cl.		(*****	to obtain termined	n a ¹³ F labeling compo d general formula; allow	und represented by a prede- ving a strong base to act on
ements relating to chlorine production	(52)	C07D 277 U.S. Cl.	/66	(2006.01)	the reac	tion mixture of the abore the state of the s	ove step containing the pre-
ements relating to adipic acid or caprolactam produ		CPC		<i>C07D 277/66</i> (2013.01); <i>Y02P 20/55</i> (2015.11)	above s	tep, purifying the ¹⁸ F	labeling compound using a
ements relating to fluorochloro hydrocarbon, e.g. ch	(58)	Field of (Class	fication Search	a protec	phase solid phase extractive group to obtain $[^{18}]$	F]flutemetamol.
ements relating to the production of bulk chemicals		CPC See applic	atior	C07D 277/66 I file for complete search history.		20 Claims, No	Drawings
catalysts, e.g. selective catalysts	_						-
solvents, e.g. supercritical solvents or ionic liquids							

US010472338B2

• Green transportation (Y02T)

	CPC	COOPERATIVE PATENT CLASSIFICATION
	Y02T	CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
+	Y02T 10/00	Road transport of goods or passengers
	Y02T 30/00	Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
+	Y02T 50/00	Aeronautics or air transport
+	Y02T 70/00	Maritime or waterways transport
+	Y02T 90/00	Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

• Green infrastructure (Building: Y02B; ICT equipment: Y02D)

Y02D 30/00

CPC	COOPERATIVE PATENT CLASSIFICATION							
Y02B	CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS							
+ Y02B 10/00	Integration of renewable energy sources in buildings							
+ Y02B 20/00	Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps							
+ Y02B 30/00	Energy efficient heating, ventilation or air conditioning [HVAC]							
+ Y02B 40/00	Technologies aiming at improving the CPC acy of home technologies for refrigerators, freezers Y02D hashers	COOPERATIVE PATENT CLASSIFICATION CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION						
Y02B 50/00	Energy efficient technologies in elevators, escalators a recuperation technologies	TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE						
+ Y02B 70/00	Technologies for an efficient end-user side electric pov	Notes						
+ Y02B 80/00	Architectural or constructional elements improving the	thermal performance of buildings 1 This subclass covers information and communication technologies [ICT] whose purpose is to minimize the						
+ Y02B 90/00	Enabling technologies or technologies with a potential mitigation	or indiruse of energy during the operation of the involved ICT equipment.						
	Initigation	This subclass <u>does not cover</u> the use of an ICT technology supporting energy efficient operation of a further piece of equipment, nor the reuse or recycling of ICT equipment.						
	Y02D 10/00	Energy efficient computing, e.g. low power processors, power management or thermal management						

Reducing energy consumption in communication networks

- Compustat: firm characteristics
 - Firm profitability and size: ROA, ROE, net sales
 - Innovation capability: R&D expenditure
 - Firm location: headquarters
- Sample restriction
 - 1,303 non-energy firms that operated between 2002 and 2016
 - Account for 70% of all patents during the sample period
 - Operation-oriented green innovation: 86.3% of the green patent stock.
 - production (20.2%), transportation (32.2%), and
 - infrastructure (33.9%)

Variable	Mean	Std. Dev.	Description	Source
Dependent Variables				
Green Patent Stock	7.200	56.909	Cumulative counts (stock) of patents applied (and eventually granted) for CPC c lass of Y, dedicated to climate change mitigation and adaptation technologies	USPTO
Operation-Oriented Green Innovation		_		
Green Production	1.456	11.152	Patent stock for CPC class of Y02P (green production and processing of goods)	USPTO
Green Transportation	2.320	37.145	Patent stock for CPC class of Y02T (green transportation)	
Green Infrastructure	2.437	29.668	Patent stock for CPC classes of Y02B (green building) and Y02D (green ICT eq uipment)	USPTO
Non-operation-Oriented Green Innovation		_		
Climate Change Adaptation	0.412	2.957	Patent stock for CPC class of Y02A	USPTO
Pollutant Management	0.218	1.984	Patent stock for CPC classes of Y02C (capture or disposal of greenhouse gases) and Y02W (wastewater and solid waste management)	USPTO
Green Energy	0.959	8.508	Patent stock CPC classes of Y02E (green energy generation, transmission, or dis tribution) and Y04S (smart grids)	USPTO
Independent Variable				
State-Level Shale Boom	0.255	0.436	Dichotomous indicator of shale-booming states, based on oil and gas production and employment in the state of a company's headquarters	Weinstein (2014)
County-Level Shale Boom	0.222	0.415	Alternative measure of shale boom, indicating the year and afterward when the c ounty of a company's headquarters experienced at least 10% of annual growth i n employment in the gas and oil sector	CBP
Shale Well-Based Shale Boom	0.135	0.342	Alternative measure of shale boom, indicating whether the county within a 100- mile radius of a company's headquarters went into the shale boom defined by th e top quintile of the number of shale wells	Gilje (2019)
Control Variables		_		
Return on Assets	-0.230	1.807	Net income per total assets	Compustat
Return on Equity	-0.115	0.998	Net income per shareholders' equity	Compustat
Sales	5,138.42	14,424.38	Net sales	Compustat
R&D Stock	542.725	2,857.892	Cumulative R&D expenses (stock)	Compustat
Nongreen Patent Stock	121.232	822.255	Cumulative counts (stock) of all patents applied (and eventually granted)	USPTO
Industry Green Patent Stock	7.200	23.507	Average green patent stock in the same industry at 4-digit NAICS level	USPTO
Industry Concentration	0.190	0.156	Herfindahl-Hirschman Index (HHI) of sales in the same industry at 4-digit NAI CS level	Compustat

Research Design

 Geographic variation of the shale bed location creates variations in local energy markets

Research Design

Geographic variation of the shale bed location creates variations in

eia

local energy markets

Monthly U.S. dry natural gas production (2004-2018) billion cubic feet per day

Research Design

- **Treatment**: firms headquartered in the shale-booming states
- **Control**: firms headquartered outside of the shale-booming states

- Prior literature leverages similar variation but at county-level treatment
 - Weinstein (2014), Muehlenbachs et al. (2015), Gilje (2019); Wu and Jiang (2022)
- State-level treatment is more relevant in our setting
 - Firms are not located in immediate proximity to shale wells
 - The Shale boom affects the local economy well beyond the county level (Feyrer et al. 2017)

Difference-in-Differences Estimator

 $Patent \ Stock_{it+1} = +\beta Shale \ Boom_{it} + \gamma Control_{it+1} + \theta_i + \mu_t + \varepsilon_{it}$

- Controls
 - firm characteristics, including (i) sales that approximate firm size,
 (ii) profitability, (iii) non-green patent stock (all patents less than
 green patents) and R&D stock that account for a firm's general
 capabilities and investments in innovation activities, and (iv)
 industry green patents and industry concentration
 - Firm and time FE

Matching

		Balance Check	
		Before Matching	
	Treatment Group	Control Group	
	Mean	Mean	Mean diff
	(1)	(2)	(3)
Return on Assets	-0.369	-0.233	-0.136
Return on Equity	-0.201	- <u>0.130</u>	-0.071
In(Sales)	<mark>5.731</mark>	<mark>5.298</mark>	<mark>0.433***</mark>
In(R&D Stock)	<mark>1.802</mark>	<mark>2.647</mark>	<mark>-0.845***</mark>
In(Patent Stock)	<mark>1.476</mark>	<mark>1.850</mark>	<mark>-0.374***</mark>
Industry Concentration	<mark>0.181</mark>	<mark>0.162</mark>	<mark>0.019**</mark> _
Energy Intensity	<mark>0.083</mark>	<mark>0.066</mark>	<mark>0.017***</mark>
NAICS 31	0.047	0.028	0.019*
NAICS 32	<u>0.187</u>	<u>0.199</u>	-0.012
NAICS 33 (Manufacturing)	<mark>0.308</mark>	<mark>0.430</mark>	<mark>-0.122***</mark>
NAICS 42 (Wholesale trade)	<mark>0.056</mark>	<mark>0.019</mark>	<mark>0.037***</mark>
NAICS 44	0.009	0.018	-0.009
NAICS 45	0.019	0.011	0.008
NAICS 48	0.026	0.013	0.013
NAICS 49	0.002	0.001	0.001
NAICS 51	0.094	0.093	0.001
NAICS 52 (Finance and insurance)	<mark>0.109</mark>	<mark>0.050</mark>	<mark>0.059***</mark>
NAICS 53	0.015	0.032	-0.017*
NAICS 54	0.047	0.041	0.006
NAICS 56	0.021	0.024	-0.003
NAICS 61	0.004	0.002	0.002
NAICS 62	0.024	0.015	0.009
NAICS 71	0.006	0.004	0.002
NAICS 72	0.006	0.013	-0.007
NAICS 81	0.006	0.002	0.004
Number of Firms	468	835	34

Balance-of-Covariates

	Treatment Group	Control Group	
	Mean	Mean	Mean diff
	(4)	(5)	(6)
Return on Assets	-0.296	-0.297	0.001
Return on Equity	-0.194	-0.183	-0.011
In(Sales)	5.736	5.854	-0.118
In(R&D Stock)	1.809	1.870	-0.061
In(Patent Stock)	1.481	1.535	-0.054
Industry Concentration	0.179	0.180	-0.001
Energy Intensity	0.082	0.090	-0.008
NAICS 31	0.047	0.060	-0.013
NAICS 32	0.188	0.166	0.022
NAICS 33	0.308	0.321	-0.013
NAICS 42	0.054	0.045	0.009
NAICS 44	0.009	0.011	-0.002
NAICS 45	0.019	0.015	0.004
NAICS 48	0.026	0.028	-0.002
NAICS 49	0.002	0.000	0.002
NAICS 51	0.095	0.086	0.009
NAICS 52	0.110	0.114	-0.004
NAICS 53	0.015	0.017	-0.002
NAICS 54	0.047	0.067	-0.020
NAICS 56	0.022	0.024	-0.002
NAICS 61	0.004	0.000	0.004
NAICS 62	0.022	0.026	-0.004
NAICS 71	0.006	0.002	0.004
NAICS 72	0.006	0.004	0.002
NAICS 81	0.006	0.002	0.004
Number of Firms	464	303	35

Parallel Pre-trends

DV: ln(Patent Stock for Each Category)	Operation-Oriented Green Innovation					
	Green Production	Green Transportation	Green Infrastructure			
	(1)	(2)	(3)			
State-Level Shale Boom	-0.040***	-0.020	-0.012			
	(0.014)	(0.015)	(0.016)			
Return on Assets	-0.001*	-0.001	-0.001			
	(0.001)	(0.001)	(0.001)			
Return on Equity	-0.002	-0.001	-0.001			
	(0.002)	(0.001)	(0.002)			
ln(Sales)	0.014**	0.007	-0.000			
	(0.006)	(0.005)	(0.008)			
ln(R&D Stock)	0.005	0.014*	0.038***			
	(0.012)	(0.008)	(0.013)			
ln(Nongreen Patent Stock)	0.074***	0.048***	0.072***			
	(0.012)	(0.011)	(0.015)			
ln(Industry Green Patent Stock)	0.062**	0.095***	0.213***			
	(0.025)	(0.023)	(0.042)			
Industry Concentration	-0.011	-0.042	0.066			
	(0.039)	(0.040)	(0.046)			
Firm Fixed Effects	Yes	Yes	Yes			
Year Fixed Effects	Yes	Yes	Yes			
Within R-Squared	0.067	0.072	0.164			
Number of Observations	12,272	12,272	12,272			

Negatively affects green production but not other types

Figure 1: U.S. renewable diesel production capacity

Source: Graph by the U.S. Energy Information Administration, based on company announcements in trade press Note: We assume proposed or announced projects are operational during stated year for capacity estimates.

	State Level Panel Data (2000 – 2016)								
DV:	Distillate Fuel Oil Price	Industrial Natural Gas Price	Industrial Electricity Price	In(Patent Stock for Green Production)	ln(Patent Stock for Green Transportation)	ln(Patent Stock for Green Infrastructure)			
	(1)	(2)	(3)	(4)	(5)	(6)			
State-Level Shale Boom	-0.026**	-0.979*** (0.237)	-0.483*						
Distillate Fuel Oil Price	(0.012)		(01210)	0.043 (0.167)	0.105 (0.247)	-0.183 (0.338)			
Industrial Natural Gas Price				0.036** (0.017)	0.020 (0.024)	0.003 (0.026)			
Industrial Electricity Price				-0.022	-0.013	-0.012			
In(Population)	-0.231	5.964	-0.955	(0.022) -1.072	(0.030) -2.259	(0.028) -1.616			
In (Household Income)	(0.174) 0.032	(3.707) 16.016**	(3.512) 15.988**	(1.373) -1.423	(1.762) -2.769***	(1.880) -3.975**			
	(0.187) -1.283*	(7.208) 5.148	(6.377) -1.014	(1.383) 1.542	(1.004) -1.655	(1.850) -4.459			
Unemployment Rate	(0.687) -0.230	(8.473) -7.461**	(9.288) -4.312	(2.877) 0.809	(3.708) 1.813**	(4.296) 0.876			
ln(Total GDP)	(0.212)	(3.028)	(3.565)	(0.915)	(1.193)	(1.434)			
GDP Share of Mining Sector	(0.440)	(5.706)	(8.246)	(1.808)	(2.363)	(3.636)			
GDP Share of Utility Sector	-4.087* (2.288)	109.183 (134.908)	(134.063)	-32.560*** (11.938)	(35.043)	-43.967* (24.343)			
GDP Share of Manufacturing Sector	0.443	0.288	9.499* (5.387)	-0.504 (2.835)	1.180 (2.227)	-2.238 (3.908)			
In(Number of Firms with Patents)	0.001	-0.472**	0.405	0.033	0.045	0.178			
State Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes			
Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes			
Within R-Squared	0.992	0.670	0.614	0.109	0.302	0.411 20			
Number of Observations	816	816	816	768	768	768			

	Industr	y Sector	Energy	Intensity	Energy Mix			
DV: ln(Patent Stock for Green Production)	Goods-Producing Industries	Service-Providing Industries	Higher	Lower	Higher Percentage of Fuel Oil	Higher Percentage of Natural Gas	Higher Percentage of Electricity	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
State-Level Shale	-0.060***	-0.009	-0.054**	-0.024	-0.057**	-0.058***	-0.009	
Boom	(0.021)	(0.017)	(0.023)	(0.017)	(0.022)	(0.021)	(0.018)	
Determine Armste	-0.002**	-0.001	-0.002	-0.001	-0.000	-0.001	-0.003*	
Return on Assets	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.002)	
	-0.004	-0.001	-0.004	0.001	-0.004	-0.005	0.000	
Return on Assets	(0.004)	(0.002)	(0.003)	(0.002)	(0.004)	(0.004)	(0.002)	
1 (0 1)	0.029***	0.002	0.026**	0.008	0.013*	0.015*	0.014	
in(sales)	(0.010)	(0.007)	(0.013)	(0.006)	(0.007)	(0.009)	(0.011)	
ln(R&D Stock)	0.001	-0.004	0.007	-0.001	0.003	0.007	0.001	
m(R&D Stock)	(0.010)	(0.031)	(0.021)	(0.006	(0.011)	(0.011)	(0.020)	
ln(Nongreen Patent	0.097***	0.048***	0.116***	0.041***	0.075***	0.080***	0.071***	
Stock)	(0.016)	(0.017)	(0.021)	(0.011)	(0.015)	(0.017)	(0.017)	
ln(Industry Green	0.063**	0.063	0.053*	0.056**	0.045***	0.051*	0.055	
Patent Stock)	(0.027)	(0.041)	(0.030)	(0.028)	(0.023)	(0.027)	(0.036)	
Industry Concentra	-0.055	0.046	-0.061	0.022	0.031	-0.092	0.004	
tion	(0.060)	(0.049)	(0.064)	(0.028)	(0.040)	(0.059)	(0.056)	
Firm Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Year Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Within R-Squared	0.080	0.064	0.096	0.041	0.068	0.066	0.063	
Number of Observ ations	6,976	5,296	6,112	6,160	6,240	6,208	6,320	

· Negative impact is observed for firms that rely on fossil fuel

-	State Level Panel Data (2000 – 2016)								
	ln(Industrial Energy Use)	ln(Industrial Electricity Use)	ln(Patent Stock for Green Production)	ln(Patent Stock for Green Transportation)	ln(Patent Stock for Green Infrastructure)				
DV:	(1)	(2)	(3)	(4)	(5)				
	0.212**	0.065							
State-Level Shale Boom	(0.102)	(0.039)							
ln(Industrial Energy Use)			-0.084** (0.040)	-0.030 (0.052)	-0.025 (0.063)				
In(Industrial Electricity			-0.076	-0.089	-0.348				
Use)			(0.146)	(0.204)	(0.235)				
ln(Domulation)	2.565*	0.513	-0.360	-1.530	-0.757				
	(1.473) -0.338	(0.458) -0.851*	(1.213) -0.625	(1.632) -2.518***	(1.708) -4.379***				
In(Household Income)	(0.931) -8.133**	(0.442) -1.499	(1.083) 1.839	(0.764) -1.028	(1.058) -3.742				
Unemployment Rate	(3.309) 1.393	(1.471) 1.189***	(2.582) 0.563	(3.684) 1.746	(4.058) 1.457				
In(Total GDP)	(1.160)	(0.426)	(0.807)	(1.129)	(1.164)				
GDP Share of Mining	1.561	0.901	-2.257	-2.145	-6.729*				
Sector	(3.088)	(1.203)	(1.743)	(2.370)	(3.644)				
	15.813	1.259	-31.629**	12.359	-42.129**				
GDP Share of Utility Sector	(19.913)	(9.029)	(11.833)	(31.443)	(20.812)				
GDP Share of Manufacturin	-1.636	-0.234	0.395	0.796	-3.335				
g Sector	(2.044)	(0.864)	(2.611)	(2.066)	(4.152)				
ln(Number of Firms with Pat	-0.025	0.039	0.038	0.052	0.201**				
ents)	(0.092)	(0.031)	(0.061)	(0.065)	(0.094)				
State Fixed Effects	Yes	Yes	Yes	Yes	Yes				
Year Fixed Effects	Yes	Yes	Yes	Yes	Yes				
Within R-Squared	0.188	0.220	0.105	0.287	0.405				
Number of Observations	867	867	816	816	816 47				

Future Work

- Outcome of interest
 - (Self)-citations measure technological innovation (Jaffe, Trajtenberg, and Henderson 1993; Moretti 2021)
- Industry-specific FE
 - To absorb nationwide time-varying technological and sectoral changes
- Staggered DiD
 - Staggered roll-out of shale boom
 - Late vs. early comparison is forbidden (Goodman-Bacon, 2021)
 - Out of 20 treated states, 17 are treated between 2003 and 2005
 - Not too much late vs. early comparison

Conclusion

 Upon the Shale boom, energy-intensive firms that rely more on fossil fuels have a greater incentive to reduce investment in green production

- But, the shale boom has a minimal impact on the areas of innovation that cheaper oil and gas cannot readily substitute
 - Green transportation and infrastructure

 In order to promote green technological innovation under the glut of fossil fuels, policymakers need to reconsider local energy and environmental policies and incentive programs

