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Abstract

We consider an oligopoly model in which consumers engage in sequential search

based on partial product information and advertised prices. We derive a simple con-

dition that fully summarizes consumers’ shopping outcomes and use the condition to

reformulate the pricing game among the sellers as a familiar discrete-choice problem.

Exploiting the reformulation, we provide sufficient conditions that guarantee the ex-

istence and uniqueness of pure-strategy market equilibrium and obtain several novel

insights about the effects of search frictions on market prices. Among others, we show

that a reduction in search costs increases market prices, but providing more pre-search

information raises market prices if and only if there are sufficiently many sellers.
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1 Introduction

We consider an oligopoly model in which consumers sequentially search for the best product
based on partial product information and advertised prices. A key distinguishing feature from
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traditional consumer search models is the observability of prices before consumer search.
Consumers still face a non-trivial search problem, because they do not possess full informa-
tion about their values for the products. In this environment, prices affect each seller’s de-
mand not only through their effects on consumers’ final purchase decisions, but also through
their effects on consumer search behavior. We study how the presence of the latter channel
affects sellers’ pricing incentives and what its economic consequences are. In particular, we
investigate the effects of search frictions on market prices.

Consumer search models with observable prices have been drawing growing attention.
The Internet has significantly lowered the cost of collecting price information. Now it is
common to check prices online and visit stores only to get hands-on information and/or
finalize a purchase. In the meantime, the model captures some salient features of online
marketplaces and price comparison websites. A consumer typically begins with a summary
webpage displaying multiple items. She clicks a certain set of items, collects more detailed
information, and then makes a final purchase decision. Our model captures such consumer
behavior particularly well. The analysis of our model can produce meaningful insights about
the role of the Internet in traditional markets and the working of online marketplaces.

Similar models have been studied in three recent papers, Armstrong and Zhou (2011),
Shen (2015), and Haan, Morage-González and Petrikaite (2015).1 All three papers analyze a
symmetric duopoly environment but consider different correlation structures for consumers’
prior (known) and match (hidden) values. Both prior and match values are perfectly neg-
atively correlated between the products in Armstrong and Zhou (2011), whereas both are
independent in Haan, Morage-González and Petrikaite (2015). Shen (2015) examines an
intermediate case where each consumer’s prior values are perfectly negatively correlated,
while her match values are independent, between the two products. Our model adopts the
same independence structure as Haan, Morage-González and Petrikaite (2015) but allows
for general market structure and asymmetric sellers.

It is well-recognized that such consumer search models do not admit tractable character-
ization. There are two main difficulties. First, consumer search behavior is complicated and
hard to summarize. Each consumer undergoes sequential search, whose complexity grows

1An early precursor to these papers is Bakos (1997), who studies several versions of a (circular) location
model. One of his extensions considers the case where quality (value) information is significantly costlier than
price information. The limit version where price information can be obtained at zero cost is equivalent to the
case where prices are publicly observable.
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fast as the number of sellers increases or new features are introduced into the model. This is
likely to be the reason why all previous studies have restricted attention to the duopoly case.
Second, the sellers’ best response functions do not behave well in general. There may not
exist a pure-strategy equilibrium, and the model rarely produces sharp comparative statics
results.

We overcome the first difficulty by identifying a necessary and sufficient condition that
summarizes consumers’ search outcomes.2 We utilize an elegant solution by Weitzman
(1979) for a class of sequential search problems and show that, although Weitzman’s so-
lution is necessary to fully describe optimal search behavior, the optimal search outcome

(i.e., a consumer’s eventual purchase decision) can be fully summarized by a simpler condi-
tion that is familiar in discrete-choice models. The condition pinpoints the extent to which
search frictions distort consumers’ purchase decisions (i.e., how a consumer’s purchase de-
cision under sequential search differs from that under perfect information) and allows us to
reformulate the pricing game among the sellers as a discrete-choice problem.

For the second difficulty, we obtain sufficient conditions under which the seller’s best re-
sponse functions are well-behaved and, therefore, there exists a unique pure-strategy market
equilibrium. We exploit the induced discrete-choice structure of our model and characterize
sufficient conditions on the primitives of our model under which we can apply both general
results in the literature on supermodular games and specific results in discrete-choice models.
Despite certain limitations,3 our characterization allows us to derive some sharp comparative
statics results and, therefore, learn more about the working of the model, as we elaborate
below. In addition, our analysis is likely to be informative for the environments that are not
covered by our sufficient conditions.

We pay special attention to the relationship between search frictions and market prices.
It was recognized early on that the Internet dramatically reduces market frictions and, there-
fore, should deliver more efficient market outcomes, by transforming traditional businesses
as well as creating many new markets. This promise has been fulfilled in various ways by

2An effectively identical condition has been independently discovered by Armstrong (2016). See also
Armstrong and Vickers (2015), who consider a more general problem of which demand systems have discrete-
choice foundations and show that the demand system under consumer search belongs to the class.

3In particular, our sufficient conditions do not encompass a benchmark case where consumers are ex ante
symmetric (i.e., do not possess any prior product information), for which it is known that there does not exist a
pure-strategy equilibrium (see Armstrong and Zhou, 2011).
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now, but several phenomena that are at odds with it still persist. In particular, it has been
repeatedly reported that the Internet has neither significantly lowered markups nor reduced
price dispersion (see, e.g., Ellison and Ellison, 2005; Baye, Morgan and Scholten, 2006)
These suggest that search frictions are significant even in online markets and cast doubt
on the conventional wisdom that a reduction in search frictions is necessarily beneficial to
consumers. The following results provide some new insights for these important issues.

As a methodological contribution, we show that the effects of various changes in search
frictions can be summarized by their effects on dispersion of the induced discrete-choice
distributions. This is useful, because there is a systematic relationship between preference
diversity and equilibrium prices in discrete-choice models: equilibrium prices increase as
consumers’ preferences become more diverse.4 In other words, we derive several compara-
tive statics results regarding search frictions, which are hard to obtain directly, by studying
their effects on the induced distributions and utilizing a result that links between preference
diversity and equilibrium prices in discrete-choice models.

We show that an increase in the value of search raises market prices. Specifically, we
establish that, provided that the sellers are symmetric, the equilibrium price increases as
search costs decrease or the distribution of match values becomes more dispersive (which
increases the expected return of search).5 Note that this is opposite to the standard result in
the literature. As the value of search decreases, a consumer is less likely to leave for another
seller and, therefore, more likely to purchase from the current seller. The sellers then have
an incentive to extract more surplus from visiting consumers and, therefore, charge higher
prices. This is the main mechanism behind the opposite result in the literature. However,
it crucially depends on the assumption of unobservable prices (i.e., no price advertisement),
which implies that the sellers cannot influence consumer search behavior. In our model,
the sellers compete in prices to attract consumers. When the value of search falls, price
competition becomes more severe, which induces the sellers to lower their prices.

In contrast, improving pre-search information quality has an ambiguous effect on market

4This is a classic idea in the literature on Bertrand competition under product differentiation. We contribute
to the literature by providing an appropriate measure of preference diversity (product differentiation). See
Section 5.1 for a more comprehensive discussion and our result.

5We note that, whereas the first result regarding search costs has also been established by Armstrong and
Zhou (2011) and Haan, Morage-González and Petrikaite (2015), the second result regarding the distribution of
match values is, to our knowledge, new to the literature.
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prices. We show that providing more precise information for consumers before search in-
creases market prices if and only if the number of sellers is above a certain threshold. There
are two opposing effects. On the one hand, it reduces consumers’ incentives to explore more
products, which, as above, intensifies price competition among the sellers. On the other
hand, consumers’ preferences before search (prior values) become more dispersed, which
relaxes price competition. We prove that the latter effect dominates the former, and thus pro-
viding more product information before search increases market prices if and only if there
are sufficiently many sellers.

These results allow us to reinterpret various empirical findings in the literature, which,
conversely, justifies the empirical relevance of our model. For instance, Lynch and Ariely
(2000) run a field experiment with online wine sales and find that providing more prod-
uct information lowers consumers’ price sensitivity. Bailey (1998) and Ellison and Ellison
(2014) report that online prices are often higher than off-line prices. This naturally arises in
our model, given that search costs are significantly lower online than off-line. Ellison and
Ellison (2009) report that markups are relatively higher for high-quality products than for
low-quality products. Within our model, this can be understood as consumer preferences
being more diverse, or the relative cost of search being lower, for high-quality products.

We also provide two novel insights for the case where the sellers are asymmetric. First,
we study which sellers have a stronger incentive to post higher prices. We show that Weitz-
man index, which is the most natural candidate in the current sequential search context, does
not provide enough guidance in general. We provide a sufficient condition under which the
sellers’ prices can be clearly ranked and also show that Weitzman index can be still use-
ful to predict price rankings in some specific contexts. Second, we analyze the effects of
search costs on asymmetric sellers. We show that when one seller has a higher marginal cost
than the other, an identical increase in search costs raises demand for the low-cost seller but
lowers demand for the high-cost seller. Intuitively, this is because consumers become more
price-sensitive as search costs increase, and the low-cost seller posts a lower price. One
noteworthy implication of this result is that the high-cost seller has a stronger incentive to
lower his price than the low-cost seller as search costs increase. Since the former posts a
higher price than the latter, this means that the price difference between the two sellers falls
as search costs rise. In other words, an increase in search frictions may reduce price disper-
sion. This result contrasts well with a classical insight in search theory that price dispersion
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is a symptom of search frictions.
This paper joins a growing literature on ordered search, which investigates the effects of

(both exogenous and endogenous) search order on market outcomes and various ways sellers
influence consumer search behavior (order). See Armstrong (2016) for a comprehensive
and organized introduction of the literature and several useful discussions. In light of this
literature, we consider the case where each consumer’s search order is fully endogenized
and a seller influences search behavior through the choice of her price (which is arguably the
most basic instrument).

One interpretation of our model is to introduce consumer search into a canonical model
of Bertrand competition under product differentiation. Indeed, our model reduces to that of
Perloff and Salop (1985) if consumers incur no search costs. We make it transparent how
consumer search models with price advertisements are related to discrete-choice models (and
what the former can learn from the latter). In addition, we show that dispersive order is an
appropriate measure for preference diversity and explain how the result can be used to obtain
several comparative statics results regarding search frictions.

As explained above, our model can be interpreted as a model of online marketplaces. In
this regard, our paper is related to two strands of literature on electronic commerce. First,
there are several theoretical studies that develop an equilibrium online shopping model. For
example, Baye and Morgan (2001) analyze a model in which both the sellers and consumers
decide whether to participate in an online marketplace, while Chen and He (2011) and Athey
and Ellison (2011) present an equilibrium model that combines position auctions with con-
sumer search. Our paper is unique in that the focus is on consumer search within an online
marketplace. Second, a growing number of papers draw on search theory to study online
markets. For example, Kim, Albuquerque and Bronnenberg (2010) develop a non-stationary
search model to study the online market for camcoders. De los Santos, Hortaçsu and Wilden-
beest (2012) test some classical search theories with online book sale data and argue that
fixed sample size (i.e., simultaneous) search theory explains the data better than sequential
search theory. Dinerstein, Einav, Levin and Sundaresan (2014) estimate online search costs
and retail margins with a consumer search model based on the “consideration set” approach,
and apply them to evaluate the effect of search redesign by eBay in 2011. Although empirical
analysis is beyond the scope of this paper, we think that our equilibrium model is tractable
and structured enough to be taken to data.
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The rest of the paper is organized as follows. We introduce the environment in Section 2.
We analyze consumers’ optimal shopping problems in Section 3 and characterize the market
equilibrium in Section 4. We study the effects of search frictions on market prices in Section
5 and provide two results, one about price rankings and the other about price dispersion, in
Section 6. All omitted proofs are in the appendix.

2 Environment

The market consists of n sellers, each indexed by i = {1, ..., n}, and a unit mass of con-
sumers. The sellers face no capacity constraint, while each consumer demands one unit
among all products. The sellers simultaneously announce prices. Consumers observe those
prices and search optimally.

Each seller i supplies a product at no fixed cost and a constant marginal cost ci. We
denote by pi ∈ R+ seller i’s price. In addition, we let p denote the price vector for all
sellers (i.e., p = (p1, ..., pn)) and p−i denote the price vector except for seller i’s price
(i.e., p−i = (p1, ..., pi−1, pi+1, ..., pn)). Denote by Di(p) the measure of consumers who
eventually purchase product i. Seller i’s profit is then defined to be πi(p) ≡ Di(p)(pi − c).
Each seller maximizes his profit πi(p).

A (representative) consumer’s random utility for seller i’s product is given by Ṽi = Vi +

Zi. The first component Vi represents the consumer’s prior value for product i, while the
second componentZi is the residual part that is revealed to the consumer only when she visits
seller i and inspects his product. As for prices, we let v = (v1, ..., vn) and z = (z1, ..., zn)

denote the realization of a consumer’s value profile for each component.
The products are horizontally differentiated. We assume that Vi and Zi are drawn from

the distribution functions Fi and Gi, respectively, identically and independently across con-
sumers and products (and independently each other), where both Fi and Gi have full support
over the real line and continuously differentiable density fi and gi, respectively. Indepen-
dence across products allows us to utilize the optimal search solution by Weitzman (1979),
while independence between Vi and Zi leads to a clean and easy-to-interpret characteriza-
tion.6

6We note that independence between Vi and Zi is restrictive not by itself, but because of a joint additive-
utility specification (Ṽi = Vi + Zi). It is always possible to reinterpret (redefine) Zi, so that it is independent
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Search is costly, but recall is costless. Specifically, each consumer must visit seller i and
discover her match value zi in order to be able to purchase product i. She needs to incur
search cost si(> 0) on her first visit. She can purchase the product immediately or recall it
at any point during her search. Each consumer can leave the market at any point and take an
outside option u0.

A consumer’s ex post utility depends on her value for the purchased product ṽi, its price
pi, and her search history. Let N be the set of sellers a consumer visits. If she purchases
product i (in N ), then her ex post utility is equal to

U(vi, zi, pi, N) = vi + zi − pi −
∑
j∈N

sj.

If she does not purchase and takes an outside option, then her ex post utility is equal to

U(N) = u0 −
∑
j∈N

sj.

Each consumer is risk neutral and maximizes her expected utility.
The market proceeds as follows. First, the sellers simultaneously announce prices p.

Then, each consumer shops (searches) based on available information (p,v). We study
subgame perfect Nash equilibrium of this market game.7 We first characterize consumers’
optimal shopping behavior (given any price vector) and then analyze the pricing game among
the sellers.

3 Consumer Behavior

In this section, we analyze consumers’ optimal sequential search problems.

of Vi (see, e.g., Eső and Szentes, 2007). In this case, a restriction is only due to the utility specification. On
the other hand, Zi can always be defined as Zi ≡ Ṽi −E[Ṽi|Vi] (see, e.g., Krähmer and Strausz, 2011). In this
case, independence between Vi and Zi imposes a restriction.

7For notational simplicity, we do not formally define consumers’ search strategies. See Weitzman (1979)
for a formal (recursive) definition of search strategy.
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3.1 Optimal Shopping

Given prices p and prior values v, each consumer faces a sequential search problem. She
decides in which order to visit the sellers and, after each visit, whether to stop, in which case
she chooses which product to purchase, if any, among those she has inspected so far, or visit
another seller. Although this is, in general, a complex combinatorial problem, an elegant
solution is known by Weitzman (1979). Independence between vi and zi leads to an even
sharper characterization, as reported in the following proposition.8

Proposition 1 Given p = (p1, ..., pn) and v = (v1, ..., vn), the consumer’s optimal search

strategy is as follows: for each i, let z∗i be the value such that

si =

∫ ∞
z∗i

(1−Gi(zi))dzi. (1)

(i) Search order: the consumer visits the sellers in the decreasing order of vi + z∗i − pi
(i.e., she visits seller i before seller j if vi + z∗i − pi > vj + z∗j − pj).

(ii) Stopping: let N be the set of sellers the consumer has visited so far. She stops, and

takes the best available option by the point, if and only if

max{u0,max
i∈N

vi + zi − pi} > max
j /∈N

vj + z∗j − pj.

Weitzman’s solution is based on a single index for each option (seller). Let ri be the
reservation value such that a consumer is indifferent between obtaining utility ri immediately
(which saves additional search costs si) and visiting seller i (which gives her an option to
choose between ri and vi + zi − pi):

ri = −si +

∫
max{ri, vi + zi − pi}dGi(zi).

Weitzman (1979) shows that the optimal search strategy is to visit the sellers in the decreasing
order of ri and stop as soon as the best realized value by the point exceeds all remaining

8The measure of consumers who are indifferent over multiple choices is negligible, because Fi and Gi

are assumed to be continuously increasing for all i. For notational convenience, we ignore those consumers
throughout the paper.
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ri’s. In our model, due to the additive-utility specification, Weitzman’s index simplifies to
ri = vi + z∗i − pi, where z∗i is given by equation (1).

3.2 Shopping Outcomes

Despite its elegance, Weitzman’s solution cannot be directly used to summarize consumers’
shopping outcomes and derive the demand functions. Consider the simplest case where there
are two sellers. Even in this case, there are three different paths through which a consumer
eventually purchases product i. First, a consumer may visit seller i first and purchase imme-
diately. Second, a consumer may visit seller i first, try seller j as well, but recall product i.
Third, a consumer may visit seller j first but purchase product i. Total demand for seller i is
the sum of all these demands. The number of paths grows exponentially fast as the number
of sellers n increases.

One of our main breakthroughs is to identify a necessary and sufficient condition for
consumers’ eventual purchase decisions and, therefore, provide a simple way to summarize
shopping outcomes. In order to motivate the result, consider the same duopoly case as above.
The three paths through which a consumer purchases product i correspond to each of the
following conditions:

(i) vi + z∗i − pi > vj + z∗j − pj (visit i first) and vi + zi − pi > vj + z∗j − pj (stop at i).

(ii) vi + z∗i − pi > vj + z∗j − pj (visit i first), vi + zi − pi < vj + z∗j − pj (not stop at i),
and vi + zi − pi > vj + zj − pj (prefer i to j).

(iii) vi + z∗i − pi < vj + z∗j − pj (visit j first), vi + z∗i − pi > vj + zj − pj (not stop at j),
and vi + zi − pi > vj + zj − pj (prefer i to j).

Notice that the first condition can be simplified to vi + min{z∗i , zi} − pi > vj + z∗j − pj ,
while the second and the third conditions together can be reduced to vi + min{z∗i , zi}− pi ≤
vj + z∗j − pj and vi + min{z∗i , zi} − pi > vj + zj − pj . Intuitively, a consumer purchases
product i if she either does not visit seller j or finds a sufficiently low realized value of zj .
Combining these inequalities, we arrive at the following single inequality:

vi + min{zi, z∗i } − pi > vj + min{zj, z∗j } − pj.
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This simple condition can be extended for the general case by considering each pair of sellers
and accommodating the outside option, as formally reported in the following lemma.

Lemma 1 (Eventual Purchase) Let wi ≡ vi + min{zi, z∗i } for each i. Given p, v, and z,

the consumer purchases product i if and only if wi − pi > u0 and wi − pi > wj − pj for all

j 6= i.

Lemma 1 suggests that consumer shopping behavior can be summarized as in canonical
discrete-choice models.9 The only difference is that consumers’ purchase decisions are made
based, neither on true values ṽi nor on prior values vi, but on newly identified values wi,
which we call effective values from now on. Clearly, wi is related to underlying values ṽi
and vi. In particular, wi converges to ṽi as si tends to 0 (in which case z∗i approaches ∞)
and is determined only by vi as si tends to infinity (in which case z∗i approaches −∞).
Intuitively, search frictions prevent consumers from making fully informed decisions, and
the problem becomes more severe, and consumers rely more on their prior information v,
as search frictions increase. The specific truncation structure is driven by a monotonicity
property of Weitzman’s solution. If a consumer visits seller i, Weitzman’s indices for all
remaining sellers are lower than vi + z∗i − pi. Therefore, the consumer necessarily stops if
zi exceeds z∗i , which implies that the probability that a consumer purchases product i stays
constant above z∗i .

In order to utilize Lemma 1, we letHi denote the distribution function for the new random
variable Wi = Vi + min{Zi, z∗i }, that is,

Hi(wi) ≡
∫ z∗i

−∞
Fi(wi − zi)dGi(zi) +

∫ ∞
z∗i

Fi(wi − z∗i )dGi(zi). (2)

The distribution function Hi crucially depends on si. If si tends to 0, then z∗i becomes
arbitrarily large (see equation (1)) and, therefore, Hi becomes the convolution of Fi and Gi.
If si explodes, then z∗i approaches negative infinity, in which case Hi depends only on Fi.

9Lemma 1 holds even if prices are not observable to consumers before search, as long as consumers have
correct beliefs about prices (i.e., in equilibrium). However, the result does not hold if a seller deviates, because
consumers’ search decisions are based on their expectations about prices, while their final purchase decisions
depend on actual prices charged. That property makes Lemma 1 less useful in such a setting.
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4 Market Equilibrium

In this section, we consider the pricing game among the sellers and provide sufficient condi-
tions under which there exists a unique pure-strategy equilibrium.

Lemma 1 implies that the demand function for each seller can be derived as in standard
discrete-choice models. A consumer purchases product i if and only if his effective utility
for product i, wi − pi, exceeds the outside option u0 and the corresponding utility for each
other product, wj−pj . Therefore, the measure of consumers who purchase product i is given
by

Di(p) =

∫ ∞
u0+pi

(∏
j 6=i

Hj(wi − pi + pj)

)
dHi(wi).

This demand system exhibits standard properties for imperfect substitutes: demand for seller
i decreases in own price pi and increases in competitors’ prices p−i. However, the demand
system does not behave well in general: Di(pi,p−i) may not be quasi-concave in pi, and a
seller’s best response does not necessarily increase in p−i.

The literature has found that log-concavity is an appropriate restriction for the distribu-
tion functions. It not only guarantees the existence and uniqueness of equilibrium, but also
generates intuitive comparative statics results (such as declining market prices as the number
of sellers increases). The following result by Quint (2014), translated into our environment,
is well applicable to our model.10

Theorem 1 (Quint, 2014) Suppose that for each i, both Hi(wi) and 1 − Hi(wi) are log-

concave. Then, Di(p) is log-concave in pi, and logDi(p) has strictly increasing differences

in pi and pj . In addition, there exists a unique pure-strategy equilibrium in the pricing game

among the sellers.

Distributional log-concavity ensures log-concavity and log-supermodularity in demand.
These two properties imply that the pricing game is a supermodular game and, therefore,
has a pure-strategy equilibrium, as an application of more general existence theorems (see
Vives, 2005). Uniqueness is not implied by general theory, but driven by a specific structure

10Quint (2014) provides further relevant discussions, including common distribution functions that satisfy
the log-concavity condition and weaker conditions sufficient for each result. For more thorough technical
treatments of log-concavity, see, e.g., Bagnoli and Bergstrom (2005).
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of the model, namely that Di(p) is invariant when all prices, together with −u0, increase by
the same amount, which is not a general property in supermodular games.

As shown above, Hi in our model is not exogenously given but depends on Fi, Gi, and
si in a specific way. Therefore, log-concavity cannot be directly imposed on Hi and 1−Hi.
A natural assumption is that all primitive distribution functions Fi, 1 − Fi, Gi, and 1 − Gi

are log-concave. However, the assumption alone does not guarantee the log-concavity of H .
In fact, even a stronger assumption that the density functions fi and gi are log-concave is not
sufficient.11

In order to understand the origin of the problem, consider the case where Fi is degenerate
at vi. In this case,Hi(w) jumps up at vi+z∗i (see the solid line, corresponding to α = 0, in the
left panel of Figure 1) and, therefore, cannot be globally log-concave. This is driven by the
upper truncation structure of the random variable Wi, which is, in turn, due to the sequential
search nature of consumers’ problems, as explained in the previous section. When Fi is
continuously distributed over the real line, the atom at vi + z∗i is continuously scattered,
which ensures the continuity of Hi. However, if Fi is sufficiently concentrated around vi,
then the slope of Hi at vi + z∗i can be arbitrarily large (see the dashed line, corresponding to
α = 0.1, in the left panel of Figure 1). Therefore, Hi may still fail to be log-concave.

We provide sufficient conditions under which this problem is not binding and Theorem
1 applies. We begin by imposing sufficiently strong log-concavity on the primitive distribu-
tions.

Assumption 1 For each i, both density functions fi and gi are log-concave.

Although this assumption does not guarantee the log-concavity of Hi, it suffices for 1−
Hi, as formally stated in the following lemma.

Lemma 2 Under Assumption 1, 1−Hi is log-concave.

Proof. Integrating by parts the first term in equation (2) leads to

1−Hi(wi) =

∫ z∗i

−∞
f(wi − zi)(1−Gi(zi))dzi (3)

11If the density function f is log-concave, then both distribution function F and survival function 1− F are
log-concave. See Bagnoli and Bergstrom (2005) for more details.
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vi + z∗i wi

1

Hi(wi)

α = 0

α = 0.1

α = 0.3

α = 0.5

vi + z∗i wi

1

1−Hi(wi)

α = 0

α = 0.1

α = 0.3

α = 0.5

Figure 1: Hi(wi) and 1 − Hi(wi) for different dispersion levels of Fi. For both panels,
Fi(vi) = 1/(1 + e−vi/α) (logistic distribution), and Gi = N (0, 1) (standard normal distribu-
tion).

The log-concavity of g ensures the same property for 1 − Gi. Since both f and 1 − G are
log-concave, the integrand is log-concave in (wi, zi). The desired result then follows from
Prekopa’s theorem, which states that if the integrand is log-concave, then the integral is also
log-concave.12

To understand the difference between Hi and 1 − Hi, consider, again, the case where
Fi is degenerate. Both Hi and 1 − Hi are discontinuous at vi + z∗i . However, 1 − Hi

jumps down and, therefore, preserves log-concavity over the interval below vi + z∗i (see the
right panel of Figure 1). In addition, 1 − Hi(wi) remains equal to 0 above vi + z∗i . These
two properties ensure that 1 − Hi is log-concave when Fi is degenerate. When Fi is not
degenerate, 1 − Hi(wi) is continuous and stays positive. However, these properties do not
disrupt log-concavity, and thus 1−Hi is always log-concave under Assumption 1.

Our first result provides a sufficient condition under which Hi is globally log-concave. It

12See, e.g., Caplin and Nalebuff (1991) and Choi and Smith (2016) for a formal statement of the theorem
and its uses in related contexts.
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states that if Fi is sufficiently dispersed, then Hi is log-concave under Assumption 1.13

Proposition 2 Fix random variables Vi and Zi with density fi and gi, respectively. Define

V σ
i ≡ σVi and W σ

i ≡ V σ
i + min{Zi, z∗i }. Let Hσ

i denote the distribution function for W σ
i .

Then, there exists σ < ∞ such that the distribution function Hσ
i is log-concave whenever

σ > σ.

To understand this result, recall that the failure of log-concavity of Hi is due to the
probability mass at z∗i . Now notice that, since Wi = Vi + min{Zi, z∗i } (also see equation
(2)), dispersion on Fi scatters this atom through the real line, which makes Hi increase more
slowly and, therefore, mitigates the main problem. When Fi is sufficiently dispersed, the
effect of the mass point would be small (i.e., Hi does not increase too fast at any point), and
thus Hi can be log-concave (see the left panel of Figure 1).

Our second condition is based on the idea that global log-concavity is not necessary for
Theorem 1. Specifically, it is clear that in equilibrium pi exceeds ci. Therefore, it suffices
that Hi is log-concave only on the parameter region where wi ≥ u0 + ci.

Proposition 3 Suppose Assumption 1 is satisfied. (i) Given u0 > −∞, there exists si < ∞
such that if s > si, then Hi(wi) is log-concave above u0 + ci. (ii) Given si > 0, there exists

u0 such that if u0 > u0, then Hi(wi) is log-concave above u0 + ci.

Intuitively, if si is sufficiently large, then the value of visiting seller i is small. In this case,
z∗i lies in the irrelevant (sufficiently negative) region, while Assumption 1 ensures that Hi is
log-concave in the relevant region. Similarly, if u0 is sufficiently large, then consumers’ ef-
fective values are relevant only when they are sufficiently large and, in particular, far exceed
z∗i . Again, Assumption 1 guarantees that Hi behaves well in the relevant region.

In the remaining sections, we restrict attention to the parameter space where Hi and
1−Hi are log-concave at least over the relevant region and, therefore, there exists a unique
pure-strategy equilibrium. Although restrictive, this allows us to go one step further and
investigate sellers’ pricing incentives in our model. In addition, we maintain Assumption 1.
As in many existing studies, log-concavity allows us to derive clean and intuitive comparative
statics results.

13Haan, Morage-González and Petrikaite (2015) conjecture this result and provide a set of confirming nu-
merical examples. Our result formalizes their conjecture.
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5 Symmetric Sellers: Search Frictions

In this section, we study how search frictions influence the sellers’ pricing incentives.14 For
clear insights as well as tractability, we restrict attention to the case where the sellers are sym-
metric. Precisely, we assume that buyers’ values for each product are drawn from identical
distribution functions F and G, the sellers have an identical marginal cost c, and consumers
face identical search costs for all sellers (i.e., for all i, Fi = F , Gi = G, ci = c, and si = s).
We let p∗ and π(p∗) denote the symmetric equilibrium price and profit, respectively.15

5.1 Preference Diversity

We begin by establishing a result that is useful through this section. The result is, in fact, of
interest by itself, in regard to the literature on Bertrand competition under product differen-
tiation. It is well-known that horizontal product differentiation provides a way to overcome
the Bertrand paradox: each seller has some loyal consumers (who value the seller’s prod-
uct more than other products) and, therefore, can set a positive markup even under Bertrand
competition. It is natural that the more differentiated consumers’ preferences are, the higher
prices the sellers charge. A challenge has been to identify an appropriate measure of prefer-
ence diversity (product differentiation). In their seminal work, Perloff and Salop (1985) show
that constant scaling of consumers’ preferences necessarily increases the equilibrium price,
but find that the result does not extend for mean-preserving spreads. Our result provides an
answer to the long-standing open question.16

We utilize the following measure of stochastic orders, so called dispersive order.

Definition 1 The distribution function H2 is more dispersed than the distribution function

H1 if H−1
2 (b)−H−1

2 (a) ≥ H−1
1 (b)−H−1

1 (a) for any 0 < a ≤ b < 1.

14We omit some standard comparative statics results. For example, it is easy to show that more intense
competition, such as introducing an additional seller or increasing the outside option, lower market prices. See
Quint (2014) for further results and illustrations.

15Recall that we focus on the environment in which there exists a unique pure-strategy equilibrium. In the
symmetric environment, all sellers must charge the same price, as otherwise there are multiple equilibria.

16Zhou (forthcoming) studies the effects of bundling in the Perloff-Salop framework and independently
discovers an almost identical result. Precisely, his Lemma 2 is equivalent to our Proposition 4, provided that
there is no outside option (i.e., u0 = −∞). Our result is slightly more general than his, in that we account
for the outside option. In addition, whereas his lemma is an isolated result in his paper, we fully utilize it for
subsequent comparative statics.
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Intuitively, a more dispersed distribution function increases more slowly (its inverse in-
creases faster), as it density is more spread out. This order is location-free and, therefore,
neither is implied by nor implies first-order or second-order stochastic dominance. Mean-
preserving dispersive order, however, implies mean-preserving spread: if H2 is more dis-
persed than H1 with the same mean, then H2 is a mean-preserving spread of H1.17

The following result shows that there is a good sense in which dispersive order is an
appropriate measure of product differentiation.

Proposition 4 The equilibrium price p∗ increases asH becomes more dispersive andH(u0 + c)

weakly decreases.

Proof of Proposition 4. The equilibrium condition for p∗, which stems from an individual
seller’s first-order condition and the symmetry requirement, can be rewritten as

1

p∗ − c =

∫
h(max{u0 + p∗, w})dH(w)n−1

1
n
(1−H(u0 + p∗)n)

.

Letting φ ≡ H(u0 + p∗) and changing the variable with a = H(w), we get

1

p∗ − c =
h(H−1(φ))φn−1 +

∫ 1

φ
h(H−1(a))dan−1

1
n
(1− φn)

. (4)

If H becomes more dispersive, dH−1(a)/da = 1/h(H−1(a)) increases (i.e., h(H−1(a) de-
creases) for each a. If, in addition, H(u0 + c) decreases, then φ = H(u0 +p∗) also decreases
for any p∗ ≥ c, because a distribution function crosses a less dispersive one only once from
above. Notice that both of these lower the right-hand side. The desired result now follows
from the fact that the left-hand side is strictly decreasing in p∗, while the right-hand side is
increasing in p∗ (see the appendix for a proof of this last claim).

The relevance of dispersive order is particularly transparent when there is no outside
option (i.e., u0 = −∞), which is the case considered by Perloff and Salop (1985) and many
subsequent studies. In that case, the second condition about H(u0 + c) is vacuous, and thus

17See Shaked and Shanthikumar (2007) for further details. Dispersive order has been adopted and proved to
be useful in other economic contexts. See, for example, Ganuza and Penalva (2010).
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dispersive order alone dictates how market prices vary: market prices rise (fall) ifH becomes
more (less) dispersive.

5.2 Search Costs

The following result reports the effects of varying search costs s on the equilibrium price p∗

and each seller’s equilibrium profit π(p∗).

Proposition 5 Both equilibrium price p∗ and equilibrium profit π(p∗) decrease as s in-

creases.

Proof. We utilize Proposition 4 to prove the price result. Specifically, we show that the
random variable W = V + min{Z, z∗} falls in the first-order stochastic dominance (which
implies that H(u0 + c) increases) and becomes less dispersive as s increases. Notice that z∗

decreases in s (see equation (1)). This immediately implies that W decreases in the sense of
first-order stochastic dominance. For the dispersion result, let G̃(z) denote the distribution
function of the random variable min{Z, z∗}. By its definition, G̃(z) = G(z) if z < z∗ and
G̃(z) = 1 if z ≥ z∗, which implies that G̃−1(a) = min{G−1(z), z∗} for a ∈ (0, 1). Clearly,
the quantile function G̃−1(a) becomes weakly flatter at any a ∈ (0, 1) as z∗ decreases. This
implies that min{Z, z∗} becomes less dispersive as s increases. The desired result follows
once this result is combined with the fact that the density function f is log-concave.18

An increase in s affects each seller’s profit πi(p) = Di(pi, p−i)(pi − c) through the
following three channels:

dπi(p)

ds
=
∂pi
∂s

∂πi(p)

∂pi
+
∂p−i
∂s

∂πi(p)

∂p−i
+
∂z∗

∂s

∂πi(p)

∂z∗
.

Each term represents the marginal effect of own price, that of the other sellers’ prices, and
that of consumer search behavior, respectively. In equilibrium, the first term is equal to 0 by
the envelope theorem (∂πi(p)/∂pi = 0). The second term is negative because ∂p∗/∂s ≤ 0,
as shown above, and ∂πi(p)/∂p−i ≥ 0, as the products are imperfect substitutes one another.
The last term is also negative because ∂z∗/∂s < 0 and ∂πi(p)/∂z∗ ≥ 0: the latter inequality

18See Theorem 3.B.8 in Shaked and Shanthikumar (2007). If a random variable X is the convolution of two
random variables X1 and X2 (i.e., X = X1 + X2) and X1 has log-concave density, then X becomes more
dispersive as X2 becomes more dispersive.
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stems from the fact that an increase in z∗ increases the distribution function H in the sense
of first-order stochastic dominance, induces less consumers to take the outside option and,
therefore, increases each seller’s demand Di(p

∗). Overall, it is clear that dπ(p∗)/ds ≤ 0.

Both price and profit results are in stark contrast to those of most existing consumer
search models where consumers discover prices through search. When prices are not ob-
servable before search, an increase in search costs decreases the value of additional search
and, therefore, increases the probability that a consumer purchases from a given seller.19

This induces the sellers to charge higher prices as search costs increase. When prices are
observable before search, they directly influence consumer search (see Proposition 3): the
lower price a seller offers, the more consumers visit him first. As search costs increase, con-
sumers search less and are more likely to purchase from their first visit. This intensifies price
competition among the sellers and leads to lower prices.

Proposition 5 raises an interesting possibility that consumer surplus may increase when
search costs increase. An increase in search costs has a direct negative effect on consumer
welfare. However, if the sellers lower their prices dramatically in response, overall consumer
welfare may rise. Indeed, there is an example in which an increase in search costs is benefi-
cial to consumers. It arises when consumers’ outside option is sufficiently unfavorable and
there are sufficiently few sellers. In this case, the sellers possess strong market power and,
therefore, charge a high price. An increase in search costs induces them to drop their prices
quickly, up to the point where the indirect effect outweighs the direct effect and, therefore,
consumer welfare increases.

The following proposition addresses a closely related question of how an increase in re-
turns to search affects the equilibrium price p∗. To obtain clean insights, we restrict attention
to the case where consumers have no outside option.

Proposition 6 Provided that consumers have no outside option, the equilibrium price p∗

increases as G becomes more dispersive.

19To be precise, the result in consumer search models with unobservable prices crucially depends on the log-
concavity property of the relevant distributions. For example, in Anderson and Renault (1999) where prices are
not observable and F is degenerate, the equilibrium price increases in s if 1−G is log-concave but decreases in
s if 1−G is log-convex (and assuming that there exists a symmetric pure-strategy equilibrium). Our comparison
applies only to the former case.
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Proof. By the logic given for the price result in the proof of Proposition 5, it suffices to
show that the random variable min{Z, z∗} becomes more dispersive as G (z) becomes more
dispersive. To this end, recall that the quantile function for the random variable min{Z, z∗}
is given by G̃−1(a) = min{G−1(a), z∗} for a ∈ (0, 1). It suffices to show that the slope of
G̃−1(a) increases for all a ∈ (0, 1). For a < G(z∗), the result is immediate from G̃−1(a) =

G−1(a). For a = G(z∗), the result follows from the fact that G(z∗) rises as G becomes
more dispersive: rewriting equation (1) with b∗ = G(z∗) and b = G(z) yields s =

∫ 1

b∗
(1 −

b)∂G−1(b)/∂bdb. If G becomes more dispersive (∂G−1(b)/∂b rises), the integrand rises, and
thus the lower support b∗ must rise in order to maintain the equation.20

Notice that this is consistent with Proposition 5, as a decrease in search costs can be
interpreted as a proportional increase in search returns. Proposition 6 demonstrates that
the main insight in Proposition 5 extends beyond proportional changes and holds with any
dispersive perturbations.

5.3 Pre-search Information Quality

In our model, consumers search because they have imprecise information about their values
for the products. This means that search frictions can also be measured by the extent to
which consumers are uncertain about their match values. We now examine the effects of
improving pre-search information quality on the equilibrium price p∗.

For tractability, we specialize our model into a Gaussian learning environment, where
both F and G are given by normal distributions with mean 0. In addition, we assume that F
has variance α2, while G has variance 1 − α2, for some α ∈ (0, 1) (i.e., V ∼ N (0, α2) and
Z ∼ N (0, 1− α2)). Our choices of the variances are deliberate. Notice that Ṽ = V + Z ∼
N (0, 1) for any α. In other words, our variance specification ensures that the distribution for
consumers’ ex post values Ṽi stays unchanged when α varies. The parameter α measures the
quality of pre-search information: as α increases, consumers’ ex post values Ṽ = V +Z are
influenced more by (known) V and less by (hidden) Z. We also assume that consumers have
no outside option.

We find that, unlike Propositions 5 and 6, the equilibrium price may or may not increase

20This argument is due to Choi and Smith (2016).
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as pre-search quality information improves. In particular, if the number of sellers is suffi-
ciently small, then p∗ decreases in α.

Proposition 7 There exists an integer n∗(α) such that a marginal increase in α increases p∗

if and only if n ≥ n∗(α).

Recall that the equilibrium price increases whenH becomes more dispersive (Proposition
4). Importantly, the result depends only on H , not separately on F and G. This means that
a decrease in α has two effects on p∗. On the one hand, it spreads out G, which, as shown
in Proposition 6, tends to increase p∗. On the other hand, it reduces dispersion of F , which
may translate into lower dispersion of H and, therefore, push down p∗.21

The following lemma, which establishes the relationship between α and dispersion of H ,
is useful to understand the specific pattern in Proposition 7.

Lemma 3 There exists w∗(<∞) such that the slope of H−1(a) decreases in α if and only if

a > H(w∗).

This lemma states that an increase in α has disproportionate effects on dispersion of H:
the left portion of H becomes less dispersive, while the right portion grows more dispersive.
Recall that W = V + min{Z, z∗}. Since min{Z, z∗} is bounded above by z∗, if w is rather
large, H(w) is mostly determined by the behavior of F . Since F becomes more dispersive
in α, H(w) also does so for w large. If w is rather small, H(w) is affected by all three V , Z,
and z∗. The effects of the first two cancel each other out, because V +Z ∼ N(0, 1). The last
effect through z∗, however, makesH less dispersive, because z∗ decreases in α (see equation
(1) and the proof of Proposition 5).

When there are many sellers, the effective value of a consumer’s purchased product is
likely to exceed w∗. This implies that the equilibrium price p∗ mainly depends on the right
side of H (i.e., the region above w∗). As shown in Lemma 3, H grows more dispersive
in α over the region. The opposite reasoning holds if there are few sellers. In either case,
Proposition 7 follows from Proposition 4.

21Unlike G, H may not become more dispersive when F becomes more dispersive. This is, of course, be-
cause of asymmetry between F and G. In particular, the upper truncation structure of Z generates a probability
mass for each V . This does not interfere in dispersion of Z being translated into that of W , but may between V
and W . The result still holds if the density function f is decreasing over the relevant region, but not in general.
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6 Asymmetric Sellers: Prices and Price Dispersion

In this section, we return to the general setting with asymmetric sellers and study some
questions that arise in the presence of seller asymmetry.

6.1 Who Post Higher Prices?

In the presence of seller asymmetry, the most natural question is which sellers post higher
prices. This has not been addressed thoroughly in the literature, partly because most theo-
retical studies restrict attention to the symmetric-sellers case and partly because of its com-
plexity. We take one step forward by providing a sufficient condition under which one seller
posts a higher price than another. We demonstrate the usefulness of our condition with a
series of corollaries.

Proposition 8 If Wi− ci dominates Wj − cj in the hazard rate order and the reverse hazard

rate order,22 then pi − ci ≥ pj − cj .

For the intuition, consider the duopoly case with no outside option. In this case, seller i’s
profit function is given by

πi(pi, pj) =

∫
Hj(wi − pi + pj)dHi(wi) · (pi − ci).

IfHj were degenerate at wj (hypothetically), then the integral would be equal to 1−Hi(wj+

pi − pj), and thus seller i’s profit maximization condition would reduce to

1

pi − ci
=

hi(wj + pi − pj)
1−Hi(wj + pi − pj)

.

As Hi increases in the hazard rate order, the right-hand side decreases, which implies that
the optimal price pi increases. Similarly, if Hi were degenerate at wi, then seller i’s profit

22A random variable X1 with distribution function F1 dominates another random variable X2 with distri-
bution function F2 in the hazard rate order if f1(t)/(1 − F1(t)) ≤ f2(t)/(1 − F2(t)) for all t. Similarly, X1

dominates X2 in the reverse hazard rate order if f1(t)/F1(t) ≥ f2(t)/F2(t) for all t.
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maximization condition simplifies to

1

pi − ci
=
hj(wj − pi + pj)

Hj(wj − pi + pj)
.

Applying a similar argument, it follows that pi increases as Hj decreases in the reverse
hazard rate order. In the appendix, we prove that these two conditions suffice for the result
in general (i.e., without hypothetical degeneracy assumptions).

Our first application of Proposition 8 concerns the relationship between marginal costs
and markups. We show that otherwise symmetric sellers with higher marginal costs charge
lower markups.

Corollary 1 If Fi = Fj ,Gi = Gj , si = sj and ci > cj for some i and j, then pj−cj ≥ pi−ci.

Proof. Given Proposition 8, it suffices to show that Wi− ci rises in the hazard rate order and
the reverse hazard rate order as ci falls. The result follows from the log-concavity of H and
1−H: the former implies that h(wi + ci)/H(wi + ci) increases, while the latter implies that
h(wi + ci)/(1−H(wi + ci)) deceases, as c decreases.

It is a tempting conjecture that Weitzman index based only on the value distributions and
search costs (i.e., vi+z∗i ) would be closely tied with prices. Specifically, if pi is equal to 0 for
all i, consumers visit the sellers in the decreasing order of vi+z∗i . Since a seller with a higher
index would attract more consumers, it is plausible that the seller would post a higher price.
Our second corollary of Proposition 8 shows that this conjecture does not hold in general.

Corollary 2 Suppose Fi = Fj , ci = cj , and z∗i = z∗j for some i and j. If zj dominates zi in

the likelihood ratio order,23 then pj ≥ pi.

Corollary 2 shows that even if two sellers have the same Weitzman index (based on the
value distributions and search costs) and share other characteristics, one seller may post a
higher price than the other. Intuitively, Weitzman index captures only the average behavior
of a distribution above a certain point. However, a seller’s optimal price depends on the

23Consider two random variables X1 and X2. We say X2 dominates X1 in the likelihood ratio order if
f2(x)/f1(x) rises in x. The likelihood ratio order is equivalent to the monotone likelihood ratio property. Even
if zj dominates zi in the likelihood ratio, z∗i can be equal to z∗j , because z∗k depends not only on Gk but also on
sk (see equation (1)).
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entire behavior of the distribution, which cannot be summarized by a single index. To be
more concrete, suppose pi = pj , so that consumers are equally divided between the two
sellers. In this case, seller j has relatively fewer consumers on the margin and, therefore,
faces a stronger incentive to increase her price than player i, which ultimately leads to the
outcome pj > pi.

Our final application of Proposition 8 illustrates the relationship between associated
search costs and prices. For the same reason as above, it is plausible that sellers with lower
search costs would post higher prices. Unlike in the previous case, we present an affirma-
tive result for this conjecture. Specifically, we provide a sufficient condition under which
prices are inversely related to search costs (i.e., if si < sj , then pi > pj). Notice that, since
Weitzman index is decreasing in search costs, this result also shows that the index, despite
Corollary 2, may still provide useful guidance for price rankings.

Corollary 3 Suppose all sellers are identical except that s1 < ... < sn, and the common

density function f(v) is such that−f ′(v) is positive and log-concave in v for all v > u0−z∗,
where z∗ ≡ maxi z

∗
i . Then, p1 ≥ ... ≥ pn.

Intuitively, when the sellers differ only in associated search costs, the difference is uni-
dimensional and, therefore, can be fully captured by a single-valued Weintzman index. The
result, although clearly limited, is useful because various common distributions in the expo-
nential family, including Gaussian, Gumbel, and Laplace distributions, have the right tails
that satisfy the necessary distributional properties.

6.2 Search Costs

We now study the effects of search costs in the presence of seller asymmetry. We focus on
two questions, who benefits from a reduction in search costs and what is the relationship
between price dispersion and search costs. For tractability, we restrict attention to the sim-
plest duopoly environment where there is no outside option and the two sellers differ only
in their marginal costs. We assume that seller 1’s marginal cost is strictly lower than seller
2’s (c1 < c2), which implies that in equilibrium seller 1 charges a lower price than seller 2

(p1 < p2).24

24See the proof of Proposition 9 in the appendix.
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Our first result shows that a reduction in search costs is beneficial to the disadvantaged
seller (with a higher marginal cost).

Proposition 9 Demand for seller 1 (D1(p)) increases, while demand for seller 2 (D2(p))

decreases in s.

Notice that this result counters a common belief that more efficient firms will flourish,
while less efficient firms will eventually vanish, as search costs decrease. Consumers search
more actively (visit more sellers) when search costs are lower. In particular, more consumers
make a purchase decision after visiting both sellers. This is more beneficial to seller 2, who
charges a higher price and, therefore, attracts less fresh visitors.25

Proposition 9 suggests that the disadvantaged seller has a stronger incentive to lower
the price as search costs increase. This generates a unique implication for the relationship
between price dispersion and search costs, as formally stated in the following proposition.

Proposition 10 The relative markup ratio (p2 − c2)/(p1 − c1) decreases in s. If c2 − c1 is

sufficiently large, then the absolute price difference p2 − p1 also decreases in s.

The result indicates that an increase in search costs may reduce price dispersion. This is
contrary to a well-established insight in search theory that price dispersion is a symptom of
search frictions and market prices are more dispersed when there are more search frictions
(see, e.g., Burdett and Judd, 1983; Stahl, 1989). Again, the result is driven by the fact that
prices are observable to consumers and the role of search is only to gather more information
about their values.

We conclude this section with another consequence of Proposition 9. When the sellers
are symmetric, market prices necessarily decrease as search costs s increase (Proposition
5). If the sellers are asymmetric, the result may not apply to some sellers. In particular, the
advantaged seller (seller 1) may increase her price when s increases. This occurs when an
increase in search costs discourages lots of consumers from visiting seller 2 after seller 1,
and thus demand for seller 1 increases sufficiently fast. In this case, seller 2 has an even

25Armstrong (2016) finds a similar result in an environment where one seller is “prominent” and, therefore,
visited by all consumers first. A reduction in search costs, which induces more consumers to visit both sellers,
is beneficial to the non-prominent seller. Unlike our result, his result builds upon an asymmetric equilibrium in
the symmetric environment, which exists because it is assumed that all consumers have an identical prior value
(i.e., Fi is degenerate for each i) and prices are unobservable before search.

25



stronger incentive to lower her price, while seller 1 may find it more profitable to increase
her price. This also means that, unlike the symmetric case where all firms’ profits fall as
search costs increase (see Proposition 5), some firms may benefit from an increase in search
costs and obtain higher profits.

7 Conclusion

We study an oligopoly model in which the sellers advertise their prices and consumers
conduct optimal sequential search. We derive a simple condition that fully summarizes
consumers’ search outcomes and allows us to reformulate the pricing game as a familiar
discrete-choice problem. We also provide some sufficient conditions under which there ex-
ists a unique pure-strategy market equilibrium. Based on the characterization, we obtain a
set of results that shed new light on the effects of search frictions on market prices. We show
that a reduction in the value of search increases market prices, whereas providing more in-
formation before consumer search may or may not increase market prices. We also provide a
sufficient condition under which one seller posts a higher price than another and demonstrate
that a reduction in search costs may lead to more price dispersion in the presence of seller
asymmetry.

Many interesting questions remain open. To name a few, we assume that all sellers
are fully committed to their advertised prices. However, hidden fees, in various forms, are
prevalent in reality. How does their potential presence affect consumer behavior and sellers’
pricing incentives?26 We consider the case where each seller sells only one product, but it is
the exception rather than the rule. How should a multi-product seller price (or position) his
products? Should the seller choose an identical price, or introduce difference prices, for ex
ante symmetric products? If the products are asymmetric, which product should the seller
make prominent and how?27 We plan to address these and other related problems in the
future.

26See Ellison (2005) and Dai (2016) for some developments along this line.
27See Gamp (2016) and Petrikaitė (2016) for some related problems.

26



Appendix: Omitted Proofs
Proof of Lemma 1. Sufficiency: wi − pi > u0 implies that the consumer never takes an
outside option u0, because she is willing to visit at least one seller (vi + z∗i − pi > u0) and
make a purchase (vi + zi− pi > u0). Given this, it suffices to show that if wi− pi > wj − pj ,
then the consumer never purchases product j.

• Suppose z∗j ≤ zj , which implies that wj = vj + z∗j . The consumer visits seller j only
after seller i because vi + z∗i − pi ≥ wi − pi > vj + z∗j − pj . Once she visits seller i,
however, she has no incentive to visit seller j because vi + zi − pi > vj + z∗j − pj .

• Suppose z∗j > zj , which implies that wj = vj + zj . In this case, even if she visits seller
j, she either recalls a previous product (vi + zi − pi > vj + zj − pj) or continues to
search (vi+z∗i −pi > vj+zj−pj) and finds a better product (vi+zi−pi > vj+zj−pj).

Necessity: if wi − pi < u0, then the consumer does not visit seller i (vi + z∗i − pi < u0) or
does not purchase product i even if she visits seller i (vi+zi−pi < u0). If wi−pi < wj−pj
for some j 6= i, then, for the same logic as above, the consumer never purchases product i.

Proof of Proposition 2. Since

(logHσ
i (wσi ))′′ =

(hσi )′(wσi )Hσ
i (wσi )− hσi (wσi )2

Hσ
i (wσi )2

,

it suffices to show that (hσi )′(wσi )Hσ
i (wσi ) − hσi (wσi )2 ≤ 0 for all w, provided that σ is

sufficiently large. Integrate equation (2) by parts, we have

Hσ
i (wσi ) =

∫ ∞
wσi −z∗i

Gi(w
σ
i − vσi )dF σ

i (vσi ) + F σ
i (wσi − z∗i ).

By straightforward calculus,

hσi (wσi )

Hσ
i (wσi )

=

∫∞
wσi −z∗i

gi(w
σ
i − vσi )dF σ

i (vσi ) + (1−Gi(z
∗
i ))f

σ
i (wσi − z∗i )∫∞

wσi −z∗i
Gi(wσi − vσi )dF σ

i (vσi ) + F σ
i (wσi − z∗i )

(5)

and

(hσi )′(wσi )

hσi (wσi )
=

∫∞
wσi −z∗i

g′i(w
σ
i − vσi )dF σ

i (vσi ) + (1−Gi(z
∗
i ))(f

σ
i )′(wσi − z∗i )− gi(z∗i )fσi (wσi − z∗i )∫∞

wσi −z∗i
gi(wσi − vσi )dF σ

i (vσi ) + (1−Gi(z∗i ))f
σ
i (wσi − z∗i )

(6)
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Changing the variables with a = F σ
i (vσi ) and r = F σ

i (wσi − z∗i ), equation (5) becomes

hσi ((F σ
i )−1(r) + z∗i )

Hσ
i ((F σ

i )−1(r) + z∗i )
=

∫ 1

r
gi((F

σ
i )−1(r)− (F σ

i )−1(a) + z∗i )da+ (1−Gi(z
∗
i ))f

σ
i ((F σ

i )−1(r))∫ 1

r
Gi((F σ

i )−1(r)− (F σ
i )−1(a) + z∗i )da+ r

.

Since V σ
i ≡ σVi, we have F σ

i (vσi ) = Fi(v
σ
i /σ), (F σ

i )−1(r) = σF−1
i (r), fσ((F σ

i )−1(r)) =
fi(F

−1
i (r))/σ, and (fσi )′ (F−1

i (r)) = fi(F
−1
i (r))/σ2. Using these facts and arranging the

terms in the right-hand side above yield

σhσi ((F σ
i )−1(r) + z∗i )

Hσ
i ((F σ

i )−1(r) + z∗i )
=

∫ 1

r
σgi(σ(F−1

i (r)− F−1
i (a)) + z∗i )da+ (1−Gi(z

∗
i ))fi(F

−1
i (r))∫ 1

r
Gi(σ(F−1

i (r)− F−1
i (a)) + z∗i )da+ r

.

Since F−1
i (r) − F−1

i (a) ≤ 0, the denominator converges to r as σ explodes. Integrating∫ 1

r
σgi(σ(F−1

i (r)− F−1
i (a)) + z∗i )da in the numerator by parts yields

Gi(z
∗
i )fi(F

−1(r)) +

∫ 1

r

Gi(σ(F−1
i (r)− F−1

i (a)) + z∗i )df(F−1
i (a)).

Again, since F−1
i (r)−F−1

i (a) ≤ 0, the second term vanishes as σ tends to infinity, and thus
the numerator converges to Gi(z

∗
i )fi(F

−1
i (r)). Therefore,

lim
σ→∞

σhσi ((F σ
i )−1(r) + z∗i )

Hσ
i ((F σ

i )−1(r) + z∗i )
=
fi(F

−1
i (r))

r
.

Similarly, changing the variables with a = F σ
i (vσi ) and r = F σ

i (wσi − z∗) in equation (6) and
following a similar procedure, we have

lim
σ→∞

σ(hσi )′(F−1
i (r) + z∗i )

hi(F
−1
i (r) + z∗i )

=
(1−Gi(z

∗
i ))f

′
i(F

−1
i (r))

fi(F
−1
i (r))

.

Altogether,

lim
σ→∞

σ

[
(hσi )′((F σ

i )−1(r) + z∗i )

hσi ((F σ
i )−1(r) + z∗i )

− hσi ((F σ
i )−1(r) + z∗i )

Hσ
i ((F σ

i )−1(r) + z∗i )

]
=

(1−Gi(z
∗
i ))f

′
i(F

−1
i (r))

fi(F
−1
i (r))

− fi(F
−1
i (r))

r

= (1−Gi(z
∗
i ))

[
f ′i(F

−1
i (r))

fi(F
−1
i (r))

− fi(F
−1
i (r))

r

]
− Gi(z

∗
i )fi(F

−1
i (r))

r
< 0. (7)

For any si ∈ (0,∞), Gi(z
∗
i ) ∈ (0, 1) by equation (1). The square bracket term is weakly
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negative because F is log-concave, thus the entire expression is weakly negative. Now we
show the strict inequality (7) holds for all r ∈ [0, 1]. For r ∈ (0, 1), the strict inequality (7) is
true because fi(F−1

i (r))/r > 0 by the full support assumption. Since fi(F−1
i (r))/r falls in r

by the log-concavity of Fi, fi(F−1
i (r))/r > 0 at r = 0, and thus the strict inequality (7) also

holds for r = 0. For r = 1, since fi has full support, fi(F−1
i (r)) falls in r when r is large.

Therefore f ′i(F
−1
i (r))/fi(F

−1
i (r)) < 0 for some r ∈ (0, 1). Since f ′i(F

−1
i (r))/fi(F

−1
i (r))

falls in r by the log-concavity of fi, f ′i(F
−1
i (r))/fi(F

−1
i (r)) < 0 when r = 1 and thus the

strict inequality (7) holds when r = 1. Altogether, for each r ∈ [0, 1] there is a σ̄r such
that if σ > σ̄r, then (hσi )′(w)/hσi (w) − hσi (w)/Hσ

i (w) < 0 where w = F−1(r). Since
[0, 1] is a compact convex set, there exists σ̄ = maxr∈[0,1] σr ≤ ∞ such that if σ > σ̄, then
(hσi )′/hσi − hσi /Hσ

i < 0 for all r ∈ [0, 1], or equivalently Hσ
i (w) is log-concave for all w.

The following Lemma is useful for proving Proposition 3.

Lemma 4 For any a ∈ (0, 1], there exists sa < ∞ such that hi(F−1
i (a))/Hi(F

−1
i (a)) falls

in si whenever si ≥ sa.

Proof. Suppose a ∈ (0, 1), and let wi = F−1
i (a). We show that hi(wi)/Hi(wi) falls in s if

and only if si is large. By equation (1), ∂z∗i /∂si = −[1 − Gi(z
∗
i )]. Then by equation (3),

∂Hi(wi)/∂si = fi(wi − z∗i ). Therefore,

∂

∂si
log

[
hi(wi)

Hi(wi)

]
=
fi(wi − z∗i )
hi(wi)

[
f ′i(wi − z∗i )
fi(wi − z∗i )

− hi(wi)

Hi(wi)

]
. (8)

Suppose the square bracket term in the right-hand side is equal to 0 at some si = sa. As si
rises from sa, f ′i(wi− z∗i )/fi(wi− z∗i ) falls, because z∗i falls in si and fi is log-concave. The
derivative of the second term in the square bracket with respect to si is equal to 0 at si = sa.
Thus ∂[hi(wi)/Hi(wi)]/∂si ≤ 0 for all si ≥ sa. Equivalently, ∂ (hi(wi)/Hi(wi)) /∂si is
reverse single-crossing in si.

To show sa <∞, it suffices to show ∂(hi(wi)/Hi(wi))/∂si < 0 as si →∞. If si →∞,
then z∗i → −∞ and the sign of ∂(hi(wi)/Hi(wi))/∂si is the same as

lim
z∗i→−∞

[
f ′i(wi − z∗i )
fi(wi − z∗i )

− hi(wi)

Hi(wi)

]
= lim

z∗i→−∞

[
f ′i(wi − z∗i )
fi(wi − z∗i )

−
∫
fi(wi −min{zi, z∗i })gi(zi)dzi∫
Fi(wi −min{zi, z∗i })gi(zi)dzi

]
= lim

z∗i→−∞

[
f ′i(wi − z∗i )
fi(wi − z∗i )

− fi(wi − z∗i )
Fi(wi − z∗i )

]
< 0.

The last inequality is true as limz∗i→−∞ fi(wi − z∗i )/Fi(wi − z∗i ) = 0 and limz∗i→−∞ f
′
i(wi −

z∗i )/fi(wi − z∗i ) < 0 by the log-concavity of fi. Since ∂(hi(wi)/Hi(wi))/∂si is reverse
single-crossing in si and is strictly negative as si explodes, there exists sa < ∞ such that
hi(wi)/Hi(wi) falls in si for all si > sa.
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Finally, assume a = 1 and let wi = F−1
i (a) = ∞. In this case the right-hand side of

equation (8) is strictly negative because limwi→∞ f
′
i(wi − z∗i )/fi(wi − z∗i ) < 0 by the log-

concavity of f and limwi→∞ hi(wi)/Hi(wi) = 0. Therefore, hi(wi)/Hi(wi) falls in si when
a = 1.

Proof of Proposition 3 . Proof of (i): To show that Hi(wi) is log-concave when si is large,
it suffices to show the reverse hazard rate hi(wi)/Hi(wi) falls in wi when si is large. Recall
that ∂z∗i /∂si = −1/[1−Gi(z

∗
i )] by equation (1) and Hi(wi) =

∫∞
wi−z∗i

Gi(wi− vi)dFi(vi) +

Fi(wi − z∗i ) by equation (2). Thus ∂log(Hi(wi))/∂si = fi(wi − z∗i )/Hi(wi). Therefore
hi(wi)/Hi(wi) can be written as

hi(wi)

Hi(wi)
= [1−Gi(z

∗
i )]
∂log(Hi(wi))

∂si
+

∫∞
wi−z∗i

gi(wi − vi)dFi(vi)∫∞
wi−z∗i

Gi(wi − vi)dFi(vi) + Fi(wi − z∗i )
.

We argue that the right-hand side falls in wi when si is sufficiently large. To see this, note
that an immediate corollary of Lemma 4 is that ∂log(Hi(wi))/∂wi falls in si for all wi ≥
u0 > −∞ when si is sufficiently large. Equivalently, ∂log(Hi(wi))/∂si falls in wi for all
wi ≥ u0 when si is sufficiently large. Therefore, the first term in the displayed equation
falls in wi when si is large. It remains to show that the second term falls in wi. To this end,
consider the inverse of the second term[ ∫∞

wi−z∗i
gi(wi − vi)dFi(vi)∫∞

wi−z∗i
Gi(wi − vi)dFi(vi) + Fi(wi − z∗i )

]−1

=

∫∞
wi−z∗i

Gi(wi − vi)dFi(vi)∫∞
wi−z∗i

gi(wi − vi)dFi(vi)
+

Fi(wi − z∗i )∫∞
wi−z∗i

gi(wi − vi)dFi(vi)

=

∫ z∗i
−∞Gi(zi)fi(wi − zi)dzi∫ z∗i
−∞ gi(zi)fi(wi − zi)dzi

+
Fi(wi − z∗i )
fi(wi − z∗i )

fi(wi − z∗i )∫ z∗i
−∞ gi(zi)fi(wi − zi)dzi

.

The second line applies a change of variable zi = wi − vi. The first term rises in wi by the
log-concavity of fi and Gi. The second term rises in wi by the log-concavity of Fi and fi.
Altogether, the entire expression rises inwi. Since all elements in the expression are positive,
its inverse falls in wi.

Proof of (ii): Since we assume the density function fi(vi) is log-concave, it is single-
peaked in vi. Since fi has full support and is a probability density function, it cannot be
monotone and thus must rises and then falls as vi rises. Thus there exists ū0 such that
f ′i(wi − z∗i ) ≤ 0 for all wi > ū0. It follows that for all wi > ū0, hi(wi) =

∫
fi(wi −

min{zi, z∗i })gi(zi)dzi falls in wi. Thus hi(wi)/Hi(wi) falls in wi for wi ≥ ū0.
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Proof of Proposition 4. We prove the last claim in the proof of Proposition 4 in the
main text. Index Di(p, u0) by the outside option u0 and let p∗ = (p∗, . . . , p∗). Then, the
right-hand side of equation (4) can be rewritten as −∂Log[Di(p, u0)]/∂pi|p=p∗ . Due to the
additive utility specification, Di(p, u0) = Di(p+u0, 0), that is, demand for each seller stays
constant if all prices and −u0 increase by the same amount. This implies

∂

∂p∗

[−∂Log[Di(p, u0)]

∂pi
|p=p∗

]
=

∂

∂p∗

[−∂Log[Di(p + u0, 0)]

∂pi
|p=p∗

]
=

∂

∂u0

[−∂Log[Di(p + u0, 0)]

∂pi
|p=p∗

]
=
−∂2Log[Di(p, u0)]

∂pi∂u0

|p=p∗ .

Since Di(p, u0) is log-submodular in (pi, u0) by the proof of Theorem 1 in Quint (2014), the
right-hand is positive and thus −∂Log[Di(p, u0)]/∂pi|p=p∗ rises in p∗.

Recall from Section 5.3 that V ∼ N (0, α2) and Z ∼ N (0, 1−α2) in the accuracy model.
Proof of Lemma 3. It suffices to show there exists a′ ∈ (0, 1) such that ∂h(H−1(a))/∂α <
0 if and only if a > a′. Let Φ denote the standard normal distribution function and φ denote
its density function. Since V ∼ N (0, α2) and Z ∼ N (0, 1 − α2), F (v) = Φ(v/α) and
G(z) = Φ(z/

√
1− α2). Inserting these into equation (2) and differentiating H(w) with

respect to α yield

Hα(w) ≡ ∂H(w)

∂α
= −

[
1− Φ

(
z∗√

1− α2

)](
w − z∗
α2

)
φ

(
w − z∗
α

)
,

where ∂z∗/∂α can be obtained from equation (1) by applying the implicit function theorem.
Differentiating again with respect to w gives

hα(w) ≡ ∂h(w)

∂α
= −

[
1− Φ

(
z∗√

1− α2

)][
1−

(
w − z∗
α

)2
]

1

α2
φ

(
w − z∗
α

)
.

Now observe that

∂h(H−1(a))

∂α
= hα(H−1(a))−Hα(H−1(a))

h′(H−1(a))

h(H−1(a))
.

Let w = H−1(a) and apply Hα(w) and hα(w) to the equation. Then,

∂h(H−1(a))

∂α
=
−1

α2

[
1− Φ

(
z∗√

1− α2

)]
φ

(
w − z∗
α

)[
1− (w − z∗)2

α2
− (w − z∗) h

′(w)

h(w)

]
.
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Since V ∼ N (0, α2) and Z ∼ N (0, 1− α2), the density of W = V + min{Z, z∗} is

h(w) =
1√

1− α2

∫ ∞
−∞

φ

(
w −min{z, z∗}

α

)
φ

(
z√

1− α2

)
dz

=
1√

1− α2

∫ ∞
−∞

φ

(
w − z∗
α

+ max{r, 0}
)
φ

(
z∗ − αr√

1− α2

)
dr

where the second line changes variable r = (z∗ − z)/α. Since ∂φ(x)/∂x = −xφ(x),

h′(w)

h(w)
= −w − z

∗

α2
−
∫∞
−∞max{r, 0}φ

(
w−z∗
α

+ max{r, 0}
)
φ
(
z∗−αr√

1−α2

)
dr

α
∫∞
−∞ φ

(
w−z∗
α

+ max{r, 0}
)
φ
(
z∗−αr√

1−α2

)
dr

.

Applying this to the above equation leads to

∂h(H−1(a))

∂α
∝ −1 +

(
w − z∗
α

)2

+ (w − z∗) h
′(w)

h(w)

= −1 +
(z∗ − w)

α

∫∞
−∞ 1{r≥0}rφ

(
w−z∗
α

+ max{r, 0}
)
φ
(
z∗−αr√

1−α2

)
dr∫∞

−∞ φ
(
w−z∗
α

+ max{r, 0}
)
φ
(
z∗−αr√

1−α2

)
dr

.

The last expression is clearly negative if w > z∗. In addition, it converges to ∞ as w
tends to −∞. For w ≤ z∗, it decreases in w because (z∗ − w) falls in w and the density
φ((w − z∗)/α + max{r, 0}) is log-submodular in (w, r). Therefore, there exists w′(< z∗)
such that the expression is positive if and only if w < w′. The desired result follows from
the fact that w = H−1(a) is strictly increasing in a.

Proof of Proposition 7. Given that there is no outside option, the condition for the equilib-
rium price p∗ is given by

1

p∗ − c = n

∫
h(w)dH(w)n−1 = n

∫ 1

0

h(H−1(a))dan−1.

By the implicit function theorem,

∂p∗

∂α
= −(p∗ − c)2n

∫ 1

0

∂h(H−1(a))

∂α
dan−1.

The desired result follows by combining Lemma 3 above with the fact that for any real value
function γ : R → R, if

∫ 1

0
γ(a)dan ≤ 0 and there exists a′ such that γ(a) < 0 if and only if
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a > a′, then ∫ 1

0

γ(a)dan+1 =
n+ 1

n

∫ 1

0

γ(a)adan ≤ 0.

The last inequality is due to the fact that a is positive and strictly increasing and, therefore,
assigns more weight to the negative portion of γ(a) in the integral. The result follows by
letting γ(a) = ∂h(H−1(a))/∂α.

Proof of Proposition 8. Let p̄i = pi − ci be product i’s markup. We prove the claim by
contradiction — Assume p̄i < p̄j and show that seller i would deviate and choose p̄i ≥ p̄j .
Let Xi = −max 6̀=i{W` − c` − p̄`, u0}. Seller i’s demand is Di(p) = P (Wi − ci − p̄i >
−Xi) = P (Wi − ci + Xi > p̄i). Let Ri be the distribution function of the random variable
Wi − ci + Xi and ri be its density function. Then Di(p) = 1 − Ri(p̄i) and thus seller i’s
FOC is

1

p̄i
=
−∂Di(p)/∂p̄i

Di(p)
=

ri(p̄i)

1−Ri(p̄i)
.

To derive a contradiction, it suffices to show ri(p̄i)/[1 − Ri(p̄i)] ≤ rj(p̄j)/[1 − Rj(p̄j)]
whenever p̄i < p̄j . Recall that Di(p) is log-concave in p̄i and log-supermodular in (p̄i, p̄j)
by Theorem 1, thus ri(p̄i)/[1−Ri(p̄i)] rises in p̄i and falls in p̄j . Similarly, rj(p̄j)/[1−Rj(p̄j)]
rises in p̄j and falls in p̄i. Therefore, it suffice to show ri/[1 − Ri] ≤ rj/[1 − Rj] whenever
p̄i = p̄j . Fixing p̄i = p̄j and all other markups, if Wi − ci and Wj − cj have the same
distribution, then clearly ri/[1 − Ri] = rj/[1 − Rj]. To show ri/[1 − Ri] ≤ rj/[1 − Rj]
when Wi − ci dominates Wj − cj in the hazard rate and reverse hazard rate order, it suffices
to show (a) ri/[1−Ri] falls as Wi− ci rises in the hazard rate order and (b) rj/[1−Rj] rises
as Wi − ci rises in the reverse hazard rate order.

Proof of (a): First, note that ri/[1−Ri] falls if Wi− ci+Xi rises in the hazard rate order.
By Lemma 1.B.3. in SS,28 if the survivor function of Xi is log-concave, then Wi − ci + Xi

rises in the hazard rate order when Wi − ci rises in the hazard rate order. To see why the
survivor of Xi is log-concave, observe that

P (Xi > x) = P (max
j 6=i
{Wj − cj − p̄j, u0} < −x) =

∏
j 6=i

Hj(cj + p̄j − x)1{u0<−x}

log(P (Xi > x)) =
∑
j 6=i

log(Hj(cj + p̄j − x)) + log(1{u0<−x}) (9)

where 1{u0<−x} is an indicator function of the event {u0 < −x}. The left-hand side of the
second line is concave in x because each element in the right-hand side is. This proves (a).

28Lemma 1.B.3. in SS: Assume the random variables X and Y are such that X dominates Y in the hazard
rate order. If W is a random variable independent of X and Y and has log-concave survivor function, then
X + Z dominates Y + Z in the hazard rate order.
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Proof of (b): Similar to (a), Wj − cj + Xj falls in the hazard rate order as Xj falls in
the hazard rate order by Lemma 1.B.3. in SS because we have assumed the survivor of Wj

is log-concave. It remains to show that Xj falls in the hazard rate order when Wi − ci rises
in the reverse hazard rate order. As Wi − ci rises in the reverse hazard rate order, the ratio
hi(ci + p̄i−x)/Hi(ci + p̄i−x) rises for all x and thus the slope of log(Hi(ci + p̄i−x)) with
respect to x falls at all x. Hence the slope of log(P (Xj > x)) with respect to x falls for all
x by equation (9), which implies Xj falls in the hazard rate order. Altogether, Wj − cj +Xj

falls in the hazard rate order as Wi − ci rises in the reverse hazard rate order.

Proof of Corollary 2. We show Wj dominates Wi in the hazard rate order and the reverse
hazard rate order and then use Proposition 8 to prove the claim. Since the likelihood ratio
order implies both the hazard rate order and the reverse hazard rate order by Theorem 1.C.1.
in SS, it suffices to show Wj dominates Wi in the likelihood ratio order. Since Fi = Fj = F
and z∗i = z∗j = z∗, the likelihood ratio is

hj(w)

hi(w)
=

∫
f(w −min{z, z∗})gj(z)dz∫
f(w −min{z, z∗})gi(z)dz

=

∫
gj(z)

gi(z)

f(w −min{z, z∗})gi(z)∫
f(w −min{z, z∗})gi(z)dz

dz

The right-hand side can be interpreted as E[gj(X)/gi(X)] where the random variable X has
density f(w − min{x, z∗})gi(x). The random variable X rises in the first order stochastic
dominance sense in w because f is log-concave. The function gj(X)/gi(X) rises in X
because Zj dominates Zi in the likelihood ratio order. Therefore, hj(w)/hi(w) rises in w, or
equivalently Wj dominates Wi in the likelihood ratio order.

Lemma 5 below shows that Hi falls in the likelihood ratio order as si rises under the
premises of Corollary 3. Therefore, the conclusion of Corollary 3 follows from its premises
by (i) Lemma 5, (ii) the fact that the likelihood ratio order implies both the hazard and reverse
hazard rate order, and (iii) Proposition 8.

Lemma 5 If−f ′i(v) is positive and log-concave for all v > u−z∗i , then hi(w2)/hi(w1) falls
in si for all w2 > w1 ≥ u0.

Proof. Differentiating equation (3) yields

hi(w) =

∫ z∗i

−∞
−f ′i(w − z)[1−Gi(z)]dz.

To prove hi(w2)/hi(w1) falls in si for allw2 > w1 ≥ u0, it suffices to show (∂hi(w)/∂si)/hi(w)
falls in w. Recall that ∂z∗i /∂si = −1/[1−Gi(z

∗
i )]. Thus

∂hi(w)/∂si
hi(w)

= − f ′i(w − z∗i )∫ z∗i
−∞ f

′
i(w − z)[1−Gi(z)]dz

.
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Since we assume −f ′i(v) is positive and log-concave for all v > u0 − z∗, −f ′i(w− z) is log-
supermodular in (w, z) for all z ≤ z∗i and w ≥ u0. Therefore, the ratio f ′i(w − z∗i )/f ′i(w −
z) > 0 rises in w for all z ≤ z∗i and w ≥ u0, and thus [∂hi(w)/∂si]/hi(w) falls in w for
w ≥ u0. Equivalently, hi(w2)/hi(w1) falls in s for all w2 > w1 ≥ u0.

The following lemma is useful for proving Proposition 9.

Lemma 6 Assume F1 = F2 = F , G1 = G2 = G and s1 = s2 = s. The difference W2 −W1

grows less dispersive as the search cost s rises.

Proof. Consider W2 −W1 = V2 − V1 + min{Z2, z
∗} − min{Z1, z

∗}. By Theorem 3.B.7
in SS, W2 −W1 grows more dispersive if (a) V2 − V1 has log-concave density and (b) the
difference min{Z2, z

∗}−min{Z1, z
∗} grows more dispersive. Since we have assume V2 and

V1 have log-concave density, so does V2 − V1. Thus (a) is satisfied. To see (b), let T be the
distribution function of the absolute difference Y = |min{Z2, z

∗} −min{Z1, z
∗}|:

T (y) = P (y ≥ |min{Z2, z
∗} −min{Z1, z

∗}|) = 1− 2

∫
G(min{z, z∗} − y)dG(z).

By the definition of dispersive order, Y grows less dispersive in s if and only if its quan-
tile function T−1 grows flatter as s rises, namely ∂T−1(a)/∂a falls in s for all a ∈ (0, 1).
Equivalently, ∂T−1(a)/∂s = −[∂T (y)/∂s]/t(y) falls in y = T−1(a). Differentiating T with
respect to y and s yields

∂T−1(a)

∂s
= −∂T (y)/∂s

t(y)
=

−g(z∗ − y)∫
g(min{z, z∗} − y)dG(z)

.

The right-hand side falls in y by the log-concavity of g. Therefore, Y grows less dispersive
as s rises. Since Z1 and Z2 have the same distribution, the distribution of the random variable
min{Z2, z

∗} −min{Z1, z
∗} is symmetric around 0. Therefore, min{Z2, z

∗} −min{Z1, z
∗}

also grows less dispersive as s rises.29

Proof of Proposition 9. When n = 2 and u0 = −∞, the demand function is Di(p) =∫
1−Hi(w − pj + pi)dHj(w) for i = 1, 2. The first order condition for seller 1 and 2 are

p1−c1 =

∫
(1−H1(w − p2 + p1))dH2(w)∫

h1(w − p2 + p1)dH2(w)
and p2−c2 =

∫
(1−H2(w − p1 + p2))dH1(w)∫

h2(w − p1 + p2)dH1(w)
.

29 To see this, let T̃ be the distribution function of min{Z2, z
∗} − min{Z1, z

∗}. Since the distribution of
min{Z2, z

∗}−min{Z1, z
∗} is symmetric around 0, T̃ (y) = [1−T (−y)]/2 for y < 0 and T̃ (y) = [1+T (y)]/2

for y ≥ 0. Thus T̃−1(a) = −T−1(1− 2a) for a < 1/2 and T̃−1(a) = T−1(2a− 1) for a ≥ 1/2. Recall that a
random variable grows more dispersed if and only if its quantile function grows steeper at all quantile. Clearly,
∂T̃−1(a)/∂a rises ∀a ∈ (0, 1) if ∂T−1(a)/∂a rises ∀a ∈ (0, 1).
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Define the price difference ∆ ≡ p2 − p1. Seller 1 and 2’s first order conditions imply

c2 − c1 −∆ =

∫
(1−H1(w −∆))dH2(w)∫

h1(w −∆)dH2(w)
−
∫

(1−H2(w + ∆))dH1(w)∫
h2(w + ∆)dH1(w)

. (10)

Easily, the left-hand side falls in ∆. The right-hand side rises in ∆ by the log-concavity of
the demand functions. Therefore, equation (10) has a unique solution for ∆.

LetQ and q be the distribution function and the density function of the absolute difference
|W2 −W1|. Since W1 and W2 have the same distribution, H1 = H2 = H . The probability
P (|W2 −W1| ≥ ∆) = 2

∫
[1−H(w + ∆)]dH(w). Hence

Q(∆) = 1− 2

∫
(1−H(w + ∆))dH(w) and q(∆) = 2

∫
h(w + ∆)dH(w). (11)

Since D1(p) = 1 − D2(p) and Q(∆) = 1 − 2D2(p), Q(p2 − p1) = D1(p) − D2(p).
Therefore, ∂D1/∂p1 = ∂D2/∂p2 = q(p2 − p1)/2. Thus, equation (10) can be written as

c2 − c1 −∆ =
2Q(∆)

q(∆)
⇐⇒ c2 − c1 −Q−1(a) =

2a

q(Q−1(a))
(12)

where the second equation applies a change of variable a = Q(∆). Since c2−c1−p2+p1 ≥ 0
by Corollary 1, Q(∆) ≥ 0 in equilibrium. This implies D1(p) ≥ D2(p) and thus p1 ≤ p2.

Since Q(∆)/q(∆) rises in ∆ by the log-concavity of the demand functions, the fraction
a/q(Q−1(a)) in equation (12) rises in a. AsH grows more dispersive, the absolute difference
|W2 −W1| rises in the first order stochastic dominance sense by Theorem 3.B.31 in SS and
grows more dispersive by Lemma 6. Thus,Q−1(a) rises and q(Q−1(a)) falls for all a ∈ [0, 1].
Since the left-hand side falls and the right-hand side rises in a, the solution of a falls as H
grows more dispersive. Since a ≡ Q(p2 − p1) = D1(p)−D2(p) and D1(p) + D2(p) = 1,
D2(p) rises and D1(p) falls as H grows more dispersive.

Proof of Proposition 10 . Since pi − ci = Di(p)/[∂Di(p)/∂pi] and ∂D1/∂p = ∂D1/∂p,
we have (p2− c2)/(p1− c1) = D2(p)/D1(p). Therefore, (p2− c2)/(p1− c1) decreases in s
by Proposition 9.

Next, recall from equation (12) that the price difference ∆ = p2 − p1 solves

c2 − c1 −∆ =
2Q(∆)

q(∆)

and Q(∆)/2q(∆) rises in ∆ by the log-concavity of the demand functions. Thus, there is a
unique solution for ∆, call it ∆∗. Clearly ∆∗ rises in c2 − c1 by the displayed equation. We
have seen in the last part of the proof of Proposition 9 that Q(∆) rises in s for all ∆ ≥ 0.
Therefore, if ∂q(∆)/∂s ≤ 0 at ∆ = ∆∗, then ∂∆∗/∂s ≤ 0. Therefore, to prove ∂∆∗/∂s ≤ 0
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when c2 − c1 is large, it suffices to show ∂q(∆)/∂s|∆=∆∗ ≤ 0 when c2 − c1 is large. Since
c2 − c1 affects the derivative only through ∆∗ and ∆∗ rises in c2 − c1, it suffices to prove
∂q(∆)/∂s ≤ 0 when ∆ is large.

To this end, let f̃(∆) ≡
∫
f(v)f(∆ + v)dv. Then by equation (11)

q(∆)/2 =

∫ ∫
f̃(min{z, z∗} −min{z̃, z∗} −∆)g(z)g(z̃)dz̃dz.

Differentiate with respected to s and uses ∂z∗/∂s = −1/[1−G(z∗)], then

∂q(∆)

∂s
=2

∫ z∗

−∞
[f̃ ′(z − z∗ −∆)− f̃ ′(z∗ − z −∆)]g(z)dz

=2

∫ ∞
0

[f̃ ′(−r −∆)− f̃ ′(r −∆)]g(−r + z∗)dr

This expression is negative when ∆ is large because

lim
∆→∞

[f̃ ′(−r −∆)− f̃ ′(r −∆)] = lim
∆→∞

[f̃ ′(∆− r)− f̃ ′(∆ + r)]

= lim
∆→∞

∫
f(v)[f ′(∆− r + v)− f ′(∆ + r + v)]dv

=

∫
f(v) lim

∆→∞
[f ′(∆− r + v)− f ′(∆ + r + v)]dv ≤ 0.

The first equation is true because f̃ ′(v) = −f̃ ′(−v) by the definition of f̃ . The second
equation uses f̃(∆) ≡

∫
f(v)f(∆ + v)dv. The third equation is by the Dominated Conver-

gence Theorem, as the absolute value of the integrand is bounded. The inequality is true as
f ′(∆− r + v)− f ′(∆ + r + v) ≤ 0 when ∆ is large, because:

lim
∆→∞

[
1− f ′(∆ + r + v)

f ′(∆− r + v)

]
f ′(∆− r+ v) = lim

∆→∞

[
1− f(∆ + r + v)

f(∆− r + v)

]
f ′(∆− r+ v) ≤ 0.

The equation is by L’Hospital’s rule. Since f(v) falls in v when v is big, the fraction f(∆ +
r+v)/f(∆−r+v) ≤ 1 when ∆ is big. Moreover f ′(∆−r+v) ≤ 0 if ∆ is big. Altogether
the inequality is true.
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