
GRESHAM’S LAW OF MODEL AVERAGING

IN-KOO CHO AND KENNETH KASA

Abstract. A decision maker doubts the stationarity of his environment. In response,
he uses two models, one with time-varying parameters, and another with constant pa-
rameters. Forecasts are then based on a Bayesian Model Averaging strategy, which mixes
forecasts from the two models. In reality, structural parameters are constant, but the
(unknown) true model features expectational feedback, which the reduced form models
neglect. This feedback permits fears of parameter instability to become self-confirming.
Within the context of a standard linear present value asset pricing model, we use the tools
of large deviations theory to show that even though the constant parameter model would
converge to the (constant parameter) Rational Expectations Equilibrium if considered
in isolation, the mere presence of an unstable alternative drives it out of consideration.

JEL Classification Numbers: C63, D84

1. Introduction

2. Baseline model

2.1. Rational Expectations. Consider the following workhorse asset pricing model, in
which an asset price at time t, pt, is determined according to

pt = δzt + αEtpt+1 + σεt (2.1)

where zt denotes observed fundamentals (e.g., dividends), and where α ∈ (0, 1) is a (con-
stant) discount rate, which determines the strength of expectational feedback. Empiri-
cally, it is close to one. The εt shock is standard Gaussian white noise. Fundamentals are
assumed to evolve according to the AR(1) process

zt = ρzt−1 + σzεz,t (2.2)

for ρ ∈ (0, 1). The fundamentals shock, εz,t, is standard Gaussian white noise, and is
orthogonal to the price shock εt. The unique stationary rational expectations equilibrium
is

pt =
δ

1− αρ
zt + σεt. (2.3)
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Along the equilibrium path, the dynamics of pt can only be explained by the dynamics of
fundamentals, zt. Any excess volatility of pt over the volatility of zt must be soaked-up
by the exogenous shock εt.

It is well known that Rational Expectations versions of this kind of model cannot explain
observed asset price volatility (Shiller (1989)). We explain this volatility by assuming
that agents must learn about their environment. The notion that learning might help to
explain asset price volatility is hardly new (see, e.g., Timmermann (1996) for an early
and influential example). However, early examples were based on least-squares learning,
which exhibited asymptotic convergence to the Rational Expectations Equilibrium. This
would be fine if volatility appeared to dissipate over time, but there is no evidence for this.
In response, a more recent literature has assumed that agents use so-called constant gain
learning, which discounts old data. This keeps learning alive.1

We allow the agent to effectively employ a time-varying gain, which is not restricted to
be non-zero. We do this by supposing that agents average between a constant gain and
a decreasing gain. Evolution of the model probability weights delivers a state-dependent
gain. In some respects, our analysis resembles the gain-switching algorithm of Marcet and
Nicolini (2003). However, they require the agent to commit to one or the other, whereas
we permit the agent to be a Bayesian, and average between the two.

2.2. Learning with a correct model. Suppose an agent knows the fundamentals pro-
cess in (2.2), but does not know the structural price equation in (2.1). Instead, the agent
postulates the following state-space model for prices

pt = βtzt + σεt (2.4)

βt = β (2.5)

for some β. Note that the Rational Expectations equilibrium is a special case of this, with

β =
δ

1− αρ
.

For now, suppose the agent adopts the dogmatic prior that parameters are constant.

M0 : βt = β ∀t ≥ 1.

Let βt(0) be the conditional mean and Σt(0) be the conditional variance of the posterior
belief about the unknown β. Given this belief that the true model is M0, (βt(0),Σt(0))
evolves according to Kalman filter algorithm:

βt+1(0) = βt(0) +

(
Σt(0)

σ2 +Σt(0)z2t

)
zt(pt − βt(0)zt) (2.6)

Σt+1(0) = Σt(0) − (ztΣt(0))
2

σ2 +Σt(0)z2t
(2.7)

where we adopt the common assumption that βt is based on time-(t − 1) information,
while the time-t forecast of pt+1, ρβtzt, can incorporate the latest zt observation. This

1For example, Benhabib and Dave (2014) show that constant gain learning can generate persistent excess
volatility, and can explain why asset prices have fat-tailed distributions even when the distribution of
fundamentals is thin-tailed.
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assumption is made to avoid simultaneity between beliefs and observations.2 The process,
Σt, represents the agent’s evolving estimate of the variance of βt.

Proposition 2.1. Given his beliefs that parameters are constant, Σt converges to zero at
rate t−1, and

βt → δ

1− αρ
with probability 1.

Proof. See Evans, Honkapohja, Sargent, and Williams (2013). ��
While the agent learns the Rational Expectations equilibrium, a serious problem with

M0 is that it fails to explain the data. Since learning is transitory, so is any learning
induced parameter instability. Although there is some evidence in favor of a “Great Mod-
eration” in the volatility of macroeconomic aggregates (at least until the recent financial
crisis), there is little or no evidence for such moderation in asset markets. As a result,
more recent work assumes agents view parameter instability as a permanent feature of the
environment.

2.3. Learning with a wrong model. Now assume the agent has a different perceive
law of motion, formulated by the state space model:

pt = βtzt + σεt (2.8)

βt = βt−1 + σvvt (2.9)

where vt is standard Gaussian white noise with variance σ2
v , which is orthogonal to all other

variables. In contrast to M0, the agent is now convinced that parameters are time-varying,
which can be expressed as the parameter restriction

M1 : σ2
v > 0.

A serious specification error here is that the agent does not entertain the possibility that
parameters might be constant. This prevents him from ever learning the Rational Expec-
tations equilibrium (Bullard (1992)).

The belief that σ2
v > 0 produces only a minor change in the Kalman filtering algorithm

in (2.6) and (2.7). Let βt(1) and Σt(1) be the mean and the variance of the posterior
distribution about βt conditioned on information at t − 1, which is computed from a
Gaussian prior. The evolution of βt(1) and Σt(1) is dictated by the new Kalman filter:

βt+1(1) = βt(1) +

(
Σt(1)

σ2 +Σt(1)z
2
t

)
zt(pt − βt(1)zt) (2.10)

Σt+1(1) = Σt(1) − (ztΣt(1))
2

σ2 +Σt(1)z2t
+ σ2

v (2.11)

The additional σ2
v term causes Σt(1) to now converge to a strictly positive limit, Σ̄ > 0.

As noted by Benveniste, Metivier, and Priouret (1990), if we assume σ2
v � σ2, which

we will do in what follows, we can use the approximation σ2 + Σtz
2
t ≈ σ2 in the above

formulas (Σt is small relative to σ2 and scales inversely with z2t ). The Riccati equation in

2See Evans and Honkapohja (2001) for further discussion.



4 IN-KOO CHO AND KENNETH KASA

(2.11) then delivers the following approximation for the steady state variance of the state,

Σ̄ ≈ σ · σvM−1/2
z , where Mz = E(z2t ) denotes the second moment of the fundamentals

process. In addition, if we further assume that priors about parameter drift take the
particular form, σ2

v = γσ2M−1
z , then the steady state Kalman filter takes the form of the

following (discounted) recursive least-squares algorithm

βt+1(1) = βt(1) + γM−1
z zt(pt − βt(1)zt) (2.12)

where priors about parameter instability are now captured by the so-called gain parameter,
γ. If the agent thinks parameters are more unstable, he will use a larger gain.

An important, yet subtle, question is whether the agent’s beliefs about parameter insta-
bility could become self-confirming (Sargent (2008)) due to the presence of expectational
feedback. It is useful to divide this question into two parts, one related to the innovation
variance, σ2

v , and the other to the random walk nature of the dynamics.
As noted above, the innovation variance is captured by the gain parameter. Typically

the gain is treated as a free parameter, and is calibrated to match some feature of the
data. However, as noted by Sargent (1999), the gain in self-referential models should
not be treated as a free parameter. It is an equilibrium object. This is because the
optimal gain depends on the volatility of the data, but at the same time, the volatility
of the data depends on the gain. As in a Rational Expectation Equilbrium, we have a
fixed point problem. In a prescient paper, Evans and Honkapohja (1993) addressed the
problem of computing this fixed point. They posed the problem as one of computing
a Nash equilibrium. Under appropriate stability conditions, one can then compute the
equilibrium gain by iterating on a best response mapping as usual. Later in Section 5,
we exploit this idea to study the stability of our more complex Bayesian Model Averaging
algorithm.

To address the second issue we need to study the dynamics of the agent’s parameter
estimation algorithm in (2.12). After substituting in the actual price process, (2.12) can
be written as

βt+1(1) = βt(1) + γM−1
z zt {[δ + (αρ− 1)βt(1)]zt + σεt} (2.13)

Proposition 2.2. ∀σ2
v > 0, (2.13) has a stationary distribution of βt(1). As σ2

v → 0,
βt(1) converges weakly to the solution of the following diffusion process

dβ = (1− αρ)

[
δ

1− αρ
− β

]
dτ +

√
γ

Mz
σdWτ (2.14)

where dWτ is the standard Wiener process.

Proof. See Kushner and Yin (1997). ��
(2.14) is an Ornstein-Uhlenbeck process, which generates a stationary Gaussian distri-

bution centered on the Rational Expectations equilibrium, β = δ/(1−αρ). The innovation
variance is consistent with the agent’s priors, since γ2σ2M−1

z = σ2
v . However, dβ is auto-

correlated. That is, β does not follow a random walk ∀σv > 0. Strictly speaking then, the
agent’s priors are misspecified.

However, traditional definitions of self-confirming equilibria presume agents have access
to infinite samples. In practice, agents only have access to finite samples. Given this, we



GRESHAM’S LAW OF MODEL AVERAGING 5

can ask whether the agent could statistically reject his prior. In the language of Hansen
and Sargent (2008), we can compute the detection error probability. The detection that
his prior is misspecified will be extremely difficult when the drift in (2.14) is small. This
is the case when σv > 0 is small.

Although our agents behave as if they are Bayesian, they are in fact boundedly rational,
in the sense that they cannot detect the fact that their beliefs are misspecified, based upon
a finite number of samples. This is the same sense of bounded rationality in a typical model
of learning in macroeconomics (e.g., Adam, Marcet, and Nicolini (2016)). We introduce an
element of bounded rationality, by allowing agents’ beliefs to be misspecified. However, as
in Esponda and Pouzo (2015), we impose discipline by requiring beliefs to be statistically
confirmed in the limit. As σv → 0, the beliefs of the agents converge to a Berk-Nash
equilibrium (Esponda and Pouzo (2015)), which may differ from a Nash equilibrium, as
will be shown in the ensuing analysis.

3. Model averaging

Dogmatic priors (about anything) are rarely a good idea. So now suppose agents hedge
their bets by entertaining the possibility that parameters are constant. Forecasts are then
constructed using a traditional Bayesian Model Averaging (BMA) strategy. This strategy
convexifies the model space. Let us assume that the competing models are in the mind
of a single agent. This is the interpretation in Evans, Honkapohja, Sargent, and Williams
(2013), which we believe a reasonable description of the behavior of a decision maker of a
central bank.3

Let πt denote the current probability assigned by the decision maker to M1 (the TVP
model). Recall that βt(i) denote the current parameter estimate for Mi ∀i ∈ {0, 1}. The
policymaker’s time-t forecast becomes

Etpt+1 = ρ[πtβt(1) + (1− πt)βt(0)]zt (3.15)

Then, the actual law of motion for pt is

pt = (δ + ρ(πtβt(1) + (1− πt)βt(0))) zt + σεt. (3.16)

3An alternative way to think about model averaging is from a more decentralized perspective, where
multiple agents construct and revise models, which are then marketed to a single decision maker, who does
not himself construct models. This is arguably more descriptive of actual macroeconomic forecasting, and
model averaging emerges quite naturally in this case. We are going to consider both possibilities, mainly
for pedagogical reasons. This is because the first approach is easier to formalize, since it just involves
specifying the beliefs of a single agent. In contrast, with multiple agents and multiple models, one must
specify how agents perceive the forecasting efforts of other agents. If agents are aware that forecasts are
being used by a policymaker, whose actions potentially influence the data-generating process, they must
then form beliefs over other forecasters’ beliefs.
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It is useful to collect the formulas that dictate the evolution of the endogenous variables:
(πt, βt(0),Σt(0), βt(1),Σt(1)).

βt+1(0) = βt(0) +

(
Σt(0)

σ2 +Σt(0)z2t

)
zt(pt − βt(0)zt) (3.17)

Σt+1(0) = Σt(0) − (ztΣt(0))
2

σ2 +Σt(0)z
2
t

(3.18)

βt+1(1) = βt(1) +

(
Σt(1)

σ2 +Σt(1)z
2
t

)
zt(pt − βt(1)zt) (3.19)

Σt+1(1) = Σt(1) − (ztΣt(1))
2

σ2 +Σt(1)z2t
+ σ2

v (3.20)

1

πt+1
− 1 =

At+1(0)

At+1(1)

(
1

πt
− 1

)
(3.21)

where

At(i) =
1√

2π(σ2 +Σt(i)z2t )
exp

[
− (pt − βt(i)zt)

2

2π(σ2 +Σt(i)z2t )

]
(3.22)

∀i, t.
As usual, we suppose the policymaker neglects the feedback from his forecast to the

actual price process. Note that the only difference between the two parameter update
equations arises from their Kalman gain which is determined by the size of Σt(i). With
a single forecaster who neglects feedback, these two gain sequences are independent of
model averaging. Our main interest is the asymptotic properties of (πt, βt(0), βt(1)) with
respect to t, for a given small σv > 0, dictated by a system of equations (3.16)-(3.21).

Proposition 3.1. ∀σv > 0,

lim
t→∞ βt(0) =

δ

1− αρ

with probability 1, and πt → {0, 1} with probability 1, as t → ∞. As t → ∞, the distribu-
tion of βt(1) converges to a stationary distribution, whose mean is δ

1−αρ . If σv → 0, the

stationary distribution of βt(1) weakly converges to δ
1−αρ .

4

Proof. See Appendix B. ��
4We use the convergence results of stochastic approximation algorithms (Kushner and Yin (1997)) and its
large deviation properties (Dupuis and Kushner (1987)). All analysis requires that the stochastic processes
are contained in a compact convex sets. Since we assume Gaussian shocks, βt(i) has a full support over R+.
Following Kushner and Yin (1997), we assume the projection facility. ∃B > δ

1−αρ
so that βt(i) ∈ [−B,B]

for i = 0, 1. When βt(i) �∈ [−B,B], we use a projection facility (Kushner and Yin (1997)) to push βt(i)
back into [−B,B]. Kushner and Yin (1997) shows that the asymptotic properties of (πt, βt(0), βt(1))
are not affected by the projection facility, as long as we ensure that [−B,B] contains the stable point of
βt(i). Because the Gaussian distribution has a thin tail, Dupuis and Kushner (1987) show that the large
deviation properties of (πt, βt(0), βt(1)) is not affected by the projection facility. For the rest of the proof,
we presume that (πt, βt(0), βt(1)) ∈ [0, 1]× [−B,B]× [−B,B]. To simplify notation, however, we suppress
the projection facility.
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The policy maker eventually learns the Rational Expectation value of coefficient β =
δ

1−αρ . However, we cannot conclude that the policy maker learns the Rational Expectations

equilibrium, unless πt → 0. If πt → 1, then the market price pt entails significantly more
volatility than in the Rational Expectations equilibrium. Thus, a fundamental question is
where πt stays most of time between two locally stable points, 0 and 1, of πt.

For fixed T , σv and ε > 0, define

T1 = #{t ≤ T | 1− ε < πt}
as the number of periods during which πt is within a small neighborhood of 1. Since 0
and 1 are the only two locally stable points, πt stays in the neighborhood of 0 for most of
the remaining T − T1 periods.

Theorem 3.2. ∀ε > 0,

lim
σv→0

lim
T→∞

E
T1

T
= 1

Proof. See Appendix C. ��
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Figure 1: Probability of convergence to π = 1 after 2000 periods. As σv → 0, the probability converges to
1.

The TVP model asymptotically dominates the constant parameter model, because it is
better able to react to a large forecasting error. Suppose that πt � 0. By the consistency
of Bayesian estimator, βt(0) generates only a small forecasting error with probability close
to 1. However, with a vanishingly small probability, a large forecasting error occurs. In
response to a large forecasting error, M1 adjusts βt(1) at a much faster rate than M0

adjusts βt(0). As a result, M1’s forecast starts to improve faster, and πt increases. More
importantly, as πt increases, the forecast ofM1 has more influence on the actual price, thus
injecting more noise to the actual price process. If the data generating process becomes
noisier, M1 responds much better than M0, which again increases πt, until πt reaches 1.

Although M1 is misspecified in the sense that it contains a fictitious variable without
any link to fundamentals, this equilibrium must be learned via some adaptive process.
What our result shows is that this learning process can be subverted by the mere presence
of misspecified alternatives, even when the correctly specified model would converge if
considered in isolation. This result therefore echoes the conclusions of Sargent (1993), who
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notes that adaptive learning models often need a lot of “prompting” before they converge.
Elimination of misspecified alternatives can be interpreted as a form of prompting.

4. Averaging vs. Selection

Theorem 3.2 raises questions about the wisdom of using model averaging, once we
entertain the possibility that models are misspecified and the data are endogenous. The
fundamental problem is that model averaging forces models to compete with each other.
The presence of TVP model can effectively change the rules of the game in its own favor, by
inducing volatility that puts the constant parameters model at a competitive disadvantage.

Cho and Kasa (2015) proposed an alternative learning procedure for discriminating
among multiple candidate models, which we call model validation. The idea behind model
validation is to not compare models, but rather to test them against an externally im-
posed standard of statistical adequacy. If a currently employed model appears to be well
specified, it continues to be used, even though some alternative model might be lurking
in the background, which could statistically outperform it if given the chance. If a model
is rejected, we assume that another model is randomly selected, with weights determined
by historical relative performance.

In order to make the paper self-contained, let us describe the validation process of M0

and M1, following Cho and Kasa (2015). We can write the updating formula for βt(i) as

βt(i) = βt−1(i) + ηt(i)Λt(i) (4.23)

Λt(i) = zt−1[pt − ztβt−1(i)] (4.24)

where ηt(i) is the Kalman gain of Mi:

ηt(i) =
Σt(i)

σ2 + zt−1Σt(i)
.

Let st ∈ {0, 1} be the model used by the policymaker, so that the actual price in period t
is determined according to

pt = (δ + ρ(stβt(1) + (1− st)βt(0))) zt + σεt.

Models are tested using a recursive Lagrangean Multiplier (LM) test statistic, θt(i):

θt(i) = θt−1(i) + ηαt (i)

[
Λ2
t

Ωt(i)
− θit−1

]
(4.25)

Ωt(i) = Ωt−1(i) + ηαt (i)[Λ
2
t (i)− Ωt−1(i)] (4.26)

where α ∈ (0, 1] is chosen to speed up the validation process. Hence, θt(i) is just a
recursively estimated χ2 statistic with 1 degree of freedom. We choose θ as the test
threshold. The policy maker continues to use the same model he used in period t− 1, as
long as the model passes the LM test:

st = st−1

if Mst−1 passes the test, by satisfying θt(st−1) < θ. Otherwise, st = 1 with probability

one half, and st = 0 with probability one half.5

5The random selection rule here does not affect the long run distribution of st, as shown in Cho and Kasa
(2015).
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Cho and Kasa (2015) demonstrated that in the long run, the policy maker chooses a
model which is the most difficult to reject. In our case, M1 and M0 are essentially the
same model, except for the size of the Kalman gain. However, as σv → 0, the difference of
the two models vanishes, which gives an equal chance for both models to be used in the
long run.

Proposition 4.1. Define

T v
1 = #{t ≤ T | st = 1}

as the number of periods when the policy maker uses M1 in the first T rounds, under
validation dynamics. Then,

lim
σv→0

lim
T→∞

E
T v
1

T
=

1

2
.

Proof. See Cho and Kasa (2015). ��
The critical difference between the model averaging dynamics and the validation dy-

namics is that a single model is generating the data at any point of time in the validation
dynamics, while both models influence the data generating process in the model averaging
process. Even in the neighborhood of πt = 0, in which M0 is generating the data, any
small deviation from πt = 0 opens up the gap which M1 can influence the data, which
in turn allows to increase πt by injecting more noise. On the contrary, in the validation
dynamics, only a significantly large the forecasting error by M0 can trigger to switch from
M0 to M1. Since the forecasting error of M0 remains small most of time in the long run,
M0 has the equal chance of being used as M1.
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Figure 2: The horizontal axis is the values of σv, and the vertical axis is the proportion of time M1 is
selected. The proportion of time is close to 0, if σv = 0.0005, but converges to 0.5 as σv → 0.

5. Stability

Our Gresham’s Law result casts doubt on the ability of agents to adaptively learn a
constant parameters Rational Expectations equilibrium, unless they dogmatically believe
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that this is the only possible equilibrium. Here we investigate the robustness of this result
to an alternative specification of the model space.

Normally, with exogenous data, it would make no difference whether a parameter known
to lie in some interval is estimated by mixing between the two extremes, or by estimating
it directly. With endogenous data, however, this could make a difference. What if the
agent convexified the model space by estimating σ2

v directly, via some sort of nonlinear
adaptive filtering algorithm (e.g., Mehra (1972)), or perhaps by estimating a time-varying
gain instead, via an adaptive step-size algorithm (Kushner and Yang (1995))? Although
π = 1 is locally stable against nonlocal alternative models, would it also be stable against
local alternatives?

In this case, there is no model averaging. There is just one model, with σ2
v viewed as

an unknown parameter to be estimated. To address the stability question we exploit the
connection discussed in section 2.3 between σ2

v and the steady-state gain, γ. Because the
data are endogenous, we must employ the macroeconomist’s ‘big K, little k’ trick, which
in our case we refer to as ‘big Γ, little γ’. That is, our stability question can be posed
as follows: Given that data are generated according to the aggregate gain parameter Γ,
would an individual agent have an incentive to use a different gain, γ? If not, then γ = Γ
is a Nash equilibrium gain, and the associated σ2

v > 0 represents self-confirming parameter
instability. The stability question can then be addressed by checking the (local) stability
of the best response map, γ = B(Γ), at the self-confirming equilibrium.

To simplify the analysis, we consider a special case, where zt = 1 (i.e., ρ = 1 and
σz = 0). The true model becomes

pt = δ + αEtpt+1 + σεt (5.27)

and the agent’s perceived model becomes

pt = βt + σεt (5.28)

βt = βt−1 + σvvt (5.29)

where σv is now considered to be an unknown parameter. Note that if σ2
v > 0, the agent’s

model is misspecified. As in Sargent (1999), the agent uses a random walk to approximate
a constant mean. (5.28) and (5.29) represent an example of ‘random walk plus noise’
model of Muth (1960), in which constant gain updating is optimal. To see this, write pt
as the following ARMA(1,1) process

pt = pt−1 + εt − (1− Γ)εt−1 Γ =

√
4s+ s2 − s

2
σ2
ε =

σ2

1− Γ
(5.30)

where s = σ2
v/σ

2 is the signal-to-noise ratio. Muth (1960) showed that optimal price
forecasts, Etpt+1 ≡ p̂t+1, evolve according to the constant gain algorithm

p̂t+1 = p̂t + Γ(pt − p̂t) (5.31)

This implies that the optimal forecast of next period’s price is just a geometrically dis-
tributed average of current and past prices,

p̂t+1 =

(
Γ

1− (1− Γ)L

)
pt (5.32)
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Substituting this into the true model in eq. (5.27) yields the actual price process as a
function of aggregate beliefs

pt =
δ

1− α
+

(
1− (1− Γ)L

1− ( 1−Γ
1−αΓ )L

)
εt

1− αΓ
(5.33)

≡ p̄+ f(L; Γ)ε̃t

Now for the ‘big Γ, little γ’ trick. Suppose prices evolve according eq. (5.33), and that an
individual agent has the perceived model

pt =
1− (1− γ)L

1− L
ut (5.34)

≡ h(L; γ)ut

What would be the agent’s optimal gain? The solution of this problem defines a best
response map, γ = B(Γ), and a fixed point of this mapping, γ = B(γ), defines a Nash
equilibrium gain. Note that the agent’s model is misspecified, since it omits the constant
that appears in the actual prices process in eq. (5.33). The agent needs to use γ to
compromise between tracking the dynamics generated by Γ > 0, and fitting the omitted
constant, p̄. This compromise is optimally resolved by minimizing the Kullback-Leibler
(KLIC) distance between equations (5.33) and (5.34)6

γ∗ = B(Γ) = argminγ
{
E[h(L; γ)−1(p̄+ f(L; Γ)ε̃t)]

2
}

= argminγ

{
1

2π

∫ π

−π
[logH(ω; γ) + σ2

ε̃H(ω; γ)−1F (ω; Γ) + p̄2H(0)−1]dω

}

where F (ω) = f(e−iω)f(eiω) and H(ω) = h(e−iω)h(eiω) are the spectral densities of f(L)
in eq. (5.33) and h(L) in eq. (5.34). Although this problem cannot be solved with pencil
and paper, it is easily solved numerically. Figure 3 plots the best response map using the
same benchmark parameter values as before (except, of course, ρ = 1 now)7

Not surprisingly, the agent’s optimal gain increases when the external environment
becomes more volatile, i.e., as Γ increases. What is more interesting is that the slope of
the best response mapping is less than one. This means the equilibrium gain is stable. If
agents believe that parameters are unstable, no single agent can do better by thinking they
are less unstable. Figure 3 suggests that the best response map intersects the 45 degree
line somewhere in the interval (.10, .15). This suggests that the value of σ2

v used for the
benchmark TVP model in section 4 was a little too small, since it implied a steady-state
gain of .072.

6See Sargent (1999, chpt. 6) for another example of this problem.
7Note, the unit root in the perceived model in eq. (5.34) implies that its spectral density is not well defined.
(It is infinite at ω = 0). In the numerical calculations, we approximate by setting (1 − L) = (1 − ηL),
where η = .995. This means that our frequency domain objective is ill-equipped to find the degenerate
fixed point where γ = Γ = 0. When this is the case, the true model exhibits i.i.d fluctuations around a
mean of δ/(1−α), while the agent’s perceived model exhibits i.i.d fluctuations around a mean of zero. The
only difference between these two processes occurs at frequency zero, which is only being approximated
here.
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Figure 3: Best Response Mapping γ = B(Γ)

6. Conclusion

Parameter instability is a fact of life for applied econometricians. This paper has pro-
posed one explanation for why this might be. We show that if econometric models are
used in a less than fully understood self-referential environment, parameter instability can
become a self-confirming equilibrium. Parameter estimates are unstable simply because
model-builders think they might be unstable.

Clearly, this sort of volatility trap is an undesirable state of affairs, which raises questions
about how it could be avoided. There are two main possibilities. First, not surprisingly,
better theory would produce better outcomes. The agents here suffer bad outcomes be-
cause they do not fully understand their environment. If they knew the true model in
eq. (2.1), they would know that data are endogenous, and would avoid reacting to their
own shadows. They would simply estimate a constant parameters reduced form model. A
second, and arguably more realistic possibility, is to devise econometric procedures that
are more robust to misspecified endogeneity. In Cho and Kasa (2015), we argue that in
this sort of environment, model selection might actually be preferable to model averaging.
If agents selected either a constant or TVP model based on sequential application of a
specification or hypothesis test, the constant parameter model would prevail, as it would
no longer have to compete with the TVP model.
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Appendix A. Preliminaries

A.1. Dynamics of βt(0) and βt(1). To simplify notation, let us define the Kalman gain as

λt(i) =
Σt(i)

σ2 +Σt(i)z2t

for i = 1, 2. Define ∀τ > 0

mi(τ ) = inf{K |
K∑

k=1

λk(i) > τ}

as the first time that
∑K

k=1 λk(i) exceeds τ . Since λk(i) > 0 and
∑K

k=1 λk(i) → ∞ with probability 1,
mi(τ ) is well defined with probability 1. Similarly, define

τK(i) =

K∑
k=1

λk(i)

as the size of the sum
∑K

k=1 λk(i) after K rounds. ∀K, ∀τ , consider m(τK(i) + τ )−K, which the number
of rounds necessary for

∑
λk(i) to move from τK to τK(i)+ τ . One can interpret m(τK(i)+ τ )−K as the

inverse of the speed of the evolution of the associated recursive formula: if the speed of the evolution is
slow, then it takes many periods to move from τK to τK + τ . We are particularly interested in the speed
of evolution when K is large.

To compare the speed of evolution, we calculate

lim
K→∞

m(τK(1) + τ )−K

m(τK(0) + τ )−K
.

If the ratio converges to 0, we say that βt(0) evolves at a slower time scale than βt(1).
Given σv > 0,

lim
K→∞

m(τK(1) + τ )−K

remains finite with probability 1. On the other hand,

lim
K→∞

m(τK(0) + τ )−K = ∞.

Thus, βt(0) evolves at a slower time scale than βt(1). If so, the right way to take the limit is

lim
σv→0

lim
t→∞

because in order to move τ distance for a large K, βt(0) needs infinitely many more observations than
βt(1). Based upon the order of taking limits, one can regard our exercise as calculating the long run
dynamics of (πt, βt(0), βt(1)) for an arbitrarily small σv > 0.

In order to move from τK(1) to τK(1) + τ , λk(1) needs only a finite number of observations, K1(τ ).
But,

lim
K→∞

K+K1(τ)∑
k=K

λk(0) = 0.

As a result, ∀τ > 0,

lim
K→∞

βK+K1(τ)(0) − βK(0) = 0

with probability 1. Therefore, in investigating the asymptotic dynamics of βt(1), we treat βt(0) as a fixed
parameter. By the same token, when we investigate the asymptotic properties of βt(0), we assume that
βt(1) has already reached its own stationary distribution (which is parameterized by βt(0)).
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A.2. Dynamics of πt. To study the dynamics of πt it is useful to rewrite (3.21) as follows

πt+1 = πt + πt(1− πt)

[
At+1(1)/At+1(0)− 1

1 + πt(At+1(1)/At+1(0)− 1)

]
(A.35)

which has the familiar form of a discrete-time replicator equation, with a stochastic, state-dependent,
fitness function determined by the likelihood ratio. Equation (A.35) reveals a lot about the model aver-
aging dynamics. First, it is clear that the boundary points π = {0, 1} are trivially stable fixed points,
since they are absorbing. Second, we can also see that there could be an interior fixed point, where
E(At+1(1)/At+1(0)) = 1. However, we shall also see there that this fixed point is unstable. So we know
already that πt will spend most of its time near the boundary points.

Proposition A.1. As long as the likelihoods of M0 and M1 have full support, the boundary points
πt = {0, 1} are unattainable in finite time.

Proof. With two full support probability distributions, you can never conclude that a history of any finite
length couldn’t have come from either of the distributions. Slightly more formally, if the distributions
have full support, they are mutually absolutely continuous, so the likelihood ratio in eq. (A.35) is strictly
bounded between 0 and some upper bound B. To see why πt < 1 for all t, notice that πt+1 < πt + πt(1−
πt)M for some M < 1, since the likelihood ratio is bounded by B. Therefore, since π + π(1− π) ∈ [0, 1]
for π ∈ [0, 1], we have

πt+1 ≤ πt + πt(1− πt)M < πt + πt(1− πt) ≤ 1

and so the result follows by induction. The argument for why πt > 0 is completely symmetric. 	

Since the distributions here are assumed to be Gaussian, they obviously have full support, so Proposition

A.1 applies. Although the boundary points are unattainable in finite time, the replicator equation for πt in
(A.35) makes it clear that πt will spend most of its time near these boundary points, since the relationship
between πt and πt+1 has the familiar logit function shape, which flattens out near the boundaries. As
a result, πt evolves very slowly near the boundary points. In fact, we shall now show that it evolves
even more slowly than the t−1 time-scale of βt(0). This means that when studying the dynamics of the
coefficient estimates near the boundaries, we can treat πt as fixed.

Note that the notion of time scale is a property of a stochastic process in the right tail. That is, the
time-scale measures the speed of evolution of the sample paths for large t. Although πt can evolve faster
than βt(1) for small t, as t → ∞, we show that πt must stay in a small neighborhood of 1 or 0, slowly
converging to the limit.

Lemma A.2.

P
(
∃{πtk}k, and ∃π∗ ∈ (0, 1), lim

k→∞
πtk = π∗

)
= 0

and πt evolves at a slower time scale than βt(0).

Proof. Fix a sequence {πt} in Π0. Since the sequence is a subset of a compact set, it has a convergent
subsequence. After renumbering the subsequence, let us assume that

lim
t→∞

πt = π∗ ∈ (0, 1)

since {πt} ∈ Π0. Depending upon the rate of convergence (or the time scale according to which πt converges
to π∗), we have to treat πt has already converged to π∗.8

We only prove the case in which πt → π∗ according to the fastest time scale, in particular, faster than
the time scale of βt(1). Proofs for the remaining cases follow the same logic.

Since πt evolves according to the fastest time scale, assume that

πt = π∗.

Since βt(1) evolves on a faster time scale than βt(0), we first let βt(1) reach its own “limit,” and then let
βt(0) go to its own limit point.

8If πt evolves at a slower time scale than βt(0), then we fix πt while investigating the asymptotic properties
of βt(0). As it turns out, we obtain the same conclusion for all cases.
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Fix σv > 0. Let pet (i) be the period t price forecast by model i,

pet (1) = βt(1)zt.

Since
pt = αρ[(1− πt)βt(0) + πtβt(1)]zt + δzt + σεt,

the forecast error of model 1 is

pt − pet (1) = [αρ(1− πt)βt(0) + (αρπt − 1)βt(1) + δ] zt + σεt.

Since βt(1) evolves according to (2.6),

lim
t→∞

E [αρ(1− πt)βt(0) + (αρπt − 1)βt(1) + δ] = 0

in any limit point of the Bayesian learning dynamics.9 Define

β(1) = lim
t→0

Eβt(1)

whose value is conditioned on πt and βt(0). Since

lim
t→0

E
[
αρ(1− πt)βt(0) + (αρπt − 1)β(1) + δ

]
+ E(αρπt − 1)(βt(1)− β(1)) = 0.

Thus,

β(1) =
αρ(1− πt)βt(0) + δ

1− αρπt
(A.36)

for fixed πt, βt(0). Define the deviation from the long-run mean as

ξt = βt(1)− β(1).

Model 1’s mean-squared forecast error is then

lim
t→0

E(pt − pet (1))
2 = lim

t→0
Ez2t (αρπt − 1)2σ2

ξ + σ2

Note that σ2
ξ > 0 if σv > 0, and

lim
σ2
v→0

σ2
ξ = 0.

To investigate the asymptotic properties of βt(0), let us write

βt(1) =
αρ(1− πt)βt(0) + δ

1− αρπt
+ ξt

Then, we can write Model 0’s forecast error as

pt − pet (0) = zt

[
− 1− αρ

1− αρπt

(
βt(0)− δ

1− αρ

)
+ αρπtξt

]
+ σεt.

Since βt(0) evolves according to (2.6)

lim
t→∞

βt(0) =
δ

1− αρ
with probability 1. Thus, the mean-squared forecast error satisfies

lim
t→∞

E(pt − pet (0))
2 = lim

t→∞
Ez2t σ

2
ξ(αρπt)

2 + σ2

After substituting βt(0) into (A.36), we have

lim
σv→0

lim
t→0

βt(1) =
δ

1− αρ

weakly. Note that

lim
t→∞

E(pt − pet (0))
2

E(pt − pet (1))
2
> 1 (A.37)

if and only if

lim
t→∞

(
αρπt

1− αρπt

)2

> 1.

9Existence is implied by the tightness of the underlying space.
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Now, notice that
αρπt

1− αρπt
< 1

if and only if

αρπt <
1

2
.

Note that the left hand side is an increasing function of πt. Hence, if (A.37) holds for some t ≥ 1, then it
holds again for t+1. Similarly, if (A.37) fails for some t ≥ 1, then the same condition continues to fail for
t+ 1.

Thus, πt continues to increase or decrease, if the inequality holds in either direction. Recall that
π∗ = limt→∞ πt. Convergence to π∗ can occur only if (A.37) holds with equality for all t ≥ 1, which is a
zero probability event. We conclude that π∗ ∈ (0, 1) occurs with probability 0. 	

A.3. Log odd ratio. It is more convenient to consider the log odds ratio. Let us initialize the likelihood
ratio at the prior odds ratio:

A0(0)

A0(1)
=

π0(0)

π0(1)
.

By iteration we get

πt+1(0)

πt+1(1)
=

1

πt+1
− 1 =

t+1∏
k=0

Ak(0)

Ak(1)
,

Taking logs and dividing by (t+ 1),

1

t+ 1
ln

(
1

πt+1
− 1

)
=

1

t+ 1

t+1∑
k=0

ln
Ak(0)

Ak(1)
.

Now define the average log odds ratio, φt, as follows

φt =
1

t
ln

(
1

πt
− 1

)
=

1

t
ln

(
πt(0)

πt(1)

)
which can be written recursively as the following stochastic approximation algorithm

φt = φt−1 +
1

t

[
ln

At(0)

At(1)
− φt−1

]
.

Invoking well knowing results from stochastic approximation, we know that the asymptotic properties of
φt are determined by the stability properties of the following ordinary differential equation (ODE)

φ̇ = E

[
ln

At(0)

At(1)

]
− φ

which has a unique stable point

φ∗ = E ln
At(0)

At(1)
.

Note that if φ∗ > 0, πt → 0, while if φ∗ < 0, πt → 1. The focus of the ensuing analysis is to identify the
conditions under which πt converges to 1, or 0. Thus, the sign of φ∗, rather than its value, is an important
object of investigation.

A.4. Time scale of πt. Given any α ≥ 1, a simple calculation shows

tα(πt − πt−1) =
tα(e(t−1)φt−1 − etφt)

(1 + etφt)(1 + e(t−1)φt−1)
.

As t → ∞, we know φt → φ∗ with probability 1. Hence, we have

lim
t→∞

tα(πt − πt−1) = lim
t→∞

tα
(
e−φ∗ − 1

)
etφ

∗

(1 + etφ∗)(1 + e(t−1)φ∗)

= (e−φ∗ − 1) lim
t→∞

tα

(1 + e−tφ∗)(1 + etφ∗e−φ∗)
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Finally, notice that for both φ∗ > 0 and φ∗ < 0 the denominator converges to ∞ faster than the numerator
for any α ≥ 1. Note that πt ∝ 1

t
if

0 < lim inf
t→∞

|t2(πt − πt−1)| ≤ lim sup
t→∞

|t2(πt − πt−1)| < ∞.

In our case, the first strict inequality is violated, which implies that πt evolves at a rate slower than 1/t.

A.5. Summary. It is helpful to summarize our findings on the time scale of three stochastic processes:
πt, βt(0) and βt(1). As indicated by (A.35), πt evolves quickly in the interior of [0, 1]. However, no sample
path converges to π∗ ∈ (0, 1) with a positive probability. After πt enters a small neighborhood of {0, 1},
the evolution of πt slows down significantly. Around the neighborhood of {0, 1}, we have a hierarchy of
time scale among three stochastic processes. βt(1) evolves according to a faster time scale than βt(0),
which evolves at a faster time scale than πt.

Appendix B. Proof of Proposition 3.1

Although the proof follows the same logic at in the proof of Lemma A.2, we sketch the proof as
a reference, but also illustrate the domain of attraction of each locally stable points, along with the
description of a typical convergent path.

Fix σv > 0. We first investigate the properties of (πt, βt(0), βt(1)) as t → ∞. Since βt(1) evolves at the
fastest time scale, we first investigate the asymptotic properties of βt(1) for fixed (π, β(0)). As we have
shown in the proof of Lemma A.2, βt(1) has a stationary distribution, and its mean converges to

β(1) =
αρ(1− πt)βt(0) + δ

1− αρπt
.

For later reference, let us define

S =

{
(π, β(0), β(1)) | β(1) = αρ(1− π)β(0) + δ

1− αρπt

}
(B.38)

which is a submanifold in R
3 as depicted in Figure 4.

Given the stationary distribution of βt(1), we investigate the asymptotic properties of βt(0), for a fixed
value of πt (in a small neighborhood of {0, 1}). Again, we have shown that

lim
t→∞

βt(0) =
δ

1− αρ

with probability 1, which implies that

β(1) → δ

1− αρ

∀πt. Then, we observe that πt → 1 if and only if φ∗ < 0, and πt → 0 if and only if φ∗ > 0, where

φ∗ = E ln
At(0)

At(1)

where the expectation is taken with respect to the stationary distribution in the limit as t → ∞. It is
convenient to consider the deterministic dynamics in terms of the time scale of βt(0). The domain of
attraction for (π, β(0), β(1)) = (0, δ/(1− αρ), δ/(1− αρ)) is

D0 =

{
(π, β(0), β(1)) | E log

At(0)

At(1)
> 0

}
where At(0) and At(1) are likelihood functions perceived by the agent:

logAt(1) = − [(αρπt − 1)ztξt + σεt]
2

2(Σt(1)z2t + σ2)
− 1

2
log 2

[
Σt(1)z

2
t + σ2]

and

logAt(0) = −
[
−zt

[
1−αρ

1−αρπt

(
βt(0)− δ

1−αρ

)]
+ αρπtztξt + σεt

]2
2(Σt(0)z2t + σ2)

− 1

2
log 2

[
Σt(0)z

2
t + σ2

]
.
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It is helpful to figure out (πt, βt(0)) along the boundary of D0, where φ∗ = 0. To simplify exposition,
we treat zt as a deterministic variable, but the same analysis applied to the general case, in figuring out
(πt, βt(0)) along the boundary of D0, where φ∗ = 0.

Since we are interested in the sign of φ∗, which is computed with respect to the probability distribution
when t → ∞, we substitute Σt(1) by Σ, and Σt(0) by 0. After a tedious calculation (even with our
simplifying assumption that zt is deterministic), we know that

φ∗ = −α2ρ2π2
t (Σz

2
t )

2 + 2σ2αρπtΣz
2
t

2σ2(σ2 + Σz2t )
− z2t

2σ2

(
1− αρ

1− αρπt

)(
βt(0)− δ

1− αρ

)2

+
1

2
log

(
1 +

Σz2t
σ2

)
.

Note that the right hand side is a strictly decreasing function of πt, and
(
βt(0)− δ

1−αρ

)2
. Thus, the

contour of (πt, βt(0)) satisfying φ∗ = 0 is symmetric around β(0) = δ/(1 − αρ), and
(
βt(0)− δ

1−αρ

)2
decreases πt must increase, in order to satisfy φ∗ = 0. In particular, if πt = 0, then

d(σv) =

∣∣∣∣βt(0)− δ

1− αρ

∣∣∣∣ = σ

|zt|(1− αρ)

√
log

(
1 +

Σz2t
σ2

)
(B.39)

which is a strictly decreasing function of Σ, and therefore, a strictly decreasing function of σv. In particular,

lim
σv→0

d(σv) = 0.

Among (πt, βt(0)) satisfying φ∗ = 0, πt is maximized if βt(0) = δ/(1− αρ). Such πt is the positive root of

α2ρ2Σz2t π
2
t + 2σ2αρπt − σ2 − Σz2t = 0.

A simple calculation shows that if πt is the positive root of the quadratic equation,

lim
σv→0

πt =
1

2αρ
.

Thus, ∀ε > 0, ∃σ′
v > 0 so that ∀σv ∈ (0, σ′

v),

D0 ⊂
{
(π, β(0), β(1)) | π ≤ 1

2αρ
+ ε

}
.

Note that D0 looks like a pipe in R
3, since it is independent of β(1), as depicted in Figure 4. As σv → 0,

the base of D0 on the surface spanned by β(1) and β(0) shrinks, making D0 “thinner.”
It is instructive to visualize a typical sample path of (πt, βt(0), βt(1)) to a locally stable point. Suppose

that π1 ∈ (0, 1), and (π1, β1(0), β1(1)) is outside of D0. Then, for a small value of t, πt evolves rapidly
toward the neighborhood of 1 or 0, whose speed of evolution may be comparable to the speed of evolution
of βt(1), while πt remains away from the boundary points. Since βt(1) evolves at the faster time scale than
βt(0), (πt, βt(0), βt(1)) evolves as if βt(0) = β1(0), while πt stays away from the boundary points. From
the perspective of βt(0), βt(1) instantaneously moves to the neighborhood of submanifold S , which is the
reason why D0 is independent of βt(1).

(πt, βt(0), βt(1)) hits the neighborhood of submanifold S defined by (B.38), as the distribution of βt(1)
converges to its stationary distribution, while πt converges to the neighborhood of either 0 or 1. Then,
along the surface of S , (πt, βt(0), βt(1)) moves as βt(0) evolves, converging to δ

1−αρ
. After βt(0) reaches

δ
1−αρ

along the surface of S so that βt(1) also reaches δ
1−αρ

, πt moves. If (πt, βt(0), βt(1)) ∈ S ∩ D0, then

it will converges to the limit point where πt = 0. Otherwise, it converges to another limit point where
πt = 1.

Appendix C. Proof of Theorem 3.2

C.1. Preliminaries.

C.1.1. Time scale and dynamics. Because the three variables evolve at different times scales, the sample
path in R has a distinctive feature. Thanks to Lemma A.2, we can assume without loss of generality, πt

is in a small neighborhood of {0, 1}. First, βt(1) moves to submanifold S . Second, along the surface of S ,
(πt, βt(0), βt(1)) moves to a locally stable point as βt(0) → δ

1−αρ
. Finally, πt converges to 0 or 1.
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Figure 4: Red arrow shows a typical dynamics. First, βt(1) moves toward S , while πt moves to the
neighborhood of 1 (or 0, depending upon the initial value). Second, (πt, βt(0), βt(1)) moves along S , as
βt(0) → δ/(1− αρ). Finally, after βt(0) converges to δ/(1− αρ) and so does βt(1), πt converges to 1.

C.1.2. Triggering escapes. From Figure 4, one can see that βt(1) does not trigger escape from D0 to D1,
or D1 to D0.

It is easy to see why a large deviation by βt(1) from its equilibrium value δ/(1 − αρ) cannot trigger
(πt, βt(0), βt(1)) to escape from D0. Note that D0 is independent of βt(1). As a result, (πt, βt(0), βt(1)) =
(0, δ

1−αρ
, β(1)) ∈ D0 ∀β(1) ∈ R. D0 is the set of endogenous variables in which the mean forecasting error of

M1 is larger than that of M0. The mean forecasting error is minimized when the coefficient is δ/(1−αρ).
π = 0 implies that M0 generates a lower mean forecasting error than M1. If βt(1) �= δ/(1−αρ), the mean
forecasting error of M1 increases, thus favoring M0, which keeps πt = 0.

On the other hand, it is not obvious why why a large deviation by βt(1) from its equilibrium value
δ/(1− αρ) cannot trigger (πt, βt(0), βt(1)) to escape from D1. Note that the domain of attraction for the
locally stable point where πt = 1 is the complement of D0. Since

D0 ⊂
{
(π, β(0), β(1) | π ≤ 1

2αρ

}
.

Thus, the escape can occur from D1 only if

(πt, βt(0), βt(1)) ∈
{
(π, β(0), β(1) | π <

1

2αρ

}
.

That is, πt must deviate from 1 to 1
2αρ

, in order to let (πt, βt(0), βt(1)) escape from the domain of attraction

for (π, β(0), β(1)) = (1, δ/(1− αρ), δ/(1− αρ)).
If π1 at the locally stable equilibrium, M1 has a smaller mean forecasting error than M0. Suppose that

βt(1) deviates from its equilibrium value by a large amount, which will increase the forecasting error of
M1 and consequently, will cause πt to decrease. However, in the neighborhood of 1, it takes an extremely
large number of periods to let πt move out of the neighborhood of 1, because πt evolves at the slowest
time scale among three stochastic processes: πt, βt(0) and βt(1). By the time when πt moves out of a
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small neighborhood of 1, the mean dynamics of βt(1) has already pushed back to its equilibrium value,
and reduces the mean forecasting error of M1 below M0. As a result, πt pushes back to the equilibrium
value of 1.

C.2. What to show. Since βt(1) does not directly trigger the escape from one domain of attraction to
another, let us focus on (π, β(0)), assuming that we are moving according to the time scale of βt(0). Note
that D0 has a narrow symmetric pipe shape whose cross section looks like a narrow cone, centered around

β(0) =
δ

1− αρ

with the base (
δ

1− αρ
− d(σv),

δ

1− αρ
+ d(σv)

)
along the line π = 0 where d(σv) is defined as in (B.39). Recall that

lim
σv→0

d(σv) = 0.

Define

π̄ = sup{π | (π, β(0), β(1)) ∈ D0}
which is 1/(2αρ).

Recall that

φt =
1

t

t∑
k=1

log
Ak(0)

Ak(1)
.

Note that since βt(0), βt(1) → δ
1−αρ

,

φ∗ = E log
At(0)

At(1)

is defined for βt(0) = βt(1) =
δ

1−αρ
, and π = 1 or 0, since Σt(0) → 0 and Σt(1) → Σ as t → 0.

Remark C.1. Note that as σv → 0, Σ → 0 and consequently, φ∗ → 0. One can interpret |φ∗| as the
“distance” between M0 and M1. As σv → 0, M1 and M0 become similar in a certain sense.

We know that π = 1 and π = 0 are only limit points of {πt}. Define φ∗
− as φ∗ evaluated at

(π, β(0), β(1), ) = (1, δ
1−αρ

, δ
1−αρ

) and similarly, φ∗
+ as φ∗ evaluated at (π, β(0), β(1)) = (0, δ

1−αρ
, δ
1−αρ

). A

straightforward calculation shows

φ∗
− < 0 < φ∗

+

and

φ∗
− + φ∗

+ > 0.

For fixed σv > 0, define

r0(σv) = − lim
t→∞

σv

t
logP

(
∃t, (βt(1), βt(0), πt) ∈ D0 | (β1(1), β1(0), π1) =

(
δ

1− αρ
,

δ

1− αρ
, 0

))
and

r1(σv) = − lim
t→∞

σv

t
logP

(
∃t, (βt(1), βt(0), πt) ∈ D1 | (β1(1), β1(0), π1) =

(
δ

1− αρ
,

δ

1− αρ
, 1

))
Then,

r0 = lim
σv→0

r0(σv) and r1 = lim
σv→0

r1(σv)

which are the rate functions that dictate how difficult it is to escape from the domain of attraction of the
locally stable outcome.

Let us define ∀i ∈ {0, 1},

τ ε
i = inf

{
t | (πt, βt(0), βt(1)) �∈ Nε(Di), (π1, β1(0), β1(1)) =

(
i,

δ

1− αρ
,

δ

1− αρ

)}
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as the first exit time from ε neighborhood Nε(Di) of Di. If we show that

r1 > r0,

then by Dupuis and Kushner (1987) and Kushner and Yin (1997), ∀i,
τ ε
i ∼ etri

in probability. Thus, the relative duration time around D1 satisfies

lim
t→∞

E
τ ε
1

τ ε
0 + τ ε

1

= 1,

from which the desired conclusion follows. Thus, it remains to show that ∃σv > 0 such that

inf
σv∈(0,σv)

r1(σv)− r0(σv) > 0.

C.3. Escape probability from D1. Consider a subset of the domain of attraction D1 for M1:

D′
1 = {(β(1), β(0), π) | π >

1

2αρ
}.

Since αρ > 1/2, D′
1 �= ∅. For fixed σv > 0, define

r∗1(σv) = − lim
t→∞

σv

t
logP

(
∃t, (βt(1), βt(0), πt) �∈ D′

1 | (β1(1), β1(0), π1) =

(
δ

1− αρ
,

δ

1− αρ
, 1

))
and

r∗1 = lim inf
σv→0

r∗1(σv).

Note that

∃t, (βt(1), βt(0), πt) �∈ D′
1

if and only if

πt < π̄

if and only if

φt > 0.

Recall

− lim
t→∞

σv

t
logP (∃t, φt > 0 | φ1 = φ∗

−) = r∗1(σv).

Lemma C.2.

r∗1 = lim
σv→0

r∗1(σv) > 0. (C.40)

Remark C.3. The substance of this claim is that r∗1 cannot be equal to 0. This statement would have been
trivial, if φ∗

− is uniformly bounded away from 0. In our case, however,

lim
σv→0

φ∗
− = 0

which implies Σ → 0.

Proof. Note that

φt > 0

if and only if

φt − φ∗
− > −φ∗

−
if and only if

1

t

t∑
k=1

[
log

At(0)

At(1)
− E log

At(0)

At(1)

]
> −φ∗

−

if and only if

1

t

t∑
k=1

[
log At(0)

At(1)
− E log At(0)

At(1)

Σ

]
> −φ∗

−
Σ

. (C.41)



22 IN-KOO CHO AND KENNETH KASA

A straightforward calculation shows

lim
σv→0

−φ∗
−
Σ

=
σ2
z

σ2

(
αρ− 1

2

)
> 0

where σ2
z is the stationary variance of zt.

Remark C.4. As σv → 0, φ∗
− → 0, which makes it easier to escape from D1. However, as σv decreases,

so does the the standard deviation of

log
At(0)

At(1)
− E log

At(0)

At(1)
,

which can be interpreted as the size of deviation per each shock decreases at the same time. As a result,
the number of shocks necessary for (πt, βt(0), βt(1)) to escape from D′

1 is uniformly bounded from below.
As a result, the rate function is bounded away from 0.

It is tempting to conclude that we can invoke the law of large numbers to conclude that the sample
average has a finite but strictly positive rate function. However,

log At(0)
At(1)

− E log At(0)
At(1)

Σ
is not a martingale difference. Although its mean converges to 0, we cannot invoke Cramér’s theorem to
show the existence of a positive rate function. Instead, we shall invoke Gärtner Ellis theorem (Dembo and
Zeitouni (1998)).

We can write

1

t

t∑
k=1

[
log At(0)

At(1)
− E log At(0)

At(1)

Σ

]
= Zt + Yt

where

Zt =
1

t

t∑
k=1

[
log At(0)

At(1)
− Et log

At(0)
At(1)

Σ

]

and

Yt =
1

t

t∑
k=1

[
Et log

At(0)
At(1)

− E log At(0)
At(1)

Σ

]
.

We claim that ∀λ ∈ R,

lim
t→∞

1

t
log EetλYt = 0.

A simple calculation shows

Et log
At(0)

At(1)
− E log

At(0)

At(1)
=

1

2
log

Σt(1)σ
2
z,t + σ2

Σσ2
z + σ2

where σ2
z,t is the conditional variance of zt. Since Σt(1) → Σ > 0, σ2

z,t → σ2
z , and Σt(1) is bounded,

∃M > 0 such that
Σt(1) ≤ M

and ∀ε > 0, ∃T (ε) such that ∀t ≥ T (ε),∣∣∣∣Et log
At(0)

At(1)
− E log

At(0)

At(1)

∣∣∣∣ ≤ ε.

Thus, as t → ∞,

1

t
log EetλYt ≤ 1

t
log Eet|λ|ε +

2T (ε)M

t
= |λ|ε+ 2T (ε)M

t
→ |λ|ε.

Since ε > 0 is arbitrary, we have the desired conclusion.
We conclude that the H functional (a.k.a., the logarithmic moment generating function) of

1

t

t∑
k=1

[
log At(0)

At(1)
− E log At(0)

At(1)

Σ

]
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is precisely

H(λ) = lim
t→∞

1

t
log EeλtZt .

That means, the large deviation properties of the left hand side of (C.41) is the same as the large deviation
properties of Zt. Since Zt is the sample average of a martingale difference, a standard argument from large
deviation theory implies that its rate function is strictly positive for given σv > 0. We normalized the
martingale difference by dividing each term by Σ so that the second moment of

log At(0)
At(1)

− Et log
At(0)
At(1)

Σ

is uniformly bounded away from 0, even in the limit as σv → 0. Hence,

lim
σv→0

H(λ)

does not vanish to 0, which could have happened if the second moment of the marginal difference converges
to 0. By applying Gärtner Ellis Theorem, we conclude that ∃r∗1(σv) > 0 such that

lim
t→∞

logP

(
1

t

t∑
k=1

[
log At(0)

At(1)
− E log At(0)

At(1)

Σ

]
≥ −φ∗

−
Σ

)
= lim

t→∞
logP

(
Zt ≥ −φ∗

−
Σ

)
= r∗1(σv) (C.42)

and

lim inf
σv→0

r∗1(σv) = r∗1 > 0

as desired. 	

Since D′

1 ⊂ D1,

r1 = lim
σv→0

r1(σv) ≥ lim
σv→0

r∗1(σv) = r∗1 > 0.

C.4. Escape probability from D0. Suppose that (πt, βt(0), βt(1)) is in a small neighborhood of (0, δ
1−αρ

, δ
1−αρ

),

βt(0) evolves according to

βt+1(0) = βt(0) +
Σt(0)z

2
t

σ2 +Σt(0)z2t
[pt − βt(0)zt] .

At πt = 0, the forecasting error is

pt − βt(0)zt = (1− αρ)

[
δ

1− αρ
− βt(0)

]
zt + σεt.

Note that the forecast error is independent of σv. Following Dupuis and Kushner (1987), we can show that
∀d > 0, ∃r∗0(d) > 0 such that

lim
t→∞

−1

t
logP

(∣∣∣∣βt(0)− δ

1− αρ

∣∣∣∣ > d | β1(0) =
δ

1− αρ

)
= r∗0(d)

and

lim
d→0

r∗0(d) = 0.

That is, as the neighborhood of the locally stable equilibrium shrinks, it becomes easier to escape. Set
d = d(σv) as defined by (B.39) so that

lim
σv→0

r∗0(d(σv)) = 0.

In principle, an exit can occur anywhere along the boundary of D0. By requiring that the exit must be
caused by β(0), we make it more difficult for an exit to occur. Thus,

r0(σv) ≤ r∗0(d(σv)).

Thus, we can find σv > 0 such that ∀σv ∈ (0, σv),

r∗0(d(σv)) <
r∗1
2

=
1

2
lim inf
σv→0

r∗1(σv) < r∗1(σv).
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Thus, ∀σv ∈ (0, σv),

r0(σv) ≤ r∗0(d(σv)) <
r∗1
2

< r∗1 ≤ r∗1(σv) ≤ r1(σv).

from which
inf

σv∈(0,σv)
r1(σv)− r∗0(σv) > 0

follows.
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