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a b s t r a c t

This paper develops econometric methods for inference and prediction in quantile regression (QR)
allowing for persistent predictors. Conventional QR econometric techniques lose their validity when
predictors are highly persistent. I adopt and extend a methodology called IVX filtering (Magdalinos and
Phillips, 2009) that is designed to handle predictor variables with various degrees of persistence. The
proposed IVX-QR methods correct the distortion arising from persistent multivariate predictors while
preserving discriminatory power. Simulations confirm that IVX-QRmethods inherit the robust properties
of QR. These methods are employed to examine the predictability of US stock returns at various quantile
levels.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Predictive regression models are extensively used in empirical
macroeconomics and finance. A leading example is stock return
regression where predictability has been a long standing puzzle. A
central econometric issue in these models is severe size distortion
under the null arising from the presence of persistent predictors
coupled with weak discriminatory power in detecting marginal
levels of predictability. The predictive mean regression literature
has explored and developed econometric methods for correcting
this distortion and validating inference. A recent review of this
research is given in Phillips and Lee (2013, Section 2).

Quantile regression (QR) has emerged as a powerful tool for es-
timating conditional quantiles since Koenker and Basset (1978).
The method has attracted much attention in economics in view
of the importance of the entire response distribution in empir-
ical models. Koenker (2005)’s monograph provides an excellent
overview of the field. QR methods are also attractive in predictive
regression because they enable practitioners to focus their atten-
tion on the quantile structure of financial asset return distribution
and provide forecasts at each quantile. This focus permits signifi-
cance testing of predictors of individual quantiles of asset returns.
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Stylized facts of financial time series data such as heavy tails and
time varying volatility imply potentially greater predictability at
quantiles other than the median for financial data. Standard QR
econometric techniques, however, are not valid when predictors
are highly persistent since predictive QR models share the same
econometric issues as their mean regression counterparts.

This paper addresses these issues by developing new meth-
ods of inference for predictive QR. The limit theory of ordinary QR
with persistent regressors reveals the source of the distortion to be
greater under (i) stronger endogeneity, (ii) higher levels of persis-
tence and (iii) more extreme quantiles coupled with heavy tailed-
ness. To develop QRmethods for correcting the size distortion and
conducting valid inference, I adopt a recent methodology called
IVX filtering developed inMagdalinos and Phillips (2009). The idea
of IVX filtering is to generate an instrument of intermediate persis-
tence by filtering a persistent and possibly endogenous regressor.
The new filtered IV succeeds in correcting size distortion arising
from many different forms of predictor persistence while main-
taining good discriminatory power in conventional regression set-
tings. I extend the IVX filter idea to the QR framework and propose
a new approach to inference which we call IVX-QR.

The proposed IVX-QR estimator has an asymptotically mixed
normal distribution in the presence of multiple persistent pre-
dictors. I develop a computationally attractive testing method
for quantile predictability to simplify implementation for ap-
plied work. Employing the new methods, I examine the empirical
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predictability ofmonthly stock returns in the S&P 500 index at var-
ious quantile levels. In regressions with commonly used persistent
predictors I find several quantile specific significant predictors. In
particular, over the period of 1927–2005, there is significant evi-
dence that dividend–payout ratios have predictive power for lower
quantiles of stock returns, while the book-to-market value ratio
is shown to predict both lower and upper quantiles of stock re-
turns during the same period. Notably, predictability appears to be
enhanced by using combinations of persistent predictors. IVX-QR
corrections ensure that the quantile predictability results are not
spurious even in the presence of multiple persistent predictors,
suggesting the possibility of improved forecast models for stock
returns. For example, the combination of the T-bill rate and the
book-to-market ratio are shown to predict almost all stock return
quantiles considered over the 1927–2005 period. The forecasting
capability of this combination remains strong even in the post-
1952 data.

Closely related to this paper are recent studies that have
investigated inference in QR with financial time series. Xiao
(2009) developed a limit theory of QR in the presence of unit
root regressors and developed fully-modified methods based on
Phillips and Hansen (1990). Cenesizoglu and Timmermann (2008)
introduced the predictiveQR framework and found that commonly
used predictor variables affect lower, central and upper quantiles
of stock returns differently. Maynard et al. (2011) examined the
issue of persistent regressors in predictive QR by extending the
limit theory of Xiao (2009) to a near-integrated regressor case.
These last two papers can be classified as part of the predictive
QR literature since they focus on the prediction of stock return
quantiles from lagged financial variables. Another piece of related
research isHan et al. (2014)which studies the quantile dependence
between stock return and a predictor, wherein the new analysis
becomes possible by extending quantilogram theory (Linton and
Whang, 2007) to the cross-quantilogram. In the mean predictive
regression literature, Gonzalo and Pitarakis (2012) and Kostakis
et al. (2014) are close to this paper, since they have also applied
the IVX methodology to the stock return regression.

The new IVX-QR methods developed in this paper contribute
to the predictive QR literature in several aspects. First, the meth-
ods are uniformly valid over the extensive range of predictor per-
sistence from stationary predictors to mildly explosive predictors.
This coverage conveniently encompasses existing results for unit
root (Xiao, 2009) and near unit root (Maynard et al., 2011) predic-
tor cases. The uniform validity of the newmethods allows for pos-
sible misspecification in predictor persistence. Second, the IVX-QR
methods validate inference under multiple persistent predictors
while most existing methods control test size with a single persis-
tent predictor. This feature improves realism in applied work and
provides potentially better forecast models since there are a vari-
ety of persistent predictors. Third, the new method corrects size
distortion while preserving substantial local power in spite of the
modest reduction in its convergence rate (see Section 3.1 for the
detailed discussion). This advantage is critical in finding marginal
levels of predictability in predictive QR with the desired size cor-
rection. IVX-QR also maintains the inherent benefits of QR such
as markedly superior performance under thick-tailed errors and
the capability of testing predictability at various quantile levels. All
these features make the technique well suited to empirical appli-
cations in macroeconomics and finance.

The paper is organized as follows. Section 2 introduces the
model and extends the limit theory of ordinary QR. Section 3
develops the new IVX-QR methods. Section 4 provides a practical
rule to choose the filtering parameters. This section also reports the
simulation results based on the suggested rule. Section 5 illustrates
the empirical examples and Section 6 concludes. Main proofs are
given in the Appendix, while additional discussions, proofs of
lemmas and more comprehensive numerical results are available
from an online supplement (Lee, 2014).

2. Model framework and existing problems

2.1. Model and assumptions

I first discuss the predictive mean regression model and then
explain the predictive QR model. The standard predictive mean
regression model is

yt = β0 + β ′

1xt−1 + u0t with E (u0t |Ft−1) = 0, (2.1)

where β1 is a K × 1 vector and Ft is a natural filtration. A vector of
predictors xt−1 has the following autoregressive form

xt = Rnxt−1 + uxt , (2.2)

Rn = IK +
C
nα
, for some α > 0,

where n is the sample size and C = diag (c1, c2, . . . , cK ). The
pair of (α, C) represents persistence in the multiple predictors of
unknown degree. I allow for more general degrees of persistence
in the predictors than in the existing literature. In particular, xt can
belong to any of the following persistence categories1:

(I0) stationary: α = 0 and |1 + ci| < 1, ∀i,
(MI) mildly integrated: α ∈ (0, 1) and ci ∈ (−∞, 0), ∀i,
(I1) local to unity and unit root: α = 1 and ci ∈ (−∞,∞) ,∀i,

(ME) mildly explosive: α ∈ (0, 1) and ci ∈ (0,∞), ∀i.

The exact degrees of persistence in economic time series are
always imprecisely determined. Unit root tests do not provide a
firm guidance on discrepancy between I(0), near or exact unit root
processes. The extensive treatment of parameter space from (I0)
to (ME)2 in this paper helps in coping with misspecified order of
integration of the multivariate predictors.

For parsimonious characterization of the parameter space the
(I1) specification above includes both conventional integrated
(C = 0) and local to unity (C ∈ (−∞,∞), C ≠ 0) specifications.
The innovation structure allows for linear process dependence
for uxt and imposes a conditionally homoskedastic3 martingale
difference sequence (mds) condition for u0t following convention
in the predictive regression literature:

u0t ∼ mds (0,Σ00) , i.e., E (u0t |Ft−1) = 0 and

E

u0tu′

0t |Ft−1


= Σ00, ∀t, (2.3)

uxt =

∞
j=0

Fxjεt−j, εt ∼ mds (0,Σ) ,

Σ > 0, E ∥ε1∥
2+ν < ∞, ν > 0,

Fx0 = IK ,
∞
j=0

j
Fxj < ∞,

Fx(z) =

∞
j=0

Fxjz j and Fx(1) =

∞
j=0

Fxj > 0,

Σ0x = E

u0tu′

xt


, Ωxx =

∞
h=−∞

E

uxtu′

xt−h


= Fx(1)ΣFx(1)′.

1 The different values of α’s may be also allowed between (I0), (MI) and (I1)
categories, see Lee (2014, Section 1.8).
2 (MI) and (ME) spaces are introduced in Phillips and Magdalinos (2007). In

Section 1.7 of Lee (2014), (MI) space is shown to conveniently encompass the
stationary long memory processes.
3 Conditional homoskedasticity can be relaxed, see Remark 2.1.
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Under these conditions, the usual functional limit law holds
(Phillips and Solo, 1992):

1
√
n

⌊ns⌋
j=1

uj :=
1

√
n

⌊ns⌋
j=1


u0j
uxj


=:


B0n(s)
Bxn(s)



H⇒


B0(s)
Bx(s)


= BM


Σ00 Σ0x
Σx0 Ωxx


, (2.4)

where B =

B′

0, B
′
x

′ is vector Brownian motion (BM). The local to
unity limit law for case (I1) also holds (Phillips, 1987):

x⌊nr⌋
√
n

H⇒ Jcx (r), where Jcx (r) =

 r

0
e(r−s)CdBx(s) (2.5)

is Ornstein–Uhlenbeck (OU) process.
I now consider a linear predictive QR model. Given the natural

filtration Ft = σ {uj = (u0j, u′

xj)
′
, j ≤ t}, the predictive QR model

is

Qyt (τ |Ft−1) = β0,τ + β ′

1,τ xt−1 (2.6)

where Qyt (τ |Ft−1) is a conditional quantile of yt such that
Pr

yt ≤ Qyt (τ |Ft−1) |Ft−1


= τ ∈ (0, 1) .

The model (2.6) analyzes other quantile predictability as well
as the median of yt . This feature is well suited to the analysis
of financial asset returns, whose distributional predictability will
be useful for many applications. Another stylized fact of asset
returns, conditional heteroskedasticity, can also be allowed in
(2.6). In Section 1.3.3 of Lee (2014), (2.6) is shown to accommodate
conditional heteroskedasticity by including a proxy for the
conditional stock variance as one regressor.

By defining a piecewise derivative of the loss function in the
QR ψτ (u) = τ − 1 (u < 0) (see (2.8)), it is easy to show the
QR ‘‘induced’’ innovation ψτ (u0tτ ) ∼ mds (0, τ (1 − τ)) where
u0tτ = u0t − F−1

u0 (τ ) and F−1
u0 (τ ) is the unconditional τ -quantile

of u0t . Then the following functional law holds

1
√
n

⌊nr⌋
t=1


ψτ (u0tτ )

uxt


H⇒


Bψτ (r)
Bx(r)



= BM

τ (1 − τ) Σψτ x
Σxψτ Ωxx


. (2.7)

This functional law drives the main asymptotics below.
Some regularity assumptions on the conditional density of u0tτ

are imposed.

Assumption 2.1. (i) The sequence of stationary conditional pdf
fu0tτ ,t−1 (·)


evaluated at zero satisfies a FCLT with a non-

degenerate mean fu0τ (0) = E

fu0tτ ,t−1 (0)


> 0,

1
√
n

⌊nr⌋
t=1


fu0tτ ,t−1 (0)− fu0τ (0)


H⇒ Bfu0τ

(r) .

(ii) For each t and τ ∈ (0, 1), fu0tτ ,t−1 is bounded above with
probability one around zero, i.e., fu0tτ ,t−1 (ϵ) < ∞ w.p.1 for all
|ϵ| < η for some η > 0.

Remark 2.1. Assumption 2.1-(i) is not restrictive considering that
an mds (or iid) structure is commonly imposed on u0t (hence
u0tτ ) in the predictive regression literature. Note that iid u0tτ
(fu0tτ ,t−1 (0) = fu0τ (0) for all t) is subsumed in this assumption,
where Bfu0τ

(r) is identically zero in such case (degenerate Brow-
nian motion). Time varying conditional pdf fu0tτ ,t−1 (0) with weak
dependence is allowed to include, for example, some empirically
relevant conditionally heteroskedastic (but still mds) u0t processes
(e.g. ARCH/GARCH), see 1.3.3 of Lee (2014). Assumption 2.1-(ii) is a
standard technical condition used in the QR literature, and enables
the expansion of not everywhere differentiable objective functions
after smoothing with the conditional pdf fu0tτ ,t−1.

2.2. Limit theory extension of quantile regression

This section extends the existing limit theory of ordinary QR.
This extension is of some independent interest and is useful in
revealing the source of the problems that arise from persistent
regressors in QR. The ordinary QR estimator has the form:

β̂QR
τ = argmin

β

n
t=1

ρτ

yt − β ′Xt−1


(2.8)

where ρτ (u) = u (τ − 1 (u < 0)), τ ∈ (0, 1) is the asymmetric
QR loss function. The notation Xt−1 = (1, x′

t−1)
′ includes the

intercept and the regressor xt−1 whose specification is given in
(2.2). I employ different normalizing matrices according to the
regressor persistence:

Dn :=


√
nIK+1 for (I0),

diag(
√
n, n

1+α
2 IK ) for (MI),

diag(
√
n, nIK ) for (I1),

diag(
√
n, nαRn

n) for (ME).

(2.9)

Using the Convexity Lemma (Pollard, 1991), as in Xiao (2009), I
prove the next theorem that encompasses the limit theory for the
unit root case (Theorem 1 in Xiao, 2009), stationary local to unity
case (Proposition 2 in Maynard et al., 2011) and stationary case
(Koenker, 2005). This paper adds to the QR literature by extending
that limit theory to the (MI) and (ME) cases.

Theorem 2.1.

Dn


β̂QR
τ − βτ



H⇒



N


0,
τ (1 − τ)

fu0τ (0)
2


1 0
0 Ω−1

xx


for (I0),

N


0,
τ (1 − τ)

fu0τ (0)
2


1 0
0 V−1

xx


for (MI),

fu0τ (0)
−1

1


Jcx (r)
′

Jcx (r)


Jcx (r)J
c
x (r)

′


−1

 Bψτ (1)
Jcx (r)dBψτ


for (I1),

MN


0,
τ (1 − τ)

fu0τ (0)
2


1 0
0 Ṽ−1

xx


for (ME),

where Vxx =


∞

0 erCΩxxerCdr, Ṽxx =


∞

0 e−rCYCY ′

Ce
−rCdr and YC ≡

N

0,


∞

0 e−rCΩxxe−rCdr

.

2.3. Sources of nonstandard distortion and correction methods

Theorem 2.1 shows that the limit distribution in the (I1) case
is nonstandard and nonpivotal. To see the source of nonstandard
distortion clearly, I further analyze the limit distribution of the
slope coefficient estimator. For simplicity, assume K = 1 and
uxt ∼ mds (0,Σxx), then it is straightforward to show that

n
βQR

1,τ − β1,τ


∼ fu0τ (0)

−1


J̄cx dBψτ 
J̄cx
2 ,
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where J̄cx = Jcx (r) −
 1
0 Jcx (r)dr is the demeaned OU process. Using

the orthogonal decomposition of Brownianmotion (Phillips, 1989)
dBψτ = dBψτ .x +Σψτ xΣ

−1
xx dBx we have

n
βQR

1,τ − β1,τ


∼ fu0τ (0)

−1


J̄cx dBψτ .x 

J̄cx
2 +


Σψτ x

Σxx

 
J̄cx dBx 
J̄cx
2

.

Note that:
J̄cx dBψτ .x 

J̄cx
2 ≡ MN


0,Σψτ .x

 
J̄cx
2−1


,

with Σψτ .x = Var

Bψτ .x


= τ(1 − τ) − Σ−1

xx Σ
2
ψτ x and

Σψτ x = Cov (ψτ (u0tτ ) , uxt). Now assume a researcher uses
the ordinary QR standard error s.e(βQR

1,τ ) = τ(1 − τ)f̂u0τ (0)
−1

{
n

t=1(x
µ

t−1)
2
}
−1/2, where xµt−1 = xt−1 − T−1 xt−1. Then with

the standardized notation

Īcx ,Wx


= Σ

−1/2
xx


J̄cx , Bx


, the t-ratio

becomes:

tβ1,τ =

βQR
1,τ − β1,τ


s.e(βQR

1,τ )

∼


1 −

Σ2
ψτ x

Σxxτ(1 − τ)

1/2

N(0, 1)

+
Σψτ x

(Σxxτ(1 − τ))1/2


ĪcxdWx 
Īcx
21/2

∼

1 − λ (τ)2

1/2
Z   + λ (τ) ηLUR(c)  

standard inference nonstandard distortion

(2.10)

where Z and ηLUR(c) stand for a standard normal distribution and
the local unit root t-statistics, respectively, and

λ (τ) = −corr (1 (u0tτ < 0) uxt) ≠ corr(u0t , uxt) := φ.

Remark 2.2. As the analytical expression (2.10) shows, the
nonstandard distortion becomes greater with (i) smaller |c| and
(ii) larger |λ (τ)|. Condition (i) is well known from the mean
predictive regression literature where the distortion from the
highly left-skewed feature of ηLUR(c) with small |c| has been
studied. Condition (ii) is a special feature of nonstationary QR,
see Xiao (2009) for strict unit root regressors and Maynard et al.
(2011) for a local-to-unity regressor with an explanation of the
nonstandard feature from this distortion. Note that

λ (τ) =
−E [1 (u0tτ < 0) uxt ]

{Σxxτ(1 − τ)}1/2

=
−E


1

u0t < F−1

u0 (τ )

uxt


{Σxxτ(1 − τ)}1/2
, (2.11)

so the explicit source of distortion from persistence and nonlinear
dependence is provided by this analysis. For exposition, assuming
multivariate normal or t distributions for (u0t , uxt) gives (see 1.1 of
Lee, 2014),

λ (τ) =

φ


−
 F−1

u0 (τ )

−∞ yfu0 (y) dy


√
τ (1 − τ)Σxx

= φ
τ

√
τ (1 − τ)Σxx


−E


u0|u0 < F−1

u0 (τ )


(2.12)

wherewe clearly see theQR endogeneityλ (τ) is a composite effect
of linear dependence (φ) and the truncated mean of regression

errors (−
 F−1

u0 (τ )

−∞ yfu0 (y) dy). Another interesting property is that
|λ(τ)| < |φ| can be shown for certain cases. This result indicates
an inherent robustness of QR under persistence, i.e., less distortion
than mean regression given an identical degree of persistence (c).
In Table A.1 in Lee (2014), various λ (τ)′s are calculated when
φ = −0.95, and the relation |λ (τ)| < |φ| figures. Moreover,
the magnitude of |λ (τ)| gets larger (more distortion) as the tail
gets heavier at the 5% quantile. Meanwhile, |λ (τ)| gets smaller for
thicker tails at the median.

Remark 2.3. The commonly used lower tail dependence measure
is λL = limτ→0+ λL (τ ), where

λL (τ ) = P

u0t < F−1

u0 (τ )|uxt < F−1
ux (τ )


= τ−1E


1

u0t < F−1

u0 (τ )

1

uxt < F−1

ux (τ )

.

Thus, the dependence measure λ (τ) in (2.11) is different from
both linear dependence (φ) and tail or quantile dependence (λL
or λL (τ )). The linear dependence (φ) affects the distortion of
nonstationary mean regression, while λ (τ) contributes to the
distortion in nonstationary QR. If we consider a quantile–quantile
predictability (Han et al., 2014) or a extreme quantile version of it
(Davis and Mikosch, 2009), λL (τ ) or λL will play the contributing
role for the distortion. The quantile–quantile predictability under
the presence of persistent predictorswill be an interesting topic for
future research, whereinwewould need to define a proper version
of quantile for nonstationary processes.

To correct the nonstandard distortion in (2.10), we may
consider two approaches. The first is to construct a confidence
interval (CI) for c , such as Stock’s CI (Stock, 1991), and correct the
distortion through an induced CI for β1,τ . This type of Bonferroni
methods are frequently used in predictive mean regression
(e.g. Cavanagh et al., 1995; Campbell and Yogo, 2006). For a
single local to unity (I1) predictor, Campbell and Yogo (2006)
successfully correct the distortion, but lose their validity when
predictor persistence belongs to (MI) or (I0) spaces. Cavanagh et al.
(1995) still provide conservative size control but may become
overly conservative for (MI) to (I0) regressors — see Phillips
(2014). However, the Bonferroni methods based on a uniformly
valid CI for c (e.g. Mikusheva, 2007), rather than Stock’s CI, will
provide validity over (MI) or (I0) spaces. I provide the simulation
comparison of IVX-QR to this modified Bonferroni correction
as well as the original Campbell–Yogo method (Fig. 3). For
multivariate nonstationary predictors (multiple ci’s), Bonferroni
methods are somewhat difficult to use. In predictive QR, Maynard
et al. (2011) employed the Bonferroni correction idea. The second
approach to correct for nonstandard distortion, which this paper
follows, is to use the IVX filtering technique (Magdalinos and
Phillips, 2009). Methods based on the IVX filtering technique are
discussed in the next section.

3. IVX-QR methods

It is convenient to transform the model (2.6) to remove the
intercept term:

ytτ = β ′

1,τ xt−1 + u0tτ (3.1)

where ytτ := yt − β̂
QR
0,τ (τ ) = yt − β0,τ + Op(n−1/2) is the zero-

intercept QR dependent variable. This is analogous to the demean-
ing process in the predictive mean regression in preparation for
tests of the slope coefficient. Section 1.4 of Lee (2014) explains the
validity of the dequantiling procedure and a possible inference on
β0,τ .
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3.1. IVX filtering

This section reviews a new filtering method, IVX filtering
(Magdalinos and Phillips, 2009). The idea can be explained by
comparing it to commonly used filtering methods. For simplicity,
first assume xt belongs to (I1). Filtering persistent data xt to
generate z̃t can be described as

z̃t = F z̃t−1 + △xt

with a filtering coefficient F and first difference operator △.
When F = 0K then z̃t = △xt and we simply take the first

difference to remove the persistence in xt . First differencing is the
most common technique employed by applied researchers, and it
leads to the (I0) limit theory in Theorem 2.1. Thus, the standard
normal (or chi square) inference is achieved. The drawback to
first differencing is the substantial loss of statistical power in
detecting predictability of xt−1 on yt . Taking the first difference
of a regression equation makes both xt−1 and yt much noisier
and finding the relationship between two noisy processes is
statistically challenging. In terms of convergence rate, the first
difference reduces the n-rate (for the (I1) case) to the n1/2-rate (for
the (I0) case), thereby seriously diminishing local power. At the
cost of this substantial loss, the first difference technique corrects
the nonstandard distortion in (2.10).

When F = IK then z̃t = xt so we use level data without any
filtering. The statistical power is preserved in this way, since it is
easy to detect if a persistent xt−1 has non-negligible explanatory
power on noisy yt . This is clear from the n-rate of convergence
of (I1) limit theory (maximum rate efficiency) in Theorem 2.1.
However, inference suffers from the size distortion in (2.10).

The main idea of IVX filtering is to filter xt to generate z̃t with
(MI) persistence — intermediate between first differencing and the
use of levels data. In particular, we choose F = Rnz as follows:

z̃t = Rnz z̃t−1 + △xt , Rnz = IK +
Cz

nδ
, (3.2)

where δ ∈ (0, 1) , Cz = cz IK , cz < 0 and z̃0 = 0.

The parameters δ ∈ (0, 1) and cz < 0 are specified by the
researcher. One practical suggestion is given in Section 4.1. As is
clear from the construction, Rnz is between 0K and IK but closer to
IK especially for large n. This construction is designed to preserve
local power as much as possible while achieving the desirable size
correction. The z̃t essentially belongs to an (MI) process so the limit
theory of the (MI) case in Theorem 2.1 is obtained by using z̃t as
instruments. The IVX filtering exploits advantages both from using
level (power) and the first difference (size correction) of persistent
data. It leads to the intermediate signal strength n(1+δ)/2. At the
cost of the slight reduction in convergence rate compared to the
level data, the filtering achieves the desired size correction. The
simulation in Section 4 shows that this costmay not be substantial.
To summarize

Comparisons of level, first differenced and IVX-filtered data:

level first
difference

IVX
filtering

Discriminatory power Yes No Yes
Size correction No Yes Yes
Rate of convergence n n1/2 n(1+δ)/2

Assume now that xt falls into one of three specifications: (I0),
(MI) and (I1). When xt belongs to (I1), the IVX filtering reduces
the persistence to (MI) as described above. If xt belongs to (MI)
or (I0), the filtering maintains the original persistence. This is
how we achieve uniform validity over the range of (I0)–(I1). This
automatic adjustment applies to several persistent predictors si-
multaneously, thereby accommodating multivariate persistent re-
gressors. When xt belongs to (ME), the IVX estimation becomes
equivalent to OLS for the mean regression case (Phillips and Lee,
forthcoming). The same principle works for QR, delivering uni-
formly valid inference in QR over (I0)–(ME) predictors (Proposi-
tions 3.1 and 3.2).

3.2. IVX-QR estimation and limit theory

I propose new IVX-QRmethods that are based on the use of IVX
filtered instruments. Since the rate of convergence of IVX-QR will
differ according to predictor persistence, I unify notation for the
data with the following embedded normalizations:

Z̃t−1,n := D̃−1
n z̃t−1 and Xt−1,n := D̃−1

n xt−1, (3.3)

where, using notation α ∧ δ = min (α, δ) ,

D̃n =


√
nIK for (I0),

n
1+(α∧δ)

2 IK for (MI) and (I1),
n(α∧δ)Rn

n for (ME).

The unified normalizing matrix becomes one of these three
specifications according to predictor persistence and the relation
between α and δ (through α ∧ δ). This notation is convenient for
presenting the IVX-QR limit theory (Theorems 3.1 and 3.2) but
depends on the unknown localizing coefficient matrix C and the
unknown rate parameter α. Thus Theorems 3.1 and 3.2 are not
directly applicable for practical work. However, self normalized
versions of the statistics (Propositions 3.1 and 3.2) have a chi-
square limit theory free of these unknown parameters, providing a
basis for the actual inference.

I also unify the different asymptotic moment matrices for the
(MI) and (I1) cases:

Vcxz :=


V x
zz =


∞

0
erCzΩxxerCzdr, when δ ∈ (0, α ∧ 1) ,

Vxx =


∞

0
erCΩxxerCdr, when α ∈ (0, δ)

(3.4)

and

Ψcxz :=


−C−1

z


Ωxx +


dJcx J

c′
x


, if α = 1,

−C−1
z {Ωxx + CVxx} , if α ∈ (δ, 1) ,

Vcxz = Vxx if α ∈ (0, δ) .

(3.5)

From the conditional moment restriction E[τ − 1

ytτ ≤ β ′

1,τ xt−1


|Ft−1] = 0, a natural procedure of estimating β1,τ using IVX
filtering is to minimize the L2-distance of the sum of the empirical
moment conditions that use IVX z̃t−1 from information set Ft−1.

Definition 3.1 (IVX-QR Estimation). The IVX-QR estimator β̂1,τ for
β1,τ is defined as

β̂
IVXQR
1,τ = arg inf

β1

1
2


n

t=1

mt (β1)

′  n
t=1

mt (β1)


, (3.6)

wheremt (β1) = z̃t−1

τ − 1


ytτ ≤ β ′

1xt−1


= z̃t−1ψτ (u0tτ (β1)).

Theminimization (3.6) leads to the following approximate FOC:

n
t=1

Z̃t−1,n


τ − 1


ytτ ≤


β̂

IVXQR
1,τ

′

xt−1


= op(1). (3.7)
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The asymptotic theory of β̂ IVXQR
1,τ follows from this condition. The

next theorem gives the limit theory of the IVX-QR estimator under
various degrees of predictor persistence.

Theorem 3.1 (IVX-QR Limit Theory).

D̃n


β̂

IVXQR
1,τ − β1,τ



H⇒



N


0,
τ (1 − τ)

fu0τ (0)
2 Ω

−1
xx


for (I0),

MN


0,
τ (1 − τ)

fu0τ (0)
2 Ψ

−1
cxz Vcxz


Ψ−1

cxz

′
for (MI) and (I1),

MN


0,
τ (1 − τ)

fu0τ (0)
2


Ṽxx

−1


for (ME).

Unlike Theorem 2.1, the limit theory is (mixed) normal for
all cases, and the limit variances are easily estimated. The self-
normalized estimator given in the following theorem provides a
convenient tool for unified inference across the (I0), (MI), (I1) and
(ME) cases.

Proposition 3.1 (Self-normalized IVX-QR). For (I0), (MI), (I1)
and (ME) predictors,

fu0τ (0)
2
(τ (1 − τ))−1(β̂

IVXQR
1,τ − β1,τ )

′

X ′PZ̃X


× (β̂

IVXQR
1,τ − β1,τ ) H⇒ χ2 (K) ,

where X ′PZX = X ′Z̃

Z̃ ′Z̃
−1

Z̃ ′X =
n

t=2 xt−1z̃ ′

t−1

 n
t=2 z̃t−1

z̃ ′

t−1

−1 n
t=2 xt−1z̃ ′

t−1

′ and fu0τ (0) is any consistent estimator for
fu0τ (0).

4

Using Proposition 3.1, we can test the linear hypothesis H0 :

β1,τ = β0
1,τ for any given β0

1,τ . More generally, consider a set of r
linear hypotheses H0 : Hβ1,τ = hτ with a known r × K matrix
H and a known vector hτ . In this case the null test statistics are
formed as follows with the corresponding chi-square limit theory

fu0τ (0)
2
(τ (1 − τ))−1(Hβ̂ IVXQR

1,τ − hτ )′{H

X ′PZ̃X

−1 H ′
}
−1

× (Hβ̂ IVXQR
1,τ − hτ ) H⇒ χ2 (r) .

3.3. Ivx-qr inference: testing quantile predictability

Theorem 3.1 and Proposition 3.1 allow for testing of a
general linear hypothesis with multiple persistent predictors. The
procedure (3.6) may be computationally demanding since the
optimization of a nonconvex objective requires grid search with
several local optima. Considering that the usual hypothesis of
interest in predictive regression is the null of H0 : β1,τ = 0, I
propose an alternative testing procedure that is computationally
attractive. Recall the DGP we impose is ytτ = β ′

1,τ xt−1 + u0tτ .
Based on the fact that xt−1 and z̃t−1 are ‘‘close’’ to each other, we
use ordinary QR on z̃t−1 to test H0 : β1,τ = 0. Specifically, consider
the simple QR regression procedure

γ̂
IVXQR
1,τ = argmin

γ

n
t=1

ρτ

ytτ − γ ′

1z̃t−1

.

We then have the following asymptotics of null test statistics:

4 The kernel density estimation with standard normal kernel functions and
Silverman’s rule for the bandwidth choices are used in the simulation and empirical
results below.
Theorem 3.2. Under H0 : β1,τ = 0,

D̃n


γ̂

IVXQR
1,τ − β1,τ



H⇒



N


0,
τ (1 − τ)

fu0τ (0)
2 Ω

−1
xx


for (I0),

N


0,
τ (1 − τ)

fu0τ (0)
2 V−1

cxz


for (MI) and (I1),

MN


0,
τ (1 − τ)

fu0τ (0)
2


Ṽxx

−1


for (ME).

.

The above limit theory also holds under local alternatives of
the form H0 : β1,τ = n−νb1,τ with some ν > 0. We achieve
asymptotic normality of the null test statistics simply by replacing
the regressor xt−1 with z̃t−1. The final pivotal test statistics can
be obtained by a similar self-normalization as given in the next
theorem.

Proposition 3.2. Under H0 : β1,τ = 0,

fu0τ (0)
2
(τ (1 − τ))−1(γ̂

IVXQR
1,τ − β1,τ )

′


Z̃ ′Z̃


× (γ̂
IVXQR
1,τ − β1,τ ) H⇒ χ2 (K)

for (I0), (MI), (I1) and (ME) predictors.

Since QR algorithms are available in standard statistical
software, Proposition 3.2 provides a uniform inference tool that
involves easy computation. If we want to test the predictability of
a specific subgroup among our predictors, sayH0 : β11,τ = β12,τ =

0, then the following test statistics with H =

I2, 02×(K−2)


can be

employed

fu0τ (0)
2
(τ (1 − τ))−1(Hγ̂ IVXQR

1,τ )′{H

Z̃ ′Z̃
−1

H ′
}
−1

× (Hγ̂ IVXQR
1,τ ) H⇒ χ2 (2) .

4. On the choice of IVX-QR filtering parameters and simulation

In this section, I discuss the proper choice of parameters (Cz, δ)
used in the IVX construction. Theorems 3.1 and 3.2 show that, for
a given Cz , a larger IVX persistence (δ) leads to more local power
while a smaller δ may achieve better size corrections. I suggest a
practical choice rule andprovide confirmatory simulation evidence
obtained by IVX-QR tests based on this rule.

4.1. A practical rule

The idea uses the analytical formula (2.10) where the QR t-ratio
is shown as tβ1,τ ∼ (1−λ (τ)2)1/2Z +λ (τ) ηLUR(c)with ηLUR(c) =

(
 

Īcx
2
)−1/2


ĪcxdWx. The distributional properties of ηLUR(c) are

well understood. It is easy to simulate the distribution for a given c.
The idea of IVX-QR filtering is to reduce the regressor persistence
(|c|) in order to remove the nonstandard distortion arising from
λ (τ) ηLUR(c), which is a composite effect of QR endogeneity and
nonstationary distortion:

λ (τ)  × ηLUR(c)   .
QR endogeneity nonstationary distortion

The essential AR(1) parameter of the IVX-filtered regressor
(in a bivariate setting) is Rnz = 1 +

cz
nδ = 1 +

c(δ,n)
n where
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c (δ, n) = n1−δcz . Thus, for any δ ∈ (0, 1), the induced local-
to-unity parameter c (δ, n) → −∞ as n → ∞ , thereby letting
ηLUR(c (δ, n)) H⇒ Z ∼ N(0, 1) (Phillips, 1987). The standard
normal limit theory for tβ1,τ will therefore hold for any δ ∈ (0, 1)
as n → ∞. For a given finite n, the filtering parameter choice can
be interpreted as showing how to choose

n1−δcz
 large enough

to deliver the standard normal limit theory of tβ1,τ . If δ is small
enough, c (δ, n) = n1−δcz will be close enough to −∞, however,
smaller δ results in a loss of local power. For a given cz and n, we
want to increase δ < 1 up a threshold value where the distortion
from λ (τ) ηLUR(c) is still acceptable.

I suggest a practical rule to choose δ ∈ (0, 1)with a normalized
cz = −5. In a local to unity regressor setting, it is possible to
find a numerical value of c (δ, n) = c that controls the size
distortion after imposing an acceptable Type I error bound. For
example, Campbell and Yogo (2006) suggested 7.5%, for a nominal
5% level. More conservative bounds can be employed according
to the purpose of the researchers. By simulating tβ1,τ with various
choices of c (δ, n) and λ (τ), we could plot the asymptotic size of
nominal α t-test as a function of c (δ, n) and λ (τ):

AsySIZE (c (δ, n) , λ (τ ) ;α)
= Pr

(1 − λ (τ)2)1/2Z + λ (τ) ηLUR(c)
 > Zα/2


.

For 5% level tests, I report the values of c (δ, n) and λ (τ) providing
the desirable level of tail approximations (empirical size smaller
than 7.5%). They are tabulated in Table A.3 in the supplement
(Lee, 2014). Using the table we could pick the proper c (δ, n) and
equating c (δ, n) = n1−δ (cz). The corresponding δ is therefore
obtained by δ = 1 − (log(−c (δ, n))− log(5)) / log n.

Among the two distortion components λ (τ) and ηLUR(c), we
only use data information contained in the estimated QR endo-
geneity λ̂ (τ ). The estimation is straightforward by the regres-
sion residuals. The reliable performances are reported in Table
A.2 (Section 1.1 of Lee, 2014). The choice based on λ̂ (τ ) is thus
quantile-dependent, and it allows us to pick the correct δ fromdata
information. We do not use any estimation of c but rather directly
impose an acceptable value of c (δ, n) = c to the IVX filtering
mechanism. Not using any estimated c (which is not consistently
estimable) is a key idea to avoid the invalidity issues with I(0)-MI
predictors, raised in the recent literature (e.g. Mikusheva, 2007;
Phillips, 2014).

In sum, given the data:

1. Obtain λ̂ (τ ) by estimating −corr (1 (u0tτ < 0) , uxt) using the
regression residuals.

2. Find a suggested c (δ, n) from Table A.3 and get δ = 1 −

(log(−c (δ, n))− log(5)) / log n.
3. Using the δ and cz = −5, perform the IVX-QR estimation and

tests.

In multiple predictor scenarios, we could use δ = min(δ1, . . . ,
δK ) to provide safe size control, where each δk is chosen by the
above rule from the corresponding regressor xk. The performances
are investigated in the next section.

The Matlab codes containing the built-in computation of λ̂ (τ )
and the automatic IVX-QR correction based on the corresponding
δ are used in the simulation and empirical applications below. The
codes are available from the author’s web page.5

5 https://sites.google.com/site/jihyung412/research.
4.2. Simulation

I conduct simulations to examine the numerical performances
of IVX-QR inferencemethods based on the practical rule suggested
in Section 4.1. Using the common simulation designs, I confirm the
validity of the suggested choice of (Cz, δ) and the reliable IVX-QR
performances.

The following DGP is imposed:

yt = β0,τ + β ′

1,τ xt−1 + u0t,τ , (4.1)
xt = µx + Rxt−1 + uxt .

where µx = 0, R = IK + n−1C and

ut = (u0t u′

xt)
′
∼ iid Fu


0(K+1)×1,Σ(K+1)×(K+1)


. (4.2)

The IVX is constructed as (3.2) using the practical rule of choice:
δ is picked up from the look-up Table A.3 based on λ̂ (τ ) ,where Cz
is normalized to −5IK . The procedure is automatically built-in to
the Matlab simulation codes. The tests use Proposition 3.2.

4.2.1. Median/Mean tests with a single persistent predictor
I begin with a single (K = 1) persistent regressor. Although

IVX-QRmethods allow testing for predictability at various quantile
levels, I focus on the median to compare its performance to that of
existingmean predictability tests. In particular, the IVX-QRmedian
test is compared to the methods of Campbell and Yogo (2006,
CY-Q) and a modified version of CY-Q test (Modified CY-Q). The
invalidity of the original CY-Q test for I(0)-MI regressors has been
recently reported and a modification based on a uniformly valid
CI (e.g. Mikusheva, 2007) was suggested in the literature (Phillips,
2014). I include both versions of CY-Q tests in the following
simulation.

To investigate empirical size and power performances, I
generate a sequence of local alternatives with Hβ1n : β1n =

b
n

in (4.1) for integer values b ≥ 0 (τ = 0.5 is suppressed) and
observe the performances of the IVX-QR, CY-Q and modified CY-
Q tests. Note that the b = 0 case provides size performances (H0 :

β1,τ = 0), while b > 0 illustrates power results (H1 : β1,τ > 0).
Considering that much applied work uses the intercept term in
the stock return regression (non-zero excessmean/median return),
IVX-QR with dequantiling, as in (3.1), is compared to the CY-Q and
modified CY-Q tests with demeaning. For the distribution Fu in
(4.2), I employ normal and t-distributions, with the correlation
matrix

Σ =


1 φ
φ 1


, φ = −0.95.

This value of φ reflects the realistic error correlation in predictive
regressions, such as dividend–price ratio, and has been frequently
employed in the predictive regression literature.

Figs. 1–3 illustrate the results. For I(1) (R = 0.98) predictors
with normal errors, the CY-Q and modified CY-Q tests perform
better than IVX-QR, which is expected. The test performance
rankings with MI and I(0) (R = 0.9 and 0.84) with normal errors
are mixed. For heavy-tailed scenarios (t(3)–t(1)), IVX-QR shows
the best performance across all scenarios. Note that the invalidity
of the original CY-Q for I(0) case (test size shrinking to zero)
appears in Fig. 3, again confirming the results in Phillips (2014)
and Jansson andMoreira (2006, Table I). The modified CY-Q shows
the validity in all cases. The power loss of the modified CY-Q
relative to the original CY-Q may be due to a particular Bonferroni
correction employedhere. The original CY-Qnumerically found the
combination of α1 (size for R) and α2 (size for β conditional on R)
to maximize efficiency. The same efficiency maximization for the

https://sites.google.com/site/jihyung412/research
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Fig. 1. c = −5(n = 250; R = 0.98)with normal, t(3), t(2) and t(1) innovations.
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Fig. 2. c = −25(n = 250; R = 0.9)with normal t(3), t(2) and t(1) innovations.
modified CY-Q is possible but is beyond the scope of this paper.We
however expect the same ranking patterns will hold by comparing
the best performances of two CY-Q’s (CY-Qwhen R = 0.98 and 0.9,
Modified CY-Q when R = 0.84) to IVX-QR’s.

In summary, IVX-QR testingwith a single persistent predictor is
competitive, especiallywhenwehaveheavy-tailed errors. All three
tests performwell in termsof size andpower except for the original
CY-Q test in cases of stationary predictors. The IVX-QR test can
easily employ multiple persistent predictors. In addition, the IVX-
QR test can analyze the predictability of other quantiles in addition
to the median, providing greater applicability for prediction tests.
Size properties of IVX-QR prediction tests on various quantiles are
analyzed in the next section.
4.2.2. Size properties of prediction tests on various quantiles
Few studies have considered predicting other quantile levels

of financial returns, such as the tail or shoulder (for exceptions,
see Maynard et al., 2011; Cenesizoglu and Timmermann, 2008).
This paper develops a valid method to test various quantile
predictability of asset returns in the presence ofmultiple persistent
predictors. In this section, I focus on large sample performance
(n = 700) to guarantee accurate density estimation at the tails,
e.g., the 5% quantile. Imprecise density estimation at tail quantiles
with finite sample size is a common problem in QR. Large sample
sizes are often available in financial applications.

The simulation environment used to test the size properties
of various quantile predictions is similar to that of the earlier
section. Dequantiling in (3.1) and the practical rule for (Cz, δ) based



J.H. Lee / Journal of Econometrics 192 (2016) 105–118 113
1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

0 0.040.02 0.06 0.08 0.1 0.12 0 0.040.02 0.06 0.08 0.1 0.12

0 0.040.02 0.06 0.08 0.1 0.120 0.040.02 0.06 0.08 0.1 0.12

n=250, C= –40, Normal

IVX – QR
Modified CY – Q
CY – Q
Nominal Size

IVX – QR
Modified CY – Q
CY – Q
Nominal Size

IVX – QR
Modified CY – Q
CY – Q
Nominal Size

IVX – QR
Modified CY – Q
CY – Q
Nominal Size

n=250, C= –40, t(3)

n=250, C= –40, t(1)n=250, C= –40, t(2)

Fig. 3. c = −40(n = 250; R = 0.84)with normal t(3), t(2) and t(1) innovations.
Table 1
Size performances (%) of ordinary QR (n = 700, S = 1000).

τ = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Normally distributed errors

c = 0 14.5 13.5 15.0 15.5 16.3 17.8 17.0 16.3 16.0 13.1 14.5
c = −2 10.6 10.0 11.0 12.5 12.9 11.9 11.9 11.4 9.8 9.6 11.5
c = −5 8.7 8.1 8.3 8.4 7.7 9.4 8.9 9.8 7.5 11.0 10.6
c = −7 9.7 9.2 7.4 6.3 7.4 6.2 6.2 7.1 7.4 7.8 9.5
c = −70 6.7 6.1 6.0 4.2 5.2 3.8 4.2 4.6 4.6 5.6 8.2
t(3) errors

c = 0 18.1 17.0 13.5 12.5 12.3 11.5 11.9 12.9 14.4 17.1 17.6
c = −2 14.4 13.3 11.1 8.5 8.5 9.1 9.2 11.2 11.3 13.3 15.0
c = −5 11.8 11.5 8.1 9.1 6.6 8.1 7.4 6.5 8.4 11.4 12.9
c = −7 12.5 8.1 10.1 7.5 5.5 7.1 5.8 6.9 6.4 9.4 13.5
c = −70 10.0 8.9 5.4 4.8 5.5 3.6 4.2 4.7 6.5 7.8 9.3
t(2) errors

c = 0 20.3 16.1 11.3 11.1 9.1 8.5 8.5 10.4 12.3 14.2 16.2
c = −2 15.8 12.4 10.7 8.3 8.6 5.8 6.7 8.1 11.8 12.0 15.7
c = −5 13.0 9.0 6.7 6.2 5.4 5.4 4.7 6.5 8.4 12.9 13.7
c = −7 12.2 10.7 7.8 5.6 4.1 3.9 5.8 5.3 7.9 10.7 13.9
c = −70 7.2 7.1 6.8 4.5 4.6 3.4 3.7 5.3 7.0 8.3 8.6
on the estimated λ (τ) are used for all IVX-QR simulations. The
persistence parameter ci is selected from {0,−2,−5,−7,−70}.
This set represents a set of persistent predictors including R = 0.9
(MI) through R = 1 (unit root). Normal and t-distributions are used
for Fu and the number of replications is 1000. All null test statistics
use the same hypothesis: H0 : β1,τ = 0 with a nominal size of 5%.
The size performances exceeding 10% are shown in bold, which can
be considered as severe size distortions.

I first investigate the size properties of ordinary QR methods.
Table 1 summarizes the size properties of ordinary QR t-statistics
in (2.10) with a single persistent predictor when φ = −0.95. The
nonstandard distortion increases with more persistent predictors
(smaller c). As Remark 2.2 suggests, the tail structure of Fu
significantly affects the magnitude of the size distortion. For a t-
distribution with heavier tails (smaller degrees of freedom), more
severe size distortion arises at the tail than at the median, while
the tendency does not impact normally distributed errors (thin
tails). The overall results indicate the invalidity of the ordinary QR
technique in the presence of persistent predictors, reassuring the
findings of Xiao (2009) and Maynard et al. (2011).

The size performances of the IVX-QR methods are reported
in Table 2. The size corrections are remarkable, confirming the
validity of IVX-QR methods at various quantiles. A few tail cases
with pure unit root regressors show mild over-rejections, but the
distortions are substantially smaller than those of the ordinary QR.
Thesemild over-rejections increasewith heavier tails (t(3) and t(2)
errors) as expected. The simulation results indicate that the IVX-QR
correction methods with the choice rule of (Cz, δ) from Section 4.1
control test sizes well across most quantiles.

I now consider the predictive QR scenario with multiple
persistent predictors (K = 2). This scenario has rarely been
explored but is relevant in empirical practice (e.g., book-to-market
ratio and Treasury bill rate). To avoid lengthy documentation, I
borrow a calibration technique for the innovation structure. In the
empirical section, specification with two predictors of book-to-
market ratio and Treasury bill rate is shown to predict stock returns
at various quantile levels. To support the empirical finding, the
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Table 2
Size performances (%) of IVX-QR (n = 700, S = 1000).

τ = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Normally distributed errors

c = 0 8.3 8.5 9.4 8.7 6.0 6.6 8.6 9.9 8.8 7.9 10.3
c = −2 7.9 6.1 5.0 5.5 4.6 4.1 4.5 5.3 5.8 6.0 7.7
c = −5 6.4 5.4 4.6 4.9 4.8 2.7 4.7 5.3 4.7 5.4 7.0
c = −7 6.6 7.1 4.7 5.9 4.3 3.9 4.0 4.5 4.6 4.8 6.2
c = −70 5.1 5.7 4.3 3.5 3.4 3.0 3.4 5.1 4.6 5.1 7.2
t(3) errors

c = 0 11.1 12.8 9.1 7.8 7.5 6.8 6.1 7.7 7.6 10.1 11.8
c = −2 9.3 8.1 6.3 5.2 4.9 4.1 5.4 5.8 5.5 7.8 8.0
c = −5 5.8 7.5 5.9 5.2 4.0 3.7 4.2 3.9 5.9 7.4 7.6
c = −7 8.5 6.5 5.0 4.5 3.9 4.3 3.9 4.3 5.3 5.5 7.8
c = −70 7.1 8.0 5.7 3.6 4.2 3.4 4.6 5.0 5.2 5.9 7.0
t(2) errors

c = 0 13.9 10.8 8.0 7.8 6.1 5.7 7.5 8.9 9.9 7.8 10.3
c = −2 8.8 7.2 7.1 4.6 4.8 4.8 3.9 4.7 8.6 8.6 6.4
c = −5 7.8 6.6 6.8 5.3 4.8 4.2 4.9 5.0 7.4 7.7 7.5
c = −7 8.0 7.4 6.3 4.6 3.3 3.8 4.1 4.2 7.1 7.7 8.6
c = −70 5.1 7.1 6.2 4.4 4.0 3.6 3.3 5.2 7.0 6.6 6.7
Table 3
Size performances (%) of ordinary QR (n = 700, S = 1000).

τ = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Normally distributed errors

c1 = 0, c2 = −2 13.9 11.8 12.8 13.0 12.6 12.6 13.0 10.7 12.4 11.1 13.7
c1 = 0, c2 = −5 14.0 12.2 12.3 12.0 9.8 10.4 13.1 14.6 11.0 12.7 12.3
c = 0, c2 = −7 13.2 13.4 9.8 9.7 13.0 11.1 12.9 11.0 10.1 12.6 12.6
t(3) errors

c1 = 0, c2 = −2 20.4 17.8 13.6 8.9 8.9 8.7 10.0 10.6 11.8 13.5 19.8
c1 = 0, c2 = −5 23.9 14.6 11.5 10.1 8.2 8.6 9.1 10.1 12.6 19.6 17.5
c = 0, c2 = −7 18.4 15.9 10.6 9.2 8.3 8.4 7.4 11.4 10.9 14.4 19.3
Table 4
Size performances (%) of IVX-QR (n = 700, S = 1000).

τ = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Normally distributed errors

c1 = 0, c2 = −2 12.9 11.0 9.9 9.6 8.1 7.6 7.8 8.0 9.7 9.0 12.6
c1 = 0, c2 = −5 12.9 10.1 8.4 7.8 7.1 6.1 7.9 7.8 7.8 10.4 11.4
c = 0, c2 = −7 13.3 11.3 9.1 7.7 7.0 6.6 8.3 9.4 7.8 10.2 10.4
t(3) errors

c1 = 0, c2 = −2 18.7 11.8 8.8 9.4 6.4 4.4 6.3 8.5 9.1 11.9 15.9
c1 = 0, c2 = −5 18.6 11.7 9.7 5.6 7.8 4.5 6.6 8.2 9.0 10.6 14.4
c = 0, c2 = −7 14.7 14.1 9.6 8.0 5.7 3.7 6.2 9.5 9.8 10.1 17.4
estimated correlation of the predictive QR application is used:

Σ =

 1 −0.78 −0.17
−0.78 1 0.21
−0.17 0.21 1


.

For bivariate predictor persistence, c1 is set to 0 and c2 is selected
from {−2,−5,−7}.

Table 3 shows the size properties of ordinary QR test statistics.
The size distortion is large when there are multiple persistent
predictors,which corroborates the benefits of the IVX-QRmethod’s
validating inference under multiple manifestations of predictor
persistence. Table 4 shows acceptable size results of the IVX-QR
tests at various quantile levels. The size correction works well
for most quantiles except a few tail cases. The results at inner
quantiles from 0.2 to 0.8 are satisfactory. The IVX-QR corrections
for multiple persistent predictors at τ = 0.05 or 0.1 require
further investigation. Even though there are some improved size
controls over the ordinary QR (e.g., from 17.8% to 11.8% at τ = 0.1
with t(3) errors), the tail case performances suggest a need for
newmethods to handle extremal quantiles under persistence. One
potential solution could be the use of a recent development in
extremalQR limit theory (e.g., Chernozhukov, 2005; Chernozhukov
and Fernandez-Val, 2011). I leave this for future research.

In summary, IVX-QR methods based on the practical rule
of choice of (Cz, δ) demonstrate reliable size performances for
most relevant specifications with single and multiple persistent
predictors, except for a few extreme cases. More comprehensive
simulation results are available from the online supplement (Lee,
2014). The practical benefits of IVX-QR inferencewill be illustrated
through empirical examples in the next section.

5. Quantile predictability of stock returns

It is often standard practice to test stock return predictability
using various economic and financial state variables as predictors.
There is considerable disagreement in the empirical literature as
to the predictability of stock returns when using a predictivemean
regression framework (e.g., Campbell and Thompson, 2008; Goyal
and Welch, 2008). In this section, I show empirical results of
stock return quantile prediction tests using IVX-QR. Excess stock
returns aremeasured by the difference between the S&P 500 index
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Table 5
p-values (%) of quantile prediction tests (1927:01–2005:12). Univariate regressions with each of the eight predictors: d/p, d/e, b/m, tbl, dfy, e/p, ntis, tms.

τ = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 0.3* 0.0* 0.2* 12.6 75.1 61.1 15.9 0.4* 6.4 5.0 0.0*
d/e 0.0* 0.0* 0.0* 0.0* 1.6* 38.4 53.6 9.9 2.9* 0.0* 0.0*
b/m 0.1* 0.0* 0.1* 0.5* 51.5 79.7 12.8 0.1* 2.6* 0.7* 0.8*
tbl 59.8 68.6 5.7 0.7* 0.4* 1.2* 0.7* 9.8 1.8* 0.1* 14.0
dfy 0.0* 0.0* 0.0* 0.0* 3.2* 75.2 2.6* 0.0* 0.0* 0.0* 0.0*
e/p 91.7 90.2 57.4 76.1 80.3 82.4 97.6 53.7 0.4* 27.9 25.4
ntis 5.3 0.3* 0.3* 27.2 19.0 82.9 74.2 58.5 83.7 93.3 96.6
tms 16.8 5.8 22.1 61.3 23.6 36.1 24.4 70.6 17.7 0.0* 0.0*
including dividends and the onemonth Treasury bill rate. I focus on
eight persistent predictors: dividend–price (d/p), dividend–payout
ratio (d/e), book tomarket (b/m) ratios, T-bill rate (tbl), default yield
spread (dfy), net equity expansion (ntis), earnings–price (e/p), term
spread (tms) and various combinations of the above variables. The
full sample period is January 1927–December 2005. These data
sets are standard and have been extensively used in the predictive
regression literature. Cenesizoglu and Timmermann (2008) and
Maynard et al. (2011) recently used the same data set in a QR
framework.6 Following Cenesizoglu and Timmermann (2008), I
classify the predictors into three categories.

Valuation ratios Bond yield
measures

Corporate finance
variables

dividend–price
ratio (d/p)

three-month
T-bill rate (tbl)

dividend–payout
ratio (d/e)

earnings–price
ratio (e/p)

term spread (tms) net equity
expansion (ntis)

book-to-market
ratio (b/m)

default yield (dfy)

I employ the IVX-QR methods to illustrate the benefits of
these new methods. In particular, I first investigate the quantile
predictability of stock returns using individual predictors and then
analyze the improved predictive ability of possible combinations
of predictors.

The null test statistics in Proposition 3.2 is used with the choice
rule of filtering parameters (δ, Cz) from Section 4.7 Table 5 reports
the univariate regression results, where p-values (%) are rounded
to one decimal place for exposition. The results shown in bold
imply the rejection of the null hypothesis of no predictability at
the 5% level.

The result is roughly consistent with the results of Maynard
et al. (2011) and Cenesizoglu and Timmermann (2008). I find
significant lower quantile predictive ability for the d/e and middle
quantile predictive power for the tbl. Evidence of both lower
and upper quantile predictability from b/m and dfy are provided.
Overall, I find little evidence of predictability at the median except
tbl. The results confirm theweakpredictability at themean/median
of stock returns, the stronger forecasting capability at quantiles
away from the median and several quantile specific predictors.

For multivariate regression applications, I use selective predic-
tor combinations for illustrative purposes. The selection scheme
is as follows: First, I ignore the predictability evidence from the
univariate regression results at the first and last two quantiles
(τ = 0.05, 0.1, 0.9 and 0.95), where the size control is not guar-
anteed for a few extreme cases from the simulation evidences. I

6 I thank Yini Wang for providing the data set. For detailed constructions and
economic foundations of the data set, see Goyal and Welch (2008). Note that
Maynard et al. (2011) and Cenesizoglu and Timmermann (2008) also considered
stationary predictors other than the eight persistent predictors I used.
7 The automatic choice of δ′s mostly lies between (0.53, 0.97). Similar results

with a more conservative choice (δ = 0.5) are available from Lee (2014, Table
A.10–13).
choose significant predictors at other quantiles where at least two
consecutive predictability evidences are detected (d/e, b/m, tbl, and
dfy in this instance). Second, I classify the chosen predictors into
three groups-Group L, Group M and Group B which are explained
below.

Group L : Group M : Group B :
lower quantile
predictors

middle quantile
predictors

lower & upper
quantile predictors

d/e tbl b/m and dfy

Finally, I select one predictor from each group to produce a
bivariate predictor and choose predictor combinations exhibiting
little evidence of comovement between the predictors. Evidence
of comovement between predictors does not completely reduce
the appeal of the combinations; however, we may prefer less-
comoving systems for better forecast models.8

I employ two diagnostic tests to observe evidence of comove-
ment between persistent predictors: (i) the correlation of xt−1, and
(ii) the cointegration tests between xt−1. The two measures will
provide evidence of comovement between all (I0) and (ME) pre-
dictors (see Section 3.2 of Lee, 2014). I find little evidence of co-
movement between (bm, tbl) and (d/e, tbl).

The above selection scheme is used primarily for illustrative
purposes, and I do not rule out the possibility of significant
results from other combinations.9 However, it is partly justifiable.
For example, both dfy and tbl are bond yield measures that
likely co-move, while bm is a valuation ratio that may have
different patterns. If we choose between (dfy, tbl) and (bm, tbl),
the above rationale recommends (bm, tbl) because they share
fewer common characteristics. Diagnostic tests indicate evidence
of larger comovement between (dfy, tbl) than that between (bm,
tbl). Therefore I focus on two combinations; (bm, tbl) and (d/e, tbl).

From Table 6, I confirm that the two combinations, (bm, tbl) and
(d/e, tbl) are jointly significant at various quantiles with stronger
evidence than that of univariate regressions. Many existing studies
only considered a single persistent predictor. The results below
illustrate the possibility of better forecast models with multiple
persistent predictors that are not subject to spurious forecasts. We
can proceedwithmore than twopredictormodels in a similarway.

I run the prediction tests to significant predictors from Table 6
for post-1952 data. Many papers have reported that the stock
return predictability becomes much weaker from January 1952
to December 2005 (see Campbell and Yogo, 2006; Kostakis
et al., 2014). Papers have often argued that the disappearance of
predictability was likely due to structural changes or improved
market efficiency. Table 7 shows weaker predictability evidence,
but some differences to mean predictive regressions still exist.

8 Phillips (1995) provided robust inference methods in cointegrating mean re-
gression models with possibly comoving persistent regressors (FM-VAR regres-
sions). Introducing the robust feature into the current framework (allowing singular
Ωxx in (2.7)) will be left for future research.
9 Results for other combinations are readily available upon request.
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Table 6
p-values (%) of quantile prediction tests (1927:01–2005:12). Multivariate regressions with two predictors: (b/m, tbl) and (d/e, tbl).

τ = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

b/m, tbl 0.1* 0.0* 0.1* 2.3* 19.5 4.7* 1.5* 0.0* 0.1* 0.0* 0.8*
d/e, tbl 0.0* 0.0* 0.0* 0.0* 0.0* 5.5 3.8* 14.1 0.0* 0.0* 0.0*
Table 7
p-values (%) of quantile prediction tests (1952:01–2005:12). Univariate regressions with each of the eight predictors: d/p, d/e, b/m, tbl, dfy.

τ = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

d/p 73.5 71.6 5.2 29.6 8.0 84.6 1.4* 0.1* 16.6 75.1 16.1
d/e 9.2 2.5* 4.8* 2.0* 0.1* 2.4* 80.2 6.6 10.8 0.2* 85.8
b/m 0.1* 97.6 8.7 34.3 10.3 53.5 69.2 12.2 32.0 20.6 19.0
tbl 6.7 0.3* 0.0* 0.0* 0.1* 0.2* 0.7* 20.0 23.6 8.7 19.3
dfy 24.7 88.0 58.4 45.4 58.3 6.9 2.3* 1.8* 0.5* 0.2* 0.1*
Table 8
p-values (%) of quantile prediction tests (1952:01–2005:12). Multivariate regressions with two predictors: (b/m, tbl) and (d/e, tbl).

τ = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

b/m, tbl 0.0* 1.3* 3.5* 0.0* 0.6* 2.9* 0.7* 1.4* 0.7* 0.1* 6.1
d/e, tbl 20.5 1.1* 0.0* 0.0* 0.0* 0.0* 1.0* 1.0* 39.4 0.0* 6.6
For example, Campbell and Yogo (2006) reported the predictive
ability of the tbl during this sub-period, while Kostakis et al. (2014)
concluded that the predictability from the variable disappears. I
find significant results from tbl at lower to middle quantiles while
little evidence at upper quantiles.

I proceed to the tests with two predictors to confirm the earlier
results on (bm, tbl) and (d/e, tbl). From Table 8, we see empirical
support for stock return forecast models for post-1952 periods,
using (bm, tbl) and (d/e, tbl). It turns out that the combination of one
valuation ratio (b/m) and a macro variable (tbl), or the latter with
a corporate finance variable (d/e), provide a potentially improved
forecast model for stock returns. IVX-QR corrections ensure that
the predictability results are not spurious.

To summarize the empirical findings, I show that commonly
used persistent predictors have greater predictive capability at
some specific quantiles of stock returns, where the predictability
froma given predictor tends to locate at lower or upper quantiles of
stock returns butmostly disappears at themedian. Apartial answer
to the empirical debate of stock returnmean/median predictability
may be provided. The significant predictors for specific quantiles
of stock returns can play important roles in risk management
and portfolio decision applications. I also find that by employing
some combination of persistent variables as predictors, forecasting
capability at most quantiles can be substantially enhanced relative
to a model with a single predictor. The predictive performance
of a specific combination, such as T-bill rate (tbl) and book-
to-market ratio (b/m), remains high even during the post-1952
period. The improved in-sample quantile forecast results are not
spurious because the IVX-QR methods control the size distortion.
This finding is new in the literature, suggesting the potential for
improved stock return forecast models.

6. Conclusion

This paper develops a new theory of inference for quantile
regression (QR). I propose methods of robust inference which
involve the use of QR with filtered instruments that lead to a
new procedure called IVX-QR. These new methods accommodate
multiple persistent predictors and they have uniform validity
under various degrees of persistence. Both properties offer great
advantages for empirical research in predictive regression.
In the empirical application of these methods, the tests
confirm that commonly used persistent predictors have significant
in-sample forecasting capability at specific quantiles, mostly away
from the median. The IVX-QR methods allow the investigator to
cope with quantile specific predictability of stock returns without
exposing the outcomes to spurious effects frommultiple persistent
predictor. The enhanced predictive ability from combinations
of persistent predictors suggests there is scope for further
improvement in time series forecasting applications.

Several directions of future research are of interest. One is out-
of-sample forecasting based on the IVX-QR methods. Explicit use
of IVX-QR forecasts in portfolio decision making and risk analysis
can be also studied. IVX-QR inference at extremequantiles requires
further theoretical investigations.
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Appendix

Themain proofs are given in this Appendix, while the proofs for
lemmas are collected in Lee (2014).

A.1. Proofs for Section 2.2

The following lemma provides the asymptotics of the processes
driving the limit theory of β̂QR

τ .
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Lemma A.1. 1. Gx
τ ,n := D−1

n
n

t=1 Xt−1ψτ (u0tτ ) H⇒ Gx
τ , where

Gx
τ =



N

0, τ (1 − τ)


1 0
0 Ωxx


for (I0),

N

0, τ (1 − τ)


1 0
0 Vxx


for (MI), Bψτ (1)

Jcx (r)dBψτ


for (I1),

MN

0, τ (1 − τ)


1 0
0 Ṽxx


, for (ME),

with Vxx =


∞

0 erCΩxxerCdr, Ṽxx =


∞

0 e−rCYCY ′

Ce
−rCdr and

YC ≡ N

0,


∞

0 e−rCΩxxe−rCdr

.

2. Mx
βτ ,n := D−1

n
n

t=1 fu0tτ ,t−1(0)Xt−1X ′

t−1D
−1
n H⇒ Mx

βτ
, where

Mx
βτ

=



fu0τ (0)

1 0
0 Ωxx


for (I0),

fu0τ (0)

1 0
0 Vxx


for (MI),

fu0τ (0)

1


Jcx (r)
′

Jcx (r)


Jcx (r)J
c
x (r)

′

 for (I1),

fu0τ (0)

1 0
0 Ṽxx


for (ME),

and convergence in probability holds for (I0) and (MI) cases.

Proof of Theorem 2.1. As in Xiao (2009, Proof of Theorem 1),
we can linearize (2.8) in terms of an arbitrary centered quantity
D−1
n (β̂τ −βτ ) using Knight’s identity (Knight, 1989). Note that (2.8)

is a convex minimization. Using the convexity lemma (Pollard,
1991) we can take the distributional limit of the linearized (2.8)
first, and then minimize to get:

D−1
n (β̂

QR
τ − βτ ) = (Mx

βτ ,n)
−1Gx

τ ,n + op(1).

The results of Theorem 2.1 now follow from Lemma A.1. �

A.2. Proofs of IVX-QR asymptotics: Sections 3.2 and 3.3

When xt−1 belongs to (I0) or (ME), the limit theory for IVX-QR
estimator β̂ IVXQR

1,τ is identical to that of the ordinary QR estimator
β̂1,τ in Theorem 2.1. In general, z̃t−1 reduces the persistence of xt−1
when xt−1 is more persistent than z̃t−1 (δ < α), except (ME) case. If
xt−1 is less persistent than z̃t−1 (δ > α) then original persistence of
xt−1 is maintained, hence the ordinary QR limit theory is achieved.
When xt−1 is (ME), the remainder term of IVX dominates the
asymptotics, see PL for the mean regression framework. I confirm
the same results in QR here.

The following lemma provides probability and distributional
limit of processes driving the asymptotic behavior of IVX-QR
estimators for (I0), (MI) and (I1) cases.

Lemma A.2. 1. Gτ ,n :=
n

t=1 Z̃t−1,nψτ (u0tτ ) H⇒ Gτ ≡
N (0, τ (1 − τ)Ωxx) for (I0),
N (0, τ (1 − τ)Vcxz ) for (MI) and (I1),

2. Mγτ ,n :=
n

t=1 fu0tτ ,t−1 (0) Z̃t−1,nZ̃ ′

t−1,n

→
p Mγτ ≡


fu0τ (0)Ωxx, for (I0),
fu0τ (0) Vcxz . for (MI) and (I1),

3. Mβτ ,n :=
n

t=1 fu0tτ ,t−1 (0) Z̃t−1,nX ′

t−1,n

H⇒ Mβτ ≡


fu0τ (0)Ωxx, for (I0),
fu0τ (0)Ψcxz , for (MI) and (I1).
Toprove Theorem3.1, I introduce a version of empirical process.
Let ϵ ∈ RK and

Gn (ϵ) = n−(1+δ)/2
n

t=1

z̃t−1

ψτ

u0tτ − ϵ′xt−1


− Et−1


ψτ

u0tτ − ϵ′xt−1


.

I focus (MI) and (I1) cases here and assume 0 < δ < min(α, 1)
for documentation purpose; the case of α ∈ (0, δ) will be
analogouswithn−(1+α)/2 hence omitted. (I0) case is again standard,
so omitted. Proof for (ME) predictors will be discussed below
(Lemma A.4).

The stronger normalizer n−(1+δ)/2 (than n−1/2) stabilizes the
stronger signal strength of z̃t−1 and xt−1, and the conditional
expectation Et−1 [·] (rather than unconditional expectation) avoids
the nonstationarity problem. Thus, the stochastic equicontinuity
proof of Bickel (1975) with iid regressors can be modified
accordingly. In fact, z̃t−1 andψτ satisfy condition G and C1 of Bickel
(1975) respectively, hence the analogy of Lemma 4.1 of Bickel
(1975) holds.

Lemma A.3. For a generic constant C > 0,

sup

∥Gn (ϵ)− Gn (0)∥ : ∥ϵ∥ ≤ n(1+δ)/2C


= op(1).

Proof of Theorem 3.1. 1. Since I have confirmed the uniform
approximation Lemma A.3, the standard result for the extremum
estimation with non-smooth criterion function (e.g. Pakes and
Pollard, 1989) holds with a stronger normalization n−(1+δ)/2.
Hence, we can show (β̂

IVXQR
1,τ − β1,τ ) = Op(n−(1+δ)/2). Let β̂1,τ =

β̂
IVXQR
1,τ within this proof.
Let ϵ̂τ = (β̂1,τ − β1,τ ), then from (3.7)

op(1) = n−(1+δ)/2
n

t=1

z̃t−1


ψτ (u0tτ − (β̂1,τ − β1,τ )

′xt−1)


= n−(1+δ)/2
n

t=1

z̃t−1

ψτ

u0tτ − ϵ̂′

τ xt−1


− Et−1

ψτ

u0tτ − ϵ̂′

τ xt−1


− ψτ (u0tτ )

+ Et−1 (ψτ (u0tτ ))}

+ n−(1+δ)/2
n

t=1

z̃t−1Et−1

ψτ

u0tτ − ϵ̂′

τ xt−1


+ n−(1+δ)/2
n

t=1

z̃t−1 {ψτ (u0tτ )}

= n−(1+δ)/2
n

t=1

z̃t−1Et−1

ψτ

u0tτ − ϵ̂′

τ xt−1


+ n−(1+δ)/2
n

t=1

z̃t−1 {ψτ (u0tτ )} + op(1).

With notation of embedded normalizers,

op(1) =

n
t=1


Z̃t−1,nψτ (u0tτ )

+ Z̃t−1,nEt−1

ψτ

u0tτ − ϵ̂′

τ xt−1


, (A.1)

and Et−1

ψτ

u0tτ − ϵ̂′

τ xt−1


can be expanded around ϵτ = 0
(β1 = β1 (τ )), hence

Et−1

ψτ

u0tτ − ϵ̂′

τ xt−1


= Et−1

ψτ

u0tτ − ϵ′

τ xt−1
 

ϵτ=0

+
∂Et−1


ψτ

u0tτ − ϵ′

τ xt−1


∂ϵ′
τ

|ϵτ=0ϵ̂τ + op(ϵ̂τ )
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where

Et−1

ψτ

u0tτ − ϵ′

τ xt−1


= τ − Et−1

1

u0tτ < ϵ′

τ xt−1


= τ −

 ϵ′τ xt−1

−∞

fu0tτ ,t−1(s)ds

hence

∂Et−1

ψτ

u0tτ − ϵ′

τ xt−1


∂ϵ′
τ


ϵτ=0

= −x′

t−1fu0tτ ,t−1(0),

thus

Et−1

ψτ

u0tτ − ϵ̂′

τ xt−1


= −x′

t−1fu0tτ ,t−1(0)ϵ̂τ + op(1).

Putting it back to (A.1),

op(1) = Gτ ,n +

n
t=1

fu0tτ ,t−1(0)Z̃t−1,nX ′

t−1,nn
(1+δ)/2


β̂1,τ − β1,τ


,

therefore,

n(1+δ)/2

β̂1,τ − β1,τ


=

Mβτ ,n

−1 Gτ ,n + op(1),

and the results of Theorem 3.1 for (MI)–(I1) cases follow from
Lemma A.2. �

Lemma A.4. If xt−1 belongs to (ME), then n−(α∧δ)R−n
n
n

t=1 z̃t−1

ψτ (u0tτ ) H⇒ CCzαδ × N

0, τ (1 − τ)Ṽxx


, and 1

nα+(α∧δ)

n
t=1 fu0tτ ,t−1 (0) R

−n
n z̃t−1x

′
t−1R

−n
n

1
nα+(α∧δ)

n
t=1 fu0tτ ,t−1 (0) R

−n
n z̃t−1 z̃

′
t−1R

−n
n


H⇒ fu0τ (0) Ṽxx × CCzαδ ,

where

Czαδ :=

 −C−1
z , if δ < α

C−1, if α < δ

(C − Cz)
−1 , if α = δ

 .
Proof. The result directly follows from the proof of Lemma
2.4 in Phillips and Lee (forthcoming), by replacing u0t with
ψτ (u0tτ ). Thus, the result in Theorem 3.1 for (ME) case follows
similarly. �

Proof of Theorem 3.2. Note that

ytτ − γ ′

1z̃t−1 = ytτ − (γ1 − β1,τ )
′z̃t−1 − β ′

1,τ z̃t−1

= u0tτ − (γ1 − β1,τ )
′z̃t−1 + β ′

1,τ (xt−1 − z̃t−1)

= u∗

0tτ − (γ1 − β1,τ )
′z̃t−1

where u∗

0tτ = u0tτ + β ′

1,τ (xt−1 − z̃t−1). Following the proof of
Theorem 2.1, it is straightforward to show that

n(1+(α∧δ))/2(γ̂
IVXQR
1,τ − β1,τ ) = (Mγτ ,n)

−1G∗

τ ,n + op(1),

whereG∗
τ ,n =

n
t=1 Z̃t−1,nψτ


u∗

0tτ


, and it is clear thatG∗

τ ,n = Gτ ,n
under H0 : β1,τ = 0, leading to

n
1+(α∧δ)

2 (γ̂
IVXQR
1,τ − β1,τ ) = (Mγτ ,n)

−1Gτ ,n + op(1)

H⇒ N

0, τ (1 − τ)fu0τ (0)

−2 V−1
cxz


. �
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