Simple Least Squares Estimator for Treatment Effect Using Propensity Score Residual (R&R, *Biometrika*)

Myoung-jae Lee

Korea University

February 3, 2017

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Mean Difference and PSM

• For a binary treatment D, a response Y and covariates X, let Y^d be the potential response for D = d; $Y = (1 - D)Y^0 + DY^1$. If D is randomized,

$$E(Y|D=1) - E(Y|D=0) = E(Y^1 - Y^0).$$

- The sample version of E(Y|D = 1) E(Y|D = 0) equals Slope LSE of Y on (1, D) = LSE of Y - E(Y) on D - E(D).
- Suppose D is not randomized and X needs to be controlled. If '($Y^0,\,Y^1)\amalg D|X$ ', then

$$E(Y|D = 1, X) - E(Y|D = 0, X) = E(Y^{1} - Y^{0}|X).$$

• To avoid the dimension problem in controlling X, propensity score matching (PSM) with $\pi(X) \equiv E(D|X)$ is used, as (Rosenbaum & Rubin 1983, BKA)

$$Y^{d} \amalg D | X \implies Y^{d} \amalg D | \pi(X) \quad \forall d.$$

Problems with PSM

- PSM requires several decisions on the user, according to which the effect estimate can change much.
- First, how many matched subjects for individual *i*: one for pair matching, and more for multiple matching.
- Second, whether to use a fixed number of matches *M*, or an individual-varying number *M_i*.
- Third, whether to use a caliper (a bound on the deviation between X_i and X of a matched individual) or not; if yes, its value.
- Fourth, matching with replacement or without. And more,...
- Getting standard errors in PSM is hard, despite the asymptotic normality in Abadie & Imbens (2016, ECA) under a parametric $\pi(X)$.
- The variance estimator is complicated, involving

$$V(Y|D = d, \pi(X) = p)$$
 & $COV\{X, E(Y|D = d, X)|\pi(X) = p\}.$

Main Idea of PS-Residual LSE

- Is it possible to bring back the simple LSE of Y on (1, D) while still controlling X nonparametrically? Can this be done without asking the user to make many decisions as in PSM?
- Under $Y^d \amalg D | X$ and the support-overlap condition $0 < \pi(X) < 1$, the answer is positive: do

LSE of
$$Y - E(Y)$$
 on $D - \pi(X)$. (LSE⁰_{psr})

- LSE⁰_{psr} includes the simple LSE for randomized D as a special case, because $\pi(X) \equiv E(D|X) = E(D)$; the superscript 0 will be explained shortly.
- It may look puzzling why X does not appear as regressors along with $D \pi(X)$. The key point is that X is uncorrelated with $D \pi(X)$, and thus X can be buried in the error; balancing/matching on X unnecessary.
- If $\pi(X)$ is estimated nonparametrically, LSE_{psr}^{0} is nonparametric as well because the X-part not specified. But probit will be used for $\pi(X)$ under $\pi(X) = \Phi(X'\alpha)$ in this paper, which makes LSE_{psr}^{0} semiparametric.

Generalizing PS-Residual LSE

• Let $\Pi^{q}(Y|X'\alpha)$ denotes the linear projection of Y on $\{1, X'\alpha, ..., (X'\alpha)^{q}\}$. A generalized version of LSE⁰_{psr} is

LSE of
$$Y - \Pi^q(Y|X'\alpha)$$
 on $D - \pi(X)$.

• With the projection coefficient γ_j for $(X' \alpha)^j$, j = 0, ..., q, this LSE is

LSE of
$$Y - \sum_{j=0}^{q} \gamma_j (X' \alpha)^j$$
 on $D - \pi(X)$. (LSE^q_{psr})

- Replace α with the probit $\hat{\alpha}$, and γ_q 's with the LSE of Y on {1, $X'\hat{\alpha}$, ..., $(X'\hat{\alpha})^q$ } to implement LSE_{psr}^q . Let $\gamma \equiv (\gamma_0, \gamma_1, ..., \gamma_q)'$. Set q at $1 \sim 3$ in practice; or modify $\pi(X)$ until $LSE_{psr}^0 = LSE_{psr}^1 = LSE_{psr}^2 \cdots$
- Since the LSE of Y on 1 is \bar{Y} , LSE^q_{psr} includes LSE⁰_{psr} as a special case when q = 0. To ease referencing LSE⁰_{psr} and LSE^q_{psr} with q > 0, use the expression LSE^q_{psr} only for q > 0 henceforth. 'LSE_{psr}' refers to both LSE⁰_{psr} and LSE^q_{psr}.

Advantages of PS-Residual LSE and Remarks

- First, LSE_{psr} is possibly the easiest to implement, with hardly any choice required by the user; it is numerically stable.
- Second, it has a simple asymptotic variance estimator that works also well in small samples.
- Third, as will be seen, it can be easily extended to multiple/multi-valued D by replacing π(X) with a 'generalized PS'.
- The motivation to extend LSE⁰_{psr} to LSE^q_{psr} is to improve LSE⁰_{psr} in case PS is misspecified, although LSE_{psr} proceeds on the premise of the correctly specified PS as PSM does—more on this shortly.
- Simply put, LSE_{psr} brings the "time-tested work horse" LSE back to life for binary or multiple treatment while controlling covariates semiparametrically.

・ロト ・回ト ・ヨト ・ヨト

Motivating Semi-Linear Parallel-Shift Model

• For an unknown $\mu(\cdot)$, let (this "parallel shift" will be relaxed later):

$$Y^{0} = \mu(X) + U, \ Y^{1} = \beta + Y^{0} \implies Y = \beta D + \mu(X) + U, \ E(U|X) = 0.$$

• $Y^d \amalg D | X \Longrightarrow U \amalg D | X \Longrightarrow U \amalg D | \pi(X)$. Take $E\{\cdot | \pi(X)\}$ on the Y eq.: $E\{Y|\pi(X)\} = \beta \pi(X) + E\{\mu(X)|\pi(X)\}.$

• Hence,

$$\begin{split} & Y - E(Y) = \beta \{ D - \pi(X) \} + V \quad \text{where} \\ & V \equiv \mu(X) - E\{ \mu(X) | \pi(X) \} + E\{ Y | \pi(X) \} - E(Y) + U. \end{split}$$

• Since V is determined by U with X given, $U \amalg D | X \Longrightarrow V \amalg D | X \Longrightarrow V \amalg D | \pi(X)$; the proof on the next slide

• $E\{\cdot|\pi(X)\}$ on $\pi(X) \equiv E(D|X)$ gives $\pi(X) = E\{D|\pi(X)\}$. LSE⁰_{psr} works: $E[\{D - \pi(X)\}V] = E[E\{DV - \pi(X)V|\pi(X)\}] = 0$

Implementation and Generalization

- Set $\pi(X) = \Phi(X'\alpha)$ to apply probit for α . LSE⁰_{psr} is much easier to implement than PSM.
- When PS is misspecified, COR{D π(X), V} ≠ 0 in general, and the omitted X-dependent terms in V result in biases. This may be alleviated if E{Y|π(X)} is explicitly accounted for by Π^q(Y|X'α) in LSE^q_{psr}.
- Using $X'\alpha$ instead of $\Phi(X'\alpha)$ in $\Pi^q(Y|X'\alpha)$ makes the extension to multiple treatments easier.
- In LSE_{*psr*}, the only decision to make is specifying the PS regression function $X'\alpha$, which is common for all PS-based estimators. For simplicity, proceed with LSE²_{*psr*} henceforth, unless otherwise noted.

The proof for $V \amalg D | X \Longrightarrow V \amalg D | \pi(X)$ comes from the 1st & last terms in

$$E\{D|V, \pi(X)\} = E\{E(D|V, X)|V, \pi(X)\}$$

= $E\{E(D|X)|V, \pi(X)\} = \pi(X) = E\{D|\pi(X)\}.$

Asymptotic Distribution

• With $\pi(X) \equiv E(D|X)$ and E(Y|X) nonparametrically estimated in the LSE of Y - E(Y|X) on $D - \pi(X)$, the first-stage errors, $\hat{\pi}(X) - \pi(X)$ and $\hat{E}(Y|X) - E(Y|X)$, are orthogonal to the LSE moment condition.

• But for LSE²_{psr}, the error $\hat{\alpha} - \alpha$ matters, and it holds that

$$\sqrt{N}(\hat{\beta}-\beta) \rightsquigarrow N(0,\Omega)$$
 where $\hat{\Omega} \equiv (\frac{1}{N}\sum_{i}\hat{\epsilon}_{i}^{2})^{-2} \cdot \frac{1}{N}\sum_{i}(\hat{V}_{i}\hat{\epsilon}_{i}+\hat{L}\hat{\eta}_{i})^{2}$

and

$$\begin{split} \hat{\varepsilon}_{i} &\equiv D_{i} - \Phi(X_{i}'\hat{\alpha}), \qquad \hat{V}_{i} \equiv Y_{i} - \{\hat{\gamma}_{0} + \hat{\gamma}_{1}X_{i}'\hat{\alpha} + \hat{\gamma}_{2}(X_{i}'\hat{\alpha})^{2}\} - \hat{\beta}\hat{\varepsilon}_{i}, \\ \hat{\eta}_{i} &\equiv \left(\frac{1}{N}\sum_{i}\hat{s}_{i}\hat{s}_{i}'\right)^{-1}\hat{s}_{i} \quad \text{with} \quad \hat{s}_{i} \equiv \frac{\hat{\varepsilon}_{i}\phi(X_{i}'\hat{\alpha})}{\Phi(X_{i}'\hat{\alpha})\{1 - \Phi(X_{i}'\hat{\alpha})\}}X_{i}, \\ \hat{L} &\equiv -\frac{1}{N}\sum_{i}\hat{V}_{i}\phi(X_{i}'\hat{\alpha})X_{i}'. \end{split}$$

• If more polynomial terms of $X'\alpha$ are used for $\Pi^q(Y|X'\alpha)$, the modification needed is adding the extra terms into \hat{V} ; $\hat{V}_i \equiv Y_i - \bar{Y} - \hat{\beta}\hat{\varepsilon}_i$ in LSE⁰_{psr}.

- The simulation section will demonstrate that $\hat{\Omega}$ works well in small samples. If desired, one may use nonparametric bootstrap, resampling from the original sample with replacement.
- Hahn (1998, ECA, p. 323) showed that the LSE of Y E(Y|X) on D E(D|X) is not semiparametrically efficient. This suggests that, with α further estimated, LSE_{psr} would not be semiparametrically efficient.
- Despite the inefficiency, it will be shown by a simulation study that, in finite samples, LSE_{psr} is far more efficient as well as less biased than supposedly efficient estimators.
- This holds despite no user-interventions on LSE_{psr}, such as using a caliper in matching or excluding extreme observations with π(X) ~ 0,1 in weighting.

イロト イポト イヨト イヨト

General Model with Heterogeneous Effect

- To relax parallel shift, let, for unknown $\mu(X) \& \mu_D(X)$ and errors $U^0 \& U^1$, $Y^0 = \mu(X) + U^0$, $Y^1 = \mu(X) + \mu_D(X) + U^1$, $E(U^d|X) = 0$ $\implies Y = \mu(X) + \mu_D(X)D + U$, $U \equiv (1 - D)U^0 + DU^1$, E(U|X, D) = 0.
- $E(Y^1 Y^0|X) = \mu_D(X)$; parallel shift if $\mu_D(X) = \beta, U^0 = U^1$. Omitting $U = Y E\{Y|\pi(X)\} = \mu(X) E\{\mu(X)|\pi(X)\} + \mu_D(X)D E\{\mu_D(X)D|\pi(X)\}$.
- Since $D \pi(X)$ has slope 0, LSE_{psr} ' $\hat{\beta}_{psr}$ ' is consistent for the omitted variable bias due to $\mu_D(X)D E\{\mu_D(X)D | \pi(X)\}$ that is

$$\beta_{\omega} \equiv E\{\omega(X)\mu_D(X)\} = E\{\omega(X)E(Y^1 - Y^0|X)\}, \ \omega(X) \equiv \frac{V(D|X)}{E\{V(D|X)\}}.$$

• If interested in the X-conditional effect to model it as $\beta D + \beta'_X XD$ ($\implies E(Y^1 - Y^0|X) = \beta + \beta'_X X$), estimate the Y model with OLS and obtain $E\{\omega(X)(\beta + \beta'_X X)\}$: comparing this to LSE_{psr} check the Y model of Myoung lag Lee (Korea University) Simple Least Squares Estimator for Treatment Effect L

Why the Weighted Effect is Good

- When the X-conditional effect is μ_D(X), for the population, it is a matter of how to average X out. In a weighted averaging, higher weights are given to individuals deemed to be more important for the purpose.
- This importance is gauged by f_X in $E\{\mu_D(X)\}$, and by the proximity of $\pi(X)$ to 0.5 in $E\{\omega(X)\mu_D(X)\}$ because $V(D|X) = \pi(X)\{1 \pi(X)\}$.
- Since {1 − π(X)}π(X) attains its maximum at π(X) = 0.5 and decreases toward 0 as π(X) → 0, 1, those with π(X) ≃ 0.5 get higher weights (& those with π(X) ≃ 0, 1 get lower weights). Why is this good?
- First, those with $\pi(X) \simeq 0.5$ are close to being randomized, thus less susceptible to confounding by unobservables; they deserve high weights.
- Second, other estimators have an arbitrary feature to downweight extreme observations with $\pi(X) \simeq 0, 1$, but the $\omega(X)$ -weighting of LSE_{psr} is a built-in, non-arbitrary feature to downweight observations with $\pi(X) \simeq 0, 1$.

Non-Continuous Response

- LSE_{psr} works for any response Y, not just continuously distributed Y.
- E.g., suppose $Y = \mathbbm{1}[X'\psi + \beta D + N(0,1) > 0].$ Then,

$$\begin{aligned} \mu(X) &= \Phi(X^T\psi), \quad U^0 = Y - \Phi(X^T\psi), \\ \mu_D(X) &= \Phi(X^T\psi + \beta) - \Phi(X^T\psi), \quad U^1 = Y - \Phi(X^T\psi + \beta). \end{aligned}$$

•
$$\hat{\beta}_{psr} \rightarrow^{p} E[\omega(X) \{ \Phi(X'\psi + \beta) - \Phi(X'\psi) \}]$$
, while typically $E[\{ \Phi(X'\psi + \beta) - \Phi(X'\psi) \}]$ is presented as a marginal effect.

- For Y probit, estimating $E[\{\Phi(X'\psi + \beta) \Phi(X'\psi)\}]$ requires an extra work. In contrast, LSE_{psr} gives $\hat{\beta}_{psr} \rightarrow^{p} E[\omega(X)\{\Phi(X'\psi + \beta) \Phi(X'\psi)\}]$ directly, with an extra work done for the D probit instead.
- This is fine as long as misspecifications in $\pi(X)$ are less worrisome than those in the Y-model, which is the stance taken in the PS matching literature, as it has chosen to specify $\pi(X)$, instead of $E(Y^d|X)$.

Weighted PS-Residual LSE

- There is a weighted version of LSE_{psr} that is consistent for $\beta = E(Y^1 Y^0)$.
- Rewrite the general $Y E\{Y | \pi(X)\}$ equation as, omitting $U/\omega(X)$,

$$\frac{Y - E(Y|X^T\alpha)}{\omega(X)} = \frac{\mu(X) - E\{\mu(X)|\pi(X)\}}{\omega(X)} + \frac{\mu_D(X)D - E\{\mu_D(X)D|\pi(X)\}}{\omega(X)}$$

- Let $\hat{\beta}_{psr}^{\omega}$ denote the (weighted) LSE to this; $\hat{\beta}_{psr}^{\omega} \rightarrow^{p} \beta$ because $\omega(X)^{-1}$ in the omitted variable bias cancels $\omega(X)$ in $E\{\omega(X)E(Y^{1}-Y^{0}|X)\}$.
- Unless $\hat{\pi}(X)$ is well bounded within (0,1), however, the finite sample performance of $\hat{\beta}_{psr}^{\omega}$ is poor due to $\hat{\pi}(X) \simeq 0, 1$ in $\hat{\omega}(X)^{-1}$.
- This can be overcome by using only observations with $\hat{\pi}(X)$ away from 0 and 1, but this brings in arbitrariness. If desired, use $\hat{\beta}_{psr}^{\omega}$ as a reference, discarding observations with $\hat{\pi}(X) \simeq 0, 1$

Multiple LSE for Multiple Treatment

• Suppose D takes on 0, 1, ..., J. Let $D_d \equiv 1[D = d]$ to consider parallel-shift:

$$Y = \mu(X) + \sum_{d=1}^{J} \beta_d D_d + U$$
 where $E(U|X) = 0$.

• With
$$\pi_d(X) \equiv E(D_d|X)$$
 and $\pi(X) \equiv {\pi_1(X), ..., \pi_J(X)}'$,
 $Y - E(Y|\pi(X)) = \sum_{d=1}^J \beta_d {D_d - \pi_d(X)} + V.$

• The analog for LSE⁰_{psr} is

LSE of
$$Y - \overline{Y}$$
 on $D_d - \pi_d(X)$, $d = 1, ..., J$.

• The analog for LSE_{psr}^{q} is

LSE of
$$Y - \Pi^q(Y|X'\alpha)$$
 on $D_d - \pi_d(X)$, $d = 1, ..., J$

where $X'\alpha$ can be uni- or multi-dimensional; examples next.

ロトスロトメモトメ

Multiple Treatment Cases

• First, the treatments are ordered to be generated by

$$D_i = \sum_{d=1}^J \mathbb{1}[\zeta_d \leq X'_i \alpha + \varepsilon_i], \quad \zeta_1 = 0 < \zeta_2 < \cdots, < \zeta_J.$$

- E.g., D is schooling years. Under $\varepsilon \sim N(0, 1) \amalg X$, apply ordered probit to estimate the 'single index' $X'\alpha$. Then use $\Pi^q(Y|X'\alpha)$.
- Second, the treatments are *partly ordered* as in

$$D_{0i} \equiv 1[0 \le X'_{0i}\alpha_0 + \varepsilon_{0i}], \quad D_{ri} \equiv 1 + \sum_{d=1}^{J-1} \mathbb{1}[\zeta_d \le X'_{ri}\alpha_r + \varepsilon_{ri}],$$

 $\zeta_1 = 0 < \zeta_2 <, \cdots, < \zeta_{J-1}, \quad D_i \equiv (1 - D_{0i})D_{ri} \text{ taking on } 0, 1, 2, ..., J.$

- E.g., $D_0 = 1$ if not joining military, and $D_r = 1, 2, ..., J$ is military rank. (D_0, D_r) depends on X through $(X'_0 \alpha_0, X'_r \alpha_r)$. Use $\Pi^q(Y|X'_0 \alpha_0, X'_r \alpha_r)$.
- Third, if D is multinomial, J linear indices appear; e.g., D represents job categories.

Other Estimators: Regression Imputation (RI) and PSM

• With $\hat{\pi}(X) \equiv \Phi(X'\hat{\alpha})$, a PS-based 'regression imputation' (RI) estimator is

$$\hat{\beta}_{ri} \equiv \frac{1}{N} \sum_{i=1}^{N} \{ \hat{E}(Y | \hat{\pi}(X_i), D = 1) - \hat{E}(Y | \hat{\pi}(X_i), D = 0) \}$$

 $\hat{E}(Y|\hat{\pi}(X_i), D = d)$ is a nonparametric estimator for $E(Y^d|\pi(X_i))$.

• A PS pair-matching estimator for $E(Y^1 - Y^0)$ is

$$\hat{\beta}_{m1} \equiv \frac{1}{N} \sum_{i=1}^{N} (\hat{Y}_{i}^{1} - \hat{Y}_{i}^{0}) \text{ with } \hat{Y}_{i}^{1} \equiv D_{i} Y_{i} + (1 - D_{i}) Y_{t(i)}$$
$$\hat{Y}_{i}^{0} \equiv (1 - D_{i}) Y_{i} + D_{i} Y_{c(i)};$$

t(i) is the matched treated for control *i*; c(i) matched control for treated *i*.

• If $Y_{c(i)}$ is replaced by the average of the four nearest controls and if $Y_{t(i)}$ is replaced by the average of the four nearest treated, then 'PS four-multiple-matching estimator' $\hat{\beta}_{m4}$ is obtained.

Other Estimators: Bias-Corrected PSM

- Whereas the above RI and PSM specify $\pi(X)$, not $E(Y^d|X) = E(Y|X, D = d)$, there are estimators specifying $E(Y|X, D = d) = X'\beta_d$ (and $\pi(X)$).
- A bias-corrected version of $\hat{\beta}_{m1}$ (Abadie and Imbens 2011, JBES) is

$$\hat{\beta}_{mbc} \equiv \frac{1}{N} \sum_{i=1}^{N} (\tilde{Y}_{i}^{1} - \tilde{Y}_{i}^{0}), \quad \tilde{Y}_{i}^{1} \equiv D_{i}Y_{i} + (1 - D_{i})(Y_{t(i)} + X_{i}'\hat{\beta}_{1} - X_{t(i)}'\hat{\beta}_{1}),$$

$$\tilde{Y}_{i}^{0} \equiv (1 - D_{i})Y_{i} + D_{i}(Y_{c(i)} + X_{i}'\hat{\beta}_{0} - X_{c(i)}'\hat{\beta}_{0}).$$

• Matching is not exact (i.e., $X_{t(i)} \neq X_i$ or $X_{c(i)} \neq X_i$) to cause a bias, and adding $X'_i \hat{\beta}_1 - X'_{t(i)} \hat{\beta}_1$ and $X'_i \hat{\beta}_0 - X'_{c(i)} \hat{\beta}_0$ avoids the bias.

• $\hat{\beta}_{mbc}$ differs from Abadie and Imbens (2011): $\hat{\beta}_{mbc}$ uses linear models for $E(Y^d|X)$ while Abadie and Imbens used nonparametric estimators, and $\hat{\pi}(X)$ is used in selecting t(i) and c(i) while X is used in Abadie and Imbens.

Other Estimators: Doubly Robust (DR)

• An inverse-probability-weighted estimator (IPW) is

$$\frac{1}{N} \sum_{i} \{ \frac{D_{i}}{\hat{\pi}(X_{i})} - \frac{1 - D_{i}}{1 - \hat{\pi}(X_{i})} \} Y_{i}.$$

- 'Doubly robust' (DR) estimators are consistent if either $\pi(X)$ or $E(Y^d|X)$ is correctly specified, not necessarily both. There are many versions of DR estimator.
- A canonical DR estimator modifying IPW is

$$\begin{split} \hat{\beta}_{dr} &\equiv \hat{E}(Y^{1}) - \hat{E}(Y^{0}), \ \hat{E}(Y^{1}) \equiv \frac{1}{N} \sum_{i} \{ \frac{D_{i}Y_{i}}{\hat{\pi}(X_{i})} - \frac{D_{i} - \hat{\pi}(X_{i})}{\hat{\pi}(X_{i})} X_{i}' \hat{\beta}_{1} \}, \\ \hat{E}(Y^{0}) &\equiv \frac{1}{N} \sum_{i} \{ \frac{(1 - D_{i})Y_{i}}{1 - \hat{\pi}(X_{i})} - \frac{\hat{\pi}(X_{i}) - D_{i}}{1 - \hat{\pi}(X_{i})} X_{i}' \hat{\beta}_{0} \}. \end{split}$$

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Estimators Compared in Simulation

- RI1 & RI2 denote 2 RI estimators with 2 bandwidths. M# denotes PSM with pair or 4 matching; Mbc is the bias corrected version. Let $\hat{\beta}_{lse}^{0}$, $\hat{\beta}_{lse}^{2}$ & $\hat{\beta}_{lse}^{4}$ be LSE^{*q*}_{psr} with q = 0, 2, 4.
- Abadie and Imbens (2016) noted that Mbc would be DR; the simulation study supports this.
- In total, 9 estimators are compared:

RI1 $\hat{\beta}_{ri1}$, RI2 $\hat{\beta}_{ri2}$, M1 $\hat{\beta}_{m1}$, M4 $\hat{\beta}_{m4}$: $\pi(X)$ should be correct; Mbc $\hat{\beta}_{mbc}$, DR $\hat{\beta}_{dr}$: either $\pi(X)$ or $E(Y^d|X)$ should be correct; LSE $^0_{psr}$ $\hat{\beta}^0_{lse}$, LSE $^2_{psr}$ $\hat{\beta}^2_{lse}$, LSE $^4_{psr}$ $\hat{\beta}^4_{lse}$: $\pi(X)$ should be correct.

イロト イポト イヨト イヨト

Simulation Study 1

۲

• The basic simulation design is: with the simulation repetition 10000,

$$\begin{split} D &= \mathbf{1}[\mathbf{0} < \alpha_1 + \alpha_2 X_2 + \alpha_3 X_3 + \varepsilon], \qquad \varepsilon \sim \mathsf{N}(\mathbf{0},\mathbf{1}) \amalg (X_2,X_3), \\ & (X_2,X_3) \text{ is jointly standard normal with } \mathsf{COR}(X_2,X_3) = \sqrt{0.5} \simeq 0.71, \end{split}$$

$$\begin{split} Y &= \beta_d D + \beta_1 + \beta_2 X_2 + \beta_3 X_3 + U, \qquad U \sim N(0,1) \amalg (X_2, X_3, \varepsilon), \\ \alpha_1 &= 0, \ \alpha_2 = 1, \ \alpha_3 = \pm 1, \ \beta_1 = 0, \ \beta_d = \beta_2 = \beta_3 = 1, \ N = 400, 800. \end{split}$$

• $E(D) \simeq 0.5$. When $\alpha_3 = -1$, (X_2, X_3) averages around (-0.2, 0.2) and (0.2, -0.2) for the two groups, but when $\alpha_3 = 1$, much further away, around (-0.7, -0.7) and (0.7, 0.7); X overlaps much better in the former.

< ロ > < 同 > < 回 > < 回 > < 回

Simulation Study 2

		-(-, -, -, -, -, -, -, -, -, -, -, -, -, -
Table	1. Base design; both $\pi(X)$ &	$E(Y^{a} X)$ correctly specified
	Good X Overlap ($lpha_3=-1)$	Poor X overlap $(lpha_3=1)$
	bias, sd, rmse ($\mathit{N}=400)$	bias, sd, rmse ($\mathit{N}=400)$
$\hat{\beta}_{ri1}$	0.00, 0.13, 0.13	0.58, 0.20, 0.61
$\hat{\beta}_{ri2}$	0.00, 0.13, 0.13	0.91, 0.16, 0.92
$\hat{\beta}_{m1}$	0.00, 0.23, 0.23	0.33, 0.33, 0.47
$\hat{\beta}_{m4}$	0.00, 0.17, 0.17	0.47, 0.23, 0.52
$\hat{\beta}_{mbc}$	0.00, 0.15, 0.15	0.00, 0.32, 0.32
$\hat{\beta}_{dr}$	0.00, 0.14, 0.14	0.01, 0.66, 0.66
$\hat{\beta}_{psr}^{0}$	0.00, 0.12, 0.12	0.00, 0.16, 0.16
$\hat{\beta}_{psr}^2$	0.00, 0.12, 0.12	0.00, 0.15, 0.15
$\hat{\beta}_{psr}^4$	0.01, 0.12, 0.12	0.00, 0.15, 0.15
sd	0.12, 0.12, 0.12	0.16, 0.15, 0.15

 \overline{sd} : average of asymptotic sd estimates for $\hat{\beta}_{psr}^0$, $\hat{\beta}_{psr}^2$, $\hat{\beta}_{psr}^4$.

・ロト ・日下・ ・ ヨト・

Simulation Study 3

	Table 2. Poor X-overlap design with $N = 400$ and "tuning"			
	(1) base design	(2) $\pi(X)$ wrong	(3) heterogeneity	(4) binary <i>Y</i>
	bias, sd, rmse	bias, sd, rmse	bias, sd, rmse	sd=rmse
$\hat{\beta}_{ri1}$	0.47, 0.26, 0.54	0.28, 0.27, 0.39	0.11, 0.15, 0.19	0.056
$\hat{\beta}_{ri2}$	0.66, 0.21, 0.70	0.48, 0.24, 0.54	0.23, 0.14, 0.26	0.050
$\hat{\beta}_{m1}$	0.21, 0.30, 0.36	0.02, 0.19, 0.19	0.02, 0.18, 0.18	0.061
$\hat{\beta}_{m4}$	0.01, 0.17, 0.17	0.00, 0.15, 0.15	0.00, 0.14, 0.14	0.048
$\hat{\beta}_{mbc}$	0.00, 0.32, 0.32	0.01, 0.28, 0.28	0.00, 0.18, 0.18	0.062
$\hat{\beta}_{dr}$	0.00, 0.22, 0.22	0.00, 0.24, 0.24	0.00, 0.16, 0.16	0.053
$\hat{\beta}_{psr}^{0}$	0.00, 0.16, 0.16	0.24, 0.14, 0.28	0.00, 0.13, 0.13	0.044
$\hat{\beta}_{psr}^2$	0.00, 0.15, 0.15	-0.01, 0.13, 0.13	0.00, 0.13, 0.13	0.044
$\hat{\beta}_{psr}^{4}$	0.00, 0.15, 0.15	-0.11, 0.13, 0.17	0.00, 0.13, 0.13	0.043
sd	0.16, 0.15, 0.15	0.21, 0.13, 0.13	0.13, 0.12, 0.12	0.043

 \overline{sd} , average of asymptotic sd estimates for $\hat{\beta}_{psr}^{0}$, $\hat{\beta}_{psr}^{2}$, $\hat{\beta}_{psr}^{4}$; "tuning" means $\hat{\beta}_{ri1} \& \hat{\beta}_{ri4}$ with 4 times smaller bandwidths, $\hat{\beta}_{m1} \& \hat{\beta}_{m1}$ with caliper 0.05, and $\hat{\beta}_{dr}$ only with $0.01 < \hat{\pi}(X) < 0.09$.

Military Rank Effects on Wage: Mean (SD) and LSE

Table 6: Mean (SD) of Variables ($N = 3172$) and LSE					
	1356 Non-Veterans	1816 Veterans	LSE (t-value)		
1974 wage $(\exp(Y))$	15,941 (8,083)	15,374 (7,472)			
1974 schooling years	14.5 (2.42)	13.6 (1.93)	0.038 (8.39)		
1957 parent wage	6,458 (6,111)	6,330 (5,513)	0.083 (6.36)		
1957 $\#$ activities	1.40 (1.50)	1.38 (1.47)	0.014 (1.96)		
1957 IQ	103 (16.0)	100 (14.5)	0.395 (6.25)		
1957 father alive	0.952	0.951	-0.095 (-2.89)		
1957 mother alive	0.975	0.977	-0.042 (-1.00)		
1957 any religion	0.789	0.758			
1957 friend military	0.097	0.219			
<i>1974</i> single	0.073	0.059	-0.190 (-3.00)		
1974 married	0.875	0.895	0.104 (2.33)		
private		0.376	-0.020 (-0.84)		
corporal		0.349	0.009 (0.45)		
sergeant		0.202	0.008 (0.29)		
officer		0.073	0.165 (3.07)		
For LSE: $Y = \ln(\text{wage})$, $\ln(\text{parent wage})$, $IQ/100$ used; $R^2 = 0.131$					

	T 1 1 7 NA.			١
	Table 7: IVII	litary Rank Effect	t on VVage: β (tv)
	Private	Corporal	Sergeant	Officer
LSE	-0.020 (-0.84)	0.009 (0.45)	0.008 (0.29)	0.165 (3.07)
LSE_{psr}^{0}	0.003 (0.031)	-0.025 (-0.69)	-0.047 (-0.43)	0.302 (0.52)
LSE_{psr}^{1}	-0.019 (-0.82)	0.007 (0.34)	0.007 (0.26)	0.174 (3.25)
LSE_{psr}^{2}	-0.017 (-0.74)	0.009 (0.42)	0.009 (0.33)	0.171 (3.20)
LSE ³ _{psr}	-0.016 (-0.70)	0.011 (0.50)	0.012 (0.43)	0.169 (3.15)
Mĺ	-0.014 (-0.56)	-0.002 (-0.08)	0.033 (1.16)	0.410 (1.48)
M3	-0.012 (-0.47)	0.004 (0.16)	0.023 (0.79)	0.349 (1.11)
M5	-0.007 (-0.29)	0.008 (0.34)	0.029 (0.99)	0.102 (0.37)
M7	-0.009 (-0.37)	0.010 (0.43)	0.020 (0.69)	0.218 (0.90)
RI0.5	-0.006 (-0.28)	-0.010 (-0.35)	-0.015 (-0.52)	0.235 (0.92)
RI1	-0.009 (-0.40)	-0.009 (-0.35)	-0.014 (-0.50)	0.173 (0.98)
RI2	-0.020 (-0.84)	-0.016 (-0.63)	-0.016 (-0.58)	0.266 (2.56)
RI3	-0.033 (-1.37)	-0.025 (-1.06)	-0.019 (-0.68)	0.221 (2.98)

・ロト ・日下・ ・ ヨト・

Conclusions

- PS matching is popular in finding the effect of a binary treatment *D*. But it requires several arbitrary decisions, and the asymptotic inference is difficult.
- This paper brought LSE back to life in finding the effect of *D* on *Y* while controlling covariates *X* semiparametrically.
- LSE_{psr} uses the projection residual of *D* on PS, and it reduces to the LSE of *Y* on (1, *D*) if *D* is randomized. Extended to multiple treatments.
- First, do the probit of D on X to find â for Φ(X'α). Second, do the LSE of Y on a polynomial function of X'â, to get the linear projection Π^q(Y|X'â). Third, do the LSE of Y − Π^q(Y|X'â) on D − Φ(X'â) for the desired effect.
- LSE_{psr} works far better than other estimators; set q at $1 \sim 3$, or modify $\Phi(X'\alpha)$ until q does not matter. The asymptotic variance estimator is easy to compute and works well in small samples.
- LSE_{psr} is the easiest to use, and it works well in all aspects that matter in practice—Simplicity is a virtue, not a "sin".

Epilogue

- "Mostly Harmless Econometrics" by Angrist and Pischke (2009, Princeton U. Press) is popular among practitioners—for a good reason.
- In 2016, John Rust published an essay "Mostly Useless Econometrics? Assessing the Causal Effect of Econometric Theory" in little known journal *Foundations and Trends in Accounting*.
- There are many messages in the paper, but the main message is "let's do useful econometrics"; otherwise, econometrics may become marginalized, alienating practitioners to become an irrelevant science.
- One example cited is partial identification, which led to empirical helplessness of "Nothing in, Nothing out".
- Imposing a little assumption can go a long way toward providing informative and useful scientific findings that matter to our daily life. Let's do simple & sensible things, instead of "nobody-but-a-few-can-understand" things.