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Mean Di¤erence and PSM

For a binary treatment D, a response Y and covariates X , let Y d be the
potential response for D = d ; Y = (1�D)Y 0 +DY 1. If D is randomized,

E (Y jD = 1)� E (Y jD = 0) = E (Y 1 � Y 0).

The sample version of E (Y jD = 1)� E (Y jD = 0) equals
Slope LSE of Y on (1,D) = LSE of Y � E (Y ) on D � E (D).

Suppose D is not randomized and X needs to be controlled. If
�(Y 0,Y 1)qD jX�, then

E (Y jD = 1,X )� E (Y jD = 0,X ) = E (Y 1 � Y 0 jX ).

To avoid the dimension problem in controlling X , propensity score matching
(PSM) with π(X ) � E (D jX ) is used, as (Rosenbaum & Rubin 1983, BKA)

Y d qD jX =) Y d qD jπ(X ) 8d .
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Problems with PSM

PSM requires several decisions on the user, according to which the e¤ect
estimate can change much.

First, how many matched subjects for individual i : one for pair matching, and
more for multiple matching.

Second, whether to use a �xed number of matches M, or an
individual-varying number Mi .

Third, whether to use a caliper (a bound on the deviation between Xi and X
of a matched individual) or not; if yes, its value.

Fourth, matching with replacement or without. And more,...

Getting standard errors in PSM is hard, despite the asymptotic normality in
Abadie & Imbens (2016, ECA) under a parametric π(X ).

The variance estimator is complicated, involving

V (Y jD = d ,π(X ) = p) & COV fX ,E (Y jD = d ,X )jπ(X ) = pg.
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Main Idea of PS-Residual LSE

Is it possible to bring back the simple LSE of Y on (1,D) while still
controlling X nonparametrically? Can this be done without asking the user
to make many decisions as in PSM?

Under Y d qD jX and the support-overlap condition 0 < π(X ) < 1, the
answer is positive: do

LSE of Y � E (Y ) on D � π(X ). (LSE0psr )

LSE0psr includes the simple LSE for randomized D as a special case, because
π(X ) � E (D jX ) = E (D); the superscript 0 will be explained shortly.

It may look puzzling why X does not appear as regressors along with
D � π(X ). The key point is that X is uncorrelated with D � π(X ), and
thus X can be buried in the error; balancing/matching on X unnecessary.

If π(X ) is estimated nonparametrically, LSE0psr is nonparametric as well
because the X -part not speci�ed. But probit will be used for π(X ) under
π(X ) = Φ(X 0α) in this paper, which makes LSE0psr semiparametric.
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Generalizing PS-Residual LSE

Let Πq(Y jX 0α) denotes the linear projection of Y on f1, X 0α, ..., (X 0α)qg.
A generalized version of LSE0psr is

LSE of Y �Πq(Y jX 0α) on D � π(X ).

With the projection coe¢ cient γj for (X
0α)j , j = 0, ..., q, this LSE is

LSE of Y �
q

∑
j=0

γj (X
0α)j on D � π(X ). (LSEqpsr )

Replace α with the probit α̂, and γq�s with the LSE of Y on
f1, X 0α̂, ..., (X 0α̂)qg to implement LSEqpsr . Let γ � (γ0,γ1, ...,γq)0. Set
q at 1 � 3 in practice; or modify π(X ) until LSE0psr =LSE

1
psr =LSE

2
psr � � �

Since the LSE of Y on 1 is Ȳ , LSEqpsr includes LSE0psr as a special case when
q = 0. To ease referencing LSE0psr and LSE

q
psr with q > 0, use the expression

LSEqpsr only for q > 0 henceforth. �LSEpsr�refers to both LSE0psr and LSE
q
psr .
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Advantages of PS-Residual LSE and Remarks

First, LSEpsr is possibly the easiest to implement, with hardly any choice
required by the user; it is numerically stable.

Second, it has a simple asymptotic variance estimator that works also well in
small samples.

Third, as will be seen, it can be easily extended to multiple/multi-valued D
by replacing π(X ) with a �generalized PS�.

The motivation to extend LSE0psr to LSE
q
psr is to improve LSE0psr in case PS

is misspeci�ed, although LSEpsr proceeds on the premise of the correctly
speci�ed PS as PSM does� more on this shortly.

Simply put, LSEpsr brings the �time-tested work horse�LSE back to life for
binary or multiple treatment while controlling covariates semiparametrically.
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Motivating Semi-Linear Parallel-Shift Model

For an unknown µ(�), let (this �parallel shift�will be relaxed later):
Y 0 = µ(X ) + U, Y 1 = β+ Y 0 =) Y = βD + µ(X ) + U, E (U jX ) = 0.

Y d qD jX =) U qD jX =) U qD jπ(X ). Take Ef�jπ(X )g on the Y eq.:

EfY jπ(X )g = βπ(X ) + Efµ(X )jπ(X )g.
Hence,

Y � E (Y ) = βfD � π(X )g+ V where

V � µ(X )� Efµ(X )jπ(X )g+ EfY jπ(X )g � E (Y ) + U.

Since V is determined by U with X given,

U qD jX =) V qD jX =) V qD jπ(X ); the proof on the next slide

Ef�jπ(X )g on π(X ) � E (D jX ) gives π(X ) = EfD jπ(X )g. LSE0psr works:
E [fD � π(X )gV ] = E [ EfDV � π(X )V jπ(X )g ] = 0.
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Implementation and Generalization

Set π(X ) = Φ(X 0α) to apply probit for α. LSE0psr is much easier to
implement than PSM.

When PS is misspeci�ed, CORfD � π(X ),V g 6= 0 in general, and the
omitted X -dependent terms in V result in biases. This may be alleviated if
EfY jπ(X )g is explicitly accounted for by Πq(Y jX 0α) in LSEqpsr .

Using X 0α instead of Φ(X 0α) in Πq(Y jX 0α) makes the extension to multiple
treatments easier.

In LSEpsr , the only decision to make is specifying the PS regression function
X 0α, which is common for all PS-based estimators. For simplicity, proceed
with LSE2psr henceforth, unless otherwise noted.

The proof for V qD jX =) V qD jπ(X ) comes from the 1st & last terms in

EfD jV ,π(X )g = EfE (D jV ,X )jV ,π(X )g
= EfE (D jX )jV ,π(X )g = π(X ) = EfD jπ(X )g.
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Asymptotic Distribution

With π(X ) � E (D jX ) and E (Y jX ) nonparametrically estimated in the LSE
of Y � E (Y jX ) on D � π(X ), the �rst-stage errors, π̂(X )� π(X ) and
Ê (Y jX )� E (Y jX ), are orthogonal to the LSE moment condition.

But for LSE2psr , the error α̂� α matters, and it holds that

p
N(β̂� β) N(0,Ω) where Ω̂ � ( 1

N ∑
i

ε̂2i )
�2 � 1

N ∑
i
(V̂i ε̂i + L̂η̂i )

2

and

ε̂i � Di �Φ(X 0i α̂), V̂i � Yi � fγ̂0 + γ̂1X
0
i α̂+ γ̂2(X

0
i α̂)

2g � β̂ε̂i ,

η̂i � (
1
N ∑

i
ŝi ŝ
0
i )
�1 ŝi with ŝi �

ε̂iφ(X 0i α̂)
Φ(X 0i α̂)f1�Φ(X 0i α̂)g

Xi ,

L̂ � � 1
N ∑

i
V̂iφ(X

0
i α̂)X

0
i .

If more polynomial terms of X 0α are used for Πq(Y jX 0α), the modi�cation
needed is adding the extra terms into V̂ ; V̂i � Yi � Ȳ � β̂ε̂i in LSE0psr .
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E¢ ciency Question

The simulation section will demonstrate that Ω̂ works well in small samples.
If desired, one may use nonparametric bootstrap, resampling from the original
sample with replacement.

Hahn (1998, ECA, p. 323) showed that the LSE of Y � E (Y jX ) on
D � E (D jX ) is not semiparametrically e¢ cient. This suggests that, with α
further estimated, LSEpsr would not be semiparametrically e¢ cient.

Despite the ine¢ ciency, it will be shown by a simulation study that, in �nite
samples, LSEpsr is far more e¢ cient as well as less biased than supposedly
e¢ cient estimators.

This holds despite no user-interventions on LSEpsr , such as using a caliper in
matching or excluding extreme observations with π(X ) ' 0, 1 in weighting.
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General Model with Heterogeneous E¤ect

To relax parallel shift, let, for unknown µ(X ) & µD (X ) and errors U
0 & U1,

Y 0 = µ(X ) + U0, Y 1 = µ(X ) + µD (X ) + U
1, E (Ud jX ) = 0

=) Y = µ(X ) + µD (X )D + U, U � (1�D)U0 +DU1, E (U jX ,D) = 0.

E (Y 1 �Y 0 jX ) = µD (X ); parallel shift if µD (X ) = β,U0 = U1. Omitting U

Y �EfY jπ(X )g = µ(X )�Efµ(X )jπ(X )g+µD (X )D�EfµD (X )D jπ(X )g.

Since D � π(X ) has slope 0, LSEpsr �̂βpsr�is consistent for the omitted
variable bias due to µD (X )D � EfµD (X )D jπ(X )g that is

βω � Efω(X )µD (X )g = Efω(X )E (Y 1�Y 0 jX )g, ω(X ) � V (D jX )
EfV (D jX )g .

If interested in the X -conditional e¤ect to model it as βD + β0xXD
(=) E (Y 1 � Y 0 jX ) = β+ β0xX ), estimate the Y model with OLS and
obtain Efω(X )(β+ β0xX )g: comparing this to LSEpsr , check the Y model
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Why the Weighted E¤ect is Good

When the X -conditional e¤ect is µD (X ), for the population, it is a matter of
how to average X out. In a weighted averaging, higher weights are given to
individuals deemed to be more important for the purpose.

This importance is gauged by fX in EfµD (X )g, and by the proximity of
π(X ) to 0.5 in Efω(X )µD (X )g because V (D jX ) = π(X )f1� π(X )g.

Since f1� π(X )gπ(X ) attains its maximum at π(X ) = 0.5 and decreases
toward 0 as π(X )! 0, 1, those with π(X ) ' 0.5 get higher weights (&
those with π(X ) ' 0, 1 get lower weights). Why is this good?

First, those with π(X ) ' 0.5 are close to being randomized, thus less
susceptible to confounding by unobservables; they deserve high weights.

Second, other estimators have an arbitrary feature to downweight extreme
observations with π(X ) ' 0, 1, but the ω(X )-weighting of LSEpsr is a
built-in, non-arbitrary feature to downweight observations with π(X ) ' 0, 1.
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Non-Continuous Response

LSEpsr works for any response Y , not just continuously distributed Y .

E.g., suppose Y = 1[X 0ψ+ βD +N(0, 1) > 0]. Then,

µ(X ) = Φ(XT ψ), U0 = Y �Φ(XT ψ),

µD (X ) = Φ(XT ψ+ β)�Φ(XT ψ), U1 = Y �Φ(XT ψ+ β).

β̂psr !p E [ω(X )fΦ(X 0ψ+ β)�Φ(X 0ψ)g], while typically
E [fΦ(X 0ψ+ β)�Φ(X 0ψ)g] is presented as a marginal e¤ect.

For Y probit, estimating E [fΦ(X 0ψ+ β)�Φ(X 0ψ)g] requires an extra
work. In contrast, LSEpsr gives β̂psr !p E [ω(X )fΦ(X 0ψ+ β)�Φ(X 0ψ)g]
directly, with an extra work done for the D probit instead.

This is �ne as long as misspeci�cations in π(X ) are less worrisome than
those in the Y -model, which is the stance taken in the PS matching
literature, as it has chosen to specify π(X ), instead of E (Y d jX ).
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Weighted PS-Residual LSE

There is a weighted version of LSEpsr that is consistent for β = E (Y 1 �Y 0).

Rewrite the general Y � EfY jπ(X )g equation as, omitting U/ω(X ),

Y � E (Y jXT α)

ω(X )
=

µ(X )� Efµ(X )jπ(X )g
ω(X )

+
µD (X )D � EfµD (X )D jπ(X )g

ω(X )
.

Let β̂
ω
psr denote the (weighted) LSE to this; β̂

ω
psr !p β because ω(X )�1 in

the omitted variable bias cancels ω(X ) in Efω(X )E (Y 1 � Y 0 jX )g.

Unless π̂(X ) is well bounded within (0, 1), however, the �nite sample
performance of β̂

ω
psr is poor due to π̂(X ) ' 0, 1 in ω̂(X )�1.

This can be overcome by using only observations with π̂(X ) away from 0 and
1, but this brings in arbitrariness. If desired, use β̂

ω
psr as a reference,

discarding observations with π̂(X ) ' 0, 1
Myoung-jae Lee (Korea University) Simple Least Squares Estimator for Treatment E¤ect Using Propensity Score ResidualFebruary 3, 2017 14 / 27



Multiple LSE for Multiple Treatment

Suppose D takes on 0, 1, ..., J. Let Dd � 1[D = d ] to consider parallel-shift:

Y = µ(X ) +
J

∑
d=1

βdDd + U where E (U jX ) = 0.

With πd (X ) � E (Dd jX ) and π(X ) � fπ1(X ), ...,πJ (X )g0,

Y � E (Y jπ(X )) =
J

∑
d=1

βd fDd � πd (X )g+ V .

The analog for LSE0psr is

LSE of Y � Ȳ on Dd � πd (X ), d = 1, ..., J.

The analog for LSEqpsr is

LSE of Y �Πq(Y jX 0α) on Dd � πd (X ), d = 1, ..., J

where X 0α can be uni- or multi-dimensional; examples next.
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Multiple Treatment Cases

First, the treatments are ordered to be generated by

Di =
J

∑
d=1

1[ζd � X 0i α+ εi ], ζ1 = 0 < ζ2 <, � � � ,< ζJ .

E.g., D is schooling years. Under ε � N(0, 1)q X , apply ordered probit to
estimate the �single index�X 0α. Then use Πq (Y jX 0α).

Second, the treatments are partly ordered as in

D0i � 1[0 � X 00iα0 + ε0i ], Dri � 1+
J�1
∑
d=1

1[ζd � X 0riαr + εri ],

ζ1 = 0 < ζ2 <, � � � ,< ζJ�1, Di � (1�D0i )Dri taking on 0, 1, 2, ..., J.

E.g., D0 = 1 if not joining military, and Dr = 1, 2, ..., J is military rank.
(D0,Dr ) depends on X through (X 00α0,X 0r αr ). Use Πq (Y jX 00α0,X 0r αr ).

Third, if D is multinomial, J linear indices appear; e.g., D represents job
categories.
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Other Estimators: Regression Imputation (RI) and PSM

With π̂(X ) � Φ(X 0α̂), a PS-based �regression imputation�(RI) estimator is

β̂ri �
1
N

N

∑
i=1
fÊ (Y jπ̂(Xi ),D = 1)� Ê (Y jπ̂(Xi ),D = 0)g;

Ê (Y jπ̂(Xi ),D = d) is a nonparametric estimator for E (Y d jπ(Xi )).

A PS pair-matching estimator for E (Y 1 � Y 0) is

β̂m1 �
1
N

N

∑
i=1
(Ŷ 1i � Ŷ 0i ) with Ŷ 1i � DiYi + (1�Di )Yt(i )

Ŷ 0i � (1�Di )Yi +DiYc (i );

t(i) is the matched treated for control i ; c(i) matched control for treated i .

If Yc (i ) is replaced by the average of the four nearest controls and if Yt(i ) is
replaced by the average of the four nearest treated, then �PS
four-multiple-matching estimator� β̂m4 is obtained.
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Other Estimators: Bias-Corrected PSM

Whereas the above RI and PSM specify π(X ), not
E (Y d jX ) = E (Y jX ,D = d), there are estimators specifying
E (Y jX ,D = d) = X 0βd (and π(X )).

A bias-corrected version of β̂m1 (Abadie and Imbens 2011, JBES) is

β̂mbc � 1
N

N

∑
i=1
(Ỹ 1i � Ỹ 0i ), Ỹ 1i � DiYi + (1�Di )(Yt(i ) + X 0i β̂1 � X 0t(i ) β̂1),

Ỹ 0i � (1�Di )Yi +Di (Yc (i ) + X 0i β̂0 � X 0c (i ) β̂0).

Matching is not exact (i.e., Xt(i ) 6= Xi or Xc (i ) 6= Xi ) to cause a bias, and
adding X 0i β̂1 � X 0t(i ) β̂1 and X

0
i β̂0 � X 0c (i ) β̂0 avoids the bias.

β̂mbc di¤ers from Abadie and Imbens (2011): β̂mbc uses linear models for
E (Y d jX ) while Abadie and Imbens used nonparametric estimators, and
π̂(X ) is used in selecting t(i) and c(i) while X is used in Abadie and Imbens.
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Other Estimators: Doubly Robust (DR)

An inverse-probability-weighted estimator (IPW) is

1
N ∑

i
f Di

π̂(Xi )
� 1�Di
1� π̂(Xi )

gYi .

�Doubly robust�(DR) estimators are consistent if either π(X ) or E (Y d jX ) is
correctly speci�ed, not necessarily both. There are many versions of DR
estimator.

A canonical DR estimator modifying IPW is

β̂dr � Ê (Y 1)� Ê (Y 0), Ê (Y 1) �
1
N ∑

i
f DiYi

π̂(Xi )
� Di � π̂(Xi )

π̂(Xi )
X 0i β̂1g,

Ê (Y 0) � 1
N ∑

i
f (1�Di )Yi
1� π̂(Xi )

� π̂(Xi )�Di
1� π̂(Xi )

X 0i β̂0g.
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Estimators Compared in Simulation

RI1 & RI2 denote 2 RI estimators with 2 bandwidths. M# denotes PSM with
pair or 4 matching; Mbc is the bias corrected version. Let β̂

0
lse , β̂

2
lse & β̂

4
lse

be LSEqpsr with q = 0, 2, 4.

Abadie and Imbens (2016) noted that Mbc would be DR; the simulation
study supports this.

In total, 9 estimators are compared:

RI1 β̂ri1, RI2 β̂ri2, M1 β̂m1, M4 β̂m4 : π(X ) should be correct;

Mbc β̂mbc , DR β̂dr : either π(X ) or E (Y d jX ) should be correct;

LSE0psr β̂
0
lse , LSE2psr β̂

2
lse , LSE4psr β̂

4
lse : π(X ) should be correct.
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Simulation Study 1

The basic simulation design is: with the simulation repetition 10000,

D = 1[0 < α1 + α2X2 + α3X3 + ε], ε � N(0, 1)q (X2,X3),
(X2,X3) is jointly standard normal with COR(X2,X3) =

p
0.5 ' 0.71,

Y = βdD + β1 + β2X2 + β3X3 + U, U � N(0, 1)q (X2,X3, ε),
α1 = 0, α2 = 1, α3 = �1, β1 = 0, βd = β2 = β3 = 1, N = 400, 800.

E (D) ' 0.5. When α3 = �1, (X2,X3) averages around (�0.2, 0.2) and
(0.2,�0.2) for the two groups, but when α3 = 1, much further away, around
(�0.7,�0.7) and (0.7, 0.7); X overlaps much better in the former.
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Simulation Study 2

Table 1. Base design; both π(X ) & E (Y d jX ) correctly speci�ed
Good X Overlap (α3 = �1) Poor X overlap (α3 = 1)
bias, sd, rmse (N = 400) bias, sd, rmse (N = 400)

β̂ri1 0.00, 0.13, 0.13 0.58, 0.20, 0.61
β̂ri2 0.00, 0.13, 0.13 0.91, 0.16, 0.92
β̂m1 0.00, 0.23, 0.23 0.33, 0.33, 0.47
β̂m4 0.00, 0.17, 0.17 0.47, 0.23, 0.52
β̂mbc 0.00, 0.15, 0.15 0.00, 0.32, 0.32
β̂dr 0.00, 0.14, 0.14 0.01, 0.66, 0.66

β̂
0
psr 0.00, 0.12, 0.12 0.00, 0.16, 0.16

β̂
2
psr 0.00, 0.12, 0.12 0.00, 0.15, 0.15

β̂
4
psr 0.01, 0.12, 0.12 0.00, 0.15, 0.15
sd 0.12, 0.12, 0.12 0.16, 0.15, 0.15

sd : average of asymptotic sd estimates for β̂
0
psr , β̂

2
psr , β̂

4
psr .
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Simulation Study 3

Table 2. Poor X -overlap design with N = 400 and �tuning�
(1) base design (2) π(X ) wrong (3) heterogeneity (4) binary Y
bias, sd, rmse bias, sd, rmse bias, sd, rmse sd=rmse

β̂ri1 0.47, 0.26, 0.54 0.28, 0.27, 0.39 0.11, 0.15, 0.19 0.056
β̂ri2 0.66, 0.21, 0.70 0.48, 0.24, 0.54 0.23, 0.14, 0.26 0.050
β̂m1 0.21, 0.30, 0.36 0.02, 0.19, 0.19 0.02, 0.18, 0.18 0.061
β̂m4 0.01, 0.17, 0.17 0.00, 0.15, 0.15 0.00, 0.14, 0.14 0.048
β̂mbc 0.00, 0.32, 0.32 0.01, 0.28, 0.28 0.00, 0.18, 0.18 0.062
β̂dr 0.00, 0.22, 0.22 0.00, 0.24, 0.24 0.00, 0.16, 0.16 0.053

β̂
0
psr 0.00, 0.16, 0.16 0.24, 0.14, 0.28 0.00, 0.13, 0.13 0.044

β̂
2
psr 0.00, 0.15, 0.15 -0.01, 0.13, 0.13 0.00, 0.13, 0.13 0.044

β̂
4
psr 0.00, 0.15, 0.15 -0.11, 0.13, 0.17 0.00, 0.13, 0.13 0.043
sd 0.16, 0.15, 0.15 0.21, 0.13, 0.13 0.13, 0.12, 0.12 0.043

sd , average of asymptotic sd estimates for β̂
0
psr , β̂

2
psr , β̂

4
psr ;

�tuning�means β̂ri1 & β̂ri4 with 4 times smaller bandwidths,
β̂m1 & β̂m1 with caliper 0.05, and β̂dr only with 0.01 < π̂(X ) < 0.09.
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Military Rank E¤ects on Wage: Mean (SD) and LSE

Table 6: Mean (SD) of Variables (N = 3172) and LSE
1356 Non-Veterans 1816 Veterans LSE (t-value)

1974 wage (exp(Y )) 15,941 (8,083) 15,374 (7,472)
1974 schooling years 14.5 (2.42) 13.6 (1.93) 0.038 (8.39)
1957 parent wage 6,458 (6,111) 6,330 (5,513) 0.083 (6.36)
1957 # activities 1.40 (1.50) 1.38 (1.47) 0.014 (1.96)

1957 IQ 103 (16.0) 100 (14.5) 0.395 (6.25)
1957 father alive 0.952 0.951 -0.095 (-2.89)
1957 mother alive 0.975 0.977 -0.042 (-1.00)
1957 any religion 0.789 0.758
1957 friend military 0.097 0.219

1974 single 0.073 0.059 -0.190 (-3.00)
1974 married 0.875 0.895 0.104 (2.33)
private ..... 0.376 -0.020 (-0.84)
corporal ..... 0.349 0.009 (0.45)
sergeant ..... 0.202 0.008 (0.29)
o¢ cer ..... 0.073 0.165 (3.07)

For LSE: Y = ln(wage), ln(parent wage), IQ/100 used; R2 = 0.131
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Military Rank E¤ect on Wage: Estimate (t-value)

Table 7: Military Rank E¤ect on Wage: β̂ (tv)
Private Corporal Sergeant O¢ cer

LSE -0.020 (-0.84) 0.009 (0.45) 0.008 (0.29) 0.165 (3.07)
LSE0psr 0.003 (0.031) -0.025 (-0.69) -0.047 (-0.43) 0.302 (0.52)
LSE1psr -0.019 (-0.82) 0.007 (0.34) 0.007 (0.26) 0.174 (3.25)
LSE2psr -0.017 (-0.74) 0.009 (0.42) 0.009 (0.33) 0.171 (3.20)
LSE3psr -0.016 (-0.70) 0.011 (0.50) 0.012 (0.43) 0.169 (3.15)
M1 -0.014 (-0.56) -0.002 (-0.08) 0.033 (1.16) 0.410 (1.48)
M3 -0.012 (-0.47) 0.004 (0.16) 0.023 (0.79) 0.349 (1.11)
M5 -0.007 (-0.29) 0.008 (0.34) 0.029 (0.99) 0.102 (0.37)
M7 -0.009 (-0.37) 0.010 (0.43) 0.020 (0.69) 0.218 (0.90)
RI0.5 -0.006 (-0.28) -0.010 (-0.35) -0.015 (-0.52) 0.235 (0.92)
RI1 -0.009 (-0.40) -0.009 (-0.35) -0.014 (-0.50) 0.173 (0.98)
RI2 -0.020 (-0.84) -0.016 (-0.63) -0.016 (-0.58) 0.266 (2.56)
RI3 -0.033 (-1.37) -0.025 (-1.06) -0.019 (-0.68) 0.221 (2.98)
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Conclusions

PS matching is popular in �nding the e¤ect of a binary treatment D. But it
requires several arbitrary decisions, and the asymptotic inference is di¢ cult.

This paper brought LSE back to life in �nding the e¤ect of D on Y while
controlling covariates X semiparametrically.

LSEpsr uses the projection residual of D on PS, and it reduces to the LSE of
Y on (1,D) if D is randomized. Extended to multiple treatments.

First, do the probit of D on X to �nd α̂ for Φ(X 0α). Second, do the LSE of
Y on a polynomial function of X 0α̂, to get the linear projection Πq(Y jX 0α̂).
Third, do the LSE of Y �Πq(Y jX 0α̂) on D �Φ(X 0α̂) for the desired e¤ect.

LSEpsr works far better than other estimators; set q at 1 � 3, or modify
Φ(X 0α) until q does not matter. The asymptotic variance estimator is easy
to compute and works well in small samples.

LSEpsr is the easiest to use, and it works well in all aspects that matter in
practice� Simplicity is a virtue, not a �sin�.
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Epilogue

�Mostly Harmless Econometrics�by Angrist and Pischke (2009, Princeton U.
Press) is popular among practitioners� for a good reason.

In 2016, John Rust published an essay �Mostly Useless Econometrics?
Assessing the Causal E¤ect of Econometric Theory� in little known journal
Foundations and Trends in Accounting.

There are many messages in the paper, but the main message is �let�s do
useful econometrics�; otherwise, econometrics may become marginalized,
alienating practitioners to become an irrelevant science.

One example cited is partial identi�cation, which led to empirical helplessness
of �Nothing in, Nothing out�.

Imposing a little assumption can go a long way toward providing informative
and useful scienti�c �ndings that matter to our daily life. Let�s do simple &
sensible things, instead of �nobody-but-a-few-can-understand� things.
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