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Abstract

By extending Shleifer and Vishny (1997), we show that, while arbitrageurs
enhance the market efficiency during calm periods, they can make the financial
market more vulnerable to crashes. These crashes are amplified through their
leveraged positions, which are ironically rationalized by the market efficiency that
they bring forth. We empirically examine such implications in the U.S. interest
rate swap markets. Consistent with the predictions of our model, our efficiency
metrics, the mean-reversion speeds of the spreads, are strongly associated with
the tail behaviors. We also show that the return characteristics of hedge fund
returns are coherent with our model.
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1 Introduction

It is the calm and silent water that drowns a man.
–Ghanaian proverb

The arbitrage transactions, which attempt to monetize the discrepancy of a particular
asset’s market price from its fundamental value, play a critical role of policing and
eliminating such discrepancy. The textbook version of the efficient market hypothesis
argues that such arbitrage transactions are strong enough to eliminate any market
disequilibrium instantaneously. Kyle (1985) defines the market resilience, a facet of
liquidity, as the speed with which prices revert to their equilibrium level after a large
shock in the transaction flow. The activity of arbitrage transactions per se is the key
determinant of the market resilience; the more active the arbitrage trades, the more
resilient the market becomes. Therefore, textbook efficiency implies the ‘infinite’ speed
of market resilience, which is durable only if arbitrage transactions can be implemented
in a perfect market, i.e., no market frictions. However, Shleifer and Vishny (1997)
argue that such textbook arbitrage is at odds with reality. They theoretically explore
why arbitrageurs may be slow in eliminating the mispricing with agency frictions. The
literature has proposed various frictions such as constraints on leverage or short-sale as
potential causes for limiting the effectiveness of arbitrageurs.

In this paper, we add a new insight to the ‘limits to arbitrage’ literature by showing
that the enhanced efficiency due to the activity of arbitrageurs during normal time can
ironically amplify the market instability during crash period. To do this, we introduce
an intertemporal aspect of arbitrage activity. In particular, we extend a version of the
Shleifer and Vishny model by adding one more time period. Such an extension is essen-
tial to reflect the nature of path-dependency through the wealth effect in endogenous
variables such as leverage ratios and market prices. Our model delivers a number of
interesting implications for security prices.

Firstly, we show that the past performance of arbitrageurs matters for the security
price in a ‘crash’ state. In a crash state, the arbitrageur has to take a substantially
high leverage to take advantage of mispricing. However, this is the very state where
the leverage constraint is most binding. How much leverage the arbitrageur can take
critically depends upon how much capital loss or gain has been accumulated from past
trades. Consequently, the performance of the arbitrageur preceding the crash has a
critical impact on the security price. This explains why the response of market price
can drastically differ to shocks of seemingly similar sizes.
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Secondly, when the evolution of states entails a higher probability of reversion from
a mispricing state to a fair pricing state during a normal time, the security price plunges
more severely in a crash period. When the security price shows a stronger reversion to
a fair price during a tranquil time, arbitrageurs are willing to take a highly leveraged
position to exploit any mispricing opportunities. However, once a large shock arrives
contrary to the arbitrageurs’ expectation, the effect of arbitrageurs on the market price
is amplified through their highly leveraged positions.

This striking result necessitates a new approach to market efficiency. The litera-
ture on the side of efficient market considers the market efficiency as given (Sharpe
(1964); Ross (1976); Lucas (1978)), and the literature on the behavioral finance have
offered various causes for the overall market inefficiency (Shleifer and Vishny (1997);
Gromb and Vayanos (2002); Brunnermeier and Pedersen (2008)). Although they take
the opposite stance of each other in a sense, most of existing studies commonly view the
efficiency/inefficiency as a single characteristic of a given market. In contrast, we sepa-
rate market efficiency in normal times and that in crisis times to examine the relation
of those two. In particular, our model shows that a seemingly more efficient market
under a normal market condition would be dismantled more severely during times of
crises.

Thirdly, we find that the past performance of arbitrageurs matters more for the
security price in a ‘crash’ state when the security price shows a stronger reversion to
a fair price during a tranquil time. The intuition directly follows from the first two
implications. Given the stronger mean reversion property of prices, arbitrageurs take a
more aggressive position. In turn, this leads to a wider variation in the past performance
of arbitrageurs. Hence, when a crash arrives, the wider variations in levels of arbitrageur
capital lead to more erratic security prices conditional on a crisis.

We empirically investigate the aforementioned implication of our model using two
sets of data – (i) the U.S. interest rate swap market and (ii) hedge fund style indexes.
We explore the interest rate swap market, one of the most preferred habitat of the
arbitragers, to investigate the pricing implication of our model. In contrast, we examine
the hedge fund style indexes in order to investigate the distinctive return characteristics
of the arbitragers signified by their demands implied by our model.

Let us discuss how popular these so-called ‘swap curve trades’ are in practice. Figure
1.1 illustrates a replication of a ‘heat map’ of slope spreads as of November 23, 2018,
which was published by one of the top global investment banks.1 Each cell reports the

1Almost all of global IBs report these kinds of heat maps on slope and butterfly spreads on a daily
basis. For example, JP Morgan publishes ‘JP Morgan Basic ChartPac,’ Deutsche Bank publishes RV
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Figure 1.1: Heat Map of Slope Spreads
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Notes: The table shows a heat map of the normalized slope spreads on November 23,
2018. For example, 2s/3s on the spot is 2.2 standard deviations below from the mean,
based on the past 3 months. Darker cells indicate more deviations from the mean.

3-month z-score of a particular slope spread. The 3-month z-score is the standardized
normal z-value of the slope spread based on the past three-month estimates of mean
and standard deviation. For example, the left top corner cell reports -2.2, which means
that the current yield differential between 3 year swap and 2 year swap is 2.2 standard
deviation lower than its past 3 month mean. This implies that the spread may be
too low, or equivalently, the slope between the two tenors is too flat. As such, some
arbitragers may speculate on a curve steepener; paying the 3 year swap and receiving
the 2 year swap under the expectation that the spread will revert to its mean.2 The
payoff from the trade is, in general, very small and hence, leverage is widely employed

(Relative Value ) PDF package, and Royal Bank of Scotland publishes ‘RBS Daily Chart Pack.’ See
also Priaulet (2008) and Tata (2006) for in-depth reviews of a variety of relative value trades.

2The length of data employed in estimating the z-score could vary across hedge funds and prop
desks. The most popular choice would be 3 months, 6 months and 1 year but some hedge funds (with
longer investment horizon) use much longer data.
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to magnify potential gains, typically five to fifteen times the asset base’s value.
Furthermore, the SDR (Swap data repositories) data reveals the popularity of swap

curve trades. The SDRs are new entities created by the Dodd-Frank Wall Street Re-
form and Consumer Protection Act (“Dodd-Frank Act”) in order to provide a central
facility for swap data reporting and recordkeeping. Under the Dodd-Frank Act, all
swaps, whether cleared or uncleared, are required to be reported to registered SDRs.3

According the SDR data, slope trades alone account for about ten percent of volumes
reported to US SDRs up to August 22 during 2017.4 In addition, a huge variety of curve
trades are reported. In January 2017 alone, 83 different pairs of tenors were traded more
than once a day. Thus, arguably the swap curve trades are the most popular trading
strategies among fixed-income arbitragers.

We exploit the U.S. interest rate swap market for our empirical study as follows.
Using thirteen different tenors from one year to thirty years, we construct various
strategies: 78 slope spreads and 286 butterfly spreads of the U.S. interest rate swap
from July 23, 1998 to May 11, 2017. We measure the efficiency of each of 364 spreads (78
slope spreads plus 286 butterfly spreads) by the mean reversion speed in AR(1) process
of the normalized z-score. Then, we relate the efficiency measure to cross-sectional and
time-series implications on tail behaviors from our model.

The empirical study shows an overall compliance with the theoretical predictions.
For cross-sectional implications, we regress the various tail properties such as kurtosis,
VaR, expected shortfall on the mean-reversion speed. We find that the mean-reversion
speed of the spreads is strongly associated with those tail properties. For example, we
find that a spread with stronger mean reversion features much higher kurtosis. These
results imply that the more seemingly efficient spreads with faster mean-reversion are
more susceptible to extreme change in their values, thereby more vulnerable to a crash,
which our model predicts.

For time-series implications, we empirically examine the wealth effect in the spread
markets through quantile panel regressions. We document the strong effect of the past
performance itself as well as its interactions with mean-reversion spread on the tail
distribution. Our findings support the predictions of our model: following a path with
loss, a market (especially the one with strong resiliency during normal time) becomes
extremely vulnerable to large shocks.

Moreover, we provide the empirical evidence of arbitrageurs’ activity in various
3See the website of the U.S. Commodity Futures Trading Commission for further details: https:

//www.cftc.gov/Forms/sdrforms.html.
4https://www.clarusft.com/curve-trading-in-usd-swaps.
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hedge fund strategies. Because the hedge fund industry keeps developing novel strate-
gies to find mispricing opportunities, there are wide variations in terms of market en-
vironment where hedge fund managers implement their strategies. Using the monthly
returns from Barclay Hedge Fund Index for sixteen style indexes over the sample period
of Jan, 1997 to Aug, 2017, we document a strong relation between frequency of positive
returns, interpreted as a tendency of mean reversion to the fair value during normal
period, and higher moments, representing the vulnerability to crashes. Especially, our
analysis partially explains some return characteristics observed in convertible bond or
fixed income arbitrages—picking up nickels in front of a steamroller.

A vast literature has proposed various causes of market inefficiency such as costly
information acquisition (Grossman and Stiglitz (1980)), noise traders (De Long et al.
(1990)), delegated portfolio management (Shleifer and Vishny (1997)), margin require-
ments (Brunnermeier and Pedersen (2008)) and coordination failure (Ahn et al. (2017)).
We contribute to this literature by proposing an alternative view on the causes of the
market efficiency. In particular, we show that the vulnerable market in a crisis can
be caused by the market efficiency in normal periods. Hence, by reducing the fric-
tions in the existing literature, we may experience more severe crashes! To examine
the interaction of market efficiency/vulnerability across states through arbitrageurs, we
revamp Shleifer and Vishny (1997) by extending another time period to explore the
path-dependency of the market price and separating out a crash state, to focus on the
mispricing in the crash state.

The empirical effect of arbitrageurs’ limited activity on the financial market has
been an ongoing issue in literature. Mitchell and Pulvino (2001) analyze mergers to
characterize the risk and return in risk arbitrage and Mitchell et al. (2002) investigate
situations where the market value of a company is less than its subsidiary. Kapadia and
Pu (2012) propose limits to arbitrage as an explanation for a low correlation between
equity and credit markets and test it. Brunnermeier et al. (2008) attribute the crash
risk of currencies to sudden unwinding of carry trades triggered by the lack of funding
liquidity. Mancini Griffoli and Ranaldo (2012) investigate how covered interest parity
broke down in the aftermath of the global financial crisis by focusing on the funding
liquidity. Recently, Jermann (2017) shows that negative swap spread, which implies
a risk-free arbitrage opportunity, can be explained by introducing frictions for holding
bonds. We contribute to this literature by providing the evidence on the interaction
of market efficiency through the channel of arbitrageurs’ activity in fixed-income arbi-
trages and hedge fund strategies. In particular, we find that the assessment of Duarte
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et al. (2006) on the fixed-income market needs to be reconsidered by extending the
sample period to include 2007-2008 crisis period. Kahraman and Tookes (2017) find
the positive effect of margin trading on liquidity in general but show that the effect
reverses during crises. To the best of our knowledge, existing empirical literature in-
cluding the aforementioned studies has not investigated a direct relationship between
a positive environment for arbitrageurs during normal periods and a tail behavior of
arbitrage payoffs.

This paper is organized as follows. In Section 2, we build up a four-period arbitrage
transaction model wherein a sequence of equilibrium prices is determined. Section 3
analyze the impact of limits of arbitrage on the efficiency and the vulnerability. The
empirical analysis on the major predictions of the model using the U.S. interest rate
swap data and hedge fund style indexes is examined in Section 4. Proofs are deferred
to Internet Appendix. Section 5 concludes.

2 The Model

The basic structure of our model follows Shleifer and Vishny (1997) where arbitrageurs
exploit underpricing caused by selling pressures from pessimistic noise traders. We
extend their model in two aspects: (i) we add one more time period to explore the
path-dependency of the market price and (ii) we separate out a crash state, where a
pessimistic demand shock is very large, to highlight the effect of market efficiency during
normal, or non-crash, states on the mispricing in the crash state. These differences are
explained in more detail below.

There are four time periods (t = 0, 1, 2 and 3) over which a specific asset of
our interest is traded. The aggregate supply of the asset is normalized to 1. The
asset pays out the constant amount of V at t = 3, and hence there is no long run
fundamental risk in this asset. There are three types of market participants: noise
traders, arbitrageurs and financiers from which arbitrageurs can borrow short term.
The noise traders trade for liquidity reasons not related to the asset’s fundamental value
thereby making deviation of its market price from the fundamental value. Without loss
of generality, we assume that the amount of deviation is random but non-positive; that
is, noise traders experience pessimistic shocks as in Shleifer and Vishny.5 In contrast,
the arbitrageurs, the only market participants who know the fundamental value of the

5The main result of our analysis holds in a symmetric way when the noise traders may experience
optimistic shocks, as long as the funding structure is symmetric between long and short positions.
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Figure 2.1: Noise Trader Shocks
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Notes: This figure shows the state space of pessimistic noise trader shocks.

asset at t = 0, 1, 2, attempt to monetize the mispricing of the asset which is triggered by
the noise traders. When the arbitrageurs do not have sufficient capital, they use short
term loans provided by the financiers. The financiers do neither observe nor understand
the strategy of the arbitrageurs, and they charge higher lending rates as the leverage
of arbitrageurs increases, which will be clarified later.

We specify the structure of noise trader shocks. The state space of negative noise
trader shocks is illustrated in Figure 2.1. Therein the amount of the shock at t = 0
is S0 > 0, which is known to the arbitrageurs at t = 0, but the noise trader shocks in
the subsequent periods are uncertain. The state space at t = 1 is binomial such that
the amount of the shock is either zero with probability 1 − q or Sm with probability
q. Going forward to t = 2, the state space is trinomial; the amount of the shock is 0,
Sm and Sb with probability 1 − q − ρ, q and ρ, respectively, regardless of the state at
t = 1. So we assume path-independence of conditional probability of each state. By
this assumption, we make sure that path-dependency of the equilibrium price to be
shown later is not due to the exogenously given transition probabilities. Finally, the
market price equals V at t = 3 as the asset pays out V .

We necessitate the given setup of noise trader shocks in comparison to Shleifer and
Vishny (1997) . Figure 2.1 exhibits the state space assumed in their model as thick
lines, which is nested in our state space. As such, we add one more time period and one
more state at t = 2. We consider such extensions for the following two reasons. First,
by adding another state at t = 2, we can separate the crash state with the extremely
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‘bad’ shock Sb from the intermediate state with the reasonably ‘moderate’ shock Sm.
In addition, the moderate size shock, Sm, may occur at t = 1 and t = 2 whereas
the extremely bad shock, Sb, comes into being only once over the entire periods in
our analysis. Hence, the state of Sb can be thought of as a tail event in terms of its
magnitude as well as its probability of occurrence. In contrast, the state of Sm or 0 can
be regarded as a tranquil or normal time period. Second, adding one more time period
enables us to analyze the impact of the past performance on the market price in the
crash state. For example, the third crash state with Sb at t = 2 can be reached either
through the first state with a zero noise trader shock or the second state with Sm at
t = 1. Note that if the third state at t = 2 is reached via the first (second) state at
t = 1, the arbitrageur earns a profit (makes a loss) at t = 1 with 0 < S0 < Sm. Then,
the intuition of Shleifer and Vishny kicks in. They assume that the available investment
amount of the arbitrageur is an increasing function of her past return and they call this
‘performance-based arbitrage’. In our model, instead, we assume that the funding cost,
charged by the financiers, is proportional to the amount of leverage. Consequently, if an
arbitrageur earned a positive profit in the prior period, she affords to utilize more short
term loans because the funding cost is cheaper and vice versa. Hence, the intensity of
arbitrage activity depends on her past performance as in Shleifer and Vishny, which in
turn affects the severity of mispricing in the crash state.

The financiers in our model play the role of providing short term funds to the arbi-
trageurs. Note that the financiers do not understand the underlying risk of the assets
that the arbitrageurs are betting on. Hence, to hedge the delinquency of arbitrageurs,
the financiers transact with the arbitrageurs only at the short term basis and also
charge higher lending rates for highly leveraged arbitrageurs.6 To incorporate the real-
istic features of funding costs that leveraged arbitrageurs face in the financial market,
we assume the following structure of short term funding costs.7

Assumption 1. We assume the following funding cost structure. Suppose that an
6In practice, a hedge fund may have an ongoing long-term relationship with its prime brokerage.

However, the brokerage firm examines the margin on a daily basis and often adjust the interest rate
based on the balance of the margin account. Hence, it is reasonable to examine their relationship with
short-term contracts.

7See Brunnermeier and Pedersen (2008) for the main sources of leverage for hedge funds. All we
need in our model is the feature that the previous negative performance of the arbitrager reduces
the arbitrager’s leverage capacity in the next period. We can solve a model based on an alternative
assumption that the arbitragers are required to deliver more collateral. The main results under this
assumption are qualitatively equivalent, but the equilibrium relies upon corner solutions as opposed
to interior solutions in our model.

9



Figure 2.2: Funding Cost Structure
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W

.
If leverage is employed, ψ > 0, a sensitivity of the funding rate to the leverage is
determined by φ > 0.

arbitrageur’s capital is W and she borrows L ≥ −W . Then, the funding rate is assumed
to be proportional to the leverage ratio, ψ = L

W
; e.g,

c(ψ) = r + φψ1ψ>0, (2.1)

where r is the risk-free rate and 1ψ>0 is an indicator variable with a value of 1 if leverage
is employed, ψ > 0, and 0 otherwise. A sensitivity of the funding rate to the leverage
is determined by φ > 0. The range of leverage is given by ψ ∈ [−1,∞). Without loss
of generality, we set r = 0.

Figure 2.2 illustrates the funding cost structure given by Assumption 1. When an
arbitrageur invests in the risk free asset, or ψ = L

W
< 0, it provides a normalized rate

of zero. When the leverage ratio ψ = L
W

is positive, the funding rate increases at the
rate of φ > 0. As will be clear later, this simplified structure for the funding cost allows
us to avoid corner solutions without losing economic intuitions underlying the model.

Lastly, we introduce the arbitrageurs to our model economy. There is a continuum
of arbitrageurs with unit mass. At t = 0, the i-th arbitrageur, i ∈ [0, 1], starts running
her fund with the capital of Wi,0 and in every leverage decision, she maximizes the
expected terminal size of fund Wi,3 at t = 3. Let W0 =

∫ 1
0 Wi,0di. Because we restrict

our attention to a symmetric equilibrium, we drop the index of arbitrageurs and solve
the problem of the aggregate arbitrageurs with W0 at t = 0 who maximize the expected
terminal fund size as a price taker.
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The strategy of an arbitrageur is a choice of leverage subject to the funding cost
given in Assumption 1. Before we characterize the optimal strategy of arbitrageurs, we
need to do two preliminary works. First, we need to extend the state space in Figure
2.1 to properly consider the path-dependency. Second, we guarantee the positivity of
the arbitrageurs’ capital so that they can take meaningful leverage in every state. We
handle the first issue as follows. Figure 2.1 shows that there are seven spots defined in
the space of (time, noise trader shock). Tracking all possible paths over the seven spots,
we find that there are sixteen nodes.8 We use x as an index for the sixteen nodes. In
particular, for the two nodes at t = 1, we use x = 1i for i = 1, 2, and for the six nodes
at t = 2, we use x = 2j|1i for i = 1, 2, and j = 1, 2, 3. The initial node is denoted by
x = 0 and the terminal nodes are by x = 3|2j|1i for i = 1, 2, and j = 1, 2, 3. When
we do not need to identify nodes at t, we use the time index t to denote the set of all
nodes at t.

Next, we provide sufficient conditions for the positive capital of the arbitrageurs.
To ensure that the capital of the arbitrageurs is positive but not too large to eliminate
the effect of the noise trader shock, we need the following regularity conditions.

Assumption 2. It holds that W0 < S0 ≤ Sm < Sb < V , φ > Sm(2Sb−Sm)
4(V−Sm)(V−Sb)

and
W0

V
V−S0

V
V−Sm

(
1 + S2

0
4φ(V−S0)V

) (
1 + S2

m

4φ(V−Sm)V

)
< Sm.

The first inequality formalizes the interpretation of the state space described in Figure
2.1. The initial noise trader shock, S0, is set to be bigger than the initial capital, W0.

The noise trader shock in the mediocre state, Sm, is strictly smaller than that in the
crash state, Sb. The next two inequalities restrict that the sensitivity of funding costs
to leverage, φ, is not too small and the initial capital, W0, is not too big. The lower
bound on φ is not very restrictive relative to empirically observed cost structures. For
example, in Treasury security markets, it would be very extreme to set Sm and Sb to
5% and 10% of V , respectively but in such a case, φ is restricted to be greater than

Sm (2Sb − Sm)
4 (V − Sm) (V − Sb)

= 0.0022.

Then, with the leverage ψ = 1, the funding cost should be at least 0.22% higher, which
is a plausible restriction. The upper bound of the initial capital is necessary so that
the capital is not enough to cover the demand shock. The following lemma shows that
Assumption 2 provides a sufficient range of parameters for the analysis of the effect of
arbitrageurs on the mispricing.

8Note that 16 = 1 + 2 · 1 + 3 · 2 · 1 + 1 · 3 · 2 · 1.
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Lemma 2.1. Under Assumption 2, it holds that 0 < Wx < Sm for all nodes x.

The lemma shows that the arbitrageur capital is positive but not too large. In
particular, from Assumption 2 and Lemma 2.1, whenever Sx > 0, we have W0 < S0 at
t = 0 and Wx < Sx at t = 1, 2. Thus, the arbitrageurs can absorb partially the noise
trader shocks with the positive capital but not completely.

Now, we are ready to describe the optimal leverage decision of arbitrageurs in a
specific node x. Let Vx denote the optimized expected terminal fund size, Ex [W3] ,
evaluated at node x. We solve for Vx backward. When node x is a final node, it holds
that Vx = Wx. Fix a non-final node x and assume that we already solved Vx′ for every
node x′ following node x. Then, Vx is related to Vx′ through the leverage decision given
by Vx = maxψx Ex [Vx′ ] . It is convenient to introduce vx = Vx

Wx
, the expected terminal

value of one dollar evaluated at node x. For a final node x, because Vx = Wx, it holds
that vx = 1. Then, given Px, Px′ and vx′ , an arbitrageur solves at a non-final node x,

Vx = max
ψx

Ex [Vx′ ] = max
ψx

Ex [Wx′vx′ ] .

Reflecting the funding cost in Assumption 1, we can write the capital evolution as

Wx′ = Wx

(
Px′

Px
(1 + ψx)− ψx (1 + φψx1ψx>0)

)
. (2.2)

This implies

Vx = max
ψx

Ex
[
Wx

(
Px′

Px
(1 + ψx)− ψx (1 + φ1ψx>0)

)
vx′
]

=Wx max
ψx

Ex
[
Px′vx′

Px
(1 + ψx)− ψx (1 + φ1ψx>0) vx′

]
=Wx max

ψx

(
Ex [Px′vx′ ]

Px
(1 + ψx)− ψx (1 + φ1ψx>0)Ex [vx′ ]

)

=WxEx [vx′ ] max
ψx

(
Γx
Px

(1 + ψx)− ψx (1 + ψxφ1ψx>0)
)

where
Γx = Ex [Px′vx′ ]

Ex [vx′ ]
. (2.3)

Thus,

vx = Ex [vx′ ] max
ψx

(
Γx
Px

(1 + ψx)− ψx (1 + ψxφ1ψx>0)
)

(2.4)

and
ψx = arg max

ψ

(
Γx
Px

(1 + ψ)− ψ (1 + ψφ1ψ>0)
)
. (2.5)
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We interpret the process Γx given by (2.3) as the ratio of the expected terminal
value of the risky asset to that of cash. If the arbitrageur holds one unit of the risky
asset at node x, its dollar value at a following node x′ will be Px′ . Because the expected
terminal value of each dollar at node x′ is vx′ , the numerator of Γx, Ex [Px′vx′ ], is the
expected terminal value of one unit of the risky asset. If, instead, the arbitrageur holds
one dollar at node x, its expected terminal value at a following node x′ will be vx′ . Thus,
the denominator of Γx, Ex [vx′ ], is the expected terminal value of one dollar. Hence, the
aforementioned interpretation is justified.

Once we characterize the leverage decision problem as (2.5), we obtain the following
lemma whose proof is straightforward and omitted.

Lemma 2.2. Given Γx and Px, the arbitrageur’s optimal leverage ratio is

ψx =


1

2φ

(
Γx
Px
− 1

)
if Γx > Px

any number in [−1, 0] if Γx = Px

−1 otherwise

.

The intuition behind the above lemma is straightforward. Recall that Γx is the ratio
of the expected terminal value of the risky asset to that of cash. Hence, if Γx > Px,

the expected terminal value of the risky asset is greater than the current value of that.
However, due to the quadratic funding cost of ψ (1 + ψφ1ψ>0) , she picks 1

2φ

(
Γx
Px
− 1

)
as

the optimal leverage, which increases with the ratio Γx
Px

and decreases with the sensitivity
of funding rate to the leverage φ. When Γx ≤ Px, the expected terminal value of the
risky asset is less than the current value of that, and hence a positive leverage cannot
be optimal.

Given the process Px, we can solve for Γx and vx as well as ψx backward from (2.3),
(2.4) and Lemma 2.2. Then, the capital process Wx is determined forward by (2.2).
We determine the process Px in the following subsection.

2.1 Equilibrium

We pin down the equilibrium of the economy by imposing market clearing conditions.
Furthermore, we will show the existence and uniqueness of the equilibrium.

Consider the market clearing condition at node x. The demand from noise traders
is V−Sx

Px
and the demand from arbitrageurs is Wx(1+ψx)

Px
. Because the aggregate supply

of the risky asset is normalized to 1, it should hold that 1 = V−Sx
Px

+ Wx(1+ψx)
Px

, which is
equivalently expressed as

Px = V − Sx +Wx (1 + ψx) . (2.6)
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We solve for the optimal leverage and the market clearing price by combining Lemma
2.2 and the condition of (2.6). In describing the equilibrium, it is convenient to use
P̃ (S,W,Γ), the unique positive solution to the equation,

P = V − S +W (1 + ψ) ,

where ψ = 1
2φ

(
Γ
P
− 1

)
. Note that

P̃ (S,W,Γ) ≡
V − S +W

(
1− 1

2φ

)
+
√(

V − S +W
(
1− 1

2φ

))2
+ 2WΓ

φ

2 . (2.7)

Begin with nodes at t = 2.

Lemma 2.3. For each node x at t = 2, given the capital Wx at node x, the equilibrium
price and leverage are

ψx =

−1 if Sx = 0
1

2φ

(
V
Px
− 1

)
otherwise

Px =

V if Sx = 0
P̃ (Sx,Wx, V ) < V otherwise

where P̃ (S,W,Γ) is defined in (2.7).

At t = 2, when there is no shock (Sx = 0), the asset price maintains its fair value. If
Sx > 0, the arbitrageur capital is not enough to cover the shock and thus the equilibrium
price is undervalued at Px = P̃ (Sx,Wx, V ) < V .

We move on to nodes at t = 1 and t = 0. First, the equilibrium at node 11 without
a noise trader shock is determined as follows.

Lemma 2.4. (ψ11, P11) = (−1, V ).

The above lemma shows that there is no mispricing in the asset and hence no investment
from arbitrageurs at node 11.

Next, we proceed to nodes 12 and 0. We say a positive parameter θ is sufficiently
small (or small enough) if there is a constant θ > 0 such that θ < θ. We assume
sufficiently small probabilities for the positive noise trader shocks, i.e. small q and ρ, for
the rest of the paper. This restriction is justified in that we are interested in analyzing
a modern financial market where the arbitrage opportunities are highly likely to vanish.
Finally, the following lemma pins down the equilibrium leverage and prices.

14



Lemma 2.5. If q and ρ are sufficiently small,

(ψ12, P12) =
(

1
2φ

(
Γ12

P12
− 1

)
, P̃ (Sm,W12,Γ12)

)
and

(ψ0, P0) =
(

1
2φ

(
Γ0

P0
− 1

)
, P̃ (S0,W0,Γ0)

)
.

Moreover, P12 < V and P0 < V .

By the Lemma, we see that whenever the shock exists, the asset is undervalued.
Note that Lemmas 2.3, 2.4 and 2.5 describe (ψx, Px)x as functions of (Wx)x:

• (ψx, Px) at t = 2 is computed from Wx at t = 2 (Lemma 2.3)

• (ψ11, P11) = (−1, V ) is determined (Lemma 2.4)

• Γ12 obtains from (Wx, ψx, Px) at t = 2 (Equation (2.3))

• Compute (ψ12, P12) from Γ12 and W12 (Lemma 2.5)

• Γ0 comes from (Wx, ψx, Px) at t = 1 (Equation (2.3))

• Γ0 gives (ψ0, P0) (Lemma 2.5)

Then, (2.2) with given W0 produces a new capital process. Thus, we have an equilibrium
when the initial given capital process equals the new capital process computed as above.
The following shows existence and uniqueness of the equilibrium.

Theorem 2.1. If q and ρ are sufficiently small, there exists a unique equilibrium.

Next, we illustrate our model with a numerical example of our economy. We use
the following values of parameters:9

V = 1, W0 = 0.05, S0 = 0.1, Sm = 0.2, Sb = 0.4, φ = 0.1 and q = 5%, ρ = 1%. (2.8)

Note that the moderate noise trader shock Sm = 0.15 arrives with probability q = 5%
at t = 1, 2 and the extreme noise trader shock Sb = 0.5 occurs with probability ρ = 1%
only at t = 2. The sensitivity of the funding rate to the leverage is set to be φ = 0.1.
For example, the arbitrageur borrows 100% of his capital, its funding rate is 10%. It is
easy to check that the combination of the above parameter values satisfy the conditions
in Assumption 2, which ensures the positivity of the arbitrageur capital. The numerical
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Figure 2.3: Optimal Leverage, Equilibrium Prices, Arbitrageurs’ Capital
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Notes: This figure illustrates the optimal leverage ratio, ψ, the equilibrium price, P , and
the corresponding capital of the arbitrageur, W , across all nodes. Parameters are set
as V = 1, W0 = 0.05, S0 = 0.1, Sm = 0.2, Sb = 0.4, φ = 0.1, q = 0.05 and ρ = 0.01.

16



solutions to the optimal leverage ratio ψx, the equilibrium price Px and the resulting
capital of the arbitrageur Wx are illustrated in Figure 2.3.

At t = 0, the (representative) arbitrageur borrows 17.6% of her capital (=ψ0). The
resulting equilibrium price of P0 is 0.959. In the absence of her arbitrage transaction,
the price would be 0.9 (= V − S0 = 1− 0.1). Thus, her investment itself raises the
market price by 0.059.

If the noise trader shock disappears at t = 1, the market price recovers its fair
value, P11 = V = 1 and her capital increases to 0.052 with 4.8% gain. She is away
from the market because the expected future value of the risky asset in the state of S0

at t = 1 is smaller than the market price of V (see Lemma 2.4). In contrast, if the
shock Sm realizes at t = 1, the market price (P12) drops to 0.874; the realized return
of the security is -8.9%. However, she loses more than that due to two driving forces:
the leverage itself and the additional funding cost. Altogether her loss is 10% and her
capital declines to 0.045. At this state, she employs leverage up to 64.7% to monetize
the enlarged undervaluation.

In the state where S21 = 0 is realized at t = 2, the equilibrium price is at its fair
value and the arbitrageur leaves the market because of zero expected return. If this
state is realized via S11, the first state at t = 1, the arbitrageur’s capital W21|11 is
identical to W11. In contrast, if the state comes through S12, the second state at t = 1,
the arbitrageur’s capital W21|12 has increased from 0.045 to 0.053.

At S22 = Sm, the amount of the negative noise shock at this state is identical to
S12 = Sm. The magnitude of the shock is mediocre and could happen before at t = 1
so we interpret this state as a tranquil state. If this state is realized via S11 at which
no investment in the risky asset is made, her capital (W22|11) is still W11, 0.052. The
market price (P22|11) is 0.886 and she employs a leverage ratio of 64.3% (ψ22|11). In
contrast, if this state is arrived at through S12 in which the arbitrageur has already
experienced a loss, her capital (W22|12) is 0.043; the market price (P22|12) is 0.874 and
her leverage ratio is 72.3%.

Note that we interpret S23 as a ‘crash’ state given its massive amount of the negative
shock (Sb = 0.4) coupled with an extremely low probability of occurrence (ρ = 1%).
In addition, this amount of the negative noise shock is unprecedented so it could be
counted as an exceptionally rare event. At S23 via S11, the arbitrageur’s capital (W23|11)
is 0.052 again. The equilibrium price (P23|11) is 0.743 and the arbitrageur steps up the
leverage ratio to 1.730 (ψ23|11). In contrast, at the same state via S12, the arbitrageur

9Rather extreme numbers are used (e.g., φ = 0.1 is too large) in the example to emphasize the
intuitions of the equilibrium.
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becomes penurious; her capital W23|12 is merely 0.027, which means 46% of her original
capital is wiped out! As such, despite her extensive leverage ratio (ψ23|12 = 2.261), the
equilibrium price P23|12 is as low as 0.689.

The results deliver an essential implication on the activity of arbitrageurs. Despite
the arbitrageur’s aggressive leverage, the price is not boosted much; the equilibrium
price is only 0.689 whereas its value without arbitrage transaction is V −Sb = 0.6. The
arbitrageur’s capital is extremely low and consequently she does not afford to make a
large amount of investment in the asset. Specifically, her total amount of investment is
as small as 0.089 (= P23|12 − (V − Sb) = 0.689− 0.6 by (2.6)). This is similar to 0.086
(= P22|11 − (V − Sm) = 0.886 − 0.8 by (2.6)) at S22 via S11 despite the fact that the
arbitrage opportunity is much more favorable at S23 via S12 that at S22 via S11. Note
that the crash itself is a double-edged sword. On one hand, the asset price plunges so
that the arbitrageur’s capital is precipitated. On the other hand, the setback in the
asset price delivers an extraordinary opportunity for arbitrage. However, the funding
cost structure limits her leverage capacity; when outside funding is most needed, the
funding cost is most binding.

3 Model Prediction

In this section, we examine the impact of q on the features of the equilibrium in a crash
state. Note that q is the probability of the moderate noise trader shock Sm. Hence, we
interpret 1− q as the strength of reversion to the fair pricing state or, more generally,
the efficiency of a financial market during a normal time.

We start our analysis by establishing the importance of past in determining the
price in the crash state.

Theorem 3.1. If q and ρ are sufficiently small, P23|11 > P23|12.

In a crash state with extreme noise trader shock Sb, the arbitrageur will take a sub-
stantially high leverage to take advantage of mispricing because the mispricing is highly
likely to disappear. However, due to the progressive funding rate given in 1, the size of
leverage the arbitrageurs can take critically depends on the size of arbitrageurs’ capital,
which is determined by capital loss or gain from past trades. Hence, the responses of the
market price to similar shocks may differ depending on the path of the history. In our
model economy, the arbitrageurs experience gains in node 11 but they experience losses
in node 12. The latter case introduces a disadvantage in the funding rate compared to
the first case and thus we have the above theorem.
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Next, we examine the effect of q on the severity of mispricing in the crash state. The
following two theorems state that as the strength of reversion to the fair pricing state
becomes stronger or the market becomes more efficient in a normal state, the more of
the market price diverges away from the fundamentals in a crash state.

Theorem 3.2. If q and ρ are sufficiently small, dP23|11
dq

> 0.

Theorem 3.3. If q, ρ and W0 are sufficiently small, then dP23|12
dq

> 0.

The small W0 depicts the nature of arbitrageurs holding a relatively small capital
but using extensive leverage to exploit arbitrage opportunities with a greater scale.
The intuitions of Theorems 3.2 and 3.3 are described in Figure 3.1. We use the same
parameters in (2.8) except q, which takes a value between 0% and 10%.

First, we examine Theorem 3.2. Note that Figure 3.1(a) shows that arbitrageurs
take higher leverage as the force of reverting back to the fundamentals increases, or
q decreases. Then, P0 moves along with ψ0 because investing more in the risky asset
induces a higher price, which is shown in Figure 3.1(b). Besides, higher P0 means a less
profitable opportunity which leads to a lower level of capital W11 with a smaller q as in
Figure 3.1(c).10 Lastly, from W23|11 = W11, P23|11 also moves in the same direction of
W11 (Figure 3.1(d)).

We turn to Theorem 3.3. Suppose q gets smaller. With higher leverage of ψ0 (Figure
3.1(a)) and the increased pessimism of noise traders, Sm > S0, W12 decreases as shown
in Figure 3.1(e). Although they have smaller capital W12, they take more aggressive
leverage due to the belief on the stronger market efficiency from smaller q (Figure
3.1(f)). As a result, the capital in the crash state W23|12 following two consecutive
losses from S0 to S12 and from S12 to S23, is wiped out more severely (Figure 3.1(g)),
and the price P23|12 diverges more away from the fundamentals (Figure 3.1(h)).

Lastly, we examine the effect of a more efficient market in a normal state on the
path-dependency of mispricing in the crash state. In the context of our model, we study
the sensitivity of P23|·, the price of security in the worst state at t = 2, to whether the
worst state follows from S11 = 0 or S12 = Sm at t = 1. The following theorem shows
that the path-dependency of mispricing is stronger in a more efficient market.

Theorem 3.4. If q, ρ and W0 are sufficiently small, then d
dq

(
P23|11 − P23|12

)
< 0.

Suppose q decreases. Recall that arbitrageurs take higher leverage at t = 0 as the
force of reverting back to the fundamentals increases, as Figure 3.1(a) shows. Then,

10Higher ψ0 has a positive effect on W11 but it is dominated by the effect of P0. The reason is that
∂W11
∂ψ0

is very small when q is small. This is proved in Internet Appendix.
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Figure 3.1: The effect of q on the equilibrium
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Notes: This figure depicts the effect of q on the equilibrium outcomes of ψ0, P0, W11,

P23|11, W12, ψ12, W23|12 and P23|12. Other parameters are V = 1, W0 = 0.05, S0 =
0.1, Sm = 0.2, Sb = 0.4, φ = 0.1 and ρ = 1%.
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W11−W12 > 0 becomes larger because gains are realized at node 11 and losses worsen at
node 12. This is illustrated in Figure 3.2(a). Furthermore, as q decreases, arbitrageurs
take higher leverage at node 12 (Figure 3.1(f)) while investing nothing in the risky
asset at node 11. Hence, W23|11 −W23|12 > 0 increases further (Figure 3.2(b)). As a
result, Figure 3.2(c) shows that the path-dependency in the mispricing

(
V − P23|12

)
−(

V − P23|11
)

= P23|11 − P23|12 becomes larger with a smaller q.

4 Empirical Analysis

For the rest of this section, we empirically test Theorems 3.1-3.4 established in the
previous section. In particular, we examine the properties of spread strategies in fixed
income market (Section 4.1) and various hedge fund style indexes (Section 4.2).

4.1 Fixed Income Arbitrages

We first consider the fixed income market. Fixed-income arbitrage is one of most
popular strategies employed by hedge funds. As its name implies, it is an investment
strategy that attempts to exploit mispricing which develops among related classes of
fixed-income securities. Strictly speaking, it is a statistical arbitrage because mispricing
is identified by a statistical analysis rather than by a strict economic reasoning.

In particular, our study on fixed-income arbitrage is closely related to the empir-
ical analysis of Duarte et al. (2006). They document that the fixed-income arbitrage
strategies produce significant alphas after controlling for bond and equity market risk
factors and many of them produce positively skewed returns. Thus, they conclude that
it is not sensible to derogate the fixed-income arbitrageur for ‘picking up nickels in front
of a steamroller’. However, because they investigate the risk and return characteristics
of representative arbitrage trading strategies in the fixed-income sector that they con-
struct, the return of the specific factor may not reflect the actual returns of fixed-income
arbitrage funds.11 Besides, their data period ends before the outbreak of the subprime
mortgage crisis. Thus, their conclusion might be premature because they did not have
a chance to see the genuine steamroller. To see what happened in fixed-income arbi-
trage funds during the global financial crisis, we investigate a monthly average returns
of fixed-income arbitrage index from January 1997 to August 2017, provided by the
Barclay Fixed Income Arbitrage Index. Figure 4.1 depicts the time series evolution

11They investigate swap spread arbitrage, yield curve arbitrage (not slope/butterfly spread strategies
though), mortgage arbitrage and fixed-income volatility arbitrage.
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Figure 3.2: The effect of q on the path-dependency
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Notes: This figure illustrates the effect of q on the equilibrium outcomes of W11−W12,

W23|11 − W23|12 and P23|11 − P23|12. Other parameters are V = 1, W0 = 0.05, S0 =
0.1, Sm = 0.2, Sb = 0.4, φ = 0.1 and ρ = 1%.
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Figure 4.1: Fixed Income Arbitrage Index Annual Returns
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Notes: This figure plots the annual returns of fixed income arbitrage index from 1997
to 2017.

of annual returns of the fixed-income arbitrage funds. Despite the demise of LTCM,
the cross-sectional average return in 1998 is still positive, 0.76%. However, the global
financial crisis was a much more catastrophic havoc to the industry of fixed-income ar-
bitrage funds. They lost, on average, 0.60% in 2007, for the first time in their history. In
the following year, their return nosedived to -25.20%! Before 2007 that Duarte et al.’s
data covers, the hedge funds’ average monthly return is as high as 66 basis point. Its
standard deviation is as small as 87 basis point. Its skewness is -2.08, slightly negative,
but not statistically significant. Its excess kurtosis is 9.70.12 If adding the post-crisis
data till August 2017, the above-mentioned figures become quite different. Its mean
drops to 49 basis point; its standard deviation jumps up to 140 basis point; the return
becomes more negatively skewed, -4.87, and more leptokurtic with excess kurtosis of
42.54 (see column Fixed Income Arbitrage in Table 7). That is, the hidden dark side
of the fixed income arbitrage emerged with the outbreak of the global financial crisis!

12A number of trading strategies examined in Durate, Longstaff and Yu produce positively skewed
returns. In contrast, the actual returns of the fixed income arbitrage funds are negatively skewed as
shown in Figure 4.1. This is true even when we use only the data before the global financial crisis.
A survivorship bias cannot be an explanation for this discrepancy. Such discrepancy may result from
the fact that there are many other strategies not considered by Durarte, Longstaff and Yu and they
produce significantly negatively skewed returns. A further study is needed to clarify this.
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In implementing fixed income arbitrages, fund managers adopt widely diverse strate-
gies. A representative strategy is to exploit a substantial deviation of a particular spread
(such as yield spread, basis between cash and futures, credit spread) from its historical
average. To eliminate or minimize its exposure to a fundamental risk, this strategy takes
long positions in one asset and short positions in another asset(s). For that reason, the
strategy is called ‘relative value trading strategy’.13

This strategy is generically designed to eliminate its exposure to market risk and
credit risk; as such, the expected return on a dollar investment is relatively small so an
unusually high degree of leverage is inevitable and often emphasized. In other words,
its underlying driver is not to take systematic risk while taking leverage risk: a giant
vacuum cleaner sweeping up pennies.

In particular, we employ the U.S. interest rate swap market as a natural candidate
for testing the theoretical implications. The interest rate swap market is one of most
preferred habitat for hedge funds and proprietary desks of global investment banks.
Trading strategies involving interest swaps encompass not only generic yield spreads
such as slopes and butterflies of a particular swap curve, but also asset swap margins
combined with cash bonds, cross-country basis swaps and basis on futures and their
combinations. Given that there are so many different strategies available, most of the
trading desks employ a very sophisticated quantitative algorithm called ‘trade finder’
to detect best opportunities available in a real time basis.

A. Trading Strategies Using the Swap Yield Curve

Herein we investigate the most popularly used yield curve strategies among the fixed-
income arbitrage funds: slope and butterfly spreads.

A.1 Slope Spreads
The slope strategies center upon a yield difference between a longer-end and a

shorter-end of a yield curve. For example, ‘2s10s’ is a generic industry jargon for a
13A Long/short equity strategy is another popular strategy utilized by hedge funds. It also simulta-

neously takes long and short positions in equity space. However, most of them are long biased (such as
130/30, where long exposure is 130% and short exposure is 30%) and it is composed of a ‘long’ portfolio
by buying equities that are expected to increase in value and a separate ‘short’ portfolio by shorting
equities that are expected to decrease in value. Since it does not eliminate systematic risk completely,
it is called a ‘fundamental’ long/short strategy. There is a pairwise long/short equity strategy, which
matches a particular stock that it is long (short) on to another stock with a similar risk profile such
as beta. This strategy is not actively adopted by hedge funds though because remaining idiosyncratic
risk after controlling the market risk is still sizable and its compensation is relatively small.
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spread between the ten-year yield and the two-year yield. There exist many different
strategies using a particular slope spread, and the most popular one is the so-called a
duration matching strategy. For a short trading horizon, a profit from a fixed leg in
the long end swap can be approximated by

∆Vl ≈ −DlVl∆yl,

where Dl, Vl and yl are the duration, the value and the yield of the fixed leg, respectively.
Thus, a trading position with long on the longer-end and short on the shorter-end with
a ratio of 1 : λs is

∆(Vl − λsVs) = ∆Vl − λs∆Vs ≈ −DlVl∆yl + λsDsVs∆ys.

That is, the trading position’s short-term payoff is described as a linear function of the
two yields. We want to eliminate the position’s exposure to the parallel shift of the
yield curve, a directional market risk. Thus we determine λs such that

−DlVl + λsDsVs = 0 =⇒ λs = DlVl
DsVs

= Dl

Ds

.

The last equality is based on an assumption that both swaps are par-par swaps. A
par-par swap is a generic swap which designates the par notional amount to a fixed leg
as well as a floating leg. As such, Vl = Vs.14 Putting this value of λs back into the
payoff of the position yields

∆(Vl − λsVs) ≈
[
−Dl∆yl + Dl

Ds

Ds∆ys
]
Vl = −DlVl∆(yl − ys).

Thus, the profit of the aforementioned trading strategy is approximately proportional to
the change in the yield spread, yl−ys. If the yield curve shifts in a parallel manner (i.e.,
∆(yl−ys) = 0), the arbitrage earns zero. If the curve steepens (i.e., ∆(yl−ys) > 0), the
strategy loses and vice versa. In the industry, yl − ys is called ‘pick-up’, and the fund
managers meticulously monitor its change on a real time basis. Typically, they compute
the z-value of the spread based on the past six-month or one-year history and when
the z-value is greater or less than a particular threshold level, they consider entering
into a position. For example, if the six-month z value is greater than 2.0 (less than
-2.0), they believe that the curve is abnormally steep (flat) so the fund managers take
a position in a flattener (steepener): i.e., receive (pay) the longer-end and pay (receive)

14There is non par-par swap, which is tailored to a specific need of a client; the notional value of
each leg is typically not a par value due to a stub period.
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the shorter-end. Because the strategy’s market exposure (duration risk) is eliminated,
its expected profit is quite small and therefore the fund has to use a very high degree
of leverage, which could sometimes be as high as ten or twenty times.

There are many variations of the above-mentioned trading strategy. Most of them
are based on a belief that the directional move of the curve does not accompany a
parallel shift but a certain change in a shape of the curve. For example, when the market
interest rate rises in the absence of a monetary policy, the slope upto its belly part tends
to steepen while the long-end slope flattens (short-end bear steepening and long-end
bear flattening). When the market interest rate falls, the opposite is more likely to
occur: short-end bull flattening and long-end bull steepening. Thus, to capture such a
statistical relationship between the direction of the yield curve and the corresponding
change in the slopes, the quant managers use regression, Principal Component Analysis
(PCA) or Independent Component Analysis (ICA) to adjust the ratio of the long-end
and the short-end. However, the most popular and representative type of a slope trading
strategy is the above-mentioned one.

A.2 Butterfly Spreads
A butterfly strategy involves three tenors as opposed to two tenors in slope strate-

gies. For example, ‘5s10s20s’ refers to a spread between the ten-year yield (middle leg)
and the average of the five-year yield (short leg) and the twenty-year yield (long leg).
Thus it measures the curvature of the swap yield curve. If the curve is expected to
be more concave, the trader ‘pays’ the butterfly (short on the middle leg and long on
the combination of the short and the log legs) and vice versa. Thus the butterfly is
associated with the third factor of the PCA, e.g., the curvature factor whereas the slope
is related with the second factor.15

Below, we investigate the most widely used strategy, a double duration matched
butterfly. The value change of the butterfly can be again approximated as

−DmVm∆ym + λsDsVs∆ys + λlDlVl∆yl.

We determine λs and λl such that (i) the duration of the butterfly is zero and (ii) the
duration of the short leg is identical to the duration of the long leg:

−DmVm + λsDsVs + λlDlVl = 0
λsDsVs − λlDlVl = 0,

15A simple ‘pay’ or ‘receive’ of a particular tenor, which is equivalent to shorting or longing a cash
bond is a directional bet on the yield and thus is related to the first factor of PCA.
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which yields
λs = DmVm

2DsVs
= Dm

2Ds

and λl = DmVm
2DlVl

= Dm

2Dl

.

Again we assume that the swaps are the par-par swaps in the last equalities in the
above two equations. Then the payoff can be described as

−DmVm∆ym + λsDsVs∆ys + λlDlV∆yl = −DmVm∆
[
ym −

1
2(ys + yl)

]
.

Thus the payoff of the butterfly is proportional to the difference between the yield of
the middle leg and the average yield of the short leg and the long leg. If the trader
‘receives’ the (middle leg of the) butterfly, she gains if the curve becomes less curva-
tured and loses if the opposite happens. Similar to the slope spreads, there are many
other variations which utilize the statistical association among the three legs such as a
regression analysis, a PCA and an ICA.

One thing to mention is the funding cost associated with spread strategies. A swap
contract does not accompany any exchange of notional values because the notional
value of a fixed leg is identical to that of a floating leg. And its funding cost is already
embedded within its contract; if you receive the fixed leg, its funding rate is the six-
month LIBOR rate, a coupon rate of the floating leg. If you receive the floating leg, its
funding rate is the swap rate. As such, even if the size of swap position (notional value)
increases, the funding rate itself does not increase. The same argument can be made
about a spread position, a combination of swaps with different tenors. However this logic
does not reflect the market practice of marking-to-market (MTM) and collateralization.
Under the MTM practice, counterparties are required to post collateral in the amount
of the mark-to-market value of the contract.16 When the mark-to-market value of one
party in a swap contract is negative, she needs to pay collateral to her counterparty
in the amount of loss. In that sense, it is similar to a futures contract as opposed to
a forward contract.17 Collateral is costly to post, so it induces economic costs to the
collateral payer. If she continues to lose in the mark-to-market value of her position,
she needs to post additional collateral and this cost rises concomitantly. If she fails
to post it, she becomes bankrupt. Most of the collateral posted is in the form of cash
or Treasury securities. To pay the collateral, she may use her own cash or Treasuries;
otherwise she needs to finance it. Since she loses more, she needs to finance it more
and hence the financing cost may rise as well.18 Therefore, a priori, a swap position or

16See Johannes and Sundaresan (2007) for this market convention and its impact on the swap rates.
17See Johannes and Sundaren (2007) for details.
18Or her counterparty, typicall a dealer, applies higher haircuts to Treasuries collateralized.
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its combinations (including spreads) entails an implicit funding cost; this cost tends to
increases with the size of potential loss in the position. In turn, the size of potential loss
is proportional to the size of position and also the riskiness of the position. Overall, this
feature is in line with Assumption 1 in our model that the funding rate is proportional
to the leverage ratio.

B. Data

We use the U.S. swap yield data from July 23, 1998 to May 11, 2017 from the Bloomberg.
We eliminate weekends and holidays. The number of daily observations is 4904. The
corresponding number of weekly observations (Wednesday) is 980.19 The tenors are
from one year to ten year along with fifteen year, twenty year and thirty year and
thus the total number of tenors is thirteen. Consequently, we obtain 78

(
= 13×12

2

)
slope

spreads and 286
(
= 13×12×11

3×2

)
butterfly spreads, yielding total 364 (=78+286) spreads.

C. Efficiency Measure

We explain how to construct a measure of efficiency for each of 364 spreads. First,
for comparison across spreads, we normalize the time-series of each spread to their
corresponding z values and denote a normalized spread i at time t by zi,t. By doing so,
we can equalize the scale of potential collateral. Therefore, we can directly compare
their tail risk and tail ranges cross-sectionally. Then, we estimate each spread’s mean-
reversion speed, δi by

∆zi,t+1 = ai − δizi,t + εi,t+1. (4.1)

Recall that we are interested in market resilience, or the speed at which prices revert to
their equilibrium level after a shock hits transaction flow. Because zi,t is normalized, ai
is close to zero by construction and we can interpret δi as the speed at which a spread
i goes back to the normalized steady state level of zero. Hence, we interpret δi as a
measure of market efficiency in terms of resilience.

Also, note that mean-reversion speed δi is directly related to the probability of
positive arbitrage profits from arbitrage positions, 1 − q in our theory. Consider a
arbitrageur who enters into a strategy when zi,t < −z for a given threshold z, by betting
on that the spread will revert back and exit the position after h holding periods. The

19We use other weedays to check the robustness of our results. Qualitatively speaking, the results
are the same.
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arbitrageur will make profits if zi,t+h > zi,t and experience loss otherwise. Hence, the
probability of arbitrage profits can be formulated by Pr (zi,t+h > zi,t|zi,t < −z) , which
can be computed by simulation.20 Figure 4.2 plots how the probability of arbitrage
profits moves with the mean-reversion speed, δi. We find that for various thresholds z
and holding periods h, the probability of gain monotonically increases with the mean-
reversion speed.21

To address the potential concerns on our efficiency measure, we also measure mean-
reversion speed δi using two alternative methods: (i) we apply HP filter to the time-
series of spreads to control the effect of time-varying trends in spreads before estimating
δi with (4.1) and (ii) we estimate δi in (4.1) using the winsorized spread to find the
market efficiency only during normal periods. As will be discussed later, our results are
robust to these variations.

Before we proceed to the empirical findings, we make it clear that the specification
of (4.1) itself cannot generate any spurious relation between the mean reversion speed
δi and the tail properties of spread zi,t. We verify this as follows. Pick a specific δi.
Then, we simulate daily zi,t with the same size of 4904 daily data using (4.1).22 Using
the simulated 4904 daily data, we compute three tail properties of zi,t : (a) kurtosis,
(b) VaR 1% left-tail and (c) expected shortfall of 1% left-tail. We repeat this exercise
10000 times. Figure 4.3 plots the average (straight line) along with 10-90% intervals
(dashed lines) of the three tail properties across 10000 repetitions. The figure clearly
shows that mean reversion speed does not affect mechanically any of the considered
statistics.23 Hence, if we find any empirical relations between mean-reversion speed
and the tail behaviors, those are not due to mechanical relations but require some
economic reasoning, which we will provide in the subsequent analysis.

20We simulate a time-series zi,t as follows. First, draw zi,1 ∼ N (0, 1) . Then, construct zi,t for t > 1
from ∆zi,t+1 = −δizi,t + εi,t+1, where εi,t+1 ∼ N

(
0, 1− (1− δi)2

)
, so that the long-run variance of

zi,t is 1.
21Alternatively, we can interpret the relation between mean-reversion speed and market efficiency

in terms of conditional expectation. Note that the equation (4.1) can be rewritten as ∆zi,t+1 =
−δi

(
zi,t − ai

δi

)
+ εi,t+1. Because of the normalization of zi, we can treat ai

δi
to be close to zero. Hence,

the conditional mean of E [zi,t+1|zi,t] is approximately E [(1− δi) zi,t + εi,t+1|zi,t] = (1− δi) zi,t. It
follows that the higher mean reversion of δi ∈ (0, 1) pushes the conditional mean of E [zi,t+1|zi,t]
towards zero.

22See footnote 20.
23We find similar results when εi,t+1 is drawn from a student-t distribution with degree of freedom

of 5.
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Figure 4.2: Mean Reversion Speed and Probability of Arbitrage Profits
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Notes: This figure illustrates how the probability of arbitrage profits moves with
the mean-reversion speed, δi. We consider a trading strategy that you enter into
a trading strategy when zi,t < −z by betting on that the spread will revert back
and you exit the position after h holding periods. The probability of arbitrage
profits, Pr (zt+h > zi,t|zi,t < −z) , is computed by simulation as follows. First, draw
zi,1 ∼ N (0, 1) . Then, construct zi,t for t = 2, · · · , T from ∆zi,t+1 = −δizi,t+εi,t+1, where
εi,t+1 ∼ N

(
0, 1− (1− δi)2

)
. We use T = 108 to compute Pr (zt+h > zi,t|zi,t < −z) .

30



Figure 4.3: Mean Reversion Speed and Tail Properties
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Notes: This figure illustrates that the mean-reversion speed δi in the specification of
(4.1) does not mechanically affect following tail properties: (a) kurtosis, (b) VaR 1%
left-tail and (c) expected shortfall of 1% left-tail. For a given δi, we simulate 4904
daily zi,t using (4.1) as follows. First, draw zi,1 from a zero-mean and unit-variance
distribution. Then, construct zi,t for t > 1 from ∆zi,t+1 = −δizi,t + εi,t+1, where εi,t+1

is drawn from a zero-mean distribution of 1 − (1− δi)2 variance. Using the simulated
4904 daily zi,t, we compute the three tail properties of zi,t. We repeat this exercise 10000
times. We plot the average (straight line) along with 10-90% intervals (dashed lines)
across 10000 repetitions for each of the three tail properties.
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D. Hypothesis

We establish the testable hypotheses. The first set of hypotheses focuses on the cross-
sectional relation between mean reversion speed and tail properties.

(H1): The spreads with stronger mean reversion are subject to higher tail risk.

(H2): The spreads with stronger mean reversion are subject to higher risk conditional
on a tail event.

In the model, (H1) is grounded on Theorems 3.2 and 3.3, showing that P23|11 and P23|12

decrease with a smaller q. The second hypothesis (H2) is built upon the fact that the
discrepancy between P23|11 and P23|12 increases with a smaller q as stated in Theorem
3.4. Because P23|· is the price in the crash state at t = 2, we interpret every realization
of P23|· as a tail event. Thus, P23|11−P23|12 is viewed as the variation or risk conditional
on a tail event mentioned in (H2).

The second set of hypotheses involves time-series implications.

(H3): After experiencing a loss, a spread is subject to higher tail risk.

(H4): After experiencing a loss, the relation in (H1) is stronger.

Note that (H3) is the direct implication of Theorem 3.1, stating that the price in the
crash state

(
S23|·

)
is lower following a down market (S12). The fourth hypothesis (H4)

comes from Theorem 3.4. Hypothesis (H1) states the effect of the mean reversion on
the tail risk regardless of the previous gain/loss. These effects are captured by d

dq
P23|11

and d
dq
P23|12, depending on the path. Theorem 3.4 states that the latter (the one after

experiencing a loss) is dominant, which leads to (H4).

E. Tests

E.1 Cross-sectional Test
We examine (H1) and (H2) with cross-sectional test. Both hypotheses require the

operational definition of ‘tail’ states (corresponding to S23 in our model). We consider
p = 0.5%, 1.0% or 1.5% as threshold levels. Even though we theoretically investigate
only when the asset is undervalued due to negative noise shocks, a symmetric result
holds when the asset is overvalued due to positive noise shocks, as long as the funding
cost of shorting increases with the size of short position. Hence, we investigate both
tails of a spread distribution. We denote zi|p and zi|1−p the p-percentiles of a specific
normalized spread zi for the left and right tails, respectively.
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In testing (H1), we adopt the following three alternative tail risk measures for each
spread:

• Kurtosis
(

= Ê(zi,t)4

σ̂(zi,t)2

)
• p-percentile Value at Risk (VaR): zi|p for the left tail, zi|1−p for the right tail

• Expected Shortfall: Ê(zi,t|zi,t < zi|p) for the left tail, Ê(zi,t|zi,t > zi|1−p) for the
right tail.

VaR and expected shortfall are estimated by the historical distribution. Each measure
has its own strength and weakness and we do not discuss them in detail. Simply we
apply all these measures together.

For (H2), we measure the risk conditional on tail by (i) the tail range and (ii) the
tail volatility risk in the following manner:

• Tail Range: zi|p−mint {zi,t} for the left tail and maxt {zi,t}− zi|(1−p) for right left
tail.

• Tail Volatility: standard deviation conditional upon the occurrence of a spread be-
yond the threshold value, σ̂

(
zi,t|zi,t < zi|p

)
and for the left tail and σ̂

(
zi,t|zi,t > zi|(1−p)

)
for the right tail.

Besides, we highlight that the effects of mean reversion speed on the tail risk are not due
to the effects on the overall risk but on tail-specific risk. To this end, we use non-tail
volatilities as regressands, which are constructed as follows:

• Non-Tail Volatility: σ̂
(
zi,t|zi,t > zi|p

)
for the left tail and σ̂

(
zi,t|zi,t < zi|(1−p)

)
for

the right tail.

Now, we are ready to run the following cross-sectional regressions:

yi = β0 + β1δi + ei. (4.2)

where yi is a specific tail characteristic of our interest: kurtosis, VaR, expected shortfall,
tail volatility, tail range and non-tail volatility of spread i.24 The estimated β1 from

24We note that this procedure suffers from a classic errors-in variables (EIV) problem because we use
the estimate of mean-reversion speed as an independent variable and the estimates of distributional
characteristics (kurtosis, Value-at-Risk, expected short-fall risk and etc.) as dependent variables.
Therefore, both regressors and regressands are subject to estimation errors. As is well known, though,
the measurement errors in regressands do not cause a problem as long as they are uncorrelated with
the regressors and their measurement errors. We apply the methods by Shanken (1992) and Dagenais
and Dagenais (1997) to address the errors-in-variable problem in the regressors and find consistent
results. The results using EIV correction are available upon request.
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(4.2) tests (H1) when we use kurtosis, VaR, expected shortfall for yi and (H2) when we
the tail range and non-tail volatility for yi.

Table 1 report the estimation results from using daily data (left half) and weekly
data (right half) for three different thresholds p = 0.5%, 1.0% or 1.5% for the definition
of ‘tail’ states. Because qualitative results are similar across various cases, we focus on
discussing the estimation results from daily data with p = 1.0%.

First, we examine (H1), the spreads with stronger mean reversion are subject to
higher tail risk. We find that kurtosis is positively associated with mean-reversion speed
with statistical significance and R2 is as high as 57.0%. Besides, the mean-reversion
speeds demonstrate a negative relationship with left VaRs, -0.70 (t-stat=-2.00), and
a positive relationship with right VaRs, 0.58 (t-stat=1.97). That is, the spreads with
stronger mean reversion is more likely to have fat tail risk on both sides. We find similar
findings, albeit stronger when employing expected shortfall as an alternative measure
of tail risk. For both daily and weekly data, the results tend to become stronger with
smaller p. Although the results for VaR becomes weaker with p = 1.5%, overall we
conclude that hypothesis (H1) is strongly supported.

Next, we move to (H2). The range of left and right tails, measured by left VaR
minus minimum and maximum minus right VaR, respectively, are strongly related to
the mean-reversion speed. The relations are statistically very strong. Furthermore, we
find consistent results for both tail volatilities, left tail and right tail. Interestingly,
the association of mean-version speed to non-tail volatilities is much smaller in terms
of magnitude and often statistically insignificant. The results are robust to different
threshold levels and consistent when we use weekly data. So we empirically establish
that hypothesis (H2) is also well supported.

Table 2 confirms additional robustness of the results in Table 1. We split the whole
364 spreads into two subsamples of 78 slope spreads and 286 butterfly spreads and
repeat the exercise for each subsample. The ‘Slope’ (‘Butterfly’) column reports the
estimation results for 78 slope (286 butterfly) spreads. Besides, we check the robustness
of results to alternative methods for estimating mean-reversion speed. In particular,
we control the effect of time-varying trends in spreads by applying the filter by Hodrick
and Prescott (1997) before estimating δi and report the results using the HP-filtered
mean-reversion speed in ‘HP filter’ column.25 Furthermore, we also estimate δi using
the winsorized spread26 to find the mean-reversion speed only during tranquil periods.

25For the smoothing parameter of Hodrick and Prescott’s filter, we follow the method by Ravn and
Uhlig (2002).

26For winsorizing, we use the thresholds of tail events. We drop the left and right p-percentage tails
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The mean-reversion speed estimated in this manner is more consistent with our theory
model, which relates the efficiency during normal state to the vulnerability in the crash
state. We report the estimation results using the (non-tail period) mean-reversion speed
in the ‘Non-tail δ’ column. Across all these variations, we find very consistent results,
strengthening the validity of (H1) and (H2).

In summary, we conclude that the two hypotheses, (H1) and (H2), are well in line
with the behavior of the U.S. swap curve. Nevertheless, some readers may be concerned
about the cross-sectional correlation of residual terms in the specification of (4.2) and
have doubts about the true statistical significance of the estimated coefficient β1. In
what follows, we provide quantile regression tests which not only address the concern
on the cross-sectionally correlated shock but provide further dynamic implications.

E.2 Quantile regression with panel data
We establish (H1), (H3) and (H4) with the quantile regression. In particular, we

investigate those hypotheses by estimating the quantile regression for the left quantile:

Qp (zi,t|δi, li,t−1,h) = γ0 + γ1δi + γ2li,t−1,h + γ3δili,t−1,h, (4.3)

where Qp (zi,t|δi, li,t−1,h) is the conditional p-percentile of zi,t given the information of
mean-reversion speed of spread i, δi and the loss indicator of spread i at time t, li,t−1,h.

Note that the LHS in (4.3) is replaced by Q1−p (zi,t|δi, li,t−1,h) for the right tail. For
the left tail, the loss indicator of li,t−1,h is computed as follows. Over the periods from
t− 1− h to t− 1, we consider a simple holding strategy that if zi,t−1−h < −z, long the
spread i from t− 1− h and clear it at t− 1. We define li,t−1,h as an indicator function
which is 1 if the strategy generates a loss or 0 otherwise.27 In a similar manner, for the
case of right tail, we consider a strategy that if zi,t−1−h > z, short the spread i from
t−1−h and reverse the position at t−1, and define the indicator li,t−1,h accordingly.28

We relate the coefficients of γ1, γ2 and γ3 in (4.3) to hypotheses (H1), (H3) and (H4),
respectively. Note that when γ2 = γ3 = 0, γ1 in (4.3) captures the relation between the
mean-reversion speed δi and the tail-quantile. Thus, it directly tests (H1) – the spreads
with stronger mean reversion are subject to higher tail risk. Next, when γ1 = γ3 = 0,
γ2 in (4.3) measures the effect of past loss on the tail-quantile, and hence addresses
(H3) – after experiencing loss, a spread is subject to higher tail risk. Lastly, γ3 in (4.3)
picks up the interaction between the past loss and the mean-version speed. Recalling

in the empirical spread data.
27For the left tail, li,t−1,h = 1 (zi,t−1 < zi,t−1−h < −z).
28For the right tail, li,t−1,h = 1 (zi,t−1 > zi,t−1−h > z).
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(H4) says that after experiencing loss, the relation between the mean-reversion speed
and tail risk becomes stronger, we argue that γ3 handles (H4).

Table 3 reports the estimation results of (4.3) using the panel data of 364 spreads
for 4904 daily observations over the sample period of July 23, 1998 to May 11, 2017.
For the columns (1) and (4), we set γ2 = γ3 = 0. And for the columns (2) and (5), we
set γ1 = γ3 = 0. In Panel A, we consider the baseline case p = 1%, z = 1 and h = 1. We
find that the coefficient on δi is significantly negative (positive) for the left (right) tail,
which confirms (H1). Also, we find that the effect of past loss is negative (positive) for
the left (right) tail, advocating (H2). Lastly, the coefficient on the interaction of mean-
reversion speed is significantly negative (positive) for the left (right) tail, supporting
(H3). For Pseudo R2, we use the method by Koenker and Machado (1999). The t-
statistics are computed by bootstrapping standard error. Our bootstrapping design is
crucially important to properly address the potential cross-sectional as well as time-
series correlation of error terms. To fully address the concern on the cross-sectional
correlation, we resample the cross-section of 364 spreads together. In addition, we use
time-block sampling with the random time-series block size between 11 and 20 to handle
the time-series correlation. The bootstrapping standard error is computed by 200 sets
of bootstrap samples.

We check the robustness of results in Panel A of Table 3 in various dimensions.
Panels B and C of Table 3 confirm that the results are consistent whether we use five
or ten days to compute the loss indicator from the arbitrage strategy. In Table 4, we
repeat the exercise for two subsamples of 78 slope spreads (Panel A) and 286 butterfly
spreads (Panel B) and find that the results are persistent. We consider alternative tail
definitions of p = 0.5% and p = 1.5% in Panel A and Panel B, respectively, of Table
5. Lastly, for Table 6, we apply the filter by Hodrick and Prescott (1997)29 (Panel A)
or drop tails in spread data (Panel B) to estimate δi, and we use weekly data (Panel
C). Several robustness checks support our claim that the hypotheses of (H1), (H3) and
(H4) describe the tail properties in U.S. interest swap market accurately.

4.2 Hedge Fund Strategies

Next, we consider various hedge fund strategy indexes. The hedge fund industry pro-
vides a plausible environment to examine the implications of our model in that a hedge
fund focuses on the mispricing of alternative investment opportunities and uses high

29For the smoothing parameter of Hodrick and Prescott’s filter, we follow the method by Ravn and
Uhlig (2002).
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risk methods such as leverage in searching for large gains. Moreover, the hedge fund
industry keeps developing novel strategies to find mispricing opportunities. Hence,
there exist a numerous trading strategies and the realized returns reveal distinctive
characteristics across the strategies.

Table 7 reports the summary statistics of monthly percentage returns from Barclay
Hedge Fund Index for one aggregate index and other sixteen style indexes. The monthly
returns cover the sample period of Jan, 1997 to Aug, 2017. The reported summary
statistics are Mean, Median, Min (minimum), Max (maximum), Std.Dev. (standard
deviation), Kurtosis, Skewness and Prob(+). Prob(+) is the frequency of positive
monthly returns. For example, for the case of CB Arbitrage, the reported number
0.754 represents that the monthly returns of CB Arbitrage index were positive in 187
months out of the total sample size of 284 months (Jan, 1997 - Aug, 2017).

Now, we establish a testable hypothesis. Our theoretical results show that there is
an inherent relation between the favorable market conditions for arbitrageurs during
normal periods and the exacerbated mispricing during crash periods. Hence, we empir-
ically examine the association between Prob(+) and higher moments such as skewness
and kurtosis.

(H5): The hedge fund styles with a higher probability of positive returns are subject to
higher levels of skewness and kurtosis.

Note that the above hypothesis is closely related to the commonly used phrases of
“picking up nickels in front of steamrollers” or “the stairs up and the elevator down”,
describing the return characteristics of some trading strategies. Furthermore, Duarte
et al. examine a similar question with fixed-income arbitrage. We complement their
study by covering post 2007-2008 data as well as considering other various hedge fund
strategies.

From Table 7, we find that CB Arbitrage and Fixed Income Arbitrage are the top
two styles in Kurtosis (23.752 and 42.537, respectively) as well as the bottom two in
Skewness (-2.766 and -4.899, respectively). In contrast, they historically experienced
positively returns frequently. The Prob(+) of CB Arbitrage is 0.754, fourth in rank,
and that of Fixed Income Arbitrage is 0.831, first in rank. These two examples of CB
Arbitrage and Fixed Income Arbitrage already manifest the validity of (H5).

We test (H5) more formally by regressing skewness or kurtosis on Prob(+). Figure
4.4 shows the results. We find that a hedge fund style with higher Prob(+) experience
more negatively skewed distribution (Figure 4.4-(a)) as well as fatter tailed distribution
(Figure 4.4-(b)) over the sample period of Jan, 1997 - Aug, 2017. We conclude that
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Figure 4.4: The Relation of Skewness and Kurtosis with Prob(+)
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(b) Kurtosis and Prob(+)

Notes: This figure plots the results of regressing skewness and kurtosis on the realized
frequency of positive monthly returns over the sample period of 1997:01 to 2017:08 in
(a) and (b), respectively. “CB Arb” and “FI Arb” represent convertible bond arbitrage
and fixed income arbitrage, respectively.
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(H5) depicts the cross-sectional differences in return characteristics over various hedge
fund styles.

5 Conclusion

This paper delivers a novel insight on limited arbitrage on top of existing literature by
centering upon what kind of market is more likely to attract arbitrage transactions and
demonstrating theoretically and empirically that such a market is more susceptible to
a crash.

Hedge funds specializing in fixed income arbitrage are extremely similar in their key
strategies. They seize a trade opportunity when the gap between the market price of a
security and its fair value widens above a pre-specified level. They unwind their posi-
tions either when the spread contracts to a certain level (profit realization). Therefore,
their entry into and exit from trades are very similar albeit their exact profit realization
levels and loss cut levels being slightly different. Simply put, their investment strategies
are uni-directional and suffer from the lack of diversity. As a result, regardless of the
number of hedge funds, they act as a huddled mass.30

Under a tranquil market condition, such synchronized collective actions among
hedge funds have the benefits of polishing the market more effectively by eliminat-
ing mispricings quickly and sufficiently. However, when the market is embroiled in
turmoil, i.e., when it is time that the arbitrageur’s demand is most needed, the arbi-
trage mechanism itself malfunctions and fails to correct dislocations in prices. In our
model, an arbitrageur is ensured to survive until the market price converges to its fair
value. In addition, we do not introduce a loss-cut practice that is widely employed by
hedge funds.31 As such, in our model, the arbitrageur exits the market only if she earns
gains and does not expect any further profit opportunity. If we allow other reasons
including the aforementioned ones the arbitrageur leaves the market (so when the gap
widens rather than shrinks), the model may amplify the mispricing; for example, P23|12

could be even lower than V − Sb. In the worst case, the market collapses and fails to
be resurrected as evidenced by Japanese floating rate bond market.32 We reserve this
kind of extension for future research.

30Thus, our assumption of uniform arbitrageurs is not entirely preposterous.
31See Ahn et al. (2017) for a potential equilibrium of disequilibrium in the presence of such a practice.
32See Chung et al. (2018) for how the Japanese floater market collapsed in the aftermath of the

global financial crisis.
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de swaptions, Unpublished Manuscript, Université d’Evry .
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Table 3: Quantile Regression Estimates (t-stat)

Associated Independent Left Tail Right Tail
Hypothesis Variable (1) (2) (3) (4) (5) (6)

Panel A: Baseline

(H1)
δ -2.61 -1.55 1.54 1.09

(-16.14) (-10.62) (10.39) (7.28)

(H3)
l -0.96 -0.59 0.76 0.47

(-51.13) (-32.15) (43.39) (24.62)

(H4)
δ × l -33.44 21.94

(-64.19) (36.46)
Pseudo R2 0.0034 0.0652 0.0732 0.0016 0.0582 0.0631

Panel B: loss measure periods = 5

(H1)
δ -2.61 -1.58 1.54 1.16

(-16.14) (-10.43) (10.39) (8.39)

(H3)
l -1.09 -0.65 0.86 0.57

(-50.45) (-28.61) (48.64) (24.46)

(H4)
δ × l -38.09 21.27

(-86.21) (33.41)
Pseudo R2 0.0034 0.0817 0.0910 0.0016 0.0774 0.0826

Panel C: loss measure periods = 10

(H1)
δ -2.61 -1.52 1.54 1.19

(-16.14) (-10.39) (10.39) (8.37)

(H3)
l -1.05 -0.72 0.90 0.60

(-51.64) (-30.59) (37.72) (25.07)

(H4)
δ × l -28.23 21.36

(-41.17) (32.96)
Pseudo R2 0.0034 0.0769 0.0831 0.0016 0.0869 0.0917

Notes: The table reports the estimation results of quantile regressions:

Qp (zi,t|δi, li,t−1,h) = γ0 + γ1δi + γ2li,t−1,h + γ3δili,t−1,h for the left tail, and

Q1−p (zi,t|δi, li,t−1,h) = γ0 + γ1δi + γ2li,t−1,h + γ3δili,t−1,h for the right tail.

Here, zi,t is the normalized value of spread i at time t, δi is the mean-reversion speed
and li,t−1,h is the loss indicator defined as 1 (zi,t−1 < zi,t−1−h < −z) for the left tail and
1 (zi,t−1 > zi,t−1−h > z) for the right tail. For Panel A, we set p = 1%, z = 1 and h = 1.
Panel B (C) differs from Panel A in that h = 5 (10) . We use daily U.S. interest rate swap
market data from the Bloomberg over the sample period of July 23, 1998 to May 11, 2017.
The t-statistics are computed by a bootstrap method.
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Table 4: Quantile Regression using Subsamples of Slope and Butterfly Spreads

Associated Independent Left Tail Right Tail
Hypothesis Variable (1) (2) (3) (4) (5) (6)

Panel A: Using only 78 slope spreads

(H1)
δ -10.67 -9.37 8.94 7.39

(-13.65) (-10.49) (7.59) (6.36)

(H3)
l -0.32 -0.25 0.37 0.22

(-30.01) (-14.87) (20.63) (11.66)

(H4)
δ × l -5.73 42.15

(-2.76) (15.44)
Pseudo R2 0.0045 0.0277 0.0317 0.0052 0.0331 0.0375

Panel B: Using only 286 butterfly spreads

(H1)
δ -1.55 -0.99 0.90 0.78

(-8.98) (-6.57) (5.56) (5.33)

(H3)
l -1.04 -0.71 0.81 0.55

(-43.13) (-26.37) (35.26) (21.94)

(H4)
δ × l -26.55 17.01

(-43.94) (29.19)
Pseudo R2 0.0016 0.0691 0.0749 0.0006 0.0599 0.0634

Notes: The table reports the estimation results of quantile regressions:

Qp (zi,t|δi, li,t−1,h) = γ0 + γ1δi + γ2li,t−1,h + γ3δili,t−1,h for the left tail, and

Q1−p (zi,t|δi, li,t−1,h) = γ0 + γ1δi + γ2li,t−1,h + γ3δili,t−1,h for the right tail.

Here, zi,t is the normalized value of spread i at time t, δi is the mean-reversion speed
and li,t−1,h is the loss indicator defined as 1 (zi,t−1 < zi,t−1−h < −z) for the left tail and
1 (zi,t−1 > zi,t−1−h > z) for the right tail. We set p = 1%, z = 1 and h = 1. Panel A
uses 78 slope spreads and Panel B uses 286 butterfly spreads. We use daily U.S. interest rate
swap market data from the Bloomberg over the sample period of July 23, 1998 to May 11,
2017. The t-statistics are computed by a bootstrap method.

48



Table 5: Quantile Regression using other Quantile Thresholds

Associated Independent Left Quantile Right Quantile
Hypothesis Variable (1) (2) (3) (4) (5) (6)

Panel A: p = 0.5%

(H1)
δ -5.09 -3.84 4.06 2.89

(-21.10) (-16.25) (20.96) (14.66)

(H3)
l -1.14 -0.57 0.76 0.52

(-33.40) (-14.00) (30.24) (22.95)

(H4)
δ × l -42.77 16.69

(-45.92) (20.67)
Pseudo R2 0.0086 0.0703 0.0879 0.0062 0.0540 0.0624

Panel B: p = 1.5%

(H1)
δ -1.47 -0.63 0.88 0.41

(-15.73) (-6.60) (7.19) (3.74)

(H3)
l -0.86 -0.57 0.70 0.47

(-79.97) (-42.83) (48.52) (28.17)

(H4)
δ × l -26.76 19.76

(-83.58) (41.86)
Pseudo R2 0.0014 0.0595 0.0639 0.0006 0.0583 0.0618

Notes: The table reports the estimation results of quantile regressions:

Qp (zi,t|δi, li,t−1,h) = γ0 + γ1δi + γ2li,t−1,h + γ3δili,t−1,h for the left tail, and

Q1−p (zi,t|δi, li,t−1,h) = γ0 + γ1δi + γ2li,t−1,h + γ3δili,t−1,h for the right tail.

Here, zi,t is the normalized value of spread i at time t, δi is the mean-reversion speed
and li,t−1,h is the loss indicator defined as 1 (zi,t−1 < zi,t−1−h < −z) for the left tail and
1 (zi,t−1 > zi,t−1−h > z) for the right tail. We consider z = 1 and h = 1. For Panel A
(B), we set p = 0.5% (1.5%) . We use daily U.S. interest rate swap market data from the
Bloomberg over the sample period of July 23, 1998 to May 11, 2017. The t-statistics are
computed by a bootstrap method.
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Table 6: Other Robustness of Quantile Regression

Associated Independent Left Quantile Right Quantile
Hypothesis Variable (1) (2) (3) (4) (5) (6)

Panel A: Using Hodrick-Prescott filtered spreads

(H1)
δ -0.50 -0.40 0.86 0.64

(-6.17) (-4.04) (10.64) (6.58)

(H3)
l -1.06 -0.62 0.71 0.55

(-56.12) (-36.54) (42.16) (28.83)

(H4)
δ × l -23.63 7.17

(-64.45) (17.47)
Pseudo R2 0.0003 0.0654 0.0717 0.0010 0.0609 0.0634

Panel B: Using δ estimated from non-tail spreads

(H1)
δ -13.49 -7.27 15.54 6.86

(-31.39) (-15.02) (43.03) (17.23)

(H3)
l -0.96 -0.33 0.76 0.30

(-54.12) (-15.55) (42.15) (15.69)

(H4)
δ × l -100.94 63.43

(-75.79) (38.54)
Pseudo R2 0.0113 0.0652 0.0830 0.0107 0.0582 0.0710

Panel C: Using weekly data

(H1)
δ -4.20 -2.11 2.56 1.01

(-16.37) (-8.44) (11.11) (4.17)

(H3)
l -1.04 -0.26 0.88 0.23

(-29.85) (-5.92) (23.45) (5.70)

(H4)
δ × l -30.80 24.40

(-38.51) (23.52)
Pseudo R2 0.0081 0.0751 0.0888 0.0041 0.0762 0.0860

Notes: The table reports the estimation results of quantile regressions:

Qp (zi,t|δi, li,t−1,h) = γ0 + γ1δi + γ2li,t−1,h + γ3δili,t−1,h for the left tail, and

Q1−p (zi,t|δi, li,t−1,h) = γ0 + γ1δi + γ2li,t−1,h + γ3δili,t−1,h for the right tail.

Here, zi,t is the normalized value of spread i at time t, δi is the mean-reversion speed
and li,t−1,h is the loss indicator defined as 1 (zi,t−1 < zi,t−1−h < −z) for the left tail and
1 (zi,t−1 > zi,t−1−h > z) for the right tail. We set p = 1%, z = 1 and h = 1. For Panel
A, we use Hodrick-Prescott filter to detrend each spread. For Panel B, we estimate δi using
the data within the quantile range of (p, 1− p) . We use daily U.S. interest rate swap market
data from the Bloomberg over the sample period of July 23, 1998 to May 11, 2017. The
t-statistics are computed by a bootstrap method.
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Internet Appendix for
“The More Efficient, the More Vulnerable!”

Proofs

Lemma A.1. For every node x, it holds that Γx ≤ V, V − Sx ≤ Px ≤ V, −1 ≤ ψx ≤
1

2φ

(
Sb

V−Sb

)
and 1 ≤ vx ≤

(
V

V−Sb
+ 1

4φ

(
Sb

V−Sb

)2
)3
.

Proof Note that when x is a final node, Px = V and vx = 1. Thus, it suffices to show
the following property: For a non-final node x, if Px′ ≤ V and 1 ≤ vx′ ≤ k for every
node x′ following node x, then Γx ≤ V , V − Sx ≤ Px ≤ V, −1 ≤ ψx ≤ 1

2φ

(
Sb

V−Sb

)
and

1 ≤ vx ≤ k
(

V
V−Sb

+ 1
4φ

(
Sb

V−Sb

)2
)

. By applying this property recursively to t = 2, 1, 0,

we will obtain the lemma because V
V−Sb

+ 1
4φ

(
Sb

V−Sb

)2
> 1.

Assume that Px′ ≤ V and 1 ≤ vx′ ≤ k for every node x′ following node x, and show
the followings.

Step 1. Γx ≤ V : From the definition of (2.3),

Γx = Ex [Px′vx′ ]
Ex [vx′ ]

≤ Ex [V vx′ ]
Ex [vx′ ]

= V,

where the inequality is from Px′ ≤ V and vx′ ≥ 1 for every node x′.
Step 2. V −Sb ≤ Px: Because ψx ≥ −1, it follows that Px = V −Sx+Wx (1 + ψx) ≥

V − Sx ≥ V − Sb.
Step 3. Px ≤ V : Assume Px > V by contradiction. Then, by Step 1, we get

Px > Γx, implying ψx = −1 by Lemma 2.2. The market clearing condition of (2.6)
gives that Px = V − Sx ≤ V, contradicting the assumption of Px > V .

Step 4. −1 ≤ ψx ≤ 1
2φ

(
Sb

V−Sb

)
: The lower bound of ψx is by our model assumption.

The upper bound of ψx follows from the optimal ψx given in Lemma 2.2 along with
Γx ≤ V (Step 1) and V − Sb ≤ Px (Step 2).

Step 5. 1 ≤ vx′ ≤ k
(

V
V−Sb

+ 1
4φ

(
Sb

V−Sb

)2
)

: From (2.4) and the optimal ψx given in
Lemma 2.2, it holds that when Px ≤ Γ,

vx = Ex [vx′ ]
(

Γx
Px

(1− 1) + (1− φ1−1>0)
)

= Ex [vx′ ] ∈ [1, k] ,

1



and that when Px > Γ,

vx = Ex [vx′ ]
(

Γx
Px

(
1 + 1

2φ

(
Γx
Px
− 1

))
− 1

2φ

(
Γx
Px
− 1

)(
1 + 1

2φ

(
Γx
Px
− 1

)
φ

))

= Ex [vx′ ]
Γx
Px

+ 1
4φ

(
Γx
Px
− 1

)2
 .

Because

1 < Γx
Px

+ 1
4φ

(
Γx
Px
− 1

)2

<
V

V − Sb
+ 1

4φ

(
Sb

V − Sb

)2

by Steps 1 and 2, it follows that 1 ≤ vx ≤ k
(

V
V−Sb

+ 1
4φ

(
Sb

V−Sb

)2
)

. This completes the
proof of the lemma. �

Lemma A.2. It holds that

0 < V − Sb
V

(
1− 1

4φ
Sm (2Sb − Sm)

(V − Sm) (V − Sb)

)
≤ Wx′

Wx

≤ V

V − Sx

[
1 + S2

x

4φ (V − Sx)V

]

for every non-final node x, followed by node x′.

Proof The first inequality is implied by Assumption 2.
Turn to the second inequality. From (2.2), we have that

Wx′

Wx

= Px′

Px
(1 + ψx)− ψx (1 + φψx1ψx>0) .

Consider four cases:
Case 1: If −1 ≤ ψx ≤ 0 and Px′ ≥ Px,

Wx′

Wx

= Px′

Px
+
(
Px′

Px
− 1

)
ψx ≥

Px′

Px
−
(
Px′

Px
− 1

)
= 1 > V − Sb

V

(
1− 1

4φ
Sm (2Sb − Sm)

(V − Sm) (V − Sb)

)
.

Case 2: If −1 ≤ ψx ≤ 0 and Px′ < Px,

Wx′

Wx

= Px′

Px
+
(
Px′

Px
− 1

)
ψx ≥

Px′

Px
≥ V − Sb

V
>
V − Sb
V

(
1− 1

4φ
Sm (2Sb − Sm)

(V − Sm) (V − Sb)

)
,

where the second inequality is implied by Px′ ≥ V − Sb and Px ≤ V from Lemma A.1.
Case 3: If ψx > 0 and x′ is a terminal node, since Px′ = V ≥ Px,

Wx′

Wx

= V

Px
+
(
V

Px
− 1

)
ψx ≥

V

Px
= 1 > V − Sb

V

(
1− 1

4φ
Sm (2Sb − Sm)

(V − Sm) (V − Sb)

)
.

2



Case 4: If ψx > 0 and x′ is not a terminal node, Lemma 2.2 says that ψx =
1

2φ

(
Γx
Px
− 1

)
and Γx > Px, which yields

Wx′

Wx

=Px
′

Px

(
1 + 1

2φ

(
Γx
Px
− 1

))
− 1

2φ

(
Γx
Px
− 1

)
1
2

(
Γx + Px
Px

)

≥V − Sb
Px

(
1 + 1

2φ

(
Γx
Px
− 1

))
− 1

4φ

(
Γx
Px
− 1

)(
Γx + Px
Px

)

=V − Sb
Px

[
1 + 1

4φ

(
Γx
Px
− 1

)
2 (V − Sb)− Γx − Px

V − Sb

]

≥V − Sb
Px

[
1 + 1

4φ

(
V

Px
− 1

)
V − 2Sb − Px

V − Sb

]

≥V − Sb
Px

[
1 + 1

4φ

(
V

V − Sm
− 1

)
V − 2Sb − V + Sm

V − Sb

]

=V − Sb
Px

[
1− 1

4φ

(
V

V − Sm
− 1

) 2Sb − Sm
V − Sb

]

≥V − Sb
V

[
1− 1

4φ

(
V

V − Sm
− 1

) 2Sb − Sm
V − Sb

]

=V − Sb
V

[
1− 1

4φ

(
Sm

V − Sm

)(2Sb − Sm
V − Sb

)]
,

where the first and second inequalities are from Px′ ≥ V −Sb and Γx ≤ V (Lemma A.1).

Besides, because
∂( V

Px
−1)V−2Sb−Px

V−Sb
∂Px

= 1
P 2
x

1
V−Sb

(−V 2 + 2SbV + P 2
x ) > 0 , Px ≥ V − Sx ≥

V − Sm (Lemma A.1 and node x is at t = 0 or t = 1) yields the third inequality. And,
the last inequality is from Px ≤ V (Lemma A.1).

Finally, we show that Wx′
Wx
≤ V

V−Sx

[
1 + S2

x

4φ(V−Sx)V

]
. Consider three cases:

Case 1: If −1 ≤ ψx ≤ 0 and Px′ ≥ Px,

Wx′

Wx

= Px′

Px
+
(
Px′

Px
− 1

)
ψx ≤

Px′

Px
≤ V

V − Sb
<

V

V − Sb
+ 1

2 .

Case 2: If −1 ≤ ψx ≤ 0 and Px′ < Px,

Wx′

Wx

= Px′

Px
+
(
Px′

Px
− 1

)
ψx ≤

Px′

Px
−
(
Px′

Px
− 1

)
= 1 < V

V − Sb
+ 1

2 .
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Case 3: If ψx > 0, Lemma 2.2 says that ψx = 1
2φ

(
Γx
Px
− 1

)
, which yields

Wx′

Wx

=Px
′

Px
(1 + ψx)− ψx (1 + φψx)

=Px
′

Px

(
1 + 1

2φ

(
Γx
Px
− 1

))
− 1

2φ

(
Γx
Px
− 1

)(
1 + φ

1
2φ

(
Γx
Px
− 1

))

≤ V
Px

(
1 + 1

2φ

(
Γx
Px
− 1

))
− 1

4φ

(
Γx
Px
− 1

)(
Γx + Px
Px

)

= V

Px

[
1 + (V − Px)2 − (V − Γx)2

4φPxV

]

≤ V
Px

[
1 + (V − Px)2

4φPxV

]
≤ V

V − Sx

[
1 + S2

x

4φ (V − Sx)V

]
,

where the first and last inequalities hold because Px′ ≤ V and V − Sb ≤ Px ≤ V

(Lemma A.1).
This completes the proof of the lemma. �

Proof of Lemma 2.1 By Lemma A.2,

0 < Wx′

Wx

≤ V

V − Sx

(
1 + S2

x

4φ (V − Sx)V

)

for every non-final node x, followed by node x′. It is easy to see Wx > 0 for every node.
For node x′ at t = 1 and x′′ at t = 2,

Wx′ < W0
V

V − S0

(
1 + S2

0
4φ (V − S0)V

)
< Sm

and

Wx′′ < Wx′
V

V − Sm

(
1 + S2

m

4φ (V − Sm)V

)
.

< W0
V

V − S0

(
1 + S2

0
4φ (V − S0)V

)
V

V − Sm

(
1 + S2

m

4φ (V − Sm)V

)
< Sm,

where the last inequalities are from Assumption 2. This completes the proof. �

Lemma A.3. Assume that 0 < W < S < V and V − S + W < Γ ≤ V . Then,
P̃ (S,W,Γ) defined by (2.7) has the following properties:
(i) ∂P̃ (S,W,Γ)

∂S
< 0,

4



(ii) V − S < P̃ (S,W,Γ) < Γ,
(iii) 0 < ∂P̃ (S,W,Γ)

∂W
= 1+ψ

1
2φ

VW
P2 +1 < 1 + 1

2φ

(
S

V−S

)
,

(iv) ∂2P̃ (S,W,Γ)
∂W 2 < 0 and

(v) ∂P̃ (S,W,Γ)
∂Γ → 0 as W ↓ 0.

Proof To see (i), observe

∂P̃ (S,W,Γ)
∂S

< −1
2 + 1

2

∣∣∣V − S +W
(
1− 1

2φ

)∣∣∣√(
V − S +W

(
1− 1

2φ

))2
+ 2WΓ

φ

< 0.

Show (ii). First, we verify P̃ (S,W,Γ) < Γ. Recall that P̃ (S,W,Γ) is the unique
positive solution of

P − V + S −W
(

1 + 1
2φ

(
Γ
P
− 1

))
= 0.

The left-hand side is increasing in P and if P = Γ, the left-hand side becomes

Γ− V + S −W
(

1 + 1
2φ

(
Γ
Γ − 1

))
= Γ− V + S −W > 0.

Thus, P̃ (S,W,Γ) < Γ. Second, we examine V −S < P̃ (S,W,Γ). Note that P̃ (S,W,Γ)
is the unique positive solution of

P 2 −
(
V − S +W

(
1− 1

2φ

))
P − WΓ

2φ = 0.

The left-hand side is increasing in P on P > 0 and

(V − S)2−
(
V − S +W

(
1− 1

2φ

))
(V − S)−WΓ

2φ = −W (V − S)−W (Γ− V + S)
2φ < 0.

Thus, V − S < P̃ (S,W,Γ).
Turn to (iii). A simple algebra can verify ∂P̃ (S,W,Γ)

∂W
= 1+ψ

1
2φ

VW
P2 +1 . Noting that

P̃ (S,W,Γ) < Γ by (ii), we have ψ = 1
2φ

(
Γ
P
− 1

)
> 0. Hence, we have ∂P̃ (S,W,Γ)

∂W
> 0.

Also, observe that

1 + ψ
1

2φ
VW
P 2 + 1

< 1 + ψ = 1 + 1
2φ

(
Γ
P
− 1

)
≤ 1 + 1

2φ

(
S

V − S

)
,

where the last inequality is from the assumption Γ ≤ V and V − S < P by (ii).
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Next, we show (iv). It suffices to show that ∂2
√
f(W )

∂W 2 < 0 where f (W ) is given by

f (W ) =
(
V − S +W

(
1− 1

2φ

))2

+ 2WΓ
φ
.

Some algebras show that

∂2
√
f (W )
∂W 2 = −2f− 3

2 Γ (V − S)
φ

(
1 + 1

2φ

(
Γ

V − S
− 1

))
< 0.

Lastly, note that as W ↓ 0,

∂P̃ (S,W,Γ)
∂Γ = W

φ

1√(
V − S +W

(
1− 1

2φ

))2
+ 2WΓ

φ

→ 0,

verifying (v). This completes the proof of the lemma. �

Proof of Lemma 2.3 We use the fact that Γx = V at t = 2 and consider the two
cases.

Case 1. Sx = 0: Note that Px = V − Sx + Wx (1 + ψx) ≥ V because Sx = 0 and
ψx ≥ −1. Assume Px > V by contradiction. Then, ψx = −1 by Lemma 2.2 and
Px = V − Sx +Wx (1 + ψx) = V , which is a contradiction. Thus, Px = V . The market
clearing condition implies ψx = −1.

Case 2. Sx > 0: Note that Sx > Wx by Lemma 2.1.
First, we show that V > Px. Assume V ≤ Px. Lemma 2.2 implies ψx ≤ 0. Then,

Px = V −Sx+Wx (1 + ψx) ≤ V −Sx+Wx < V , which is a contradiction. Thus, Px ≥ V

cannot be a solution. Hence, it holds that V > Px.

Because V > Px, Lemma 2.2 implies that ψx = 1
2φ

(
V
Px
− 1

)
, which in conjunction

with (2.6) yields

Px = V − Sx +Wx

(
1 + 1

2φ

(
V

Px
− 1

))
.

Solving it gives Px = P̃ (Sx,Wx, V ) < V . Note that the inequality V > Px holds by
Lemma A.3(ii) and hence Px = P̃ (Sx,Wx, V ) is an equilibrium price. �

Proof of Lemma 2.4 Using (2.6) and the assumption ψ11 ≥ −1, we have

P11 = V +W11 (1 + ψ11) ≥ V ≥ Γ11 =
E11

[
P2i|11v2i|11

]
E11

[
v2i|11

] .
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Here, the latter inequality holds because P2i|11 ≤ V for i = 1, 2, 3 by Lemma 2.3.
To show P11 = V , assume P11 > V . Then, P11 > Γ11 and hence Lemma 2.2 implies

ψ11 = −1 and in turn P11 = V by (2.6). This is a contradiction and thus P11 = V .
Then (2.6) gives ψ11 = −1. �

Lemma A.4. Γ12 > P12 and Γ0 > P0 for sufficiently small q and ρ.

Proof Consider x = 12 first. Note that Γ12 = E12[Px′vx′ ]
E12[vx′ ]

can be arbitrarily close to
P21|12 by taking small q and ρ. By Lemma 2.3, P21|12 = V . Noting that V − Sm +
W0

(
V

V−Sb
+ S2

b (V−Sm)
Sm(2Sb−Sm)(V−Sb)

)
< V by Assumption 2, we have

V − Sm +W0

(
V

V − Sb
+ S2

b (V − Sm)
Sm (2Sb − Sm) (V − Sb)

)
< Γ12

for sufficiently small q and ρ. For such q and ρ, we show that Γ12 > P12. Assume
Γ12 ≤ P12 by contradiction. Lemma 2.2 implies ψ12 ≤ 0 and thus

P12 = V − Sm +W12 (1 + ψ12)
≤ V − Sm +W12

< V − Sm +W0

(
V

V − Sb
+ S2

b (V − Sm)
Sm (2Sb − Sm) (V − Sb)

)
< Γ12.

where the second inequality follows by Lemma A.2.
Turn to x = 0. The proof is similar to the case of x = 12. Note that Γ0 is close

to P11 for small q and ρ, and P11 = V by Lemma 2.4. Because V − Sm + W0 < V by
Assumption 2, V − Sm + W0 < Γ0 for sufficiently small q and ρ. Assume Γ0 ≤ P0 by
contradiction. Then, Lemma 2.2 implies ψ12 ≤ 0 and

P0 = V − S0 +W0 (1 + ψ0) ≤ V − Sm +W0 < Γ0.

This completes the proof. �

Proof of Lemma 2.5 Let x = 0 or x = 12. By Lemma A.4, Γx > Px for sufficiently
small q and ρ. Then, ψx = 1

2φ

(
Γx
Px
− 1

)
by Lemma 2.2. Combine it with (2.6) to obtain

Px = V − Sx +Wx

(
1 + 1

2φ

(
Γx
Px
− 1

))

which gives Px = P̃ (Sx,Wx,Γx).
Next, we turn to Px < V. This follows by combining Px < Γx (Lemma A.4) and

Γx ≤ V (Lemma A.1). This completes the proof of the lemma. �

Lemma A.5. It holds that W11 = W21|11 = W22|11 = W23|11.
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Proof From Lemma 2.4, ψ11 = −1. Plugging ψ11 = −1 to (2.2) yields the equalities.
�

Before considering small q and ρ, we consider the case q = ρ = 0 first. At the
non-reachable nodes (i.e., all those except 0, 11, 21|·, 31|·) as well as the other nodes,
we assume arbitrageurs make rational choices and the market clears. It is easy to see
that the equilibrium for q = ρ = 0 satisfies Γx = V for every node x. Then, as proved
in Lemmas 2.3, 2.4 and 2.5, we have the following equations:

P21|11 = P21|12 = P11 = V, (A.1)
P2i|1j = P̃

(
S2i|11,W11, V

)
for i = 2, 3, (A.2)

P2i|1j = P̃
(
S2i|12,W2i|12, V

)
for i = 2, 3, (A.3)

ψ2i|1j = 1
2φ

(
V

P2i|1j
− 1

)
for i = 2, 3 and j = 1, 2, (A.4)

P12 = P̃ (Sm,W12, V ) , P0 = P̃ (S0,W0, V ) , (A.5)

ψ12 = 1
2φ

(
V

P12
− 1

)
, ψ0 = 1

2φ

(
V

P0
− 1

)
. (A.6)

The capital process Wx is given by (2.2) which completes the system of equations. We
show that this system of equation has a unique solution, and then will consider the case
that q and ρ are small.

Lemma A.6. The system of equations, (2.2) and (A.1)-(A.6), has a unique solution.
Moreover, for any non-final node x followed by a non-final node x′, if Wx < Sx ≤ Sx′ <

V , it holds that Wx′ < Wx, 0 < 1− ∂P̃ (Sx′ ,Wx′ ,V )
∂Wx′

· Wx(1+ψx)
Px

< 1 and dWx′
dSx′

< 0.

Proof Note that prices and leverage in the system of equations, (A.1)-(A.6), P2i|1j

and ψ2i|1j for i = 2, 3 and j = 1, 2, P12, ψ12, and P0 and ψ0, are uniquely determined
once we identify W0, W12, W2j|12 for j = 2, 3. Note that W0 is a given constant. Hence,
for the uniqueness of solutions for (2.2) and (A.1)-(A.6), it suffices to show that for any
non-final node x followed by a non-final node x′ such that Wx < Sx ≤ Sx′ , when Wx is
given, Wx′ is uniquely determined.

From (2.2), we have

f (w) ≡ w −Wx

(
P̃ (Sx′ , w, V )

Px
(1 + ψx)− ψx (1 + φψx)

)
= 0. (A.7)

Here, Wx is viewed as given and so are Px = P̃ (Sx,Wx, V ) and ψx = 1
2φ

(
V
Px
− 1

)
.

Then, (A.7) is an equation for w and its solution w is Wx′ because f (Wx′) = 0. We
prove that there is a unique solution to (A.7).
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Using Wx > 0 from Lemma 2.1, we have

f (0) = −Wx

(
P̃ (Sx′ , 0, V )

Px
(1 + ψx)− ψx (1 + φψx)

)
< 0

because

P̃ (Sx′ , 0, V )
Px

(
1 + 1

2φ

(
V

Px
− 1

))
− 1

2φ

(
V

Px
− 1

)(
1 + φ

1
2φ

(
V

Px
− 1

))

= P̃ (Sx′ , 0, V )
Px

(
1 + 1

2φ

(
V

Px
− 1

))
− 1

2φ

(
V

Px
− 1

) 1
2

(
V + Px
Px

)

≥V − Sb
Px

(
1 + 1

2φ

(
V

Px
− 1

))
− 1

4φ

(
V

Px
− 1

)(
V + Px
Px

)

=V − Sb
Px

[
1 + 1

4φ

(
V

Px
− 1

)
V − 2Sb − Px

V − Sb

]

≥V − Sb
Px

[
1− 1

4φ

(
V

V − Sm
− 1

) 2Sb − Sm
V − Sb

]

=V − Sb
Px

[
1− 1

4φ

(
Sm

V − Sm

)(2Sb − Sm
V − Sb

)]
> 0,

where the first inequality follows by P̃ (Sx′ , 0, V ) ≥ V −Sb (Lemma A.3(ii)), the second

inequality by
∂( V

Px
−1)V−2Sb−Px

V−Sb
∂Px

= 1
P 2
x

1
V−Sb

(−V 2 + 2SbV + P 2
x ) > 0 and Px ≥ V − Sm

(Lemma A.1 and node x is at t = 0 or t = 1) and the last inequality by Assumption 2,
respectively.

On the other hand,

f (Wx) =Wx

[
1− P̃ (Sx′ ,Wx, V )

Px
(1 + ψx) + ψx (1 + φψx)

]

≥Wx

[
1− P̃ (Sx,Wx, V )

Px
(1 + ψx) + ψx (1 + φψx)

]
=Wx [1− (1 + ψx) + ψx (1 + φψx)] > 0

The first inequality is from Lemma A.3(i) and the assumption Sx′ ≥ Sx, and the latter
from ψx = 1

2φ

(
V

P̃ (Sx,Wx,V )
− 1

)
> 0 implied by Lemma A.3(ii). Because f is continuous,

f (w) = 0 has a solution on (0,Wx) by the Intermediate Value Theorem. Moreover, f
is strictly convex on (0,∞) by Lemma A.3(iv) and thus the solution should be unique
on (0,∞).
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Turn to the property of

d

dw
f (w) = 1− P̃ (Sx′ , w, V )

∂Wx′
· Wx (1 + ψx)

Px
.

It is clear that d
dw
f (w) < 1 at w = Wx′ by Lemma A.3(iii). Because f (0) < 0 and

f (w) = 0 has a unique solution, d
dw
f (w) > 0 at the solution w = Wx′ . Thus

0 < 1− P̃ (Sx′ ,Wx′ , V )
∂Wx′

· Wx (1 + ψx)
Px

< 1. (A.8)

The last property can be seen by differentiating both sides of

Wx′ = Wx

(
P̃ (Sx′ ,Wx′ , V )

Px
(1 + ψx)− ψx (1 + φψx)

)
.

This gives

dWx′

dSx′
= Wx (1 + ψx)

Px

(
∂P̃ (Sx′ ,Wx′ , V )

∂Sx′
+ ∂P̃ (Sx′ ,Wx′ , V )

∂Wx′

dWx′

dSx′

)

and hence

dWx′

dSx′
=

Wx(1+ψx)
Px

1− ∂P̃ (Sx′ ,Wx′ ,V )
∂Wx′

· Wx(1+ψx)
Px

· ∂P̃ (Sx′ ,Wx′ , V )
∂Sx′

< 0,

where the inequality is from Lemma A.3(i) and (A.8). �

Lemma A.7. If q = ρ = 0, it holds that W11 > W0 > W12 > W22|12 > W23|12.

Proof From Lemmas A.6 and A.3(ii), we have P11 = V, P0 = P̃ (S0,W0, V ) < V and
ψ0 > 0, implying W11 > W0. The inequality W0 > W12 > W22|12 is implied by Lemma
A.6. The last inequality W22|12 > W23|12 obtains by S22|12 = Sm < Sb = S23|12 and
dWx′
dSx′

< 0 proved in Lemma A.6. �

Lemma A.8. If q = ρ = 0, it holds that P23|11 > P23|12.

Proof From Lemmas A.5 and A.7, we have W23|11 > W23|12, which in conjunction
with Lemma A.3(iii) implies that P23|11 = P̃

(
Sb,W23|11, V

)
> P̃

(
Sb,W23|12, V

)
=

P23|12. �

Lemma A.9. If q = ρ = 0, it holds that Px < V for nodes x = 0, 12.
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Proof From Lemmas A.6 and A.3(ii), P0 = P̃ (S0,W0, V ) < V. Since W12 < W0 by
Lemma A.7, we have that P12 = P̃ (Sm,W12, V ) < V using (ii) and (iii) of Lemma A.3.
�

Recall that in our model, Px, ψx, Wx, Γx and vx are endogenously determined, which
are mentioned in the following lemma.

Lemma A.10. There are q, ρ,M > 0 such that if q < q and ρ < ρ, there exists a unique
equilibrium and dκ

dq
< M for any endogenous variable κ. Moreover the equilibrium is

continuous in (q, ρ) on [0, q)× [0, ρ).

Proof Using (2.2) and Lemmas 2.3, 2.4 and 2.5, we write down the system of equa-
tions that determines an equilibrium:

Ξ(1) ≡


−P0 + V − S0 +W0 (1 + ψ0)

−ψ0 + 1
2φ

(
1
P0

(1−q)V v11+qP12v12
(1−q)v11+qv12

− 1
)

−W11 +W0
(
V
P0

(1 + ψ0)− ψ0 (1 + φψ0)
)
 = 03,

Ξ(2) ≡


−P22|11 + P̃ (Sm,W11, V )
−P23|11 + P̃ (Sb,W11, V )

−v11 + (1− q22 − q23) + q22v
(
P22|11

)
+ q23v

(
P23|11

)
 = 03,

Ξ(3) ≡



−W12 +W0
(
P12
P0

(1 + ψ0)− ψ0 (1 + φψ0)
)

−P12 + V − Sb +W12 (1 + ψ12)
−ψ12 + 1

2φ

(
1
P12

E12[P·|12v(P·|12)]
E12[v(P·|12)] − 1

)
−v12 + E12[P·|12v·|12]

P12
(1 + ψ12)− ψ12 (1 + ψ12φ)E12

[
v·|12

]

 = 04, and

Ξ(4) ≡


−P22|12 + P̃

(
Sm,W22|12, V

)
−W22|12 +W12

(
P22|12
P12

(1 + ψ12)− ψ12 (1 + φψ12)
)

−P23|12 + P̃
(
Sb,W23|12, V

)
−W23|12 +W12

(
P23|12
P12

(1 + ψ12)− ψ12 (1 + φψ12)
)

 = 04.

Here, v (P ) = V
P

+ 1
4φ

(
V
P
− 1

)2
, E

[
P·|12v

(
P·|12

)]
= (1− q22 − q23)V+q22P22|12v

(
P22|12

)
+

q23P23|12v
(
P23|12

)
, E

[
v
(
P·|12

)]
= (1− q22 − q23) + q22v

(
P22|12

)
+ q23v

(
P23|12

)
and 0m

represents the (m× 1) vector of zeros. Let Ξ =
[
Ξ′(1) Ξ′(2) Ξ′(3) Ξ′(4)

]′
.
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Allocate endogenous variables into four vectors:

κ(1) = [P0 ψ0 W11]′

κ(2) =
[
P22|11 P23|11 v11

]′
κ(3) = [W12 P12 ψ12 v12]′

κ(4) =
[
P22|12 W22|12 P23|12 W23|12

]′
.

Let κ =
[
κ′(1) κ′(2) κ′(3) κ′(4)

]′
.

The following five steps complete the proof
Step 1. Ξ = 016 has a unique solution κ when q = ρ = 0:
Suppose q = ρ = 0. The fourteen variables of prices, leverage and capital in κ

except v11 and v12 are uniquely determined by Lemma A.6. Then, the last condition of
Ξ(2) = 03 pins down v11 and that of Ξ(3) = 04 pins down v22.

Step 2. ∂Ξ
∂κ

is full rank at q = ρ = 0:
Suppose q = ρ = 0. Identify the Jacobian of Ξ with respect to κ at q = ρ = 0.

Some algebras show that at q = ρ = 0, it holds that

∂Ξ
∂κ

=



∂Ξ(1)
∂κ(1)

03×3 03×4 03×4
∂Ξ(2)
∂κ(1)

∂Ξ(2)
∂κ(2)

03×4 03×4
∂Ξ(3)
∂κ(1)

04×3
∂Ξ(3)
∂κ(3)

04×4

04×3 04×3
∂Ξ(4)
∂κ(3)

∂Ξ(4)
∂κ(4)

 ,

where
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∂Ξ(1)

∂κ(1)
=

 −1 W0 0
− 1

2φ
V
P 2

0
−1 0

−W0V (1+ψ0)
P 2

0
0 −1

 , ∂Ξ(2)

∂κ(1)
=

 0 0 ∂P̃ (Sm,W11,V )
∂W

0 0 ∂P̃ (Sm,W11,V )
∂W

0 0 0

 , ∂Ξ(2)

∂κ(2)
=

 −1 0 0
0 −1 0
0 0 −1



∂Ξ(3)

∂κ(1)
=


−W0P12(1+ψ0)

P 2
0

W0(P12−V )
P0

0
0 0 0
0 0 0
0 0 0

 , ∂Ξ(3)

∂κ(3)
=


−1 W0(1+ψ0)

P0
0 0

1 + ψ12 −1 W12 0
0 − 1

2φ
V
P 2

12
−1 0

0 −V (1+ψ12)
P 2

12
0 −1



∂Ξ(4)

∂κ(3)
=


0 0 0 0

W22|12
W12

−W12P22|12(1+ψ12)
P 2

12

W12(P12|22−V )
P12

0
0 0 0 0

W23|12
W12

−W12P23|12(1+ψ12)
P 2

12

W12(P23|12−V )
P12

0



∂Ξ(4)

∂κ(4)
=


−1 ∂P̃(Sm,W22|12,V )

∂W 0 0
W12(1+ψ12)

P12
−1 0 0

0 0 −1 ∂P̃(Sb,W23|12,V )
∂W

0 0 W12(1+ψ12)
P12

−1

 ,

and 0m×n represents the (m× n) matrix of zeros.

We verify that ∂Ξ
∂κ

is a full rank matrix. Because ∂Ξ
∂κ

is a lower triangular block
matrix, it suffices to show that the four diagonal blocks of ∂Ξ(m)

∂κ(m)
for m = 1, 2, 3, 4 are

full rank matrices. Note that det
(
∂Ξ(1)
∂κ(1)

)
= −1− 1

2φ
VW0
P 2

0
< 0 and det

(
∂Ξ(2)
∂κ(2)

)
= −1 < 0.

Also, we find that

det
(
∂Ξ(3)

∂κ(3)

)
= −1− 1

2φ
V

P12

W12

P12
+ W0 (1 + ψ0)

P0
(1 + ψ12)

= − 1
2φ

V

P12

W12

P12
− 1 + W0 (1 + ψ0)

P0

(
1

2φ
V

P12

W12

P12
+ 1

)
∂P̃ (Sm,W12, V )

∂W

=
(

1
2φ
VW

P 2 + 1
)(
−1 + W0 (1 + ψ0)

P0

∂P̃ (Sm,W12, V )
∂W

)
< 0,

where the second equality is due to the property of ∂P̃ (Sm,W12,V )
∂W

= 1+ψ12
1

2φ
V
P12

W12
P12

+1
by Lemma

A.3(iii) and the last inequality is due to the inequality of −1+ ∂P̃ (Sx′ ,Wx′ ,V )
∂Wx′

·Wx(1+ψx)
Px

< 0
from Lemma A.6. For the last block of ∂Ξ(4)

∂κ(4)
, we find that

det
(
∂Ξ(4)

∂κ(4)

)
=
(

1− W12 (1 + ψ12)
P12

∂P̃
(
Sm,W22|12, V

)
∂W

)(
1− W12 (1 + ψ12)

P12

∂P̃
(
Sb,W23|12, V

)
∂W

)
> 0,

where the last inequality is obtained from Lemma A.6. Hence, ∂Ξ
∂κ

is a full rank matrix.
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Step 3. For sufficiently small q and ρ, Ξ = 016 has a unique solution κ: This is true
by the implicit function theorem and Steps 1 and 2.

Step 4. For sufficiently small q and ρ, there is a unique equilibrium: The variables
in κ are uniquely determined by Step 3. It is easy to see that all the other endogenous
variables are unique. For example, P11 = V by Lemma 2.4.

Step 5. There are q, ρ,M > 0 such that if q < q and ρ < ρ,
∥∥∥dκ
dq

∥∥∥ < M for
any endogenous variable κ: From Lemmas 2.4 and 2.3, we know that dκ

dq
= 0 for

κ = P21|·, P11, ψ21|· and ψ11. By Steps 1 and 2, the implicit function theorem implies
that dκ

dq
is bounded on a neighborhood of q = ρ = 0. Also, as shown in Step 4, other

endogenous variables are continuous and bounded functions of the variables in κ. �

Proof of Theorem 2.1 This is proved in Lemma A.10. �

Proof of Theorem 3.1 Because the equilibrium is continuous in q and ρ when q and
ρ are sufficiently small (Lemma A.10) and P23|11 > P23|12 at q = ρ = 0 (Lemma A.8), it
holds that P23|11 > P23|12 when q and ρ are sufficiently small. �

Proof of Theorem 3.2 Recall P23|11 = P̃
(
Sb,W23|11, V

)
to get

dP23|11

dq
=
∂P̃

(
Sb,W23|11, V

)
∂W

·
dW23|11

dq
. (A.9)

Because W23|11 = W11 = W0
(
V
P0

(1 + ψ0)− ψ0 (1 + ψ0φ)
)

from Lemma A.5 and (2.2),
it holds that

dW23|11

dq
= −W0

V (1 + ψ0)
P 2

0

dP0

dq
−W0

(
V

P0
− 1− 2φψ0

)
dψ0

dq
. (A.10)

Because ψ0 = 1
2φ

(
Γ0
P0
− 1

)
and Γ0 is close to V , the term

(
V
P0
− 1− 2φψ0

)
is close to

0. Then, boundedness of dψ0
dq

by Lemma A.10 implies W0
(
V
P0
− 1− 2φψ0

)
dψ0
dq
→ 0 as

(q, ρ)→ 0.
Next, we identify dP0

dq
. Lemma 2.5 gives G1

G2

 ≡
 −P0 + V − S0 +W0 (1 + ψ0)
−ψ0 + 1

2φ

(
1
P0

(1−q)V v11+qP12v12
(1−q)v11+qv12

− 1
)  =

 0
0

 ,
and hence −1 W0

− 1
2φ

V
P 2

0
−1

  dP0
dq
dψ0
dq

+
 0

∂G2
∂v11

dv11
dq

+ ∂G2
∂v12

dv12
dq

+ ∂G2
∂P12

dP12
dq

+
 0

∂G2
∂q

 =
 0

0

 .
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Some algebras show that as q ↓ 0,
∂G2

∂v11
,
∂G2

∂v12
,
∂G2

∂P12
→ 0 and ∂G2

∂q
→ 1

2φ
v12 (P12 − V )

v11P0
,

which, in conjunction with the boundedness of dv11
dq
, dv12

dq
and dP12

dq
(Lemma A.10), implies

that dP0
dq
dψ0
dq

→ −
 −1 W0

− 1
2φ

V
P 2

0
−1

−1  0
1

2φ
v12(P12−V )

v11P0

 = −
(V−P12)v12

2φP0v11

1 + VW0
2φP 2

0

 W0

1

 . (A.11)

Plug (A.11) to (A.10) and observe that as q, ρ ↓ 0,

dW23|11

dq
→ W 2

0 V (1 + ψ0)
P 2

0

(V−P12)v12
2φP0v11

1 + VW0
2φP 2

0

> 0. (A.12)

Lastly, because ∂P̃
∂W

> 0 from Lemma A.3(iii), we conclude that
dP23|11

dq
> 0

from (A.9) and (A.12). �

Lemma A.11. There are q, ρ,W 0, δ, δ > 0 such that if q < q, ρ < ρ and W0 < W 0, it
holds that −

(
δ + δ

)
< dΓ0

dq
< −δ.

Proof Recall that Γ0 = (1−q)v11V+qv12P12
(1−q)v11+qv12

. Hence,

dΓ0

dq
= ∂Γ0

∂q
+ ∂Γ0

∂v11

dv11

dq
+ ∂Γ0

∂v12

dv12

dq
+ ∂Γ0

∂P12

dP12

dq
.

After some algebras, we find that as q ↓ 0,
∂Γ0

∂q
→ v12

v11
(P12 − V ) , and ∂Γ0

∂v11
,
∂Γ0

∂v12
,
∂Γ0

∂P12
→ 0.

Also, from 0 < W12 < W0 (Lemmas 2.1 and A.7) and the boundedness of ψ12 (Lemma
A.1), it follows that W0 ↓ 0, P12 = V −Sm+W12 (1 + ψ12)→ V −Sm. Lastly, because v11

and v12 are between 1 and
(

V
V−Sb

+ 1
4φ

(
Sb

V−Sb

)2
)3

by Lemma A.1 and dv11
dq
, dv12
dq

and dP12
dq

are bounded by Lemma A.10, we conclude that

−
(

V

V − Sb
+ 1

4φ

(
Sb

V − Sb

)2)3

Sm <
dΓ0

dq
< −

(
V

V − Sb
+ 1

4φ

(
Sb

V − Sb

)2)−3

Sm.

Then, the lemma is proved by setting δ =
(

V
V−Sb

+ 1
4φ

(
Sb

V−Sb

)2
)−3

Sm and δ = −δ +(
V

V−Sb
+ 1

4φ

(
Sb

V−Sb

)2
)3
Sm. �

Lemma A.12. For sufficiently small q, ρ and W0, it holds that dΓ12
dq

< −Sm.
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Proof Recall that Γ12 = (1−q−q23)V+qv22|12P22|12+q23v23|12P23|12
(1−q−q23)+qv22|12+q23v23|12

. Hence,

dΓ12

dq
= ∂Γ12

∂q
+ ∂Γ12

∂v22|12

dv22|12

dq
+ ∂Γ12

∂v23|12

dv23|12

dq
+ ∂Γ12

∂P22|12

dP22|12

dq
+ ∂Γ12

∂P23|12

dP23|12

dq
.

After some algebras, we find that as q, ρ ↓ 0,
∂Γ12

∂q
→ v22|12

(
P22|12 − V

)
, and ∂Γ12

∂v22|12

∂Γ12

∂v23|12

∂Γ12

∂P22|12
,

∂Γ12

∂P23|12
→ 0.

Also, from 0 < W22|12 < W0 (Lemmas 2.1 and A.7) and the boundedness of ψ22|12

(Lemma A.1), it follows that W0 ↓ 0, P22|12 = V − Sm +W22|12
(
1 + ψ22|12

)
→ V − Sm.

Lastly, because v22|12 ≥ 1 by Lemma A.1 and dv22|12
dq

,
dv23|12
dq

,
dP22|12
dq

,
dP23|12
dq

and dP12
dq

are
bounded from Lemma A.10, we conclude that dΓ12

dq
< −Sm. �

Lemma A.13. As W0 ↓ 0, dP0
dq
→ 0 and dψ0

dq
− 1

2φ(V−S0)
dΓ0
dq
→ 0.

Proof Because P0 = P̃ (S0,W0,Γ0) , it follows that dP0
dq

= ∂P̃ (S0,W0,Γ0)
∂Γ

dΓ0
dq
. By Lemma

A.3(v) and the boundedness of dΓ0
dq

(Lemma A.10), we have that dP0
dq
→ 0 as W0 ↓ 0.

Next, from ψ0 = 1
2φ

(
Γ0
P0
− 1

)
, we have

dψ0

dq
= − V

2φP 2
0

dP0

dq
+ 1

2φP0

dΓ0

dq
. (A.13)

From P0 = V − S0 + W0 (1 + ψ0) and the boundedness of ψ0 (Lemma A.1), it follows
that as W0 ↓ 0, P0 → V − S0. Plugging in dP0

dq
→ 0 and P0 → V − S0 to (A.13) yields

that dψ0
dq
− 1

2φ(V−S0)
dΓ0
dq
→ 0. This completes the proof of the lemma. �

Lemma A.14. Pick any k > 0. Then, there are q, ρ,W 0, λ, λ > 0 such that if q < q,

ρ < ρ and W0 < W 0, it holds that λ < 1
W0

dW12
dq

< λ+ λ and k dW12
dq
− dW11

dq
> 0.

Proof From W12 = W0
(
P12
P0

(1 + ψ0)− ψ0 (1 + ψ0φ)
)
, it follows that

dW12

dq
= −W0

P12

P 2
0

(1 + ψ0) dP0

dq
+ W0

P0
(1 + ψ0) dP12

dq
+W0

(
P12

P0
− 1− 2φψ0

)
dψ0

dq
.

By plugging dP12
dq

= ∂P̃ (Sm,W12,Γ12)
∂W

dW12
dq

+∂P̃ (Sm,W12,Γ12)
∂Γ12

dΓ12
dq

derived from P12 = P̃ (Sm,W12,Γ12)
into the above equation, we have

1
W0

(
1− W0

P0
(1 + ψ0) ∂P̃ (Sm,W12,Γ12)

∂W

)
dW12

dq
(A.14)

=
(
−P12

P 2
0

(1 + ψ0) dP0

dq
+ 1
P0

(1 + ψ0) ∂P̃ (Sm,W12,Γ12)
∂Γ12

dΓ12

d
+
(
P12

P0
− 1− 2φψ0

)
dψ0

dq

)
.
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We show that there exist λ, λ > 0 such that λ < 1
W0

dW12
dq

< λ + λ by the following
properties.

Property 1. W0
P0

(1 + ψ0) ∂P̃ (Sm,W12,Γ12)
∂W

is negligible with small W0: Note that P0 ≥
V −S0 > 0 by Lemma A.1, and ψ0 and ∂P̃ (Sm,W12,Γ12)

∂W
are bounded by Lemmas A.1 and

A.3(iii), respectively.
Property 2. −P12

P 2
0

(1 + ψ0) dP0
dq

+ 1
P0

(1 + ψ0) ∂P̃ (Sm,W12,Γ12)
∂Γ12

dΓ12
dq

is negligible for suffi-
ciently small W0 : This holds because dψ0

dq
and dΓ12

dq
are bounded from Lemma A.10,

dP0
dq

= d
dq

(V − S0 +W0 (1 + ψ0)) = W0
dψ0
dq

and ∂P̃ (Sm,W12,Γ12)
∂Γ12

→ 0 by Lemma A.3(v).
Property 3. P12

P0
− 1− 2φψ0 → − Sm

V−S0
: Because ψ0 = 1

2φ

(
Γ0
P0
− 1

)
, P12
P0
− 1− 2φψ0 =

P12−Γ0
P0

. Note that Γ0 → V as q ↓ 0. Also, from 0 < W12 < W0 (Lemmas 2.1 and
A.7) and the boundedness of ψ0 and ψ12 (Lemma A.1), it follows that as W0 ↓ 0,
P0 = V − S0 + W0 (1 + ψ0) → V − S0 and P12 = V − Sm + W12 (1 + ψ12) → V − Sm.
Hence, P12

P0
− 1− 2φψ0 = P12−Γ0

P0
→ V−Sm−V

V−S0
= − Sm

V−S0
.

Property 4. There exist ζ, ζ > 0 such that −
(
ζ + ζ

)
< dψ0

dq
< −ζ : If W0 is

small enough, dψ0
dq

is close to 1
2φ(V−S0)

dΓ0
dq

from Lemma A.13. From Lemma A.11, there
exist δ, δ > 0 such that −

(
δ + δ

)
< dΓ0

dq
< −δ. Hence, the claim is proved by setting

ζ = 1
2φ(V−S0)δ and ζ = 1

2φ(V−S0)δ.

Property 5. There exist λ, λ > 0 such that λ < 1
W0

dW12
dq

< λ + λ : Set λ = Sm
V−S0

ζ

and λ = Sm
V−S0

ζ.

Turn to the latter part of the lemma. First, we show that 1
W0

dW11
dq

is negligible.
From W11 = W0

(
V
P0

(1 + ψ0)− ψ0 (1 + ψ0φ)
)
, we have that

1
W0

dW11

dq
= − V

P 2
0

(1 + ψ0) dP0

dq
+
(
V

P0
− 1− 2φψ0

)
dψ0

dq
. (A.15)

Note that − V
P 2

0
(1 + ψ0) dP0

dq
is negligible for small W0 because dP0

dq
= W0

dψ0
dq

and that
V
P0
− 1 − 2φψ0 is negligible for small q. Also, dP0

dq
and dψ0

dq
are bounded from Lemma

A.10. Hence, 1
W0

dW11
dq

is negligible.
Lastly, we combine the above results to prove the second claim of the lemma. For

any k, when q, ρ and W0 are small, it holds that k 1
W0

dW12
dq

> kλ > 1
W0

dW11
dq

, where the
first inequality is from 1

W0
dW12
dq

> λ and the second inequality holds because 1
W0

dW11
dq

is
negligible. This implies that k dW12

dq
− dW11

dq
> 0, completing the proof of the lemma. �
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Proof of Theorems 3.3 and 3.4 First, we prove Theorem 3.3, dP23|12
dq

> 0 for
sufficiently small q, ρ and W0. Because

W23|12 = W12

(
P23|12

P12
(1 + ψ12)− ψ12 (1 + φψ12)

)
,

it holds that
dW23|12

dq
=W23|12

W12

dW12

dq
+ W12

P12
(1 + ψ12) dP23|12

dq
−
W12P23|12

P 2
12

(1 + ψ12) dP12

dq

+W12

(
P23|12

P12
− 1− 2φψ12

)
dψ12

dq
. (A.16)

Here, the equality P23|12
P12

(1 + ψ12) − ψ12 (1 + φψ12) = W23|12
W12

is used. Plugging (A.16)

into dP23|12
dq

= ∂P̃(Sb,W23|12,V )
∂W

dW23|12
dq

yields

1
W12

1−
∂P̃

(
Sb,W23|12, V

)
∂W

W12

P12
(1 + ψ12)

 dP23|12

dq
(A.17)

=
∂P̃

(
Sb,W23|12, V

)
∂W

(
W23|12

W12

W0

W12

(
1
W0

dW12

dq

)
+ A+B

)
,

where

A = −P23|12

P 2
12

(1 + ψ12)
(
W0

∂P̃ (Sm,W12,Γ12)
∂W12

(
1
W0

dW12

dq

)
+ ∂P̃ (Sm,W12,Γ12)

∂Γ
dΓ12

dq

)

and
B =

(
P23|12

P12
− 1− 2φψ12

)
dψ12

dq12
.

Then, the inequality dP23|12
dq12

> 0 is proved by the following properties.

Property 1. 0 < 1 − ∂P̃(Sb,W23|12,V )
∂W

W12
P12

(1 + ψ12) < 1 for sufficiently small q and ρ:
This is implied by Lemma A.6 and the continuity of the economy.

Property 2. ∂P̃(Sb,W23|12,V )
∂W

> 0: This is implied by Lemma A.3(iii).
Property 3. There exists k > 0 such that W23|12

W12
W0
W12

(
1
W0

dW12
dq

)
> k for sufficiently

small q, ρ and W0: From Lemmas A.7 and A.2 with the continuity of economy, it holds
that W23|12

W12
W0
W12

>
W23|12
W12

> V−Sb
V

(
1− 1

2φ

(
Sb

V−Sb

)2
)
. Also, by Lemma A.14, there exists

λ > 0 such that 1
W0

dW12
dq

> λ for sufficiently small q, ρ and W0. The property is true

when k = V−Sb
V

(
1− 1

2φ

(
Sb

V−Sb

)2
)
λ.

Property 4. A is negligible for small enough q, ρ and W0: The boundedness of
−P23|12

P 2
12

(1 + ψ12) follows from Lemma A.1. Note that ∂P̃ (Sm,W12,Γ12)
∂W12

and 1
W0

dW12
dq

are
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bounded from Lemmas A.3(iii) and A.14. Also, when W0 is close to 0, so is W12 by
Lemma A.7. Hence, it holds that ∂P̃ (Sm,W12,Γ12)

∂Γ → 0 from Lemma A.3(v) and dΓ12
dq

is
bounded from Lemma A.10.

Property 5. There exists a constant l > 0 (that does not depend on q, ρ or W0) such
that B > l for sufficiently small q, ρ and W0: Because ψ12 = 1

2φ

(
Γ12
P12
− 1

)
, it holds that

P23|12

P12
− 1− 2φψ12 = P23|12 − Γ12

P12
→ V − Sb − V

V − Sm
= − Sb

V − Sm
(A.18)

as (q, ρ,W0) ↓ 0.
Next, we examine dψ12

dq
. From ψ12 = 1

2φ

(
Γ12
P12
− 1

)
,

dψ12

dq
= − 1

2φ
V

P 2
12

dP12

dq
+ 1

2φ
Γ12

P12

dΓ12

dq
.

Note that

dP12

dq
= W0

∂P̃ (Sm,W12,Γ12)
∂W

(
1
W0

dW12

dq

)
+ ∂P̃ (Sm,W12,Γ12)

∂Γ
dΓ12

dq
.

When q, ρ and W0 are small, ∂P̃ (Sm,W12,Γ12)
∂W

, 1
W0

dW12
dq

, and dΓ12
dq

are bounded by Lemmas
A.10 and A.14, and ∂P̃ (Sm,W12,Γ12)

∂Γ is negligible by Lemma A.3(v) and 0 < W12 < W0

(Lemma A.7 and continuity of the economy). Thus, dP12
dq

is negligible when q, ρ and W0

are small. Lemma A.12 implies dΓ12
dq

< −Sm for sufficiently small q, ρ and W0. Hence,
noting that Γ12 → V and P12 → V − Sm, we have that, for sufficiently small q, ρ and
W0,

dψ12

dq
< − 1

2φ
V

V − Sm
Sm. (A.19)

Lastly, combining (A.18) and (A.19), we conclude that B =
(
P23|12
P12
− 1− 2φψ12

)
dψ12
dq12

>

l with l = 1
2φ

SbV

(V−Sm)2Sm.

Next, we prove Theorem 3.4, dP23|12
dq
− dP23|11

dq
> 0 for sufficiently small q, ρ and W0.

From P23|11 = P̃
(
Sb,W23|11, V

)
, it follows that

1
W12

dP23|11

dq
= 1
W12

∂P̃
(
Sb,W23|11, V

)
∂W

dW23|11

dq
=
∂P̃

(
Sb,W23|11, V

)
∂W

(
1
W12

dW11

dq

)
,

(A.20)
where the last equality is due to W23|11 = W11 from Lemma A.5. We prove the inequality
dP23|12
dq
− dP23|11

dq
> 0 by comparing (A.17) and (A.20) through the following properties.

Property 1. 0 < 1 − ∂P̃(Sb,W23|12,V )
∂W

W12
P12

(1 + ψ12) < 1 for sufficiently small q and ρ:
This holds by Lemma A.6 and the continuity of economy.
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Property 2. ∂P̃(Sb,W23|12,V )
∂W

>
∂P̃(Sb,W23|11,V )

∂W
> 0 for sufficiently small q and ρ: From

Lemmas A.7 and A.5 along with the continuity of economy, we have W23|12 < W11 =
W23|11. Then, use Lemma A.3(iii) and (iv).

Property 3. W23|12
W12

W0
W12

(
1
W0

dW12
dq

)
> 1

W12
dW11
dq

for sufficiently small q, ρ and W0:
From Lemmas A.7, A.2 and A.14 with continuity of economy, we have that W23|12

W12
>

V−Sb
V

(
1− 1

2φ

(
Sb

V−Sb

)2
)
, dW12

dq
> 0 and V−Sb

V

(
1− 1

2φ

(
Sb

V−Sb

)2
)
dW12
dq

> dW11
dq

for suffi-
ciently small q, ρ and W0. Then, the property is proved.

Property 4. A+B > 0 for sufficiently small q, ρ and W0: Recall that we have shown
previously that A is negligible and there exists l > 0 such that B > l (Properties for
Theorem 3.3). This completes the proof of the Theorem. �

20


	Introduction
	The Model
	Equilibrium

	Model Prediction 
	Empirical Analysis
	Fixed Income Arbitrages
	Hedge Fund Strategies

	Conclusion
	Proofs
	Online Appendix
	Proofs


