
Heterogeneous Agents: An Overview

SeHyoun Ahn
Norges Bank

SNU
2019/11/5

Standard disclaimers apply.

1 / 29



Historical Background

� Prior to the Lucas critique: Cowles Commission Approach
� Large number of regressions run separately ex ante, and put together ex post

� For example, for aggregate consumption dynamics, run something like

Ct =

nC∑
i=1

aiCt−i +

nY∑
i=1

biYt−i + . . .

� Question: What lags (nC , nY )? Which aggregate variables matter?

� Treated as an empirical question.

� Does it make sense to put them together ex post.
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Historical Background

� Lucas Critique: But the parameters ai, bi, and so forth can change...

� The literature’s resolution of the critique:
� Induce the behaviors of agents via optimization

� Hope: the model parameters are not deep parameters independent of policy

� This is the microfoundation revolution.
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Historical Background

� This is how we ended up with solving problems like

max

∫
e−ρtu(c(t)) dt

dk

dt
= F (k(t))− c(t)

� Modelling via optimization has its benefits beyond the Lucas critique
� Parameters are intuitive/interpretable

� Can incorporate more naturally with “general equilibrium”
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Historical Background

The results suggest that there is information in the DSGE forecasts not con-
tained in forecasts based only on lagged values and that there is no information
in the lagged-value forecasts not contained in the DSGE forecasts.

- Ray Fair1

1Fair, R. (2018). Information Content of DSGE Forecasts. arXiv preprint arXiv:1808.02910.
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Historical Background
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Historical Background

� BUT.... optimization problems are hard to solve...

(⇒) representative agent assumption
� (Rational-expectations) representative agent assumption under fire recently.

� Easy to attack on conceptual level, but the actual problems were in the
practical/implementation level (⇒) can’t solve the optimization problem.
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Aside: Interpretability

1McDaniel, P., Papernot, N., & Celik, Z. B. (2016). Machine learning in adversarial settings. IEEE
Security & Privacy, 14(3), 68-72.
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Aside: Interpretability

� With the neural network black-box, we do not know why the second sign is
classified as an yield sign.

1McDaniel, P., Papernot, N., & Celik, Z. B. (2016). Machine learning in adversarial settings. IEEE
Security & Privacy, 14(3), 68-72.
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Aside: Interpretability

1https://xkcd.com/1838/
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What’s Different Now?
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Numerical Methods

� Parallel improvements in the literature on taking advantages of the improved
computational capabilities.
(⇒) Continuous time framework automates a lot of performance tricks of discrete
time

1. Constraints only show up on predictable points

2. Intermediate optimization problems are more straightforward (discrete counter part:
endogenous grid method)

3. Sparsity is automatic and natural

4. Larger literature in mathematics to rely on (⇒) seems like economists are about the
only group that solves difference equations instead of differential equations
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Digitalization and Big Data

� Administrative data are collected digitally
� Most of our work on microdata are based from 1993-present since 1993 is when data

collection became digitalized

� Most of the research work from the USA is based on what has been digitalized (or
countless hours of RA work)

� Most transactions are collected as data
� Norges Bank: In process of getting credit card transaction data (coverage of ∼90%)

� Research papers using transaction data, e.g., (Mian et al 2013)

� The new fine-grained data allows more detailed analysis
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Modelling with Heterogeneous Agents

� Conceptually, it is the same as before, i.e., we induce behaviors via optimization

max
{c(t)}

∫
e−ρtu(c(t)) dt

dk

dt
= F (k(t))− c(t)
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= F (ki(t))− ci(t)

� We solve optimization problem at individual level, and ...
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Modelling with Heterogeneous Agents

� Conceptually, it is the same as before, i.e., we induce behaviors via optimization

max
{ci(t)}

∫
e−ρtu(ci(t)) dt

dki
dt

= F (ki(t))− ci(t)

� We solve optimization problem at individual level, and ...

� get aggregate dynamics from individual level consistent with individual level
decisions

Kaggregate(t) =

∫
ki(t) di
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Optimizing Behaviors
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Agent Behaviors

� Behaviors of economic agents are model with optimization

E
[
max
a(t)

∫ ∞
t=0

e−ρtu(x(t), a(t)) dt

]
with dynamics given by

dxt = f(x(t), a(t)) dt+ g(x(t), a(t)) dWt

x(0) = x0

where
� a(t) ∈ A: decisions/actions

� x(t) ∈ Ω ⊂ Rd: states

� u(x, a): instantaneous utility function

� ρ: discount factor
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Agent Behaviors

� Standard Approach in economics (Representative Agents)
� Write the equation into a Lagrangian with Lagrange multipliers

� Take the first order conditions to get dynamics equations

� Take log-linear approximations (DYNARE handles this part)

� Standard approach is accurate if solution stays near the steady-state

� With heterogeneity?

If one has interesting distributions, does not stay close to a
deterministic value.

� (⇒) requires better approximation methods

� (⇒) Recursive/Value-function approach is one alternative.
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Aside: Brownian Motion

� A Brownian motion is a stochastic process satisfying
� W0 = 0

� Wt is almost surely continuous

� Wt has independent increments

� Wt −Ws ∼ N(0, var = t− s) for 0 ≤ s ≤ t

� For us, what matters is the last bullet point, i.e., letting ε = Wt −Ws, we have

E
[
ε2
]

= ∆t := t− s

E
[
εodd

]
= 0
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Hamilton-Jacobi-Bellman Equation: Derivations

� Recall our problem

E
[
max
a(t)

∫ ∞
t=0

e−ρtu(x(t), a(t)) dt

]
with dynamics given by

dxt = f(x(t), a(t)) dt+ g(x(t), a(t)) dWt

x(0) = x0

� Formally, define V (x) by

V (x) := max
a(t)

E
[∫ ∞

t=0
e−ρtu(x(t), a(t)) dt

]
� Then we can consider approximation via time-step ∆t
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Hamilton-Jacobi-Bellman Equation: Derivations

� First, approximate dxt for ∆t, we get

xt+∆t = xt + f(x(t), a(t))∆t+ g(x(t), a(t))ε∆t

where

ε∆t ∼ N(0, var = ∆t)

from definition of the Brownian motion
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Hamilton-Jacobi-Bellman Equation: Derivations

V (xt) = max
a(t)

E
[
max
a(t)

∫ ∞
t=0

e−ρtu(x(t), a(t)) dt

]
= max

a(t)
E
[∫ t+∆t

s=t
e−ρsu(x(s), a(s)) ds+

∫ ∞
s=t+∆t

· ds
]

= max
a(t)

E
[∫ t+∆t

s=t
e−ρsu(x(s), a(s)) ds+ e−ρ∆tV (xt+∆t)

]
= max

a(t)
E
[∫ t+∆t

s=t
e−ρsu(x(s), a(s)) ds+ e−ρ∆tV (xt+∆t)

]
= max

a(t)
E
[
u(x(t), a(t))∆t+ e−ρ∆tV (xt+∆t) +O(∆t2)

]

20 / 29



Hamilton-Jacobi-Bellman Equation: Derivations

Taking the Taylor expansion, we get

E [V (xt+∆t)] = E
[
V (xt) +

dV

dx
∆x+

1

2

d2V

dx2
(∆x)2 +O(higher)

]
= E

[
V (xt) +

dV

dx
(f(x(t), a(t))∆t+ g(x(t), a(t))ε∆t)

+
1

2

d2V

dx2
(f(x(t), a(t))∆t+ g(x(t), a(t))ε∆t)

2 +O(·)
]

Using E[εodd] = 0,E[ε2
∆t] = ∆t and rearranging terms, we get

E [V (xt+∆t)] = V (xt) +
dV

dx
(f(·)∆t) +

1

2

d2V

dx2
(g(·)2∆t) +O(·)
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Hamilton-Jacobi-Bellman Equation: Derivations

Putting everything together with e−ρ∆t, we get

E
[
e−ρ∆tV (xt+∆t)

]
= E [(1− ρ∆t+O(·))V (xt+∆t)]

= E [V (xt+∆t)− ρ∆tV (xt+∆t) +O(·)]

= V (xt) +
dV

dx
(f(·)∆t) +

1

2

d2V

dx2
(g(·)2∆t)

− ρ ·∆t · V (xt) +O(·)
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Hamilton-Jacobi-Bellman Equation: Derivations

Putting everything together

V (xt) = max
a(t)

E
[
u(x(s), a(s))∆t+ e−ρ∆tV (xt+∆t) +O(∆t2)

]
= max

a(t)
u(x(t), a(t))∆t+ V (xt) +

dV

dx
(f(·)∆t)

+
1

2

d2V

dx2
(g(·)2∆t)− ρ ·∆t · V (xt) +O(·)

Rearranging

ρV (xt)∆t =

[
max
a(t)

u(x, a) + f(x, a)
dV

dx
+
g(x, a)2

2

d2V

dx2

]
∆t+O(·)
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Hamilton-Jacobi-Bellman Equation

ρV (x) = max
a

[
u(x, a) + f(x, a)

dV

dx
+
g(x, a)2

2

d2V

dx2

]
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Hamilton-Jacobi-Bellman Equation: Comments

� Underlying mathematics is the stochastic calculus, but we do not need to know it
to understand the HJB equation.

� HJB equation = First order (∆t)-approximation of the value function

� Unfortunately, in the literature, people drop many (unnecessary?) jargons,2 but I
have not run into any case where I cannot formally derive things using this
∆t-approximation.

� Or you can also just follow the functional form directly.

2e.g., we take a continuum of firms with Lebesgue measure 1
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Hamilton-Jacobi-Bellman Equation: Comments

� In discrete time, one needs to solve

Vt = max
at

u(xt, at) + Et[V (xt+1)]

and this is the furthest simplification one can take

� In continuous time, E[·] is well-structured and results in

g(x, a)2

2

d2V

dx2

term without the expectation operator.

� One does not need to worry about the numerical quadrature of E[V (xt+1)] with
the continuous time formulation!
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Hamilton-Jacobi-Bellman Equation: Comments

� Given the value function, we solve for the actions by using the first-order
condition, i.e.,

∂u

∂a
+
∂f

∂a

dV

dx
+ g(x, a) · ∂g

∂a

d2V

dx2
= 0

� Depends on functional form, but can be taken so that the equation is easy to
solve for the optimal a∗

� Again, note the absence of the E[·] operator, which is an integral
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Big Picture

� We went from

E
[
max
a(t)

∫ ∞
t=0

e−ρtu(x(t), a(t)) dt

]
dxt = f(x(t), a(t)) dt+ g(x(t), a(t)) dWt

x(0) = x0

� to this

ρV (x) = max
a

[
u(x, a) + f(x, a)

dV

dx
+
g(x, a)2

2

d2V

dx2

]
� What did we gain??
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Big Picture

� The solution to the first problem requires one to decide over paths of actions
{a(t)}

� With HJB, V (x) gives summary information of behavior that depends only on x
(recursive formulation).

� The latter is much better for numerical approximations.
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