Individual Behaviors to Aggregate
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Distribution = Macroeconomy

B So far, we have focused on how to solve the optimization problems of individuals.

B For the heterogeneous agent model to be “closed,” we need their behaviors to
affect the macroeconomy.
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Distribution = Macroeconomy

B This requires computation of the aggregate quantities from individual behaviors.
B For example, how do the total amount of savings change if you change interest rate.

B j.e., we need things like

Zf(mz) i € population

B where z; changes consistently with individual behaviors
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Computation of the Distribution

B Wish: g(x) a distribution function such that

N L) = [ f@g@

B We proceed assume that such a g(-) exists, and get the conditions it need to
satisfy

B This results in the Fokker-Planck Equation
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Computation of the Distribution

B For the dynamic decision of an individual, we model it as an Ito process
dz; = p(z;) dt + o dW;

B This is the optimal behavior determined by the HJB equation, but at this state.
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Monte Carlo Simulation

B Since we want to approximate

3 f)
we can in fact, just simulate this directly.
B Hence, we take sample of {x;} of the population.
B At each time step, simulate via
Tippar = p(zi ) At + o€ e ~ N(0,var = At)
B This is called the Euler-Maruyama scheme.

B As N — o0, it goes to the correct value. But...
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Monte Carlo Simulation

B Size of N7
® Burn-in?

B Step-size: At
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Monte Carlo Simulation

B If one has an experience with the Bayesian estimation, one knows how "annoying”
the hyperparameter tuning is.

B Also, based on some experiments, the size of N can be quite large.
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Monte Carlo Simulation

B One need quite a lot of simulation households for the computation of the
steady-state distribution of the Bewley-Huggett-Aiyagari model.

Preliminary plot: need to be checked further.
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Monte Carlo Simulation

B Some of these problems are gone with the partial differential equations
formulation.

B Things scale differently between different methods

® We might have to come back to the Monte Carlo simulations in higher dimensions,
but for low dimensional problems, PDE methods work better.
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Fokker-Planck Equation

B Now, to get the partial differential equation formulation, recall we want

¥ ) = [ f@g(e)da
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Fokker-Planck Equation

® We will consider how g(-) evolves over time as people follow their optimal
decisions. Hence, let g;(x) be the time dependent distribution, i.e.,

N L) = [ f@g(a)do

B Again, we will do At approximation.
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Fokker-Planck Equation

% > f@ipiar) = % D f(@ie) + F(@id) (@ierar — wir)
+%f,/(33i,t)($i,t+At - -Ti,t)2:|

The detail of (z;++a+ — x;¢) is the same as that with HJB equation, so we get

sz xzt-l—At Zf xzt At*Zf xzt m'zt
—|—At*z f” xzt
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Fokker-Planck Equation

B Now, we translate the expression, with all our “wishful” g.(-)

/f ) gr+at( dx—/f z)gi(z) da

_At/f dx—i—At/; 2" (2)ge(z) da
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Fokker-Planck Equation

/ F(@)a() g () Az = F(@) ()06 () poundary

o
- [ @) (u@gr(a) da

Boundary conditions matter, but we leave it for later, then we have it is zero for now.

[ F@u@te)de == [ 1) wle)a) ds



Fokker-Planck Equation

B Similar application of the integration-by-parts results in

[r@awar= [ 1@ 5 a

16 / 27



Fokker-Planck Equation

B Collecting everything together, we get

[ syt - [ @5 (u@)g@) do
+f f<x>"2;;gt<x> da

B Note that we never defined what f(-) is

® This means that g(-) need to satisfy these conditions at all “points"?

1Refer to the calculus of variations for technical details. Also, this is a solution concept that’s
relevant for the Fokker-Planck equation in fact.
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Fokker-Planck Equation

B Hence, we have

girar(@) —gi(x) ~ d o d*
I S (pl)g(e) + T 1)
B Hence, in limit
@ _d o2 d2

I — = (u()g(@) + T 59(@)

B This is the Fokker-Planck equation

18 /27



Fokker-Planck Equation

B Again, what did we gain?
B Went from a population of

da;y = p(zie) dt + o dWiy
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Fokker-Planck Equation

® Nicer to approximate numerically?

2in low dimension
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Discretization Methods

HJB equations are HARD discretization problems.

B FPK equations are nicer, and we have more room for decision making.
B Part of this is because we do not have max... where a* depends on the value
a
function.
B We have a different problems of

B positivity

B preservation of mass

but they are still easier.

21/ 27



Finite Difference Method

B We can do the same finite-difference methods as in the HJB equation case

Y o= L@@ + L)

o (n@) g(w))L + 022 [;;9(90)} =0

)
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Finite Difference Method

B For example, if we take forward difference, we get

gt 4 g
Ti+1 — T4 Ti+1 — T4
a* g(zi—1)
7 [2 (i — zi-1)(Tiy1 — Ti-1)
_g 9(@i)

(i — mi1)(Tig1 — x4)
9(wit1) _
| =0

+2
(Tir1 — 2i) (Tig1 — i1
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Finite Difference Method

B This expression looks terrible
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Finite Difference Method

B This expression looks terrible
B But... everything is linear in g(z;)
B Hence, we end up with the same matrix form as with HJB equation.

Ag=0
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Finite Difference Method

B For example, the A from above with forward difference is given by

A o
o
(6i =) (w — zio1) (i1 — x3)
. ;) o?
A(i, i) = +
S A | o
0.2

. (ig1)
A(i,i4+1) = — +
( ) Tit1 — @ (g1 — ) (@Tig1 — Ti—1)

B Again, this can be implemented exactly the same as with HJB.
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Finite Difference Method

B |n fact, if we have use the same grid as that for the HJB equation, Agp is exactly
the transform of Apg.

® My Advisor (Benjamin Moll): “You get distribution for free!”

B This is also good if you use uniformly-spaced grids.
B Not good for non-uniformly spaced grids, and an adjustment is necessary.3

3Achdou, Yves, et al. Income and wealth distribution in macroeconomics: A continuous-time

approach. No. w23732. National Bureau of Economic Research, 2017.
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We Need a Cute Cat Picture about Now...

3https: / /xked.com /231/ o722 WU



We Need a Cute Cat Picture about Now...
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