

1
NORGES BANK

Distribution \Rightarrow Macroeconomy

- So far, we have focused on how to solve the optimization problems of individuals.

■ For the heterogeneous agent model to be "closed," we need their behaviors to affect the macroeconomy.

Distribution \Rightarrow Macroeconomy

- This requires computation of the aggregate quantities from individual behaviors.
- For example, how do the total amount of savings change if you change interest rate.

■ i.e., we need things like

$$
\sum f\left(x_{i}\right) \quad i \in \text { population }
$$

- where x_{i} changes consistently with individual behaviors

Computation of the Distribution

- Wish: $g(x)$ a distribution function such that

$$
\frac{1}{N} \sum f\left(x_{i}\right)=\int f(x) g(d) \mathrm{d} x
$$

- We proceed assume that such a $g(\cdot)$ exists, and get the conditions it need to satisfy
- This results in the Fokker-Planck Equation

Computation of the Distribution

- For the dynamic decision of an individual, we model it as an Ito process

$$
\mathrm{d} x_{i}=\mu\left(x_{i}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}
$$

■ This is the optimal behavior determined by the HJB equation, but at this state.

Monte Carlo Simulation

- Since we want to approximate

$$
\frac{1}{N} \sum f\left(x_{i}\right)
$$

we can in fact, just simulate this directly.

- Hence, we take sample of $\left\{x_{i}\right\}$ of the population.

■ At each time step, simulate via

$$
x_{i, t+\Delta t}=\mu\left(x_{i, t}\right) \Delta t+\sigma \varepsilon \quad \varepsilon \sim N(0, v a r=\Delta t)
$$

- This is called the Euler-Maruyama scheme.
- As $N \rightarrow \infty$, it goes to the correct value. But...

Monte Carlo Simulation

■ Size of N ?

■ Burn-in?
■ Step-size: Δt

Monte Carlo Simulation

■ If one has an experience with the Bayesian estimation, one knows how "annoying" the hyperparameter tuning is.

- Also, based on some experiments, the size of N can be quite large.

Monte Carlo Simulation

- One need quite a lot of simulation households for the computation of the steady-state distribution of the Bewley-Huggett-Aiyagari model.

[^0]
Monte Carlo Simulation

- Some of these problems are gone with the partial differential equations formulation.
- Things scale differently between different methods
- We might have to come back to the Monte Carlo simulations in higher dimensions, but for low dimensional problems, PDE methods work better.

Fokker-Planck Equation

- Now, to get the partial differential equation formulation, recall we want

$$
\frac{1}{N} \sum f\left(x_{i}\right)=\int f(x) g(x) \mathrm{d} x
$$

Fokker-Planck Equation

- We will consider how $g(\cdot)$ evolves over time as people follow their optimal decisions. Hence, let $g_{t}(x)$ be the time dependent distribution, i.e.,

$$
\frac{1}{N} \sum f\left(x_{i, t}\right)=\int f(x) g_{t}(x) \mathrm{d} x
$$

- Again, we will do Δt approximation.

Fokker-Planck Equation

$$
\begin{aligned}
\frac{1}{N} \sum f\left(x_{i, t+\Delta t}\right)=\frac{1}{N} \sum\left[f\left(x_{i, t}\right)\right. & +f^{\prime}\left(x_{i, t}\right)\left(x_{i, t+\Delta t}-x_{i, t}\right) \\
& \left.+\frac{1}{2} f^{\prime \prime}\left(x_{i, t}\right)\left(x_{i, t+\Delta t}-x_{i, t}\right)^{2}\right]
\end{aligned}
$$

The detail of $\left(x_{i, t+\Delta t}-x_{i, t}\right)$ is the same as that with HJB equation, so we get

$$
\begin{aligned}
\frac{1}{N} \sum f\left(x_{i, t+\Delta t}\right)-\frac{1}{N} \sum f\left(x_{i, t}\right)= & \Delta t \frac{1}{N} \sum f^{\prime}\left(x_{i, t}\right) \mu\left(x_{i, t}\right) \\
& +\Delta t \frac{1}{N} \sum \frac{1}{2} f^{\prime \prime}\left(x_{i, t}\right) \sigma^{2}
\end{aligned}
$$

Fokker-Planck Equation

■ Now, we translate the expression, with all our "wishful" $g_{t}(\cdot)$

$$
\begin{aligned}
& \int f(x) g_{t+\Delta t}(x) \mathrm{d} x-\int f(x) g_{t}(x) \mathrm{d} x \\
& \quad=\Delta t \int f^{\prime}(x) \mu(x) g_{t}(x) \mathrm{d} x+\Delta t \int \frac{1}{2} \sigma^{2} f^{\prime \prime}(x) g_{t}(x) \mathrm{d} x
\end{aligned}
$$

Fokker-Planck Equation

$$
\begin{aligned}
\int f^{\prime}(x) \mu(x) g_{t}(x) \mathrm{d} x= & \left.f(x) \mu(x) g_{t}(x)\right|_{\text {boundary }} \\
& -\int f(x) \frac{d}{d x}\left(\mu(x) g_{t}(x)\right) \mathrm{d} x
\end{aligned}
$$

Boundary conditions matter, but we leave it for later, then we have it is zero for now.

$$
\int f^{\prime}(x) \mu(x) g_{t}(x) \mathrm{d} x=-\int f(x) \frac{d}{d x}\left(\mu(x) g_{t}(x)\right) \mathrm{d} x
$$

Fokker-Planck Equation

- Similar application of the integration-by-parts results in

$$
\int f^{\prime \prime}(x) g_{t}(x) \mathrm{d} x=\int f(x) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} g_{t}(x) \mathrm{d} x
$$

Fokker-Planck Equation

- Collecting everything together, we get

$$
\begin{aligned}
\int f(x) \frac{g_{t+\Delta t}(x)-g_{t}(x)}{\Delta t}= & -\int f(x) \frac{\mathrm{d}}{\mathrm{~d} x}(\mu(x) g(x)) \mathrm{d} x \\
& +\int f(x) \frac{\sigma^{2}}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} g_{t}(x) \mathrm{d} x
\end{aligned}
$$

- Note that we never defined what $f(\cdot)$ is.
- This means that $g(\cdot)$ need to satisfy these conditions at all "points" ${ }^{1}$

[^1]
Fokker-Planck Equation

- Hence, we have

$$
\frac{g_{t+\Delta t}(x)-g_{t}(x)}{\Delta t}=-\frac{\mathrm{d}}{\mathrm{~d} x}(\mu(x) g(x))+\frac{\sigma^{2}}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} g(x)
$$

- Hence, in limit

$$
\frac{\mathrm{d} g}{\mathrm{~d} t}=-\frac{\mathrm{d}}{\mathrm{~d} x}(\mu(x) g(x))+\frac{\sigma^{2}}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} g(x)
$$

- This is the Fokker-Planck equation

Fokker-Planck Equation

- Again, what did we gain?
- Went from a population of

$$
\mathrm{d} x_{i, t}=\mu\left(x_{i, t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{i, t}
$$

- to

$$
\frac{\mathrm{d} g}{\mathrm{~d} t}=-\frac{\mathrm{d}}{\mathrm{~d} x}(\mu(x) g(x))+\frac{\sigma^{2}}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} g(x)
$$

Fokker-Planck Equation

- Nicer to approximate numerically ${ }^{2}$

[^2]
Discretization Methods

- HJB equations are HARD discretization problems.
- FPK equations are nicer, and we have more room for decision making.
- Part of this is because we do not have max... where a^{*} depends on the value function.
- We have a different problems of
- positivity
- preservation of mass
- but they are still easier.

Finite Difference Method

- We can do the same finite-difference methods as in the HJB equation case

$$
\frac{\mathrm{d} g}{\mathrm{~d} t}=0=\frac{\mathrm{d}}{\mathrm{~d} x}(-\mu(x) g(x))+\frac{\sigma^{2}}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} g(x)
$$

■ i.e.,

$$
\left[\frac{\mathrm{d}}{\mathrm{~d} x}(-\mu(x) \cdot g(x))\right]_{i}+\frac{\sigma^{2}}{2}\left[\frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} g(x)\right]_{i}=0
$$

Finite Difference Method

- For example, if we take forward difference, we get

$$
\begin{aligned}
& {\left[-\frac{\mu\left(x_{i+1}\right)}{x_{i+1}-x_{i}} \cdot g\left(x_{i+1}\right)+\frac{\mu\left(x_{i}\right)}{x_{i+1}-x_{i}} \cdot g\left(x_{i}\right)\right]} \\
& +\frac{\sigma^{2}}{2}\left[2 \frac{g\left(x_{i-1}\right)}{\left(x_{i}-x_{i-1}\right)\left(x_{i+1}-x_{i-1}\right)}\right. \\
& \quad-2 \frac{g\left(x_{i}\right)}{\left(x_{i}-x_{i-1}\right)\left(x_{i+1}-x_{i}\right)} \\
& \left.+2 \frac{g\left(x_{i+1}\right)}{\left(x_{i+1}-x_{i}\right)\left(x_{i+1}-x_{i-1}\right)}\right]=0
\end{aligned}
$$

Finite Difference Method

- This expression looks terrible

Finite Difference Method

- This expression looks terrible
- But... everything is linear in $g\left(x_{i}\right)$
- Hence, we end up with the same matrix form as with HJB equation.

$$
A g=0
$$

Finite Difference Method

- For example, the A from above with forward difference is given by

$$
\begin{aligned}
& A(i, i-1)=\frac{\sigma^{2}}{\left(x_{i}-x_{i-1}\right)\left(x_{i+1}-x_{i}\right)} \\
& A(i, i)=\frac{\mu\left(x_{i}\right)}{x_{i+1}-x_{i}}+\frac{\sigma^{2}}{\left(x_{i}-x_{i-1}\right)\left(x_{i+1}-x_{i}\right)} \\
& A(i, i+1)=-\frac{\mu\left(x_{i+1}\right)}{x_{i+1}-x_{i}}+\frac{\sigma^{2}}{\left(x_{i+1}-x_{i}\right)\left(x_{i+1}-x_{i-1}\right)}
\end{aligned}
$$

- Again, this can be implemented exactly the same as with HJB.

Finite Difference Method

■ In fact, if we have use the same grid as that for the HJB equation, $A_{\text {FP }}$ is exactly the transform of A_{HJB}.

- My Advisor (Benjamin Moll): "You get distribution for free!"
- This is also good if you use uniformly-spaced grids.
- Not good for non-uniformly spaced grids, and an adjustment is necessary. ${ }^{3}$

[^3]
We Need a Cute Cat Picture about Now...

We Need a Cute Cat Picture about Now...

[^4]
[^0]: ${ }^{0}$ Preliminary plot: need to be checked further.

[^1]: ${ }^{1}$ Refer to the calculus of variations for technical details. Also, this is a solution concept that's relevant for the Fokker-Planck equation in fact.

[^2]: ${ }^{2}$ in low dimension

[^3]: ${ }^{3}$ Achdou, Yves, et al. Income and wealth distribution in macroeconomics: A continuous-time approach. No. w23732. National Bureau of Economic Research, 2017.

[^4]: ${ }^{3}$ https://xkcd.com/231/

