

GREG KAPLAN University of Chicago

THOMAS WINBERRY University of Chicago

Overview of Our Paper

- Heterogeneous agent models study interaction of macro + inequality
- Not yet part of policymakers' toolbox. Two excuses:
 - Computational difficulties because distribution endogenous
 - Perception that aggregate dynamics similar to representative agent

These excuses less valid than you thought

- Efficient and easy-to-use computational method
 - Open source Matlab toolbox online now
- 2. Use methodology to illustrate interaction of macro + inequality
 - Match micro behavior \implies realistic aggregate C + Ydynamics

Big Picture: Standard DSGE

Big Picture: Standard DSGE

Big Picture: HA-DSGE

Big Picture: HA-DSGE

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models (Reiter, Campbell, Dotsey-King-Wollman)
- Dimensionality reduction (model reduction in engineering)

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Households

$$\begin{split} \max_{\{c_{jt}\}_{t\geq 0}} \, \mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_{jt}) dt & \text{ such that } \\ c_{jt} + \dot{a}_{jt} &= w_t z_{jt} + r_t a_{jt} \\ z_{jt} \in \{z_\ell, z_h\} \text{ Poisson with intensities } \lambda_\ell, \lambda_h \\ a_{jt} \geq 0 \end{split}$$

- $lacktriangleq c_{jt}$: consumption
- u: utility function, u' > 0, u'' < 0.
- \blacksquare ρ : discount rate
- \blacksquare r_t : interest rate

Production and Market Clearing

Aggregate production function

$$Y_t = e^{Z_t} K_t^{\alpha} N_t^{1-\alpha}$$
 with $dZ_t = -\nu Z_t + \sigma dW_t$

Perfect competition in factor markets

$$w_t = (1 - \alpha) \frac{Y_t}{N_t}, \qquad r_t = \alpha \frac{Y_t}{K_t} - \delta$$

Market clearing

$$K_{t} = \int ag_{t}(a, z)dadz,$$

$$N_{t} = \int zg_{t}(a, z)dadz \equiv 1$$

Equilibrium

Aggregate state: $(g_t, Z_t) \Rightarrow$ absorb into time subscript t

- Recursive notation w.r.t. individual states only
- lacksquare \mathbb{E}_t is expectation w.r.t. aggregate states only lacksquare fully recursive

Equilibrium

Aggregate state: $(g_t, Z_t) \Rightarrow$ absorb into time subscript t

- Recursive notation w.r.t. individual states only
- lacksquare \mathbb{E}_t is expectation w.r.t. aggregate states only lacksquare fully recursive

$$\rho \underbrace{v_t(a, z)}_{c} = \max_{c} u(c) + \partial_a v_t(a, z)(w_t z + r_t a - c) + \lambda_z(v_t(a, z') - v_t(a, z)) + \frac{1}{dt} \mathbb{E}_t \left[dv_t(a, z) \right],$$
(HJB)

$$\frac{\mathrm{d}g_t(a,z)}{\mathrm{d}t} = -\partial_a[s_t(a,z)g_t(a,z)] - \lambda_z g_t(a,z) + \lambda_{z'}g_t(a,z'), \tag{KF}$$

$$\mathbf{w_t} = (1 - \alpha)e^{Z_t}K_t^{\alpha} \text{ and } \mathbf{r_t} = \alpha e^{Z_t}K_t^{\alpha - 1} - \delta, \tag{P}$$

$$K_t = \int ag_t(a, z)dadz,$$

$$d\mathbf{Z}_t = -\nu Z_t dt + \sigma dW_t$$

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Extending Linearization to Heterogeneous Agent Models

1. Compute non-linear approx. of non-stochastic steady state

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation

Warm Up: Linearizing a Representative Agent Model

■ Representative agent RBC model

$$\mathbb{E}_{t} \left[dC_{t}^{-\gamma} \right] = C_{t}^{-\gamma} \left(\alpha e^{Z_{t}} K_{t}^{\alpha - 1} - \rho - \delta \right) dt$$
$$dK_{t} = \left(e^{Z_{t}} K_{t}^{\alpha} - \delta K_{t} - C_{t} \right) dt$$
$$dZ_{t} = -\eta Z_{t} dt + \sigma dW_{t}$$

Classification of variables

 $C_t = ext{control variable}$ $K_t = ext{endogenous state variable}$ $Z_t = ext{exogenous state variable}$

Warm Up: Linearizing a Representative Agent Model

■ Linearized representative agent RBC model

$$\mathbb{E}_{t} \begin{bmatrix} \mathsf{d} \frac{\hat{C}_{t}}{k_{t}} \\ \mathsf{d} \frac{\hat{K}_{t}}{k_{t}} \end{bmatrix} = \begin{bmatrix} B_{CC} & B_{CK} & B_{CZ} \\ B_{KC} & B_{KK} & B_{KZ} \\ 0 & 0 & -\eta \end{bmatrix} \begin{bmatrix} \frac{\hat{C}_{t}}{k_{t}} \\ \frac{\hat{K}_{t}}{k_{t}} \end{bmatrix} \mathsf{d}t$$

Classification of variables

 $egin{array}{ll} C_t = & ext{control variable} \ K_t = & ext{endogenous state variable} \ Z_t = & ext{exogenous state variable} \end{array}$

Extending Linearization to Heterogeneous Agent Models

1. Compute non-linear approx. of non-stochastic steady state

2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation

Extending Linearization to Heterogeneous Agent Models

- 1. Compute non-linear approx. of non-stochastic steady state
 - Finite difference method from Achdou et al. (2015)
 - Steady state reduces to sparse matrix equations
 - Borrowing constraint absorbed into boundary conditions
- 2. Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation

$$\rho v(a,z) = \max_{c} \ u(c) + \partial_{a} v(a,z)(wz + ra - c)$$

$$+ \lambda_{z}(v(a,z') - v(a,z))$$

$$(HJB SS)$$

$$0 = -\partial_{a}[s(a,z)g(a,z)] - \lambda_{z}g(a,z) + \lambda_{z'}g(a,z') \quad (KF SS)$$

$$w = (1 - \alpha)K^{\alpha}, \quad r = \alpha K^{\alpha - 1} - \delta,$$

$$K = \int ag(a,z)dadz$$
 (P SS)

$$\rho v_{i,j} = u(c_{i,j}) + \partial_a v_{i,j} (wz_j + ra_i - c_{i,j})$$

$$+ \lambda_j (v_{i,-j} - v_{i,j}), \text{ with } c_{i,j} = u'^{-1} (\partial_a v_{i,j})$$

$$0 = -\partial_a [s(a,z)g(a,z)] - \lambda_z g(a,z) + \lambda_{z'} g(a,z')$$

$$w = (1-\alpha)K^{\alpha}, \quad r = \alpha K^{\alpha-1} - \delta,$$

$$K = \int ag(a,z) dadz$$
(HJB SS)
$$(KF SS)$$

$$\rho \mathbf{v} = \mathbf{u} (\mathbf{v}) + \mathbf{A} (\mathbf{v}; \mathbf{p}) \mathbf{v}$$

$$0 = -\partial_a [s(a, z)g(a, z)] - \lambda_z g(a, z) + \lambda_{z'} g(a, z')$$

$$w = (1 - \alpha)K^{\alpha}, \quad r = \alpha K^{\alpha - 1} - \delta,$$

$$K = \int ag(a, z)dadz$$
(HJB SS)

(F SS)

$$\rho \mathbf{v} = \mathbf{u} (\mathbf{v}) + \mathbf{A} (\mathbf{v}; \mathbf{p}) \mathbf{v}$$

$$0 = -\partial_a [s(a, z)g(a, z)] - \lambda_z g(a, z) + \lambda_{z'} g(a, z')$$

$$w = (1 - \alpha)K^{\alpha}, \quad r = \alpha K^{\alpha - 1} - \delta,$$

$$K = \int ag(a, z)dadz$$
(HJB SS)

(F SS)

$$\rho \mathbf{v} = \mathbf{u} (\mathbf{v}) + \mathbf{A} (\mathbf{v}; \mathbf{p}) \mathbf{v}$$
(HJB SS)

$$\mathbf{0} = \mathbf{A} (\mathbf{v}; \mathbf{p})^{\mathrm{T}} \mathbf{g}$$
(KF SS)

$$w = (1 - \alpha) K^{\alpha}, \quad r = \alpha K^{\alpha - 1} - \delta,$$

$$K = \int ag(a, z) dadz$$
(P SS)

$$ho \mathbf{v} = \mathbf{u} (\mathbf{v}) + \mathbf{A} (\mathbf{v}; \mathbf{p}) \mathbf{v}$$
 (HJB SS)
 $\mathbf{0} = \mathbf{A} (\mathbf{v}; \mathbf{p})^{\mathrm{T}} \mathbf{g}$ (KF SS)
 $\mathbf{p} = \mathbf{F} (\mathbf{g})$ (P SS)

Linearizing Continuous Time Het Agent Models

- Compute non-linear approximation to non-stochastic steady state
 - Finite difference method from Achdou et al. (2015)
 - Steady state reduces to sparse matrix equations
 - Borrowing constraint absorbed into boundary conditions
- Compute first-order Taylor expansion around steady state

3. Solve linear stochastic differential equation

Linearizing Continuous Time Het Agent Models

- Compute non-linear approximation to non-stochastic steady state
 - Finite difference method from Achdou et al. (2015)
 - Steady state reduces to sparse matrix equations
 - Borrowing constraint absorbed into boundary conditions
- Compute first-order Taylor expansion around steady state
 - Automatic differentiation: exact numerical derivatives
 - Efficient Matlab implementation for sparse systems
- 3. Solve linear stochastic differential equation

Step 2: Linearize Discretized System

Discretized system with aggregate shocks

$$\rho \mathbf{v}_{t} = \mathbf{u} (\mathbf{v}_{t}) + \mathbf{A} (\mathbf{v}_{t}; \mathbf{p}_{t}) \mathbf{v}_{t} + \frac{1}{dt} \mathbb{E}_{t} [d\mathbf{v}_{t}]$$

$$\frac{d\mathbf{g}_{t}}{dt} = \mathbf{A} (\mathbf{v}_{t}; \mathbf{p}_{t})^{\mathrm{T}} \mathbf{g}_{t}$$

$$\mathbf{p}_{t} = \mathbf{F} (\mathbf{g}_{t}; Z_{t})$$

$$dZ_{t} = -\nu Z_{t} dt + \sigma dW_{t}$$

Step 2: Linearize Discretized System

Discretized system with aggregate shocks

$$\rho \mathbf{v}_{t} = \mathbf{u} (\mathbf{v}_{t}) + \mathbf{A} (\mathbf{v}_{t}; \mathbf{p}_{t}) \mathbf{v}_{t} + \frac{1}{dt} \mathbb{E}_{t} [d\mathbf{v}_{t}]$$

$$\frac{d\mathbf{g}_{t}}{dt} = \mathbf{A} (\mathbf{v}_{t}; \mathbf{p}_{t})^{\mathrm{T}} \mathbf{g}_{t}$$

$$\mathbf{p}_{t} = \mathbf{F} (\mathbf{g}_{t}; Z_{t})$$

$$dZ_{t} = -\nu Z_{t} dt + \sigma dW_{t}$$

■ Write in general form

$$\mathbb{E}_{t} \begin{bmatrix} d\mathbf{v}_{t} \\ d\mathbf{g}_{t} \\ \mathbf{0} \\ dZ_{t} \end{bmatrix} = f(\mathbf{v}_{t}, \mathbf{g}_{t}, \mathbf{p}_{t}, Z_{t}) dt, \qquad \begin{bmatrix} \mathbf{v}_{t} \\ \mathbf{g}_{t} \\ \mathbf{p}_{t} \\ Z_{t} \end{bmatrix} = \begin{bmatrix} \text{control} \\ \text{endog state} \\ \text{prices} \\ \text{exog state} \end{bmatrix}$$

Step 2: Linearize Discretized System

Discretized system with aggregate shocks

$$\rho \mathbf{v}_{t} = \mathbf{u} (\mathbf{v}_{t}) + \mathbf{A} (\mathbf{v}_{t}; \mathbf{p}_{t}) \mathbf{v}_{t} + \frac{1}{dt} \mathbb{E}_{t} [d\mathbf{v}_{t}]$$

$$\frac{d\mathbf{g}_{t}}{dt} = \mathbf{A} (\mathbf{v}_{t}; \mathbf{p}_{t})^{\mathrm{T}} \mathbf{g}_{t}$$

$$\mathbf{p}_{t} = \mathbf{F} (\mathbf{g}_{t}; Z_{t})$$

$$dZ_{t} = -\nu Z_{t} dt + \sigma dW_{t}$$

■ Linearize using automatic differentiation (code: @myAD)

$$\mathbb{E}_{t} \begin{bmatrix} d\widehat{\mathbf{v}}_{t} \\ d\widehat{\mathbf{g}}_{t} \\ \mathbf{0} \\ dZ_{t} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{vv} & \mathbf{0} & \mathbf{B}_{vp} & \mathbf{0} \\ \mathbf{B}_{gv} & \mathbf{B}_{gg} & \mathbf{B}_{gp} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{pg} & -\mathbf{I} & \mathbf{B}_{pZ} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\nu \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{v}}_{t} \\ \widehat{\mathbf{g}}_{t} \\ \widehat{\mathbf{p}}_{t} \\ Z_{t} \end{bmatrix} dt$$

Linearizing Continuous Time Het Agent Models

- Compute non-linear approximation to non-stochastic steady state
 - Finite difference method from Achdou et al. (2015)
 - Steady state reduces to sparse matrix equations
 - Borrowing constraint absorbed into boundary conditions
- 2. Compute first-order Taylor expansion around steady state
 - Automatic Differentiation: exact numerical derivatives
 - Efficient Matlab implementation for sparse systems
- 3. Solve linear stochastic differential equation

Linearizing Continuous Time Het Agent Models

- Compute non-linear approximation to non-stochastic steady state
 - Finite difference method from Achdou et al. (2015)
 - Steady state reduces to sparse matrix equations
 - Borrowing constraint absorbed into boundary conditions
- 2. Compute first-order Taylor expansion around steady state
 - Automatic Differentiation: exact numerical derivatives
 - Efficient Matlab implementation for sparse systems
- 3. Solve linear stochastic differential equation
 - Moderately-sized systems ⇒ standard methods OK

Step 3: Solve Linear System

 Diagonalize + hope that number of stable eigenvalues = number of state variables

■ Set control variables ⊥ unstable eigenvectors ⇒ policy function

$$\widehat{\mathbf{v}}_t = \mathbf{D}_g \widehat{\mathbf{g}}_t + \mathbf{D}_Z \widehat{Z}_t$$

 \blacksquare Feasible for $N \leq 5000$ or so

Linearization is Fast and Accurate

- Calibration: JEDC (2010) comparison project on Krusell-Smith
- Size: 100 asset grid points \implies total system ≈ 400

Linearization is Fast and Accurate

- Calibration: JEDC (2010) comparison project on Krusell-Smith
- Size: 100 asset grid points \implies total system ≈ 400
- Speed: ≈ 0.25 seconds
 - JEDC (2010) project: \approx 7 minutes up to \approx 46 hours

Linearization is Fast and Accurate

- Calibration: JEDC (2010) comparison project on Krusell-Smith
- Size: 100 asset grid points \implies total system ≈ 400
- Speed: \approx 0.25 seconds
 - JEDC (2010) project: ≈ 7 minutes up to ≈ 46 hours
- **Accuracy**: Max difference in K_t from simulations using individual policies vs. aggregate law of motion

Agg Shock σ	0.01%	0.1%	0.7%	1%	5%
DH Error Stat	0.000%	0.002%	0.053%	0.135%	3.347%

■ JEDC (2010) project: most accurate alternative $\approx 0.16\%$

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Model-Free Reduction Method

$$\mathbb{E}_{t} \begin{bmatrix} d\widehat{\mathbf{v}}_{t} \\ d\widehat{\mathbf{g}}_{t} \\ \mathbf{0} \\ dZ_{t} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{vv} & \mathbf{0} & \mathbf{B}_{vp} & \mathbf{0} \\ \mathbf{B}_{gv} & \mathbf{B}_{gg} & \mathbf{B}_{gp} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{pg} & -\mathbf{I} & \mathbf{B}_{pZ} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\nu \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{v}}_{t} \\ \widehat{\mathbf{g}}_{t} \\ \widehat{\mathbf{p}}_{t} \\ Z_{t} \end{bmatrix} dt$$

■ Dimensionality: 2 income types \times M wealth grid points \implies both \mathbf{v}_t and \mathbf{g}_t are $N(=2M)\times 1$ vectors

Model-Free Reduction Method

$$\mathbb{E}_{t} \begin{bmatrix} d\widehat{\mathbf{v}}_{t} \\ d\widehat{\mathbf{g}}_{t} \\ \mathbf{0} \\ dZ_{t} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{vv} & \mathbf{0} & \mathbf{B}_{vp} & \mathbf{0} \\ \mathbf{B}_{gv} & \mathbf{B}_{gg} & \mathbf{B}_{gp} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{pg} & -\mathbf{I} & \mathbf{B}_{pZ} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\nu \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{v}}_{t} \\ \widehat{\mathbf{g}}_{t} \\ \widehat{\mathbf{p}}_{t} \\ Z_{t} \end{bmatrix} dt$$

- Dimensionality: 2 income types \times M wealth grid points \implies both \mathbf{v}_t and \mathbf{g}_t are $N(=2M) \times 1$ vectors
- 1. Value function: reduce using quadratic splines
 - Will not discuss today
- 2. Distribution: reduce using model reduction tools
 - Explain intuition in special cases
 - Paper has detailed proofs

Or, what race cars and fighter jets can teach us about distributional dynamics

Based on Stanford Computational and Mathematical Engineering (CME) 345 "Model Reduction"

 $\verb|https://web.stanford.edu/group/frg/course_work/CME345.html| \\$

- Key insight: households only need to forecast prices
 - Krusell-Smith: guess moments to approx distribution, check they forecast prices
 - Our approach: have computer choose "moments", guarantees accuracy

- Key insight: households only need to forecast prices
 - Krusell-Smith: guess moments to approx distribution, check they forecast prices
 - Our approach: have computer choose "moments", guarantees accuracy
- Distribution exactly reduces if there exists as basis $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_k]$ such that

$$\mathbf{g}_t = \gamma_{1t}\mathbf{x}_1 + \gamma_{2t}\mathbf{x}_2 + \dots + \gamma_{kt}\mathbf{x}_k \equiv \mathbf{X}\gamma_t$$

- lacktriangledown N-dimensional \mathbf{g}_t approximated with k << N-dimensional γ_t
- Model approximately reduces if instead $\mathbf{g}_t \approx \mathbf{X} \gamma_t$

- Key insight: households only need to forecast prices
 - Krusell-Smith: guess moments to approx distribution, check they forecast prices
 - Our approach: have computer choose "moments", guarantees accuracy
- Distribution exactly reduces if there exists as basis $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_k]$ such that

$$\mathbf{g}_t = \gamma_{1t}\mathbf{x}_1 + \gamma_{2t}\mathbf{x}_2 + \dots + \gamma_{kt}\mathbf{x}_k \equiv \mathbf{X}\gamma_t$$

- \blacksquare $N\text{-dimensional }\mathbf{g}_t$ approximated with $k<< N\text{-dimensional }\gamma_t$
- Model approximately reduces if instead $\mathbf{g}_t \approx \mathbf{X} \gamma_t$
- \implies Goal: Choose ${f X}$ to "approximate" IRFs of ${f p}_t$ with small k

Big Picture: HA-DSGE

A Special Case: Exogenous Decision Rules

lacksquare Suppose given \mathbf{D}_{vq} and \mathbf{D}_{vZ} in $\mathbf{v}_t = \mathbf{D}_{vq}\mathbf{g}_t + \mathbf{D}_{vZ}Z_t$

$$egin{aligned} rac{\mathsf{d}\mathbf{g}_t}{\mathsf{d}t} &= \mathbf{C}_{gg}\mathbf{g}_t + \mathbf{C}_{gZ}Z_t \ \mathbf{p}_t &= \mathbf{B}_{pg}\mathbf{g}_t + \mathbf{B}_{pZ}Z_t \end{aligned}$$

A Special Case: Exogenous Decision Rules

lacksquare Suppose given \mathbf{D}_{vg} and \mathbf{D}_{vZ} in $\mathbf{v}_t = \mathbf{D}_{vg}\mathbf{g}_t + \mathbf{D}_{vZ}Z_t$

$$egin{aligned} rac{\mathsf{d}\mathbf{g}_t}{\mathsf{d}t} &= \mathbf{C}_{gg}\mathbf{g}_t + \mathbf{C}_{gZ}Z_t \ \mathbf{p}_t &= \mathbf{B}_{pg}\mathbf{g}_t + \mathbf{B}_{pZ}Z_t \end{aligned}$$

- Protoypical problem in model reduction literature
 - Maps low-dimensional inputs (Z_t) into low-dimensional outputs (\mathbf{p}_t)
 - High-dimensional intermediating variable (\mathbf{g}_t)

A Special Case: Exogenous Decision Rules

lacksquare Suppose given \mathbf{D}_{vg} and \mathbf{D}_{vZ} in $\mathbf{v}_t = \mathbf{D}_{vg}\mathbf{g}_t + \mathbf{D}_{vZ}Z_t$

$$\frac{d\mathbf{g}_t}{dt} = \mathbf{C}_{gg}\mathbf{g}_t + \mathbf{C}_{gZ}Z_t$$
$$\mathbf{p}_t = \mathbf{B}_{pg}\mathbf{g}_t + \mathbf{B}_{pZ}Z_t$$

- Protoypical problem in model reduction literature
 - Maps low-dimensional inputs (Z_t) into low-dimensional outputs (\mathbf{p}_t)
 - High-dimensional intermediating variable (\mathbf{g}_t)
- To reduce distribution, need to
 - 1. Find a good basis X
 - 2. Given basis X, estimate coefficients γ_t

Plan Of Attack

- 1. Exogenous decision rules: adapt existing results
 - Start in deterministic model ($Z_t = 0$ for all t)

$$egin{aligned} rac{\mathsf{d}\mathbf{g}_t}{\mathsf{d}t} &= \mathbf{C}_{gg}\mathbf{g}_t \ \mathbf{p}_t &= \mathbf{B}_{pg}\mathbf{g}_t \end{aligned}$$

given initial g_0

■ Move to stochastic model

2. Endogenous decision rules

Plan Of Attack

- 1. Exogenous decision rules: adapt existing results
 - Start in deterministic model ($Z_t = 0$ for all t)

$$egin{aligned} rac{ extsf{d} \mathbf{g}_t}{ extsf{d} t} &= \mathbf{C}_{gg} \mathbf{g}_t \ & p_t &= \mathbf{b}_{pg} \mathbf{g}_t \end{aligned}$$
 (a scalar)

given initial g_0

Move to stochastic model

2. Endogenous decision rules

Estimating Coefficients Given Basis X

■ Can write $\mathbf{g}_t \approx \mathbf{X} \gamma_t$ as a linear regression

$$\mathbf{g}_t = \mathbf{X}\gamma_t + \varepsilon_t, \quad \varepsilon_t \in \mathbb{R}^N = \text{residual}$$

- $\mathbf{g}_t = \text{dependent variable}$
- $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_k]$ contains k independent variables
- **E**stimate γ_t using the orthogonality condition $\mathbf{X}^T \varepsilon_t = 0$

$$\gamma_t = \underbrace{(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}}_{=\mathbf{I}} \mathbf{X}^{\mathrm{T}} \mathbf{g}_t$$

Estimating Coefficients Given Basis X

■ Can write $\mathbf{g}_t \approx \mathbf{X} \gamma_t$ as a linear regression

$$\mathbf{g}_t = \mathbf{X}\gamma_t + \varepsilon_t, \quad \varepsilon_t \in \mathbb{R}^N = \text{residual}$$

- $\mathbf{g}_t = \mathsf{dependent} \ \mathsf{variable}$
- $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_k]$ contains k independent variables
- **E**stimate γ_t using the orthogonality condition $\mathbf{X}^T \varepsilon_t = 0$

$$\gamma_t = \underbrace{(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}}_{-\mathbf{I}}\mathbf{X}^{\mathrm{T}}\mathbf{g}_t$$

Reduced system is

$$\begin{split} \widetilde{p}_t &= \mathbf{b}_{pg} \mathbf{X} \gamma_t \\ \frac{d\gamma_t}{dt} &= \mathbf{X}^{\mathrm{T}} \mathbf{C}_{gg} \mathbf{X} \gamma_t \end{split}$$

 \blacksquare Choose basis X to match transition path of p_t

 \implies match k-order Taylor expansion of p_t using only γ_t

- Choose basis ${\bf X}$ to match transition path of p_t \Longrightarrow match k-order Taylor expansion of p_t using only γ_t
- Unreduced model:

$$p_t = \mathbf{b}_{pg}\mathbf{g}_t$$
$$\frac{d\mathbf{g}_t}{dt} = \mathbf{C}_{gg}\mathbf{g}_t$$

Reduced model:

$$\widetilde{p}_t = \mathbf{b}_{pg} \mathbf{X} \gamma_t$$
$$\frac{d\gamma_t}{dt} = \mathbf{X}^{\mathrm{T}} \mathbf{C}_{gg} \mathbf{X} \gamma_t$$

- Choose basis ${\bf X}$ to match transition path of p_t \Longrightarrow match k-order Taylor expansion of p_t using only γ_t
- Unreduced model:

$$p_t = \mathbf{b}_{pg} e^{\mathbf{C}_{gg} t} \mathbf{g}_0$$

Reduced model:

$$p_t = \mathbf{b}_{pg} \mathbf{X} e^{\mathbf{X}^{\mathrm{T}} \mathbf{C}_{gg} \mathbf{X} t} \mathbf{g}_0$$

- Choose basis ${\bf X}$ to match transition path of p_t \Longrightarrow match k-order Taylor expansion of p_t using only γ_t
- Unreduced model:

$$p_t \approx \mathbf{b}_{pg} \left[\mathbf{I} + \mathbf{C}_{gg}t + \frac{1}{2}\mathbf{C}_{gg}^2 + \dots \right] \mathbf{g}_0$$

Reduced model:

$$\widetilde{p}_t \approx \mathbf{b}_{pg} \mathbf{X} \left[\mathbf{I} + (\mathbf{X}^{\mathrm{T}} \mathbf{C}_{gg} \mathbf{X}) t + \frac{1}{2} (\mathbf{X}^{\mathrm{T}} \mathbf{C}_{gg} \mathbf{X})^2 + \dots \right] \gamma_0$$

- lacktriangle Choose basis ${f X}$ to match transition path of p_t \Longrightarrow match k-order Taylor expansion of p_t using only γ_t
- Claim: if X spans $\mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg})^{\mathrm{T}}$, then path of reduced \widetilde{p}_t matches path unreduced of p_t up to order k

$$\mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg}) := egin{bmatrix} \mathbf{b}_{pg} \mathbf{C}_{gg} \ \mathbf{b}_{pg} \mathbf{C}_{gg}^2 \ \vdots \ \mathbf{b}_{pg} \mathbf{C}_{qq}^{k-1} \end{bmatrix}$$

Why $\mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg})$? $p_t \approx \left[1, t, \frac{1}{2}t^2, ..., \frac{1}{(k-1)!}t^{k-1}\right] \mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg})\mathbf{g}_0$

- Choose basis ${\bf X}$ to match transition path of p_t \Longrightarrow match k-order Taylor expansion of p_t using only γ_t
- Claim: if X spans $\mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg})^{\mathrm{T}}$, then path of reduced \widetilde{p}_t matches path unreduced of p_t up to order k (Arnoldi iteration)

$$\mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg}) := egin{bmatrix} \mathbf{b}_{pg} \mathbf{C}_{gg} \ \mathbf{b}_{pg} \mathbf{C}_{gg}^2 \ \vdots \ \mathbf{b}_{pq} \mathbf{C}_{gg}^{k-1} \end{bmatrix}$$

Why $\mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg})$? $p_t \approx \left[1, t, \frac{1}{2}t^2, ..., \frac{1}{(k-1)!}t^{k-1}\right] \mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg})\mathbf{g}_0$

How To Choose Basis X In Stochastic Model?

- lacksquare Choose basis ${\bf X}$ to match impulse response of p_t to Z_t shock
- Claim: If X spans order k observability matrix $\mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg})^{\mathrm{T}}$, then IRF of reduced \widetilde{p}_t matches IRF of unreduced p_t up to order k

How To Choose Basis X In Stochastic Model?

- lacksquare Choose basis ${f X}$ to match impulse response of p_t to Z_t shock
- Claim: If X spans order k observability matrix $\mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg})^{\mathrm{T}}$, then IRF of reduced \widetilde{p}_t matches IRF of unreduced p_t up to order k

- **Intuition**: Impulse response combines
 - 1. Impact effect: do not reduce $Z_t \implies$ match exactly
 - 2. Transition to steady state: role of $\mathcal{O}(\mathbf{b}_{pq}, \mathbf{C}_{qq})$

Extending To Endogenous Decision Rules

 Model reduction literature relies on reduction not affecting dynamics

$$\begin{aligned} \mathbf{C}_{gg} &= \mathbf{B}_{gg} + \mathbf{B}_{gp} \mathbf{B}_{pg} + \mathbf{B}_{gv} \mathbf{D}_{vg} \\ \mathbf{C}_{gZ} &= \mathbf{B}_{gp} \mathbf{B}_{pZ} + \mathbf{B}_{gv} \mathbf{D}_{vZ} \end{aligned}$$

■ Violated with endogenous decision rules

Extending To Endogenous Decision Rules

 Model reduction literature relies on reduction not affecting dynamics

$$\begin{aligned} \mathbf{C}_{gg} &= \mathbf{B}_{gg} + \mathbf{B}_{gp} \mathbf{B}_{pg} + \mathbf{B}_{gv} \mathbf{D}_{vg} \\ \mathbf{C}_{gZ} &= \mathbf{B}_{gp} \mathbf{B}_{pZ} + \mathbf{B}_{gv} \mathbf{D}_{vZ} \end{aligned}$$

- Violated with endogenous decision rules
- But literature about efficiently approximating the distribution
 - Can inefficiently improve approximation by adding independent basis vectors
- Solution: set \mathbf{X} to span $\mathcal{O}(\mathbf{b}_{pg}, \mathbf{C}_{gg})^{\mathrm{T}}$ assuming $\mathbf{D}_{vg} = \mathbf{D}_{vZ} = 0$
- If implied dynamics are inaccurate, then iterate

Internal Consistency

■ Key question: when is approximation accurate? I.e., how to choose *k*?

Internal Consistency

- Key question: when is approximation accurate? I.e., how to choose k?
- **Answer 1**: increase k until IRFs converge
- Answer 2: internal consistency check
 - 1. Compute decisions from reduced model $\tilde{\mathbf{v}}_t = \mathbf{D}_{v\gamma}\gamma_t + \mathbf{D}_{vZ}Z_t$
 - 2. Simulate nonlinear dynamics of full distribution

$$\mathbf{p}_t^* = \mathbf{F}(\mathbf{g}_t^*; Z_t)$$

$$\frac{\mathsf{d}\mathbf{g}_t^*}{\mathsf{d}t} = \mathbf{A}(\widetilde{\mathbf{v}}_t, \mathbf{p}_t^*)\mathbf{g}_t^*$$

3. Compare to dynamics implied by reduced system $\widetilde{\mathbf{p}}_t$

$$\epsilon = \max_{i} \max_{t \ge 0} |\log \widetilde{p}_{it} - \log p_{it}^*|$$

The Reduced Linear System

■ Summarizing, we approximate

$$egin{aligned} \widehat{\mathbf{v}}_t &pprox \mathbf{Z}\eta_t, \ \widehat{\mathbf{g}}_t &pprox \mathbf{X}\gamma_t, \end{aligned}$$
 where η_t is $k_v imes 1$, γ_t is $k_q imes 1$ with $k_v, k_q << N$

Sufficient to keep track of these low-dimensional vectors:

$$\mathbb{E}_{t} \begin{bmatrix} d\eta_{t} \\ d\gamma_{t} \\ dZ_{t} \end{bmatrix} = \begin{bmatrix} \mathbf{Z}' \mathbf{B}_{vv} \mathbf{Z} & \mathbf{Z}' \mathbf{B}_{vp} \mathbf{B}_{pg} \mathbf{X} & \mathbf{Z}' \mathbf{B}_{vp} \mathbf{B}_{pZ} \\ \mathbf{X}' \mathbf{B}_{gv} \mathbf{Z} & \mathbf{X}' (\mathbf{B}_{gg} + \mathbf{B}_{gp} \mathbf{B}_{pg}) \mathbf{X} & \mathbf{X}' \mathbf{B}_{gp} \mathbf{B}_{pZ} \\ \mathbf{0} & \mathbf{0} & -\nu \end{bmatrix} \begin{bmatrix} \eta_{t} \\ \gamma_{t} \\ Z_{t} \end{bmatrix} dt$$

■ Then proceed as before

Approximate Aggregation in KS Model

- Comparison of full distribution vs. k = 1 approximation
 - ⇒ recovers Krusell & Smith's "approximate aggregation"

Approximate Aggregation in KS Model

- Large-scale models in applications require k = 300
 - ⇒ no approximate aggregation

Internal Consistency

- Maximum deviation: 0.065%
- Maximum deviation in unreduced model: 0.049%

Model Reduction Speeds Up Solution

	w/o Reduction	w/ Reduction
Steady State	0.082 sec	0.082 sec
Linearize	0.021 sec	0.021 sec
Reduction	×	0.007 sec
Solve	0.14 sec	0.002 sec
Total	0.243 sec	0.112 sec

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Households

$$\begin{aligned} \max_{\{c_{jt}\}_{t\geq 0}} \mathbb{E}_0 \int_0^\infty e^{-(\rho+\zeta)t} u(c_{jt}) dt & \text{such that} \\ c_{jt} + \dot{b}_{jt} + d_{jt} + \chi(d_{jt}, \mathbf{a_{jt}}) &= r_t^b(b_{jt}) b_{jt} + w_t z_{jt} - T(w_t z_{jt}) \\ \dot{\mathbf{a}}_{jt} &= r_t^a \mathbf{a_{jt}} + d_{jt} \\ z_{jt} &\in \{z_1, ..., z_{N_z}\} \text{ Poisson with intensities } \lambda_{zz'} \\ b_{jt} &\geq -\underline{B} \times Z_t \text{ and } \mathbf{a_{jt}} \geq 0 \end{aligned}$$

- lacksquare b_{it} : liquid assets
- \blacksquare a_{jt} : illiquid assets
- d_{jt} : illiquid deposits (≥ 0)
- \blacksquare $\chi(d_{it}, a_{it})$: transaction cost function

Kinked adjustment cost function $\chi(d,a)$

$$\chi(d_{jt}, a_{jt}) = \chi_0 |d_{jt}| + \chi_1 \left| \frac{d_{jt}}{a_{jt}} \right|^{\chi_2} a_{jt}$$

Production and Market Clearing

Aggregate production function with growth rate shocks

$$Y_t = K_t^{\alpha} (Q_t N_t)^{1-\alpha}$$
$$d \log Q_t = Z_t dt$$
$$dZ_t = -\nu Z_t dt + \sigma dW_t$$

Perfect competition in factor markets

$$w_t = (1 - \alpha) \frac{Y_t}{N_t}, \qquad r_t^a = \alpha \frac{Y_t}{K_t} - \delta$$

- Market clearing
 - Illiquid assets: $K_t = \int adG_t(a, b, z)$
 - Liquid assets: $B = \int bdG_t(a, b, z)$
 - Labor market: $N_t = \int z dG_t(a, b, z) \equiv 1$

Parameterization

- 1. Distribution of income and wealth in micro data
 - Exogenously fix subset of parameters to standard values
 - Estimate labor productivity shocks from SSA data

 Details
 - Choose transaction costs + discount rate to match wealth distribution

2. Dynamics of income in macro data

Statistic	Data	Model		
$\sigma\left(\Delta\log Y_t\right)$	0.89%	0.88%		
$Corr(\Delta \log Y_t, \Delta \log Y_{t-1})$	0.37	0.36		
$\overline{d \log Q_t} = Z_t dt$, with $dZ_t = -\nu Z_t dt + \sigma dW_t$				

Model matches key feature of U.S. wealth distribution

	Data	Model
Mean illiquid assets (rel to GDP)	3.000	3.000
Mean liquid assets (rel to GDP)	0.375	0.375
Poor hand-to-mouth	10.0%	10.5%
Wealthy hand-to-mouth	20.0%	17.2%
Borrowers	15.0%	13.5%

Model generates high and heterogeneous MPCs

Average quarterly MPC out of a \$500 windfall: 23%

Parameterization

- 1. Distribution of income and wealth in micro data
 - Exogenously fix subset of parameters to standard values
 - Estimate labor productivity shocks from SSA data

 Details
 - Choose transaction costs + discount rate to match wealth distribution
- 2. Dynamics of aggregate income in macro data

Statistic	Data	Model		
$\sigma\left(\Delta\log Y_t\right)$	0.89%	0.88%		
$Corr(\Delta \log Y_t, \Delta \log Y_{t-1})$	0.37	0.36		
$d\log Q_t = Z_t dt$, with $dZ_t = -\nu Z_t dt + \sigma dW_t$				

"Approximate Aggregation" Breaks Down

Performance of the Method, Size $\approx 132,000$

	$k_g = 300$	$k_g = 150$
Steady State	47.00 sec	47.00 sec
Derivatives	21.91 sec	21.91 sec
Dim reduction	258.80 sec	79.90 sec
Linear system	17.14 sec	12.66 sec
Simulate IRF	3.76 sec	2.12 sec
Total	348.61 sec	171.58 sec

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Application 1: Inequality Matters for Agg C + Y Dynamics

Campbell-Mankiw Macro Annual '89: how match C + Y dynamics?

	Data	Models		
		Rep agent	Two-Asset	
Sensitivity to Income				
$IV(\Delta \log C_t \ on \ \Delta \log Y_t$	0.503	0.247	0.656	
using $\Delta \log Y_{t-1})$				
Smoothness				
$\frac{\sigma(\Delta \log C_t)}{\sigma(\Delta \log Y_t)}$	0.518	0.709	0.514	

Application 1: Inequality Matters for Agg C + Y Dynamics

Campbell-Mankiw Macro Annual '89: how match C + Y dynamics?

Data	Models		
	Rep agent	Two-Asset	CM
0.503	0.247	0.656	0.505
0.518	0.709	0.514	0.676
	0.503	Rep agent 0.503 0.247	Rep agent Two-Asset 0.503 0.247 0.656

Plan For Today

1. Computational Methodology

- Simple Krusell-Smith model
- Linearizing heterogeneous agent models
- Dimensionality reduction

2. Applications

- Two-asset model
- Aggregate consumption dynamics
- Inequality dynamics

Application 2: Agg Shocks Matter for Inequality Dynamics

 With Cobb-Douglas production, labor income inequality exogenous

labor income
$$= w_t \times z_{jt}$$

Modify production function to generate endogenous inequality

$$Y_t = \left[\mu (\mathbf{Z}_t^U N_t^U)^{\sigma} + (1 - \mu) \left(\lambda K_t^{\rho} + (1 - \lambda) (N_t^S)^{\rho} \right)^{\frac{\sigma}{\rho}} \right]^{\frac{1}{\sigma}}$$

- $lackbox{\color{red} \blacksquare} N_t^U$: unskilled labor w/ low persistent productivity z_{jt}
- N_t^S : skilled labor w/ high persistent productivity z_{jt}
- \blacksquare Z_t^U : unskilled-specific productivity shock
- lacktriangle Calibrate σ and ρ to generate capital-skill complementarity

Unskilled-Specific Shock Increases Inequality...

■ Fluctuations in income inequality \approx aggregate income

... And Generates Sharp Consumption Bust

- Many low-skill households hand-to-mouth
 - ⇒ larger consumption drop than in rep agent model

Macro With Inequality: No More Excuses!

- 1. Efficient and easy-to-use computational method
 - Open source Matlab toolbox online now

- Use methodology to illustrate interaction of macro + inequality
 - Match micro behavior ⇒ realistic aggregate C + Y dynamics
 - Aggregate shocks generate inequality dynamics
- Estimating models w/ micro data on distributions within reach

Instead: Fully Recursive Notation Pack

$$\begin{split} w(g,Z) &= (1-\alpha)e^Z K(g)^\alpha, \quad r(g,Z) = \alpha e^Z K(g)^{\alpha-1} - \delta \qquad \text{(P)} \\ K(g) &= \int ag(a,z) dadz \qquad \text{(K)} \\ \rho V(a,z,g,Z) &= \max_c \ u(c) + \partial_a V(a,z,g,Z) [w(g,Z)z + r(g,Z)a - c] \\ &\quad + \lambda_z [V(a,z',g,Z) - V(a,z,g,Z)] \\ &\quad + \partial_Z V(a,z,g,Z) (-\nu Z) + \frac{1}{2} \partial_{ZZ} V(a,z,g,Z) \sigma^2 \\ &\quad + \int \frac{\delta V(a,z,g,Z)}{\delta g(a,z)} T[g,Z](a,z) dadz \\ &\quad (\text{∞d HJB)$} \end{split}$$

$$T[g,Z](a,z) &= -\partial_a [s(a,z,g,Z)g(a,z)] - \lambda_z g(a,z) + \lambda_{z'} g(a,z') \\ &\quad \text{(KF operator)} \end{split}$$

• $\delta V/\delta g(a,z)$: functional derivative of V wrt g at point (a,z)

Labor Productivity Shocks Pack

$$\log z_{jt} = z_{1,jt} + z_{2,jt}$$

 $dz_{i,jt} = -\beta_i z_{i,jt} dt + \varepsilon_{i,jt} dN_{i,jt}$, where $\varepsilon \sim N(0, \sigma_i^2)$ for $i = 1, 2$

Moment	Data	Model	Model
		Estimated	Discretized
Variance: annual log earns	0.70	0.70	0.74
Variance: 1yr change	0.23	0.23	0.21
Variance: 5yr change	0.46	0.46	0.49
Kurtosis: 1yr change	17.8	16.5	15.5
Kurtosis: 5yr change	11.6	12.1	13.2
Frac 1yr change $< 10\%$	0.54	0.56	0.63
Frac 1yr change $<20\%$	0.71	0.67	0.71
Frac 1yr change $<50\%$	0.86	0.85	0.83

Labor Productivity Shocks Pack

$$\begin{split} \log z_{jt} &= z_{1,jt} + z_{2,jt} \\ dz_{i,jt} &= -\beta_i z_{i,jt} dt + \varepsilon_{i,jt} dN_{i,jt}, \text{ where } \varepsilon \sim N(0,\sigma_i^2) \text{ for } i=1,2 \end{split}$$

Parameter		Component	Component
		j = 1	j = 2
Arrival rate	λ_j	0.080	0.007
Mean reversion	β_j	0.761	0.009
St. Deviation of innovations	σ_{j}	1.74	1.53