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Overview of Our Paper

B Heterogeneous agent models study interaction of macro +
inequality

B Not yet part of policymakers’' toolbox. Two excuses:
® Computational difficulties because distribution endogenous

B Perception that aggregate dynamics similar to representative
agent

These excuses less valid than you thought

Efficient and easy-to-use computational method
® QOpen source Matlab toolbox online now

Use methodology to illustrate interaction of macro +
inequality
B Match micro behavior = realistic aggregate C + Y
dynamics
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Big Picture: Standard DSGE
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Big Picture: HA-DSGE
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Big Picture: HA-DSGE
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Plan For Today

Computational Methodology

® Simple Krusell-Smith model
B | inearizing heterogeneous agent models

B Dimensionality reduction

Applications

B Two-asset model
B Aggregate consumption dynamics

® |nequality dynamics
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Plan For Today

Computational Methodology

B Simple Krusell-Smith model

B |inearizing heterogeneous agent models (Reiter, Campbell,
Dotsey-King-Wollman)

® Dimensionality reduction (model reduction in engineering)

Applications

B Two-asset model
B Aggregate consumption dynamics

B |nequality dynamics
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Plan For Today

Computational Methodology

B Simple Krusell-Smith model
B | inearizing heterogeneous agent models

B Dimensionality reduction

Applications

B Two-asset model
B Aggregate consumption dynamics

® |nequality dynamics u
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Households

[e.9]
max IEO/ e Ptu(cj)dt such that
0

{ejehi>o0
Cjt + Qje = Wizje + Teag
zjt € {ze, 2z} Poisson with intensities Ay, Ap,

ajtZO

W cj;: consumption
m q: utility function, v/ > 0,u” < 0.
B p: discount rate

B 7, : interest rate

7 /50
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Production and Market Clearing

B Aggregate production function
Y = 2 KON}~ with dZ; = —vZ; + odW,

B Perfect competition in factor markets

Y; Y;
wt:(l—a)ﬁt, rt:aft—é
t ¢

B Market clearing

Ny = | zgi(a, z)dadz = 1

K, = /agt(a, z)dadz,

8/ 50
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Equilibrium

Aggregate state: (g, Z;) = absorb into time subscript ¢
B Recursive notation w.r.t. individual states only

B [, is expectation w.r.t. aggregate states only
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Equilibrium

Aggregate state: (g, Z;) = absorb into time subscript ¢
B Recursive notation w.r.t. individual states only

B [, is expectation w.r.t. aggregate states only

pvi(a, z) =max u(c) + dgvi(a, z)(wiz + rea — c)
C

1 (HJB)
+ A (vi(a, 2') — vi(a, 2)) + £Et [dvi(a, 2)],
dg:(a, z

gtilt/) = - aa[st(a7 Z)gt(a7 Z)] - )‘th(a7 Z) + )\z’gt(a7 2/)7
(KF)
wy = (1 — a)e?? K and r; = anth‘_l — 0, (P)

K, = /agt(a, z)dadz,

dZ; = —vZidt + odW, (Z)



Plan For Today

Computational Methodology

® Simple Krusell-Smith model
B | inearizing heterogeneous agent models

B Dimensionality reduction

Applications

B Two-asset model
B Aggregate consumption dynamics

® |nequality dynamics u
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Extending Linearization to Heterogeneous
Agent Models

Compute non-linear approx. of non-stochastic steady state

Compute first-order Taylor expansion around steady state

Solve linear stochastic differential equation
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Warm Up: Linearizing a Representative Agent
Model

B Representative agent RBC model
o [dct—”] = C7 (ae? KOV — p— §) dt
dK; = (e# Ky — 6K, — Cy) dt
dZt = —ﬁtht + O'CIWt

B Classification of variables

C; = control variable
K; = endogenous state variable

Z; = exogenous state variable
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Warm Up: Linearizing a Representative Agent
Model

B |inearized representative agent RBC model

d@ Bce Bekx Bez @
E:; |dK;| = |Bkc Bxrx DBkz| |K,|dt
dZ; 0 0 -1 Zy

B (Classification of variables

C; = control variable
K; = endogenous state variable

Z; = exogenous state variable
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Extending Linearization to Heterogeneous
Agent Models

Compute non-linear approx. of non-stochastic steady
state

Compute first-order Taylor expansion around steady state

Solve linear stochastic differential equation

12 / 50



Extending Linearization to Heterogeneous
Agent Models

Compute non-linear approx. of non-stochastic steady
state

B Finite difference method from Achdou et al. (2015)
B Steady state reduces to sparse matrix equations

B Borrowing constraint absorbed into boundary conditions

Compute first-order Taylor expansion around steady state

Solve linear stochastic differential equation
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Step 1: Compute Non-Stochastic Steady
State

pv(a,z) = max u(c) + 0gv(a, z)(wz + ra — c) (HJB 55)
+ X (v(a, 2') — v(a, 2))
0= — 94[s(a, 2)g(a,z)] — A\.g(a, z) + A\g(a,2’) (KF SS)

w=(1-a)K% r=aK*! -4,

(P SS)
K= /ag(a, z)dadz
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Step 1: Compute Non-Stochastic Steady
State

puij =u(cij) + Oavij(wzj +rai — ¢ij)

_ " (HJB SS)
+ )\j(’U@"_j — ’Ui’j), with Cij = U (8,1’01"]')
0 = — du[s(a, 2)g(a, 2)] — A\.g(a, 2) + A\.g(a, 2) (KF SS)
w=(1-a)K* r=aK*"!—-4,
(P SS)

K = /ag(a, z)dadz
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Step 1: Compute Non-Stochastic Steady
State

pv=u(v)+A(v;p)v (HJB SS)

0=- aa[S(CL, Z)g(a7 Z)] - )‘Zg(aa Z) + )‘z’g(a7 Z/) (KF SS)
w=(1-a)K*% r=aK*"!—-4,

(P SS)
K = /ag(a, z)dadz
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Step 1: Compute Non-Stochastic Steady
State

pv=u(v)+A(v;p)v (HJB SS)

0=A(v;p)'g (KF SS)
w=(1-a)K* r=aK*!—4,

(P SS)
K = /ag(a,z)dadz
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Step 1: Compute Non-Stochastic Steady
State

pv=u(v)+A(v;p)v (HJB SS)

0=A(v;ip)'g (KF SS)

p =F(g) (P SS)
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Linearizing Continuous Time Het Agent
Models

Compute non-linear approximation to non-stochastic steady
state

B Finite difference method from Achdou et al. (2015)
B Steady state reduces to sparse matrix equations
® Borrowing constraint absorbed into boundary conditions

Compute first-order Taylor expansion around steady
state

Solve linear stochastic differential equation

14 / 50
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Linearizing Continuous Time Het Agent
Models

Compute non-linear approximation to non-stochastic steady
state

B Finite difference method from Achdou et al. (2015)
B Steady state reduces to sparse matrix equations
® Borrowing constraint absorbed into boundary conditions

Compute first-order Taylor expansion around steady
state

B Automatic differentiation: exact numerical derivatives

® Efficient Matlab implementation for sparse systems

Solve linear stochastic differential equation
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Step 2: Linearize Discretized System

B Discretized system with aggregate shocks

1
pve =u(vy) + A (vi;pe) vi + &Et[dvt]

dg; T
dt (Vt7pt) 8t

p: = F (gt: Z)
dZt: —Vtht + O'th
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Step 2: Linearize Discretized System

B Discretized system with aggregate shocks
1
pvi = u(vy) + A (V;pe) vi + %Et{th]

dg T
dt (Vt,pt) St
p: = F(gt; Z1)

dZt: —Vtht + O'th

B Write in general form

dv, vy control
q endog state
E, §t = f(ve, 8¢, Pt, Zt)dt, f,i - pr?ces
7 exog state

dz,
|
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Step 2: Linearize Discretized System

B Discretized system with aggregate shocks

1
pvi =u(vy) + A (vpe) vie + —Ei[dvy]

dt
d
% =A (Vt;pt)T 8t
p: = F(g¢; Z1)

dZt: *Vtht + O'th

B Linearize using automatic differentiation (code: @myAD)

dvy B, 0 B, O Vi
dg: _ Bgv ng ng 0 gt
Elol= o B,, -1 B,z| |D: dt
dZ; 0 0 0 —v Zy

15 / 50
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@myAD

Linearizing Continuous Time Het Agent
Models

Compute non-linear approximation to non-stochastic steady
state

B Finite difference method from Achdou et al. (2015)
B Steady state reduces to sparse matrix equations
B Borrowing constraint absorbed into boundary conditions

Compute first-order Taylor expansion around steady state

B Automatic Differentiation: exact numerical derivatives
® Efficient Matlab implementation for sparse systems

Solve linear stochastic differential equation
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Linearizing Continuous Time Het Agent
Models

Compute non-linear approximation to non-stochastic steady
state

B Finite difference method from Achdou et al. (2015)
B Steady state reduces to sparse matrix equations
B Borrowing constraint absorbed into boundary conditions

Compute first-order Taylor expansion around steady state

B Automatic Differentiation: exact numerical derivatives
® Efficient Matlab implementation for sparse systems

Solve linear stochastic differential equation
B Moderately-sized systems = standard methods OK
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Step 3: Solve Linear System

B Diagonalize + hope that number of stable eigenvalues =
number of state variables

B Set control variables | unstable eigenvectors = policy

function
vi=Dygi +DzZ;

B Feasible for N < 5000 or so

17 / 50
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Linearization is Fast and Accurate

® Calibration: JEDC (2010) comparison project on
Krusell-Smith

B Size: 100 asset grid points = total system = 400
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Linearization is Fast and Accurate

® Calibration: JEDC (2010) comparison project on
Krusell-Smith

B Size: 100 asset grid points = total system = 400

B Speed: ~ 0.25 seconds
® JEDC (2010) project: ~ 7 minutes up to ~ 46 hours
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Linearization is Fast and Accurate

® Calibration: JEDC (2010) comparison project on
Krusell-Smith

B Size: 100 asset grid points = total system = 400

B Speed: ~ 0.25 seconds
® JEDC (2010) project: ~ 7 minutes up to ~ 46 hours

B Accuracy: Max difference in K; from simulations using
individual policies vs. aggregate law of motion

Agg Shock ¢ 0.01% 0.1% 0.7% 1% 5%
DH Error Stat 0.000% 0.002% 0.053% 0.135% 3.347%

® JEDC (2010) project: most accurate alternative ~ 0.16% 0

18/50 A%



Plan For Today

Computational Methodology

® Simple Krusell-Smith model
B | inearizing heterogeneous agent models

B Dimensionality reduction

Applications

B Two-asset model
B Aggregate consumption dynamics

® |nequality dynamics u
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Model-Free Reduction Method

A~

dvy B,, 0 By, 0 Vi
dgt _ Bgv ng ng 0 gt
Bl0 =0 By -I By||p|”
dZt 0 0 0 -V Zt

B Dimensionality: 2 income types x M wealth grid points
—> both v; and g; are N(= 2M) x 1 vectors

19 / 50
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Model-Free Reduction Method

A~

dvy B,, 0 By, 0 Vi
dgt _ Bgv ng ng 0 gt
Bl0 =0 By -I By||p|”
dZt 0 0 0 -V Zt

B Dimensionality: 2 income types x M wealth grid points
—> both v; and g; are N(= 2M) x 1 vectors

Value function: reduce using quadratic splines
® Will not discuss today

Distribution: reduce using model reduction tools
B Explain intuition in special cases

B Paper has detailed proofs
19 / 50



Distribution Reduction by Projection

Or, what race cars and fighter jets can teach us about
distributional dynamics

0u o

026 — High-Fidelity Model (105,684,236)
0.24 — Reduced-Order Model (400)
02
o 005 ol o5 02 025
Time (s)

include

Based on Stanford Computational and Mathematical Engineering
(CME) 345 “Model Reduction”
https://web.stanford.edu/group/frg/course_work/CME345.html

19 / 50
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https://web.stanford.edu/group/frg/course_work/CME345.html

Distribution Reduction by Projection

B Key insight: households only need to forecast prices

® Krusell-Smith: guess moments to approx distribution, check
they forecast prices

® Qur approach: have computer choose “moments”, guarantees
accuracy

20 / 50



Distribution Reduction by Projection

B Key insight: households only need to forecast prices

® Krusell-Smith: guess moments to approx distribution, check
they forecast prices

® Qur approach: have computer choose “moments”, guarantees

accuracy

B Distribution exactly reduces if there exists as basis
X = [x1,...,Xg] such that

gt = Y1eX1 + Y2rX2 + -+ YeeXke = X1
B N-dimensional g; approximated with k& << N-dimensional ~;

B Model approximately reduces if instead g; ~ Xy

20 / 50



Distribution Reduction by Projection

B Key insight: households only need to forecast prices

® Krusell-Smith: guess moments to approx distribution, check
they forecast prices

® Qur approach: have computer choose “moments”, guarantees

accuracy

B Distribution exactly reduces if there exists as basis
X = [x1,...,Xg] such that

gt = Y1eX1 + Y2rX2 + -+ YeeXke = X1
B N-dimensional g; approximated with k& << N-dimensional ~;

B Model approximately reduces if instead g; ~ X

—> Goal: Choose X to “approximate” IRFs of p; with small k&
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Big Picture: HA-DSGE

Houschold Sector

Houscholds

individual states | individual decisions

assets | skill | consumption [ work

Sectoral Aggregates

labor | net savings | consumption

supply
Labor Market: wage

income tax

| capital

| Fiscal Policy

savings
[ government debt

N | consumption

Bond Market: r

Final Goods Market: price

monetary policy

Central Bank ]
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A Special Case: Exogenous Decision Rules

B Suppose given D, and D,z in vi = Dyyg; + D,z 7Z;

d
% = nggt + CgZZt

pt = Byggt + ByzZ:

22 /50



A Special Case: Exogenous Decision Rules

® Suppose given D,y and D,z in vi = Dyggi + DyzZ;
der _

dt
Pt = Bpggt + BpZZt

nggt + CgZZt

B Protoypical problem in model reduction literature
® Maps low-dimensional inputs (Z;) into low-dimensional
outputs (p¢)

B High-dimensional intermediating variable (g;)
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A Special Case: Exogenous Decision Rules

® Suppose given D,y and D,z in vi = Dyggi + DyzZ;
der _

dt
Pt = Bpggt + BpZZt

nggt + CgZZt

B Protoypical problem in model reduction literature
® Maps low-dimensional inputs (Z;) into low-dimensional
outputs (p¢)

B High-dimensional intermediating variable (g;)
B To reduce distribution, need to
Find a good basis X

Given basis X, estimate coefficients -

22 /50



Plan Of Attack

Exogenous decision rules: adapt existing results

B Start in deterministic model (Z; = 0 for all ¢)

dg:
4~ Cookt
Pt = Bpggt

given initial g

B Move to stochastic model

Endogenous decision rules
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Plan Of Attack

Exogenous decision rules: adapt existing results
B Start in deterministic model (Z; = 0 for all ¢)

dgt
dt
Pt = bpg8i (a scalar)

= nggt

given initial g

B Move to stochastic model

Endogenous decision rules
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Estimating Coefficients Given Basis X
® Can write gy & X; as a linear regression

g =XV +¢&, &€ RY = residual
B g, = dependent variable

® X =[xy, ...,X] contains k independent variables

B ~, = coefficients to be estimated

B Estimate -y, using the orthogonality condition XTe; = 0
= (XTX)—I XTgt
N——

=I
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Estimating Coefficients Given Basis X
® Can write gy & X; as a linear regression

g =XV +¢&, &€ RY = residual
B g, = dependent variable

® X =[xy, ...,X] contains k independent variables

B ~, = coefficients to be estimated

B Estimate -y, using the orthogonality condition XTe; = 0
= (XTX)—I XTgt
N——

=I

B Reduced system is

ﬁt - bng’Yt
d
% = XTCy Xy

24 / 50
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How To Choose Basis X?

B Choose basis X to match transition path of p;
= match k-order Taylor expansion of p; using only v,
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How To Choose Basis X?

B Choose basis X to match transition path of p;
= match k-order Taylor expansion of p; using only

B Unreduced model:

Dt = bpggt
dg
=t nggt
B Reduced model:

ﬁt = bng’Yt
dyt T
% =X ngX")/t
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How To Choose Basis X?

B Choose basis X to match transition path of p;

== match k-order Taylor expansion of p; using only =,

B Unreduced model:
Pt = bpgecggth

B Reduced model:

XTC,,Xt
Pt = bngG 9977780
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How To Choose Basis X?

B Choose basis X to match transition path of p;

= match k-order Taylor expansion of p; using only =,

B Unreduced model:

1
P =~ bpg |:I =+ ngt + 5039 + :| £0

B Reduced model:

- 1
Pr ~ by X [I + (XTCy,X)t + 5(XTcggX)2 + ] Yo
\

25 /50 M



How To Choose Basis X?

B Choose basis X to match transition path of p;
=—> match k-order Taylor expansion of p; using only 7,

® Claim: if X spans O(b,,, Cyy)", then path of reduced p;
matches path unreduced of p; up to order k

byg
bpgcgg
O(bpg, Cyg) == b,yCog

k—1
_bPQng J

5 Why O(bpg, Cyq)?
P (Lt 38, gt O(byg, Cogeo
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How To Choose Basis X?

B Choose basis X to match transition path of p;

=—> match k-order Taylor expansion of p; using only 7,

® Claim: if X spans O(b,,, Cyy)", then path of reduced p;
matches path unreduced of p; up to order k (Arnoldi

iteration)

O(bpga ng) =

B Why O(b,g,Cyg)?

by, Chit

bpg
bpgcgg
bpg ng

g9

Dy [1, ta %tza ceen ﬁtk_l—‘ O(bvaa Caa)go

26 / 50
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How To Choose Basis X In Stochastic Model?

B Choose basis X to match impulse response of p; to Z; shock

® Claim: If X spans order k observability matrix O(b,,, Cy4g)T,
then IRF of reduced p; matches IRF of unreduced p; up to
order k

27 / 50



How To Choose Basis X In Stochastic Model?

B Choose basis X to match impulse response of p; to Z; shock

® Claim: If X spans order k observability matrix O(b,,, Cy4g)T,
then IRF of reduced p; matches IRF of unreduced p; up to
order k

B [Intuition: Impulse response combines

Impact effect: do not reduce Z; = match exactly

Transition to steady state: role of O(b,g, Cyg)

27 / 50
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Extending To Endogenous Decision Rules

B Model reduction literature relies on reduction not affecting
dynamics

ng = ng + ngBpg + Bgvag
CQZ = BgPBpZ + BgvaZ

B Violated with endogenous decision rules
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Extending To Endogenous Decision Rules

B Model reduction literature relies on reduction not affecting
dynamics
Cgg = Bygg + BgpBpg + BguDyy
Cyz = BgpBpz + BguDoz

B Violated with endogenous decision rules

B But literature about efficiently approximating the distribution
B Can inefficiently improve approximation by adding independent
basis vectors

B Solution: set X to span O(b,,, C,,)" assuming
Dyy =D,z =0

B |f implied dynamics are inaccurate, then iterate
28 / 50



Internal Consistency

B Key question: when is approximation accurate? l.e., how to
choose k7

29 / 50
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Internal Consistency

B Key question: when is approximation accurate? l.e., how to
choose k7

B Answer 1: increase k until IRFs converge

B Answer 2: internal consistency check

Compute decisions from reduced model v; = D, y: + D,z Z;

Simulate nonlinear dynamics of full distribution
p; = F(gi: Zt)

dg;

dt

Compare to dynamics implied by reduced system p;

¢ = max max |log p;; — log pjy|
i t>0
= 29 / 50
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The Reduced Linear System

B Summarizing, we approximate

vy & Loy,

/g\t ~ Xﬁ/ﬁ

where 1, is k, x 1, v is k, x 1 with &k, b, << N

B Sufficient to keep track of these low-dimensional vectors:

dny Z'B,,Z 7Z'B,,B,,;X Z’B,,B,z [
E; [dy | = | X'BgpwZ X'(Bgg+ BgpBpg)X X'BgByz| |
dZt O 0 et 4 Zt

B Then proceed as before |

30/50 M



Approximate Aggregation in KS Model

TFP Output

08 0.8
- —— Full model
Z 06 — — Reduced model 0.6
g
204 0.4
5
<02 0.2
®

0 0
0 10 20 30 40 50 0 10 20 30 40 50
Consumption Investment

0.14
4 0.12
oot
£ 008
E
£ 006
3
= 0.04

0.02 05

0 10 20 30 40 50 0 10 20 30 40 50
Quarters Quarters

® Comparison of full distribution vs. & = 1 approximation

— recovers Krusell & Smith’s “approximate aggregation” ‘
31/50 MY



Approximate Aggregation in KS Model

TFP Output

08 0.8
- —— Full model
Z 06 — — Reduced model 0.6
H
o4 0.4
E
%
<02 0.2
®

0 0
0 10 20 30 40 50 0 10 20 30 40 50
Consumption Investment

0.14
4 0.12
oot
£ 008
=
£ 006
3
32 0.04

0.02 05

0 10 20 30 40 50 0 10 20 30 40 50
Quarters Quarters

B |arge-scale models in applications require k& = 300

=> no approximate aggregation
31/ 50



Internal Consistency

36.3
36.2
36.1

36

35.9

Aggregate Capital

—— Nonlinearly Aggregated
- — Reduced Model Forecast
353 . . . . . . . )

0 50 100 150 200 250 300 350 400
Quarters

B Maximum deviation: 0.065%

B Maximum deviation in unreduced model: 0.049%
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Model Reduction Speeds Up Solution

w/o Reduction

w/ Reduction

Steady State
Linearize
Reduction
Solve

Total

0.082 sec
0.021 sec
X

0.14 sec
0.243 sec

0.082 sec
0.021 sec
0.007 sec
0.002 sec
0.112 sec

33/ 50
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Plan For Today

Computational Methodology

® Simple Krusell-Smith model
B | inearizing heterogeneous agent models

B Dimensionality reduction

Applications

B Two-asset model
B Aggregate consumption dynamics

® |nequality dynamics u
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Households

max IEO/ e*(p“)tu(cjt)dt such that
0

{ejt}i>o0
Cjt + bjitd i+ x(dji aje) = r{(bjt)bje + wizje — T(wezjr)
ajr = riaj + dj
zjt € {#1, ..., zn, } Poisson with intensities A,/
bjt > —B x Zy and a;; >0

B bj;: liquid assets

aji: illiquid assets

d;s: illiquid deposits (2 0)

x(djs,ajt): transaction cost function

m (b)) =10 ifbjy >0, =10+ kif b <0

35/ 50
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Kinked

adjustment cost function x(d, a)

Adjustment Cost, % of Deposit/Withdrawal

0.2

N
o
T

% of Deposit/Withdrawal
o

10

5 L

Linear cost: 0.8% |
0 = 0
-5 0 5
Quarterly Deposit/Withdrawal, % of Stock
X2
djt

x(djt; aje) = xoldjel + x1 |——

It

ajt ‘
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Production and Market Clearing

B Aggregate production function with growth rate shocks
Y = K7 (QeNy)' ™
leg Qt = tht
dZy = —vZidt + odW;

B Perfect competition in factor markets

Y,
wt:(l—a)ﬁi, P =a— —9

B Market clearing
" |lliquid assets: K; = [ adGy(a,b, z)
" Liquid assets: B = [ bdGy(a,b,z)
® Labor market: Ny = [ 2dGy(a,b,z) =1

37 /50
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Parameterization

Distribution of income and wealth in micro data

B Exogenously fix subset of parameters to standard values
B Estimate labor productivity shocks from SSA data

B Choose transaction costs + discount rate to match wealth
distribution

Dynamics of income in macro data
Statistic Data Model
o (AlogYy) 0.89% 0.88%

Corr(AlogY;,AlogY;—1) 0.37 0.36
leg Qt = Zydt, with dZ; = —vZ;dt + odW;
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Model matches key feature of U.S. wealth distribution

Liquid wealth distribution

Pr(b=0) = 0.28

Pr(b € (0,$2,000]) = 0.21

Pr(b = $500,000) = 0.02 —

Tlliquid wealth distribution

Pr(a=0)=021

k— Pr(a € (0,$10,000])

Pr(a > $2,000,000) = 0.03 *

Data  Model
Mean illiquid assets (rel to GDP) 3.000  3.000
Mean liquid assets (rel to GDP)  0.375  0.375
Poor hand-to-mouth 10.0% 10.5%
Wealthy hand-to-mouth 20.0% 17.2%
Borrowers 15.0% 13.5%
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Model generates high and heterogeneous
MPCs

Quarterly Responses to $500 Rebate Quarterly MPC $500

100 -
0 20

0 0.2 0.4 06 0.8 1 Liquid Wealth ($000)
Tlliquid Wealth ($000)

B Average quarterly MPC out of a $500 windfall: 23%

4
-
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Parameterization

Distribution of income and wealth in micro data

B Exogenously fix subset of parameters to standard values
B Estimate labor productivity shocks from SSA data

B Choose transaction costs + discount rate to match wealth
distribution

Dynamics of aggregate income in macro data
Statistic Data Model
o (AlogYy) 0.89% 0.88%

Corr(AlogY;,AlogY;—1) 0.37 0.36
leg Qt = Zydt, with dZ; = —vZ;dt + odW;
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“Approximate Aggregation” Breaks Down

Liquid return Illiquid Return Wage
7.55 0.7
— —k, =100
06 kg = 300
— — ky =350
05
£
£ Zoa
& H
IS £ 03
N
0.2
78 0.1
7.49 0
5 10 15 20 5 10 15 20 10 15 20
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Performance of the Method, Size ~ 132,000

kg = 300 kg = 150
Steady State  47.00 sec 47.00 sec
Derivatives 21.91 sec 21.91 sec
Dim reduction 258.80 sec  79.90 sec
Linear system  17.14 sec 12.66 sec
Simulate IRF~ 3.76 sec 2.12 sec
Total 348.61 sec 171.58 sec
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Plan For Today

Computational Methodology

® Simple Krusell-Smith model
B | inearizing heterogeneous agent models

B Dimensionality reduction

Applications

B Two-asset model
B Aggregate consumption dynamics

® |nequality dynamics u
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Application 1: Inequality Matters for Agg C +
Y Dynamics

B Campbell-Mankiw Macro Annual '89: how match C + Y
dynamics?

Data Models
Rep agent Two-Asset

Sensitivity to Income

IV(Alog C; on AlogY; 0.503 0.247 0.656
using AlogY;_1)

Smoothness

o(Alog Cy)

EENTID) 0.518 0.709 0.514
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Application 1: Inequality Matters for Agg C +
Y Dynamics

B Campbell-Mankiw Macro Annual '89: how match C +Y
dynamics?

Data Models
Rep agent Two-Asset CM

Sensitivity to Income

IV(Alog Cy on AlogY; 0.503 0.247 0.656 0.505
using AlogY;_1)

Smoothness

o(Alog Cy)

NI 0.518 0.709 0.514 0.676
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Plan For Today

Computational Methodology

® Simple Krusell-Smith model
B | inearizing heterogeneous agent models

B Dimensionality reduction

Applications

B Two-asset model
B Aggregate consumption dynamics

® |nequality dynamics
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Application 2: Agg Shocks Matter for
Inequality Dynamics

® With Cobb-Douglas production, labor income inequality

exogenous
labor income = w; X zj;

B Modify production function to generate endogenous inequality
1

U S\o\ o |7
Y= (20 NE) 4+ (1= ) (AR + (1= N(VF)?) |
® NY: unskilled labor w/ low persistent productivity z;;
® N7: skilled labor w/ high persistent productivity Zjt

m ZU: unskilled-specific productivity shock

\

B Calibrate o and p to generate capital-skill complementarity L
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Unskilled-Specific Shock Increases Inequality...

Unskilled Wage

% deviation
S
@
T

04l — Unskilled wage

s — — Skilled Wage

06 I I I I I I I I |
1 2 3 4 5 6 7 8 9 10

Consumption Inequality

0.03 -

0.02 -

% deviation

0.01 -

B Fluctuations in income inequality ~ aggregate income
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And Generates Sharp Consumption Bust

Consumption

Two-asset model
-0.08 | — — Rep agent model

B Many low-skill households hand-to-mouth

= larger consumption drop than in rep agent model
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Macro With Inequality: No More Excuses!

Efficient and easy-to-use computational method

® QOpen source Matlab toolbox online now

Use methodology to illustrate interaction of macro +
inequality

® Match micro behavior = realistic aggregate C + Y
dynamics

B Aggregate shocks generate inequality dynamics

B Estimating models w/ micro data on distributions within reach ¥
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Instead: Fully Recursive Notation

w(g, Z) = (1-a)e?K(g)*, r(9,Z2) =ae’K(g)* ' =5  (P)
K(g) = / ag(a, 2)dadz (K)
PV (a,2.9.2) = max u(e) + 0,V (a. 2.9, Z)|u(g. Z)z + r(g. Z)a —
+ N[V, 2,9, 2) — Via, 2,9, 2)]
+07V(a,z,9,2)(—vZ) + %022‘/(@, 2,9, 7)0*

. / oVia,z,9,7)

5g(a, z) Tlg, Z(a, z)dadz

(ood HJB)
Tlg, Z)(a, 2) = —0a[s(a, 2,9, Z)g(a, 2)] = Azg(a, z) + Axg(a, 2)
(KF operator)
s(a,z,g,Z) = ’U.)(g, Z)Z+T(g?Z)a’_ c*(a,z,g,Z)

B §V/dg(a, z): functional derivative of V' wrt g at point (a, 2) [
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Labor Productivity Shocks

log zj1 = 21,jt + 22,5t

dZi,jt = —Bizmtdt + Ei,jthi,jty where € ~ N(O, 0'22) for i = 1, 2

Moment

Data

Variance: annual log earns
Variance: lyr change
Variance: 5yr change
Kurtosis: lyr change
Kurtosis: byr change

Frac 1yr change < 10%
Frac 1yr change < 20%
Frac 1yr change < 50%

0.70
0.23
0.46
17.8
11.6
0.54
0.71
0.86

Model Model
Estimated Discretized
0.70 0.74
0.23 0.21
0.46 0.49
16.5 15.5
12.1 13.2
0.56 0.63
0.67 0.71
0.85 0.83
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Labor Productivity Shocks

log zjt = 21,5t + 22,5t
dZiJ't = —Bizi,jtdt + 5i,jthi,jty where € ~ N(O, (T?) fori=1,2

Parameter Component Component
j=1 Jj=2
Arrival rate Aj 0.080 0.007
Mean reversion Bj 0.761 0.009
St. Deviation of innovations o 1.74 1.53
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