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Abstract

The ratio of revenue to inputs differs greatly across plants within coun-

tries such as the U.S. and India. Such gaps may reflect misallocation which

hinders aggregate productivity. But differences in measured average prod-

ucts need not reflect differences in true marginal products. We propose a

way to estimate the gaps in true marginal products in the presence of mea-

surement error. Our method exploits how revenue growth is less sensitive

to input growth when a plant’s average products are overstated by mea-

surement error. For Indian manufacturing from 1985–2013, our correction

lowers potential gains from reallocation by 20%. For the U.S. the effect is

even more dramatic, reducing potential gains by 60% and eliminating 2/3

of a severe downward trend in allocative efficiency over 1978–2013.

∗We are grateful to numerous seminar participants and, especially, Joel David for comments.
Any opinions and conclusions expressed herein are those of the author(s) and do not
necessarily represent the views of the U.S. Census Bureau. This research was performed at
a Federal Statistical Research Data Center under FSRDC Project 1440. All results have been
reviewed to ensure that no confidential information is disclosed. The views expressed in this
paper are those of the author and should not be attributed to the International Monetary Fund,
its Executive Board, or its management.
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1. Introduction

The ratio of revenue to inputs differs substantially across establishments within

narrow industries in the U.S. and other countries. See the survey by Syverson

(2011). One interpretation of such gaps is that they reflect differences in the

value of marginal products for capital, labor, and intermediate inputs. Such

differences may imply misallocation, with negative consequences for aggre-

gate productivity. This point has been driven home by Restuccia and Rogerson

(2008) and Hsieh and Klenow (2009). See Hopenhayn (2014) and Restuccia and

Rogerson (2017) for surveys of the growing literature surrounding this topic.

Differences in measured average products need not imply differences in true

marginal products. First, marginal products are proportional to average prod-

ucts only under Cobb-Douglas production. Second, and to our point of em-

phasis, measured differences in revenue per inputs could simply reflect poor

measurement of revenue or costs. For example, the capital stock is typically a

book value measure that need not closely reflect the market value of physical

capital. Misstatement of inventories will contaminate and distort measures of

gross output and intermediates, since these are inferred in part based on the

change in finished, work in process, and materials inventories.1

We propose and implement a method to quantify the extent to which mea-

sured average products reflect true marginal products in the presence of mea-

surement error and overhead costs. Our method is able to detect measurement

error in revenue and inputs which is additive but whose variance can scale up

with the plant’s true revenue and inputs. Our method cannot identify pro-

portional measurement error, and therefore may yield a lower bound on the

magnitude of measurement error.

1See White, Reiter and Petrin (2018) for how the U.S. Census Bureau tries to correct for
measurement errors in its survey data on manufacturing plants. Rotemberg and White (2019)
argue that the use of imputation in the U.S. but (perhaps) not in India could account for
why allocative efficiency seems higher in the U.S. than in India. Bartelsman, Haltiwanger
and Scarpetta (2013) and Asker, Collard-Wexler and De Loecker (2014) discuss why revenue
productivity need not reflect misallocation even aside from measurement error, due to
overhead costs and adjustment costs, respectively.
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The intuition for our method is as follows. Imagine a world with constant

(proportional) differences in true marginal products. The only shocks are to

idiosyncratic plant productivity. Productivity shocks will move true revenue

and inputs around across plants in the same proportion.2 Thus, in the absence

of measurement error, revenue growth will be proportional to input growth

across all plants. Now suppose, instead, that revenue is overstated for a given

plant. If this measurement error is additive and fixed over time, then the plant’s

measured revenue will move by less in percentage terms in response to a change

in its productivity. Similarly, if a plant has overstated inputs in an additive

and fixed way, its measured inputs will move less than proportionately in re-

sponse to productivity shocks. Thus, if a plants revenue/inputs are overstated

by measurement error, its measured revenue growth will be less responsive to

its measured input growth. We can then gauge the importance of measurement

error in the cross-section by the degree to which high average product plants

exhibit a low elasticity of revenue with respect to inputs over time.

Our method applies to less stark environments with changing true marginal

products and measurement error over time for plants. A key restriction we

do require is that the measurement errors be orthogonal to the true marginal

products. As we will show, our approach involves regressing revenue growth on

input growth, on average products, and on their interaction. The coefficient on

the interaction term speaks to how much measurement error is contributing to

the dispersion in measured average products in the cross-section.

We apply our methodology to panel data on U.S. manufacturing plants from

1978–2013 and formal Indian manufacturing plants from 1985–2013. The U.S.

data is from the Annual Survey of Manufacturers (ASM) plus ASM plants in

Census years, both from the Longitudinal Research Database (LRD). The Indian

data is from the Annual Survey of Industries (ASI). The LRD contains about

50,000 ASM plants per year, and the ASI about 43,000 plants per year.

2Output increases more than inputs in response to a productivity shock, of course. But a
plant’s relative output price will decline with productivity so that its revenue will rise by the same
proportion as its inputs. This is true if the plant’s price-cost markup, or true ratio of revenue to
inputs, does not change with its productivity.
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We first report estimates of allocative efficiency without correcting for mea-

surement error. The U.S. exhibits a severe decline, seemingly going from pro-

ducing 3/5 as much as it could by equalizing marginal products across plants to

producing only 1/3 as much as it could. Figure 1 displays this pattern. If true,

this plunge reduced annual TFP growth rate by 2.5 percent per year over from

1978–2007. By comparison, we estimate that Indian manufacturing operated at

about 1/2 efficiency, with a fair bit of volatility from year to year but no clear

trend despite major policy reforms. Thus by the end of the sample the U.S.

appears to have lower allocative efficiency than India.

Once we correct for measurement error, U.S. allocative efficiency is much

higher (above 2/3) with a modest downward trend and much less volatility.

Measurement error appears to be a growing problem in Census LRD plant data.

In the Indian ASI, correcting for measurement error has a less dramatic effect.

As a result, corrected allocative efficiency appears consistently higher in the

U.S., raising manufacturing productivity by 10 to 50 percent relative to that in

India (in all but one year).

The rest of the paper proceeds as follows. Section 2 presents a simple model

wherein both measurement error and distortions are fixed over time. Section 3

presents the full model, which allows both measurement error and distortions

to change over time. Section 4 describes the U.S. and Indian datasets, and raw

allocative efficiency patterns in the absence of our correction for measurement

error. Section 5 lays out our method for quantifying measurement error, and

applies it to the panel data on manufacturing plants in the U.S. and India. As

stated, these estimates impose the strong assumption that measurement error

and true productivity are uncorrelated. We also rely on local approximations,

so in Section 6 we examine how well our measure performs under alternative

assumptions on the properties of shocks to productivity, distortions, and mea-

surement error. Section 7 shows how correcting for measurement error affects

the picture of allocative efficiency in the U.S. and India.
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Figure 1: Allocative Efficiency in the U.S.

Source: U.S. LRD. The figure shows the % allocative efficiency in U.S.
manufacturing between 1978 and 2013.

2. An Illustrative Model

In order to convey intuition for our methodology, we first present a simple model.

We assume the economy has a fixed number of workers L and a single, compet-

itive final goods sector producing aggregate output Y . Aggregate output is, in

turn, produced by CES aggregation of the output Yi of N intermediate goods

producers with elasticity of substitution ε:

Y =

(
N∑
i=1

Y
1− 1

ε
i

) 1

1− 1
ε

The price index of the final good is given by P =

(∑
i

P 1−ε
i

) 1
1−ε

and is nor-

malized to 1. Intermediate firms produce output using a linear production

technology in labor under heterogeneous productivities: Yi = AiLi. These

firms are monopolistically competitive and face a downward sloping demand

curve: Yi ∝ P−ε
i . They maximize profits taking as given Y , P , the wage w, and
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an idiosyncratic revenue distortion τi:

Πi =
1

τi
PiYi − wLi

The researcher observes only measured revenue P̂iYi ≡ PiYi + gi and mea-

sured labor L̂i ≡ Li+fi. Given the assumed CES demand structure, firms charge

a common markup over their marginal cost (gross of the distortion):

Pi =

(
ε

ε− 1

)
×
(
τi ·

w

Ai

)
True revenue is therefore proportional to the product of true labor times and

the idiosyncratic distortion:

PiYi ∝ τi · Li (1)

Thus variation across firms in true average revenue products
(
PiYi
Li

)
is solely

due to the distortion. Variation in measured average revenue products (TFPR),

however, reflects both the distortion and measurement errors:

TFPRi ≡
P̂iYi

L̂i
∝
[
τi ×

1 + gi/(PiYi)

1 + fi/Li

]
.

While our methodology will allow both the true distortions and measurement

errors to vary over time, to convey intuition we make the a number of simplify-

ing assumptions in this section:

1. The true distortions τi are fixed over time

2. The additive measurement error terms gi and fi are fixed over time

3. The idiosyncratic productivities Ait are time-varying
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Under these assumptions,

∆PiYi = ∆Li = (ε− 1) ∆Ai.

Thus true revenue growth and true input growth are equal for a given plant.

If we regress revenue growth on input growth, ln(TFPR), and the interaction

of input growth and ln(TFPR) across plants in this economy, we should get a

coefficient of 1 on input growth and 0 coefficients on both ln(TFPR) and the

interaction term if there is no measurement error whatsoever.

In the presence of measurement error, however, the relation between mea-

sured revenue and input growth in this economy is

∆P̂ Y i = ∆L̂i ·
τi

TFPRi

.

The higher in TFPR relative to the true distortion τ , the lower is revenue growth

relative to input growth. If we regress revenue growth on input growth, ln(TFPR)

and their interaction, we now expect a negative coefficient on the interaction

term. The greater the variation in TFPR relative to τ across plants, the it should

depress the responsiveness of revenue growth to input growth.

In Section 5 below we will generalize this logic to allow for shocks to both

measurement error and distortions. The intuition from this simple example will

remain: the extent to which high TFPR plants exhibit a low elasticity of revenue

with respect to inputs will help us to estimate the role of measurement error in

TFPR dispersion. We will use this, in turn, to estimate the variance of the true

distortion and therefore the true level of allocative efficiency. In the next section

we present the full model and a decomposition of aggregate and sectoral TFP

into allocative efficiency vs. other terms.
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3. Model

3.1. Economic Environment

We consider an economy with S sectors, L workers and an exogenous capital

stock K. There are an exogenous number of firms Ns operating in each sector.

A representative firm produces a single final good Q in a perfectly competitive

final output market. This final good is produced using gross output Qst from

each sector s with a Cobb-Douglas production technology:

Q =
S∏
s=1

Qθs
s where

S∑
s=1

θs = 1

We normalize P , the price of the final good, to 1. The final good can either be

consumed or used as an intermediate input:

Q = C +X.

All firms use the same intermediate input, with the amounts denotedXsi so that

X ≡
S∑
s=1

Xs =
S∑
s=1

Ns∑
i=1

Xsi. Sectoral output Qs is a CES aggregate of the output

produced by the Ns firms in sector s:

Qs =

(
Ns∑
i=1

Q
1− 1

ε
si

) 1

1− 1
ε

.

We denote Ps the price index of output from sector s. Firms have idiosyncratic

productivity draws Asi, and produce output Qsi using a Cobb-Douglas technol-

ogy in capital, labor and intermediate inputs:

Qsi = Asi(K
αs
si L

1−αs
si )γsX1−γs

si where 0 < αs, γs < 1.

The output elasticitiesαs and γs are sector-specific, but time-invariant and com-

mon across firms within a sector. Firms are monopolistically competitive and
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face a downward sloping demand curve given by Qsi = Qs

(
Psi
Ps

)−ε
.3 Firms also

face idiosyncratic labor distortions τLsi, capital distortions τKsi and intermediate

input distortions τXsi . They maximize profits Πsi taking input prices as given.

Πsi = Rsi − (1 + τLsi)wLsi − (1 + τKsi )rKsi − (1 + τXsi )PXsi

where Rsi ≡ PsiQsi is firm revenue.

3.2. Aggregate TFP

We define aggregate TFP as aggregate real consumption (or equivalently value-

added) divided by an appropriately weighted Cobb-Douglas bundle of aggre-

gate capital and labor:

TFP ≡ C

L1−α̃K α̃
where α̃ ≡

∑S
s=1 αsγsθs∑S
s=1 γsθs

We show in the Model Appendix that

TFP = T ×
S∏
s=1

TFP

θs∑S
s=1 γsθs

s .

T captures the effect of the sectoral distortions τLs , τKs and τXs , which are the

revenue-weighted harmonic means of the idiosyncratic firm-level distortions.4

Sectoral TFP is then:

TFPs ≡
Qs

(Kαs
s L

1−αs
s )γsX1−γs

s

Within-sector misallocation lowers TFPs. The sectoral distortions will in-

duce a cross-sector misallocation of resources, which will show up in T . While

3We assume that the firms treat Ps and Qs as exogenous.

4(1+ τLs ) ≡

[
Ns∑
i=1

Rsi
Rs

1

1 + τLsi

]−1

and similarly for (1+ τKs ) and (1+ τXs ). The Model Appendix

expresses sectoral distortions as a function only of firm distortions and productivities.



10 BILS, KLENOW AND RUANE

cross-sector misallocation is of interest, it is not the focus of this paper. We

therefore leave it to future research to determine how important this could be

in determining cross-country aggregate TFP gaps.

3.3. Sectoral TFP Decomposition

Sector-level TFP is a function of firm-level productivities and distortions:

TFPs =

[
Ns∑
i=1

Aε−1
si

(
τsi
τs

)1−ε
] 1
ε−1

where τsi ≡
[(

1 + τLsi
)1−αs (

1 + τKsi
)αs]γs (

1 + τXsi
)1−γs

and τs ≡
[(

1 + τLs
)1−αs (

1 + τKs
)αs]γs (

1 + τXs
)1−γs

We can go one step further, and decompose sectoral TFP into the product

of four terms: allocative efficiency (AEs), a productivity dispersion term (PDs),

average productivity (As) and a variety term (N
1
ε−1
s ).

TFPs =

[
1

Ns

Ns∑
i

(
Asi

Ãs

)ε−1(
τsi
τs

)1−ε
] 1
ε−1

︸ ︷︷ ︸
AEs=Allocative Efficiency

×

[
1

Ns

Ns∑
i

(
Asi

As

)ε−1
] 1
ε−1

︸ ︷︷ ︸
PDs=Productivity Dispersion

×N
1
ε−1
s︸ ︷︷ ︸

Variety

× As︸︷︷︸
Average Productivity

Ã is the power mean of idiosyncratic productivities,

[
1

Ns

Ns∑
i=1

(Asi)
ε−1

] 1
ε−1

, and A

is the geometric mean of idiosyncratic productivities
Ns∏
i=1

A
1
Ns
si . AEs is maximized

and equal to 1 when there is no variation in the distortions across firms (τsi = τs

∀i). The productivity dispersion term (PDs) is the ratio of the power mean to

the geometric mean. Because ε > 1, greater dispersion in firm-level productiv-

ities induces a reallocation of labor towards the most productive firms, thereby

increasing sectoral TFP. N
1
ε−1
s captures the productivity gains from expanding

the set of varieties available to sectoral goods producers. Finally, it is clear why
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increases in average productivity (As) should increase sectoral TFP.

The goal of this paper is to present a methodology for inferring allocative

efficiency (AEs) from plant-level data while allowing for measurement error. In

the next section we briefly describe the U.S. and Indian datasets we use, present

the model-based approach to inferring allocative efficiency in the absence of

measurement error, and show raw allocative efficiency patterns in the data.

4. Inferring Allocative Efficiency

4.1. The Datasets

We use two datasets of manufacturing plants in this paper: the Indian Annual

Survey of Industries (ASI) from 1985 to 2013 and the U.S. Longitudinal Research

Database (LRD) from 1978 to 2013.

The ASI is a nationally representative survey of formal manufacturing plants

in India. The coverage includes plants with at least 10 workers using power,

and plants with at least 20 workers not using power. Plants fall into two cate-

gories: Census and Sample. Census plants are surveyed every year, and consist

of plants with at least 100 workers (the threshold increases to 200 workers in

some survey years) as well as all plants in 12 of the “industrially backwards”

states. Sample plants are randomly sampled each year within state × industry

cells. Official panel identifiers are available from 1998 on, and we use panel

identifiers from an old version of the publicly available ASI prior to 1998. We

construct an industry classification consisting of 50 manufacturing industries

which are consistently defined throughout our time period.5

The LRD is a database of U.S. manufacturing plants put together by the

U.S. Census Bureau. The coverage is all manufacturing plants with at least

one employee. The database includes information from the Annual Survey of

Manufactures (ASM) and the Census of Manufactures (CMF), augmented with

5The official sectoral classification (NIC) changed in 1987, 1998, 2004 and 2008. We use
official NIC concordances to construct our harmonized classification.
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establishment identifiers from the Longitudinal Business Database (LBD). The

CMF is a census which is conducted in years ending in 2 or 7. The ASM is

a survey which is conducted in all other years. The ASM covers large plants

with certainty (typically plants with at least 100 workers, though the threshold

varies by survey year) and randomly samples smaller plants. The ASM sample

is redrawn in years ending in 4 and 9. In order to avoid any large changes in

sample size over time, we use only the ‘ASM’ sample plants in CMF years. From

here on, we refer to our U.S. dataset as the LRD. We use the harmonized sectoral

classification from Fort and Klimek (2016) at the NAICS 3-digit level (86 sectors).

The main variables we use are gross output, labor, labor costs, capital, in-

ventories, and intermediate inputs. We construct gross output as the sum of

shipments, changes in finished and semi-finished good inventories, and other

revenues. We construct intermediate inputs as the sum of materials, fuels and

other expenditures. We include unpaid family workers in our measure of labor

in India. We construct labor costs as the sum of wages, salaries, bonuses and

supplemental labor costs. We set the capital stock as the sum of fixed assets and

the stock of inventories. Because of data availability, we use the nominal book

value of fixed assets in India, and the real market value of fixed assets in the U.S.6

We do not deflate any nominal variables. Industry-level deflators would get

differenced out because all of our analyses focus on within-industry differences

across plants. Official sampling weights are used in all of our calculations. We

discuss more details about variable construction in our Data Appendix.

We clean the ASI and LRD using the same approach. We drop plants with

missing or negative values for any of the variables described above. We then

trim the 1% tails of TFPR and TFPQ deviations from the industry average in

each year (TFPR and TFPQ are defined in the next section). We describe these

steps in more detail in our Data Appendix. Our final sample sizes are 1,806,000

plant-years for the U.S. and 943,186 plant-years for India.7

6Book value capital stocks are not reported every year in the U.S., unlike investment in fixed
assets. Our real capital stock measure is constructed using the perpetual inventory method.

7We round U.S. observation counts in accordance with Census data disclosure rules.
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4.2. Inferring Allocative Efficiency

Continuing to use ̂ ’s to denote measured values, TFPR and TFPQ are:

TFPRsi ≡
R̂si

(K̂αs
sitL̂

1−αs
si )γsX̂1−γs

si

(2)

TFPQsi ≡

(
R̂sit

) ε
ε−1

(K̂αs
si L̂

1−αs
si )γsX̂1−γs

si

In the absence of measurement error, TFPR would be proportional to the dis-

tortion and TFPQ would be proportional to productivity:

Rsi

(Kαs
si L

1−αs
si )γsX1−γs

si

∝ τsi and
(Rsi)

ε
ε−1

(Kαs
si L

1−αs
si )γsX1−γs

si

∝ Asi

We infer sectoral allocative efficiency using the following expression:

ÂEs =

[
Ns∑
i=1

(
TFPQsi

TFPQs

)ε−1(TFPRsi

TFPRs

)1−ε
] 1
ε−1

where TFPQs =

[
Ns∑
i=1

TFPQε−1
si

] 1
ε−1

and TFPRs =

(
ε

ε− 1

)[
MRPLs

(1− αs)γs

](1−αs)γs [MRPKs

αsγs

]αsγs [MRPXs
1− γs

]1−γs

MRPLs, MRPKs and MRPXs are the revenue-weighted harmonic mean values of

the marginal products of labor, capital and intermediates, respectively. E.g.,

MRPKs =

[∑
i

R̂si

R̂s

1

MRPKsi

]−1

MRPKsi =

(
ε− 1

ε

)
αsγs

R̂st

K̂si

Aggregating across sectors we obtain inferred aggregate allocative efficiency,
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which is equal to true allocative efficiency when there is no measurement error:

ÂEt =
S∏
s=1

ÂE

θst∑S
s=1 γsθst

st

In order to obtain estimates of allocative efficiency over time for the U.S.

and India we need to pin down a number of parameters in the model. Based on

evidence from Redding and Weinstein (2019), we pick a value of ε = 4 for the

elasticity of substitution across plants. Allocative inefficiencies are amplified

under higher values of this elasticity. We infer αs and γs based on country-

specific average sectoral cost shares.8 We allow the aggregate output shares θst

to vary across years, and base them on country-specific sectoral shares of man-

ufacturing output.9 We use labor costs as our measure of labor input because it

captures variation in human capital and hours worked across plants.

4.3. Time-Series Results

Figure 2 plots inferred allocative efficiency for India and the U.S. over their

respective samples. While allocative efficiency exhibits no clear trend in India,

there is a remarkable decrease in allocative efficiency in the U.S. from 1978

to 2006. As a result, over the entire sample allocative efficiency surprisingly

averages 48% for both India and the United States.10 Figure 3 plots the ratio

of U.S. to Indian allocative efficiency for the overlapping years of the samples.

Allocative efficiency is lower in the U.S. than in India by around the year 2000.

U.S. allocative efficiency averages only two-thirds of Indian allocative efficiency

from 2003 to 2013.

8We assume a rental rate for fixed assets of 20% and a rental rate of 10% for inventories.
9Our results are not sensitive to the choice of constant or time-varying sectoral shares.

10Average gains from full reallocation are 123% for the U.S. versus 111% for India. In contrast,
Hsieh and Klenow (2009) found 40-60% higher potential gains from reallocation in India than
in the United States. Our estimates diverge from Hsieh and Klenow’s for a number of reasons:
gross output (us) vs. value added (them); 1978–2013 LRD plants vs. 1987, 1992 and 1997 Census
plants; and trimming of 1% tails in the U.S. vs. 2% (they inconsistently trimmed 2% for the U.S.
and only 1% for India).
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Figure 2: Allocative Efficiency in India and the U.S.

India U.S.

Source: Indian ASI and U.S. LRD. The figure shows the % allocative efficiency for both countries. Average
allocative efficiency is 49% in India and 54% in the U.S. over the respective sample periods.

Figure 3: Allocative Efficiency, U.S. Relative to India

Source: Indian ASI and U.S. LRD. The figure plots the ratio of U.S. allocative efficiency to
Indian allocative efficiency for the years 1985 to 2007 (years in which the datasets overlap).
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The dramatic decline in allocative efficiency for the U.S. mirrors a sharp rise

in the dispersion of its TFPR. Figure 4 displays the variance of ln(TFPR) for both

India and the U.S. for the years 1985 to 2013.11 While the Indian data display

little or no trend, the variance of ln(TFPR) essentially doubles for the U.S. from

1985 to 2006–2009, before retreating part way by the end of the sample.12 Figure

14 in the Appendix plots the 90:50 and 50:10 percentile ratios of ln(TFPR) for the

U.S., and shows that the increasing variance is mostly coming from the right

tail.

Figure 4: Variance of ln(TFPR)

Source: Indian ASI and U.S. LRD. The figure plots the gross output share weighted variance
of ln(TFPR).

11Figure 4 plots the output share weighted variance of ln(TFPR), which maps more directly
into allocative efficiency than the unweighted variance. The unweighted variance of ln(TFPR)
exhibits the same trend in the U.S., with the variance increasing from 0.06 in 1978 to 0.16 in
2009, before falling slightly to 0.13 in 2013.

12As noted above, allocative efficiency averaged 48% in both the Indian and U.S. samples.
This may seem inconsistent with the markedly higher TFPR dispersion for the U.S. displayed in
Figure 4. But India has a much higher intermediate input share than the U.S., which magnifies
the impact of distortions on allocative efficiency.
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Figure 15 in the Appendix shows that TFPQ dispersion rose in both the U.S.

and India from 1985–2013. The variance in logs rose from about 0.35 to 0.45 or

more in both countries. At the same time, the elasticity of TFPR with respect to

TFPQ rose in the U.S. while falling in India — see Figure 16 in the Appendix. The

elasticity rose from around 0.27 to 0.37 in the U.S. from 1985 to 2013. Gouin-

Bonenfant (2019) formulates a theory in which rising TFPQ dispersion is re-

sponsible for both rising TFPR dispersion (and falling labor share of income)

in the U.S. in recent decades. In addition to looking at trends in allocative

efficiency, we would like to know the extent to which these patterns persist after

adjusting for measurement error.

In the next section we present out methodology to correct TFPR for mea-

surement errors with the goal of obtaining measures of allocative efficiency that

are more robust to such errors.

5. Measurement Error

Calculations of misallocation, including those just presented, interpret plant

differences in measured average revenue products (TFPR) as differences in true

marginal products. In many of these studies the underlying plant data are lon-

gitudinal. We will show that, using such data, one can project the elasticity of

revenue with respect to inputs on TFPR to answer the question: to what extent

do plants with higher measured average products have higher true marginal

products? The logic is similar to using the covariance of two noisy measures of

a variable, here noisy measures of a plant’s marginal revenue product, to recover

a truer measure of the variable.
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5.1. Measurement Error and TFPR

Consider the following description of measured inputs Î and measured revenue

R̂ for plant i (year subscripts implicit):

Îi ≡ φi · Ii + fi

R̂i ≡ χi ·Ri + gi

where Ii and Ri denote true inputs and revenues, fi and gi reflect additive mea-

surement errors, and φi and χi are multiplicative errors.13 For simplicity, we

treat the impact of measurement error in inputs as common across different

inputs (capital, labor, intermediates).

In the setting of Section 2, profit maximization by each plant implies

TFPRi ≡
R̂i

Îi
∝ τi

(
R̂i

Ri

Ii

Îi

)
.

Absent measurement error, TFPRi provides a measure of plant i’s distortion τi.

But, to the extent revenue is overstated or inputs are understated, TFPRi will

overstate τi. In that circumstance, the plant’s marginal revenue product is less

than implied by its TFPRi.

The growth rate of a plant’s TFPR will reflect the growth rate of its measure-

ment error as well as the growth rate of its τi:

∆TFPRi = ∆τi + ∆

(
R̂i

Ri

)
− ∆

(
Îi
Ii

)
.

∆ denotes the growth rate of a plant variable relative to the mean in its sector.

If there are only additive measurement errors, then TFPR growth is

∆TFPRi =
∆τi

R̂i/Ri

−

(
R̂i −Ri

R̂i

− Îi − Ii
Îi

)
∆Ii +

dgi

R̂i

− dfi

Îi
.

13Note that the additive terms fi and gi could alternatively reflect deviations from Cobb-
Douglas production. For instance, positive values for fi (such as overhead inputs), or negative
for gi, would imply marginal revenue exceeds average revenue per input.
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As above, dx denotes the level change in x, as opposed to ∆x, which denotes

its percentage change. The response of TFPRi to inputs speaks to the size of

additive measurement error in revenue versus that in inputs. TFPRi decreases

when inputs rise if revenue is overstated relative to inputs ( R̂i−Ri
R̂i

> Îi−Ii
Îi

), and

TFPR increases when inputs rise when the reverse is true. Because relative mea-

surement error, R̂i−Ri
R̂i

versus Îi−Ii
Îi

, causes TFPRi to mismeasure τi, the response

of TFPRi to inputs can identify the role of such errors in observed TFPRi.

By contrast, if there are only multiplicative measurement errors, then the

percentage change in TFPR equals:

∆TFPRi = ∆τi + ∆χi − ∆φi.

Here TFPRi growth provides no information on measurement error in the level

of TFPRi, except to the extent ∆τi, ∆χi, and ∆φi project onto those errors. With

proportional measurement errors, any increase in true inputs or revenue at

plant i will scale up its measurement errors. Here errors that plague TFPRi also

contaminate the change in revenue relative to the change in inputs.

Going forward, we focus on purely additive measurement error. For this

reason, our estimates should be viewed as a conservative assessment of the

role of measurement error in generating differences in TFPRi. We find that

even this conservative assessment dramatically reduces the size and volatility of

inferred misallocation. We further assume that measurement errors are mean

zero.14 Finally, we assume that measurement errors are uncorrelated with the

distortion τi across plants.

We next show how the relation between the responsiveness of a plant’s rev-

enue growth to its input growth and the level of its TFPR can address the role of

measurement error in TFPR. We then present results for both U.S. and Indian

manufacturing.

14We allow the variance of innovations to measurement error to scale with a plant’s
productivity Ai and distortion τi. For this reason, we do not predict that measurement errors
become less important with trend growth or systematically differ large and small plants.
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5.2. Identifying Measurement Error

Our focal point is the elasticity of measured revenue with respect to measured

inputs conditional on the value of TFPRk:

βk ≡
Covk(∆R̂i,∆Îi)

V ark(∆Îi)

For exposition we first assume no measurement error, then allow for errors

in both revenue and inputs. Absent measurement error, changes in revenue

and inputs simply reflect changes in the plant’s productivity and distortion:

∆Îi = ∆Ii = (ε− 1) ∆Ai − ε∆τi,

(3)

∆R̂i = ∆Ri = (ε− 1)(∆Ai −∆τi).

So βk is given by:

βk = 1 + φk, (4)

where φk ≡
Covk(∆τi,∆Ii)

V ark(∆Ii)
=
−ε · V ark(∆τi) + (ε− 1) · Covk(∆τi,∆Ai)

V ark(∆Ii)
.

φk is the elasticity of ∆τ with respect to ∆I.

βk reflects a standard inference problem: a given increase in inputs creates a

larger response in revenue if it is driven by A than if it is driven by a decline

in τ . If V ark (∆τ) = 0 then βk = 1, whereas if V ark (∆A) = 0 then βk =

ε−1
ε

< 1. If τ follows a random walk so that ∆τ is i.i.d., then βk reduces to

1 + φ regardless of TFPR. For stationary τ , its conditional volatility is greater

at extreme τ ’s, reflecting τ ’s regression back to its mean. Thus the V ark(∆τ) is

greater at extremes for TFPR, implying smaller values for βk.
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With measurement error in plant revenues and inputs, (4) becomes:

βk ≈ Ek

(
RiÎi

R̂iIi

)
(1 + φk) + ψk, (5)

where φk ≡
Covk

(
Ii
Îi

∆τi − dfi
Îi
, ∆Îi

)
V ark

(
∆Îi

) and

ψk ≡
1

V ark

(
∆Îi

)(Covk(dgi
R̂i

, ∆Îi

)
+ Covk

(
RÎi

R̂i Ii
, ∆Îi

(
∆Îi +

Ii

Îi
∆τ − dfi

Îi

))

−Ek
(

∆Îi

)
Covk

(
RiÎi

R̂iIi
,
(

∆Îi +
Ii

Îi
∆τ − dgi

Îi

)))
.

The approximate equality in (5) means it is a good approximation for relatively

small changes in A, τ , f , and g.

Comparing equations (4) and (5), with measurement error the factor 1 + φk

in βk scales by Ek(RÎR̂I ). For instance, if revenue is overstated, then any implied

increase in revenue is only manifested to the proportion R/R̂. If inputs are

over measured, then any true increase in inputs is scaled down by Î/I, so the

response in revenues is scaled up by Î/I. The same factor RÎ

R̂I
confounds TFPR

as a measure of the true distortion τ , with the expectation of τ at a particular

TFPR level k given by:

Ek (τi) = Ek

(
Ri Îi

R̂i Ii

)
· TFPRk.

Using the definition of βk from (5), we have:

Ek (τi) = Ek

(
Ri Îi

R̂i Ii

)
· TFPRk =

(
βk − ψk
1 + φk

)
· TFPRk. (6)



22 BILS, KLENOW AND RUANE

Measurement error affects the interpretation of φk and potentially intro-

duces the factor ψk. φk still reflects the inference problem that the elasticity

of measured revenue with respect to measured inputs depends on the source

of the change in inputs. There are now three sources of change in measured

inputs: ∆A, ∆τ and df . Increases in measured inputs driven either by a decrease

in τ or an increase in f result in smaller responses in revenue. Turning to ψk, its

first element allows for the possibility that changes in measurement errors in

revenue are potentially correlated with measured changes in inputs. The latter

terms are more subtle, reflecting any correlations between the measurement

error component of TFPR and changes in inputs or measurement errors.

If ∆τ , ∆A,
df

Î
and

dg

R̂
are each i.i.d., then ψk = 0 and φk reduces to φ, inde-

pendent of the level of TFPR. In this case βk ≈ Ek(
RÎ

R̂I
)(1 + φ) and (6) yields:

Ek (τi) ∝ βk · TFPRk. (7)

Thus, given estimates of the βk’s, we can answer the question: If two plants

differ in TFPR, what is the expected difference in their actual marginal revenue

products due to differences in their τ ’s. If differences in TFPR partially reflect

errors f or g, then β̂k’s will be systematically lower at higher TFPR’s.

We will use equation (7) as a benchmark to correct TFPR for measurement

error. In general, ψk 6= 0 and φk will depend on the level of lagged TFPR. To

address these possibilities, we will simulate a model economy under plausible

scenarios to see if our simple correction using (7) overstates or understates the

role of measurement error in TFPR dispersion. In particular, we will simulate

models where ∆τ , ∆A,
df

Î
and

dg

R̂
are not i.i.d., for instance due to τ , A, or mea-

surement errors being stationary. To anticipate, we will find that our correction

based on (7) is quite accurate for a wide range of parameter values, especially

if measurement errors are only moderately large. For very large measurement

errors, we find (7) tends to under estimate the role of measurement, rendering

our corrections somewhat conservative.
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From (7), we can capture the dispersion in τ ’s that is predicted by TFPR’s. But

in the presence of measurement error there will also be differences in τ ’s that are

orthogonal to TFPR. For instance, a plant with a high value for τ but understated

revenue might display purely average TFPR. To capture this component, we

“add back” variation in τ ’s that is orthogonal to TFPR, under an assumption

that true τ is orthogonal to the measurement error component of TFPR.

From the relation between TFPR, τ , and measurement error, we have:

V ar

(
ln τi

)
= V ar

(
ln TFPRi

)
− V ar

(
ln

(
Ri Îi

R̂i Ii

))
+ 2Cov

(
ln τi, ln

(
Ri Îi

R̂i Ii

))
(8)

We assume that the two components of TFPR, namely the true distortion τ

and the measurement error component R̂ I

R Î
, are orthogonal to each other in

their natural logs. Then the last term in equation (8) is eliminated. Further-

more, using that ln

(
R Î

R̂ I

)
equals (− ln TFPR + ln τ) and can also be broken into

Ek

(
ln

(
R Î

R̂ I

))
and

(
ln
(
R Î

R̂ I

)
−Ek

(
ln

(
R Î

R̂ I

)))
, the middle term can be written

as the two terms:

−V ar

(
ln

(
Ri Îi

R̂i Ii

))
= Cov

(
ln TFPRk, Ek

(
ln

(
Ri Îi

R̂i Ii

)))
− Cov

(
ln τi, ln

(
Ri Îi

R̂i Ii

))
,

which reduces to its first term, given the assumption τ and R̂

R Î
are orthogonal.

Thus equation (8) can be reduced to:

V ar

(
ln τi

)
= V ar

(
ln TFPRi

)
+ Cov

(
ln TFPRk, Ek

(
ln

(
Ri Îi

R̂i Ii

)))
. (9)

The first term here is data. The second is provided by how the estimates of

βk, discussed earlier in this subsection, covary with TFPR. Based on (9), we

add back dispersion in τ that is orthogonal to a plant’s TFPR. We assume this

dispersion is drawn from a lognormal distribution, with a variance as dictated

by (9).
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5.3. Estimates for India and the U.S.

For both India and the U.S. we start with plants that are observed in consecutive

years. We then divide each country’s data into separate time windows. For India

we have 25 years in growth rates (1985–1986 to 2013–2014) that we split into five

windows of approximately six years each.15 For the U.S. we divide 36 years in

growth rates (1978–1979 to to 2013–2014) into five windows of approximately

seven years each. We then regress plant revenue growth on plant input growth

by decile of TFPR in each window:

∆R̂i = λ̂k + β̂k∆Îi + ei, (10)

Here i denotes the plant and k the decile of TFPR. ∆R̂i, ∆Îi and TFPR are each

deviations from the sector-year average for that plant. The individual decile-

windows contain on average 13,000 plants per year for India and 41,000 for the

U.S. Within each decile, plants are weighted by their share of total input costs.16

Given the estimates β̂k, we can then construct a corrected cross-sectional

distribution of distortions τ ’s for each time frame in each country according to:

ln (τ̂) = ln(TFPR) + ln(β̂k) + ε. (11)

That is, each plant is assigned the βk estimated for its TFPR decile.17 ε is drawn

from a log normal distribution with variance dictated by equation (9), together

with the estimates from equation (10) for the plant’s time window.

15There are breaks in the panel identifiers, which means that we don’t have growth rates for
every set of consecutive years.

16More precisely, a plant’s share of input costs reflects the (Tornqvist) average of its share
across the two annual observations being differenced. Similarly, a plant’s relative TFPR reflects
the average of its relative TFPR’s across the two years. In constructing a plant’s input growth
rate, growth in the plant’s individual inputs (intermediates, labor, and capital) are weighted by
its sector’s average input shares. Observations where TFPR increases or decreases by a factor
greater than five are excluded.

17Some years in the cross-sectional sample are reflected in two separate panel samples on
growth rates. For instance the year 2002 for India is spanned by the panel window covering
growth rates from 1997-98 to 2001-02 as well as the window for growth rates from 2002-03 to
2007-08. For such years we average the β̂’s for its backward and forward-looking windows.
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Measurement error is manifested in a lower β at higher levels of TFPR. Before

looking across time windows, we first report β̂ by decile of TFPR, pooling all

years for each country. The estimates are in Table 1. Looking first at India, we

see a clear tendency for β̂ to decline with the level of TFPR. This decline is most

pronounced in the top two deciles of TFPR. The difference in β̂ going from the

bottom to the top decile is –0.205 with a standard error of 0.020. For the U.S.

the negative relationship between TFPR and β̂ is even more striking. β̂ declines

monotonically with TFPR and, as in India, most sharply in the top two deciles

of TFPR. The difference in β̂ between the top and bottom deciles is –0.505 with

a standard error 0.025.

Table 1: Coefficients β̂k for revenue growth on input growth by TFPR decile

Decile k→ 1 2 3 4 5 6 7 8 9 10

India 1.087 1.040 1.027 0.996 1.007 0.991 0.996 0.989 0.951 0.882

1985–2013 (.017) (.012) (.010) (.014) (.011) (.011) (.009) (.014) (.010) (.011)

U.S. 1.046 0.995 0.969 0.961 0.931 0.896 0.863 0.837 0.704 0.541

1978–2013 (.013) (.019) (.015) (.019) (.020) (.016) (.014) (.019) (.021) (.021)

Source: Indian ASI and U.S. LRD. Entries are coefficients from regressing revenue growth on input growth by decile of
ln(TFPR), as shown in equation (10). TFPR deciles are constructed as Tornqvist deviations from the (cost-weighted) sector-
year average. Decile 1 corresponds to the lowest decile of TFPR, and Decile 10 the highest decile of TFPR. Regressions are
weighted by each plant’s (Tornqvist) share of all input costs. Standard errors are clustered at the industry level.

How does the relation between TFPR and β̂ change through time? Figures 5

and 6 display these estimates for India and the U.S., with ln(β̂) plotted against

ln(TFPR) by sample period. For India in Figure 5, β̂ decreases with TFPR to a

similar degree in all periods. Figure 6 reveals the increase in U.S. TFPR dis-

persion over time, manifested by the increasing spread with respect to TFPR in

later periods. Over time β̂ becomes much more negatively related to TFPR in the

United States. Thus the increased dispersion in TFPR in the U.S. is associated

with an increased role for measurement error in that dispersion.
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Figure 5: India β Slopes

Source: Indian ASI. The figure plots the β̂k coefficients (recovered from running the
regressions in equation 10) against deciles of TFPR. In each time window and for
each TFPR decile k, revenue growth is regressed on input growth to obtain β̂k. The
relationship is plotted separately for five different time windows.

From these β̂k estimates, together with (11), we can estimate dispersion in

ln(τ )’s over time. We report these in Table 2, expressed in terms of the variance

of ln(τ̂) relative to the variance of ln(TFPR). For India, the variance of τ̂ is con-

sistently about 30% smaller than the variance of TFPR. For the U.S. we estimate

a larger and growing role for measurement error. In the U.S. the variance of τ̂

is about 70% lower than that for TFPR from 1999 onward. The implication, we

shall see, is that measurement error exaggerates misallocation in both coun-

tries, but especially in the U.S. in recent years. But first we use simulations of a

wider range of models to examine the robustness of our approach to identifying

measurement error in the next section.
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Figure 6: U.S. β Slopes

Source: U.S. LRD. The figure plots the β̂k coefficients (recovered from running the
regressions in equation 10) against deciles of TFPR. In each time window and for
each TFPR decile k, revenue growth is regressed on input growth to obtain β̂k. The
relationship is plotted separately for five different time windows.

Table 2: Dispersion in Marginal Products vs. TFPR Dispersion

Panel A: India

1985–1991 1992–1996 1997–2001 2002–2007 2008–2013

σ2
τ̂

σ2
TFPR

0.74 0.76 0.75 0.70 0.73

Panel B: U.S.

1978–1984 1985–1991 1992–1998 1999–2005 2006–2013

σ2
τ̂

σ2
TFPR

0.40 0.43 0.38 0.32 0.27

Source: Indian ASI and U.S. LRD. The table shows the ratio of the variance of ln(τ̂ ) to the
variance of ln(TFPR), for both India and the U.S. for five different time periods. Variances are
output share weighted. τ̂ is constructed as in equation (11).
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6. Robustness in Simulations

Our approach to estimating the share of true τ dispersion in TFPR dispersion

rests on a set of assumptions, most notably that measurement errors are addi-

tive and that their role in a plant’s TFPR is orthogonal to its true τ distortion.18

Furthermore, if innovations to A, τ , or measurement errors are not i.i.d., then

our corrections based on equation (6) are potentially clouded as terms φk and

ψk may influence the projection of βk on TFPR. Finally, our derivations rely

on first-order approximations which may not perform well for large shocks to

productivity, distortions or measurement errors.

For these reasons, we explore the performance of our estimator in simula-

tions. We match simulated moments to data moments for India and the United

State. We find that our estimator performs well even if measurement error is

sizable, such as we estimate for India. If measurement error is enormously

important, as we find for the U.S., then our approach is conservative, as it tends

to understate the role of measurement error in TFPR dispersion.

We assume that plant i’s idiosyncratic productivity in period t is given by:

Ait = Ai · Ãit.

Ai is the permanent component of a plant’s productivity, which we assume is

lognormally distributed: ln(Ai) ∼ N(0, σ2
a). Ãit is the transitory component of

plant productivity. Plants also face an idiosyncratic, time-varying distortion τit.

Ãit and τit follow:

ln(Ãit) = ρa · ln(Ãit−1) + ηait where ηait ∼ N(0, σ2
ã)

(12)

ln(τit) = ρτ · ln(τit−1) + ητit where ητit ∼ N(0, σ2
τ ).

18Assuming that a firm’s τ is orthogonal to the size of its measurement errors f and g does not
translate directly to orthogonality of τ and the measurement error component of TFPR, because
a plant’s τ affects its scale and thereby the relative importance of its measurement errors.
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Measurement errors in inputs and revenues follow AR(1) processes, with the

variance of the shocks scaling with the size of the plant:

fit = ρf · fit−1 + ηfit · Iit where ηfit ∼ N(0, σ2
f )

(13)

git = ρf · git−1 + ηgit ·Rit where ηgit ∼ N(0, σ2
g)

As a baseline, we consider the case with measurement error in inputs only.

We set ε = 4 and ρa = ρτ = ρf = 0.9 and use the simulated method of moments

(simulating 30,000 plants over 50 years) to calibrate στ , σa, σã and σf .19 We target

four moments from the data: the (output share weighted) variance of ln(TFPR),

the unweighted variance of ln(TFPQ), the slope of ln(β̂) vs. Tornqvist ln(TFPR)

across deciles, and the variance of input growth.20

The parameters are jointly calibrated, but they are differentially important

for certain moments. The variance of ln(TFPR) and the ln(β̂) slope are particu-

larly important in disciplining the values of στ and σf . The variance of ln(TFPQ)

is sensitive to the variance of the permanent component of firm productivity σa,

while the variance of input growth relates strongly to the variance of productiv-

ity shocks σã. Table 3 shows our estimated parameter values. The targeted data

moments and simulated moments for each time period in India and the U.S. are

in Table 4. The simulated moments are always close to the targeted moments

— though not exactly the same because of non-linearities.

The main outcome of interest is how accurately our estimator captures the

variance of distortions relative to TFPR dispersion, σ2
τ/σ

2
TFPR. We compare our

estimated share σ2
τ̂/σ

2
TFPR to the true share for India and the U.S. in Table 5.

Our estimator performs remarkably well for India in all time periods. While

19We clean the simulated data in the same way we do the actual micro data: dropping
observations with negative revenues or inputs and those where TFPR changes by a factor of
five or more. We simulate all plants for 50 years, and then construct the simulated moments as
the average value over the last 30 years.

20We minimize the sum of the absolute ln differences between the targeted data moments
and the simulated moments.
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Table 3: Calibrated Parameter Values

στ σa σã σf

Panel A: India

1985–1991 0.060 0.637 0.181 0.030

1992–1996 0.074 0.711 0.102 0.040

1997–2001 0.073 0.712 0.088 0.042

2002–2007 0.056 0.733 0.110 0.039

2008–2013 0.060 0.744 0.113 0.035

Panel B: U.S.

1978–1984 0.036 0.520 0.103 0.079

1985–1991 0.053 0.517 0.075 0.088

1992–1998 0.050 0.542 0.071 0.103

1999–2005 0.044 0.500 0.070 0.123

2006–2013 0.017 0.494 0.103 0.130
Source: This table shows the parameter values recovered from the model
calibration. The model is calibrated for both India and the U.S. separately
for five different time periods. στ is the standard deviation of the shocks to
the distortions, σa is the standard deviation of the permanent component
of plant productivity, σã is the standard deviation of the time-varying
component of plant productivity, and σf is the standard deviation of
shocks to measurement error in inputs.

conservative, in that it understates the role of measurement error, it deviates

from the true share of distortions in TFPR dispersion by less than 1.3 percentage

points on average. For the U.S. the discrepancy is larger. We overestimate the

share of true distortions in TFPR dispersion for all periods, particularly when

there is a lot of measurement error. For the 2006–2013 window, our estimator

says the variance of distortions is one fourth the variance of TFPR, when in fact

it is only one fiftieth. Despite this, our estimator does capture reasonably well

the movements over time in the share of distortions in TFPR dispersion.

We obtain similar results when we add the autocorrelation of TFPR as a

targeted moment, with ρ = ρτ = ρf as an additional parameter to calibrate.

Likewise when we consider measurement error in revenues rather than inputs.

Although we have more difficulty simulataneously hitting all targeted data mo-

ments, our estimator continues to be a conservative gauge of the importance of

measurement error. We provide these results in our Simulation Appendix.
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Table 4: Data Moments versus Simulated Moments

σ2
TFPR σ2

TFPQ ln(β̂) slope σ2
∆I

Data Model Data Model Data Model Data Model

Panel A: India

1985–1991 0.032 0.032 0.47 0.54 -0.35 -0.35 0.38 0.38

1992–1996 0.038 0.038 0.52 0.52 -0.31 -0.30 0.20 0.20

1997–2001 0.038 0.038 0.50 0.50 -0.33 -0.32 0.17 0.17

2002–2007 0.027 0.027 0.54 0.54 -0.39 -0.38 0.17 0.17

2008–2013 0.027 0.027 0.56 0.56 -0.33 -0.32 0.18 0.18

Panel B: U.S.

1978–1984 0.047 0.047 0.35 0.35 -0.73 -0.75 0.14 0.14

1985–1991 0.060 0.060 0.33 0.33 -0.67 -0.65 0.12 0.12

1992–1998 0.072 0.073 0.37 0.37 -0.74 -0.72 0.12 0.12

1999–2005 0.096 0.096 0.36 0.36 -0.82 -0.80 0.12 0.12

2006–2013 0.102 0.102 0.41 0.41 -0.90 -0.90 0.16 0.16
Source: This table shows the data moments to which the model described in Section 6. is calibrated, and the model-
generated moments from simulations with the calibrated parameter values reported in Table 3. The model is calibrated
for both India and the U.S. separately for five different time periods in each. σ2

TFPR is the output share weighted variance of

ln(TFPR). σ2
TFPQ is the variance of ln(TFPQ). ln(β̂) slope is the slope of β̂ against mean Tornqvist ln(TFPR) across deciles.

σ2
∆I is the variance of input growth.

In our Simulation Appendix we also check how adjustment costs and mul-

tiplicative measurement error affect our estimator. As expected, if all mea-

surement error is multiplicative we find that our estimator predicts that TFPR

dispersion stems entirely from distortions. So, in the presence of multiplica-

tive errors, our estimated share of measurement error in TFPR dispersion is

conservative. We also consider a model with adjustment costs whereby a plant

chooses its inputs one period ahead, before its productivity shock is observed.

Our estimator interprets TFPR dispersion due to adjustment costs as if this dis-

persion was due to true distortions. This would suggest that, if adjustment

costs are important in the U.S. and India, the share of TFPR dispersion due to τ

dispersion may be even lower than what our estimator finds.



32 BILS, KLENOW AND RUANE

Table 5: Simulations: Our Estimator vs. Truth

Panel A: India

1985–1991 1992–1996 1997–2001 2002–2007 2008–2013

σ2
τ̂

σ2
TFPR

(our estimator) 0.678 0.712 0.699 0.640 0.692

σ2
τ

σ2
TFPR

(truth) 0.604 0.693 0.682 0.581 0.656

Panel B: U.S.

1978–1984 1985–1991 1992–1998 1999–2005 2006–2013

σ2
τ̂

σ2
TFPR

(our estimator) 0.334 0.407 0.366 0.304 0.236

σ2
τ

σ2
TFPR

(truth) 0.143 0.240 0.181 0.107 0.015

Source: This table shows, for simulated data, the ratio of the variance ln(τ̂ ) to the variance of ln(TFPR), and the
ratio of the true variance of ln(τ ) to the variance of ln(TFPR). Results are for both India and the U.S., and for five
different time-periods each. The parameters used to generate each of these results are shown in Table 3.

7. Revisiting Misallocation

We now compare the “raw” measures of allocative efficiency for Indian and U.S.

manufacturing to our estimates purging the impact of measurement error. This

is achieved by replacing TFPR as an estimate of τ with the estimated dispersion

of τ ’s implied by equation (11), which we repeat here for convenience:

ln (τ̂) = ln(TFPR) + ln(β̂k) + ε.

To construct allocative efficiency we also need measures of plant TFPQ and

sectoral TFPR. Measurement error in inputs affects TFPQ and TFPR in the same

way, so we get that ln (Â) = ln(TFPQ) + ln(β̂k) + ε.21 To construct sectoral TFPR

we need corrected measures of sectoral MRPL, MRPX and MRPK. We assume

that measurement error is common to all inputs, and therefore affects each of

21Measurement error in revenues is amplified by σ
σ−1 , but this is not quantitatively important.
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Figure 7: Allocative Efficiency in India

Source: Indian ASI. The figures show uncorrected and corrected allocative
efficiency (AE) for years 1985 to 2013. Average uncorrected AE is 47.7% while
average corrected AE is 53.4%.

these in the same way.22 Our estimates for ln(β̂k) are in Figures 5 and 6.

We display corrected vs. uncorrected allocative efficiency for India in Figure

7. Averaging across years, the correction increases allocation efficiency mod-

estly from 48% to 53%. The impact of the correction is fairly stable for India

across the 29 years. Another way to express misallocation is in terms of the in-

crease in productivity that can be reaped by attaining perfect (100%) allocative

efficiency. This is reported for India in Table 6. With distortions measured by

TFPR dispersion, the potential increase in productivity is 111%. Based on the

corrected numbers it is 21 percent lower, at 89% — still quite massive.

In Figure 8 we see a far greater impact in the United States. Our correction

eliminates more than half of potential gains from reallocation and the lion’s

share of the conspicuous downward trend in allocative efficiency. Allocative

efficiency declines by 15% over the 35 years according to our corrected series.

While significant, this is only a third of the 45% decline with no corrections.

22We have that ln (M̂RPL) = ln(MRPL) + ln(β̂k) + ε, and similarly for MRPK and MRPX.
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Table 6: Uncorrected and Corrected Gains from Reallocation

India U.S.

Mean S.D. Mean S.D.

Uncorrected gains 110.8% 17.1% 123.1% 59.7%

Corrected gains 89.0% 12.9% 49.2% 12.1%

Shrinkage 21% 20% 60% 80%

Source: Indian ASI and U.S. LRD. This table reports the average and standard
deviation of uncorrected and corrected gains from improving allocative
efficiency to 100% in India (1985–2013) and the U.S. (1978–2013). The
shrinkage is the percent reduction in the average or standard deviation of
gains after our corrections.

Table 6 reports the potential percent gains from going to 100% allocative

efficiency in the United States. The correction reduces potential gains, averaged

across years, from 123 percent down to 49 percent. In addition to dampening

the trend in misallocation, the correction moderates its higher frequency va-

garies. As a result, volatility for the time series for gains, as measured by its

standard deviation, plummets from 60 percent down to 12 percent.

Our corrections dramatically affect comparisons of allocative efficiency in

the U.S. versus India. Figure 9 displays the allocative efficiency for the U.S.

relative to that in India. Without correcting, the U.S. averages a 16 percent

advantage in allocative efficiency for the first ten years (1985 to 1994). But in

the last ten years, U.S. efficiency collapses relative to India. Over those years

U.S. efficiency averages only two-thirds that for India.

Our corrected series, however, looks entirely different. The U.S. advantage

relative to India is much higher, averaging 25 percent, compared to −6 percent

uncorrected. The U.S. advantage remains positive throughout, with a modest

exception in 2006.
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Figure 8: Allocative Efficiency in the United States

Source: U.S. LRD. The figures show uncorrected and corrected allocative
efficiency (AE) for years 1978 to 2013. Average uncorrected AE is 47.6% while
average corrected AE is 67.4%.

Figure 9: Allocative Efficiency: U.S. relative to India

Sources: Indian ASI and U.S. Census LRD. The figures show uncorrected and
corrected allocative efficiency for the U.S. relative to India for years 1985 to 2013.
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Figure 10: Variance of ln(τ) for U.S.

Source: U.S. LRD. The figure shows uncorrected and corrected variance of ln(τ)
for the U.S., 1978 to 2013.

We demonstrated in Section 4.3. above that the perceived decline in alloca-

tive efficiency for the U.S. mapped directly to a sharp rise in the variance of

ln(TFPR) in the United States. It should come as no surprise, then, that our

correction to allocative efficiency reflects much less estimated dispersion in τ ’s.

Figure 10 shows this to be the case. Dispersion in our corrected TFPR series is

much lower, trends less, is generally less volatile.

Our adjustments for measurement error also alter the implied elasticity of

TFPR with respect to TFPQ in the United States. As displayed in Figure 11,

our corrections lower the elasticity and its upward drift. Bento and Restuccia

(2017) and Decker, Haltiwanger, Jarmin and Miranda (January 2018) highlight

this elasticity as reflecting potential barriers to investing in or benefiting from

higher TFPQ at the plant level. Related, our corrections undermine the case

that TFPQ dispersion has risen across plants in the U.S. (see Figure 12), as em-

phasized for example by Gouin-Bonenfant (2019).
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Figure 11: Elasticity of TFPR with respect to TFPQ in the U.S.

Source: U.S. LRD. The figure shows uncorrected and corrected elasticity of TFPR
with respect to TFPQ for the U.S., 1978 to 2013.

Figure 12: Variance of ln(A) in the U.S.

Source: U.S. LRD. The figure shows uncorrected and corrected variance of ln(A)
for the U.S., 1978 to 2013.
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8. Conclusion

We proposed a way to estimate the true dispersion of marginal products across

plants in the presence of additive measurement errors in revenue and inputs.

We showed that the response of revenue growth to input growth should be lower

for high-TFPR plants in the presence of measurement error. And then used the

projection of that response on TFPR to correct for measurement error. While

our method employs several assumptions, we used simulations to demonstrate

that our approach is robust or at least conservative.

We implemented our method on data from the Indian Annual Survey of In-

dustries from 1985–2013 and the US. Annual Survey of Manufacturing from

1978–2013. In India, we estimated that true marginal products were signifi-

cantly less dispersed than average products. As a result, potential gains from

reallocation fell 21% and the volatility of those gains across years fell by 20%.

In the U.S. our correction had even more bite. Average potential gains from

reallocation fell by 60%, while time-series volatility fell by 80%. Our correction

eliminated 2/3 of a severe downward trend in allocative efficiency for the U.S.

Even corrected, allocative efficiency declined by 15% for U.S. manufacturing

over the 35 years. Based on uncorrected data, allocative efficiency was 6% lower

in the U.S. than in India for 1985 to 2013. In contrast, our corrected series

implies consistently higher allocative efficiency in the U.S. than in India.

We hope our method provides a useful diagnostic for measurement errors

that can be applied when researchers have access to panel data on plants and

firms. For example, David and Venkateswaran (2019) and Bai, Jin and Lu (Au-

gust 2019) apply our correction to firm-level data for China.

Our findings leave many open questions for future research. Why did mea-

surement error worsen considerably over time in the U.S.? Why, even after our

corrections, does ample misallocation remain in the U.S. and India? Is this

real or due to some combination of model misspecification and proportional

measurement error? If it is real, can it be traced to specific government policies

or market failures (e.g. markup dispersion or capital/labor market frictions)?



9. Model Appendix

9.1. Solving the Firm’s Problem

Solving the representative firm’s problem and normalizing the price index of the

final good P = 1, we obtain the demand for sectoral output:

Qs =
1

Ps
θsQ

We can also obtain the demand curve facing firm i in sector s

Psi = θsQQ
1−ε
ε

s Q
− 1
ε

si

With this we can solve the heterogeneous firms’ problem. We obtain the

standard result that prices are a constant markup over marginal cost:

Psi =

(
ε

ε− 1

)
1

γγss

[(
r

αs

)αs ( w

1− αs

)1−αs
]γs [

1

1− γs

]1−γs 1

τsiAsi

9.2. Aggregating to Sector-Level

Aggregating to the sector level, we can express sectoral gross output as a func-

tion of sectoral inputs and sectoral productivity As:

Qs = As(K
αs
s L

1−αs
s )γsX1−γs

s

where

As =

[
Nst∑
i=1

Aε−1
si

(
τs
τsi

)1−ε
] 1
ε−1

The average sectoral distortions on labor is defined as follows:

39
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1 + τLs ≡

[
Ns∑
i=1

Rsi

Rs

1

1 + τLsi

]−1

=

[
Ns∑
i=1

[
Asi
τsi

]ε−1
]

[
Ns∑
i=1

[
Asi
τsi

]ε−1
1

1+τLsi

]

and similarly for τKs and τXs .

9.3. Aggregate Consumption

Aggregate value added in this model (C = Q−X) can be expressed as follows:

C =

(
ε

ε− 1

)∑S
s (1−γs)θs∑S
s γsθs ×

S∏
s

θ
θs∑S
s γsθs

s ×
S∏
s

[(
ααss (1− αs)1−αs

)γs
γγss (1− γs)1−γs

] θs∑S
s γsθs ×

S∏
s

[
τ

τs

] θs∑S
s γsθs ×

[
1−

(
ε− 1

ε

)
1

(1 + τX)

S∑
s

θs(1− γs)
(

1 + τX

1 + τXs

)]
×
(

1

1 + τX

)∑S
s (1−γs)θs∑S
s γsθs ×

 L∑S
s

[
θsγs(1− αs)

(
1+τL

1+τLs

)]
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∑S
s (1−αs)γsθs∑S

s γsθs

×

 K∑S
s

[
θsγsαs

(
1+τK

1+τKs

)]
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∑S
s αsγsθs∑S
s γsθs

×

S∏
s

A
θs∑S
s γsθs

s

where

τ ≡
[
(1 + τL)1−αs(1 + τK)αs

]γs
(1 + τX)1−γs

τL ≡ 1∑S
i
Rs
Q

1
1+τLs

and similarly for τK and τX .
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It is worth noting that the exponents on the sectoral productivity term

 S∏
s=1

A

θs
S∑
s=1

γsθs

s


sum to > 1. This is due to the amplification effect of intermediate inputs. A 1%

increase in the productivity of each sector leads to a greater than 1% increase in

aggregate consumption.

10. Data Appendix

10.1. Indian Annual Survey of Industries

The ASI is a dataset put together by India’s Ministry of Statistics and Programme

Implementation (MOSPI). As of 2019, it can be freely downloaded here: http://

microdata.gov.in/nada43/index.php/home. The reference period for each sur-

vey is the accounting year, which in India begins on the 1st of April and ends

on the 31st of March the following year. Throughout the paper we reference the

surveys by the earlier of the two years covered. Details of how the sampling

methodology for the ASI changes over time are shown in Table 7.

10.1.1. Measurement of main variables

Gross Output: We construct gross output as the sum of the gross value of

products sold, the change in finished good and semi-finished good inventories,

and all other sources of revenue. The gross value of products sold includes

distribution expenses, as well as taxes and subsidies. Other sources of revenue

include the value of electricity sold, the value of own construction, the net value

of resales and as well as receipts from industrial and non-industrial services

rendered (e.g. contract or commission work).

Labor: We construct labor as the average number of personnel in the plant

over the year. Personnel include wage or salary workers, supervisory/managerial

http://microdata.gov.in/nada43/index.php/home
http://microdata.gov.in/nada43/index.php/home
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Table 7: Sampling Methodology for Indian ASI

Period Census Sector Sample Sector

1985–1986 12 less industrially developed states,
50 or more workers with power, 100
or more workers without power, in-
dustries with fewer than 50 plants in
all of India

Stratified within state × 3-digit in-
dustry (NIC-70), 50% samples of re-
maining non-Census plants in alter-
nate years

1987–1996 12 less industrially developed states,
100 or more workers, all joint returns,
all plants within state × 4-digit in-
dustry if < 4 plants, all plants within
state× 3-digit industry if < 20 plants

Stratified within state × 3-digit in-
dustry (NIC-87), minimum sample of
20 plants within strata, otherwise 1/3
of plants sampled

1997 12 less industrially developed states,
plants with > 200 workers, ‘signifi-
cant units’ with < 200 workers but
contributed highly to value of out-
put between 1993–1995, public sec-
tor undertakings

Stratified within state × 3-digit
industry (NIC-87), minimum of 4
plants sampled per stratum

1998 Complete enumeration states, plants
with > 200 workers, all joint returns

Stratified within state × 4-digit
industry (NIC-98), minimum of 8
plants per stratum

1999–2003 Complete enumeration states, plants
with ≥ 100 or more workers, all joint
returns

Stratified within state × 4-digit
industry (NIC-98), minimum of 8
plants per stratum

2004–2006 6 less industrially developed states,
100 or more workers, all joint returns,
all plants within state × 4-digit in-
dustry with < 4 units

Stratified within state × 4-digit in-
dustry, 20% sampling, minimum of 4
plants

2007 5 less industrially developed states,
100 or more workers, all joint returns,
all plants within state × 4-digit in-
dustry with < 6 units

Stratified within state × 4-digit in-
dustry, minimum 6 plants, 12% sam-
pling fraction: exceptions

2008–2013 6 less industrially developed states,
100 or more employees, all joint re-
turns, all plants within state× 4-digit
industry with < 4 units

Stratified within district × 4-digit in-
dustry, minimum 4 plants, 20% sam-
pling fraction

Notes: information regarding sampling methodology for each ASI wave is available in the metadata files here:
http://microdata.gov.in/nada43/index.php/catalog/ASI/about.

http://microdata.gov.in/nada43/index.php/catalog/ASI/about
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staff, administrative/custodial employees and all unpaid workers (including fam-

ily members).

Labor Cost: We construct labor costs as total payments to labor over the course

of the year. These payments include wages and salaries, bonuses, contributions

to old-age pension funds (and other funds), and all welfare expenses.

Capital: This is constructed as the average of the opening and closing book

value of fixed assets (net of depreciation). These include all types of assets

deployed for production and transportation, as well as living or recreational

facilities (hospitals, schools, etc.) for factory personnel. It excludes intangible

assets.

Intermediates: We construct intermediates as the sum of the value of mate-

rials consumed, fuels consumed and other intermediate expenses. Other in-

termediate expenses include repair and maintenance costs (plant/machinery,

building, etc...), costs of contract and commission work, operating expenses

(freight and transportation charges, taxes paid), non-operating expenses (com-

munication, accounting, advertising), and insurance charges.

Industry: The official Indian industry classification is the National Industry

Classification (NIC). The classification was revised in 1987, 1998, 2004 and 2008.

We construct concordances between the various NIC revisions to construct our

harmonized classification with 50 manufacturing industries. In terms of its

level of disaggregation, our industry classification is close to 3-digit NAICS.

Plant identifiers: Official plant identifiers, enabling longitudinal linking across

survey waves, are only available in the ASI surveys from 1998 onwards. Prior

to 1998, we use plant identifiers available in an older version of the publicly

available ASI. These were first used in Allcott, Collard-Wexler and O’Connell

(2016). There are panel breaks between the following year pairs: 1986 to 1987,
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1988 to 1989, and 2007 to 2008. Our panel therefore consists of 4 sub-periods

within which we have plant identifiers: 1985–1986, 1987–1988, 1989–2007, and

2008–2011. In order to verify the quality of these identifiers prior to 1998, we

examine whether the plant’s reported year of incorporation is reported con-

sistently across survey waves. In Figure 13 we show the share of panel plants

whose reported year of incorporation changes from year to year (i.e. the firm’s

reported age does not change by one year between survey years). We don’t see

any evidence that this misreporting is higher prior to 1998 than afterwards.

Figure 13: Consistency of Age Reporting

Sources: Indian ASI. The figure shows the share of panel plants whose reported
year of incorporation changes between year t and year t+1.

10.2. U.S. Annual Survey of Manufactures

The ASM and CMF are restricted access database of U.S. manufacturing plants

put together by the U.S. Census Bureau. Both the ASM and CMF mail-back

surveys. We only use data for plants in the ASM sample, which is redrawn in

years ending in 4 and 9. We use sampling weights in all our analyses to make

our results representative of the universe of U.S. manufacturing plants with at
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least one employee.

10.2.1. Measurement of main variables

Gross Output: We construct gross output as the sum of the value of ship-

ments, the net value of resales, the change in finished good and semi-finished

good inventories, and all other sources of revenue. Other sources of revenue

include payments for contract work performs, installation, repair work, etc...

Labor: We construct labor as the average total number of employees.

Labor Cost: We construct labor costs as total payments to labor over the course

of the year. These payments include wages and salaries, bonuses and other

benefits. Other benefits include all fringe benefits paid by the firm, including

federal insurance contributions, unemployment taxes, employee pension and

welfare plans, etc...

Capital: The ASM does not contain yearly measures of the book value of cap-

ital. We therefore use the real market value of capital (measured in 1997 $),

calculated using the perpetual inventory method (see Foster, Grim and Halti-

wanger (2016) for more details).

Intermediates: We construct intermediates as the sum of the value of ma-

terials purchased, electricity and fuels purchased, and the change in material

inventories. We do not include expenditures on services (such as marketing,

advertising, etc...) because they are not available in every year of the ASM.

Industry: We use the harmonized sectoral classification from Fort and Klimek

(2016) at the NAICS 3-digit level. We thereby have a balanced sectoral panel of

86 sectors. The Fort-Klimek (FK) sectors deal with the large reclassification of

manufacturing plants into the service sector during the SIC to NAICS transition.
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It is available at the 6-digit NACIS level, but we use the 3-digit level to have a

similar number of sectors in the U.S. and India.

Plant identifiers: We use plant identifiers available from the LBD. Once a plant

is drawn in the ASM sample (in years ending in 4 and 9), it will be surveyed every

year until the next resampling.

10.3. Data Cleaning

We follow the same steps in both India and the U.S. when cleaning the samples.

We first drop plants with missing or negative values of any of the main vari-

ables required to construct TFPR. A benefit of using gross output TFPR rather

than value added TFPR is that value-added is frequently negative in plant-level

surveys. We drop plants which don’t belong to a consistently defined manufac-

turing industry. We then trim the 1% tails of
TFPRsi

TFPRs

and
TFPQsi

TFPQs

in each year,

pooling all industries. After trimming the sample, we recalculate the sectoral

factor shares αs and γs, and then recalculate TFPR and TFPQ.

11. Simulations Appendix

In this appendix we explore how our methodology behaves in the presence of

measurement error in revenues, multiplicative measurement error and adjust-

ment costs. In Table 9 we show the model moments, inferred share of distor-

tions in TFPR dispersion and true share of TFPR dispersion for each simulation.

In Table 8 we show the parameter values underlying these simulations. We treat

the calibration to the U.S. economy in 2006–2013 as a baseline.

The second row of Table 9 shows our results when we calibrate our model

to the U.S. economy in 2006–2013 assuming that all measurement error is in

revenues rather than inputs: we set σf = 0 and we calibrate στ , σa σã and σg.

The calibrated parameter values are shown in Table 8. With measurement error

entirely in revenues we are not able to exactly match all four moments, and
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Table 8: Simulation Parameters: Multiplicative Meas. Err. and Adjustment Costs

στ σa σã σf σg σfm

1. Baseline (U.S. 2006–2013) 0.017 0.494 0.103 0.130 0 0

2. Measurement Error in R 0.025 0.228 0.098 0 0.143 0

3. Multiplicative Meas. Err. 0.017 0.494 0.103 0 0 0.152

4. Adjustment Costs 0.017 0.494 0.103 0 0 0
Source: This table shows the parameter values used for the simulations in Appendix 11.. στ is the standard
deviation of the shocks to the distortions. σa is the standard deviation of the permanent component of
plant productivity. σã is the standard deviation of the time-varying component of plant productivity.
σf is the standard deviation of shocks to additive measurement error in inputs. σg is the standard
deviation of shocks to additive measurement error in revenues. σfm is the standard deviation of shocks to
multiplicative measurement error in inputs.

we miss slightly on the ln(β̂) slope. However, similarly to the results found in

Section 6. we find that our correction underestimates the share of measurement

error in TFPR dispersion.

The third row of Table 9 shows our simulations with multiplicative measure-

ment error in inputs instead of additive measurement error in inputs. We keep

στ , σa and σã at the same values as in the baseline calibration. We then calibrate

σfm to match the variance of ln(TFPR) in the U.S. in 2006–2013. In this case, the

variance of ln(τ ) is only 1.5% of the variance of ln(TFPR), but our correction

infers that it is 95.8%. This confirms that multiplicative measurement error

leads us to overestimate the dispersion of true marginal products.

The fourth row of Table 9 shows our simulations with adjustment costs. In

this setup, plants have to choose their inputs one period in advance, before they

observe the realization of their productivity shock.23 We keep στ , σa and σã at

the same values as in the baseline calibration, and set σf = 0. Because there is

no measurement error, all of the variance of ln(TFPR) reflects true dispersion

of marginal products. The variance of ln(τ ) accounts for 24.0% of this disper-

sion. Our correction infers that the variance of ln(τ̂ ) accounts for all of ln(TFPR)

dispersion. This confirms that adjustment costs (of this type), similarly to mul-

tiplicative measurement error, leads us to overestimate the dispersion of true

marginal products.

23Plants know the true distribution of productivity shocks and form their expectations
accordingly.
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Table 9: Simulation Moments: Multiplicative Meas. Err. and Adjustment Costs

σ2
TFPR σ2

TFPQ ln(β̂) slope σ2
∆I σ2

τ̂/σ
2
TFPR σ2

τ/σ
2
TFPR

1. Baseline (U.S. 2006–2013) 0.102 0.41 -0.90 0.16 0.236 0.015

2. Measurement Error in R 0.102 0.41 -0.79 0.16 0.238 0.033

3. Multiplicative Meas. Err. 0.102 0.37 -0.028 0.13 0.958 0.015

4. Adjustment Costs 0.006 0.26 -0.001 0.078 1.042 0.240
Source: This table shows the data moments generated by the model for each simulation. Simulation 1. is the same as that shown
in Table 5. Simulation 2. has additive measurement error only in revenues. Simulation 3. has no additive measurement error,
but has multiplicative measurement error in inputs. Simulation 4. has no measurement error, but has adjustment costs. σ2

TFPR

is the output share weighted variance of ln(TFPR). σ2
TFPQ is the variance of ln(TFPQ). ln(β̂) slope is the slope of β̂ against mean

Tornqvist ln(TFPR) across deciles. σ2
∆I is the variance of input growth. σ2

τ̂/σ
2
TFPR is the ratio of the variance of ln(τ̂ ) to the

variance of ln(TFPR). σ2
τ/σ

2
TFPR is the the ratio of the variance of ln(τ ) to the variance of ln(TFPR)

12. Additional Figures Appendix

Figure 14: 90:50 and 50:10 Percentile Ratios of ln(TFPR)

Source: U.S. LRD. The figure shows the 90:50 percentile ratio and the 50:10
percentile ratio of ln(TFPR) for the U.S. between 1978 and 2013. The percentiles
are of the epanechnikov kernel density estimates of the distribution of ln(TFPR)
(with a bandwidth of 0.05) so as to avoid disclosure of confidential information.
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Figure 15: Variance of ln(TFPQ)

Source: Indian ASI and U.S. LRD. The figure shows the uncorrected variances of
ln(TFPQ) for India and the U.S. between 1985 and 2013.

Figure 16: Elasticity of TFPR with respect to TFPQ

Source: Indian ASI and U.S. LRD. The figure shows the uncorrected elasticity of
ln(TFPR) with respect to ln(TFPQ) for India and the U.S. between 1985 and 2013.
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