## U.S. Emp/Pop and Hours per Worker

FRED $\approx$ - Average Annual Hours Worked per Employed Person in the United States (DISCONTINUED) (right)

- Employment Rate: Aged 15-64: All Persons for the United States (left)



## Cyclicality: Real Output and Total Hours (Private sector, HP filtered)



## Cyclicality: Labor Productivity and Consumption (HP filtered, Cons = Nondurs and Services)



## U.S. Labor Wedge, 1987 to 2018

|  | Elasticity with respect to: |  |
| :--- | :---: | :---: |
|  | Real GDP | Total Hours |
| Labor Productivity | -0.26 | -0.33 |
|  | $(.10)$ | $(.08)$ |
| Total hours | 1.48 | 1 |
|  | $(.10)$ | 0.43 |
| Consumption | 0.71 | $(.06)$ |
|  | $(08)$ | -2.19 |
| Wedge | -3.16 | $(.11)$ |

Notes: Total hours and labor productivity is for private economy; GDP includes government sector. Consumption is nondurables and services. Sample covers 1987 to 2018. All series are logged and HPfiltered. The wedge assumes an IES of 0.5 and a Frisch of 1.0.

## Cyclicality in Wedge versus Total Hours



## Boppart and Krusell Overview

- Standard Macro model assumes balanced growth path, with constant hours worked
- But data show declining hours (will see figures)
- Looks roughly like linear trend (constant negative growth rate) in Ln(hours)
- Is also consistent with higher hours worked in poorer countries (Bick et. al., will show below)
- Consider preferences that produce balanced growth with declining hours: requires stronger wealth effect on leisure than in KPR


## Intuition for Preferences

In compact terms, one can describe the period utility function under KPR as a power function of $c v(h)$, where $c$ is consumption and $h$ hours worked and $v$ is an arbitrary (decreasing) function. What we show in our main Theorem 1 is that the broader class has the same form: period utility is a power function of $c v\left(h c^{\frac{\nu}{1-\nu}}\right)$, where $\nu<1$ is the preference parameter that guides how fast hours shrink relative to productivity. In terms of gross rates, if productivity grows at rate $\gamma$, then hours grow at rate $\gamma^{-\nu}$, whereas consumption grows at $\gamma^{1-\nu}$. For $\nu>0$, the factor $c^{\frac{\nu}{1-\nu}}$ captures the stronger income effect: as consumption grows, there is an added "penalty" to working (since $v$ is decreasing). Our preference class obviously nests KPR: KPR corresponds to $\nu=0$.

## Little trend in U.S. hours post WWII



Figure: U.S. average annual hours per capita aged 15-64, 1950-2013

## U.S. balanced growth stylized facts


(a) GDP per capita

(c) Consumption-output ratio

(b) Consumption per capita

(d) Capital-output ratio

## But decline in many countries



Figure: Selected countries average annual hours per capita aged 15-64, 1950-2015

## Declined historically in U.S.

## U.S. data including the pre-war period



Figure: Weekly hours worked per population aged 14+, 1900-2005

## At intensive margin

## Intensive and extensive margin over 100+ years


(a) Hours per worker

(b) Participation rate

Figure: Hours per worker and participation rate in the U.S.

Notes: The scale is logarithmic in the figure on hours worked per worker. Regressing the logarithm of hours worked per worker on time gives slope coefficient of -0.00418 . Source: Ramey and Francis (2009).

## U.S. workweek back to 1830



Figure: U.S. weekly hours worked in nonfarm establishments 1830-2015

[^0]
## Declined historically elsewhere



Figure: Yearly hours worked per capita 1870-1998

[^1]
## So post WWII not representative



Figure: U.S. average annual hours per capita aged 15-64, 1950-2013

## Important caveats

- Leisure has notably increased (Aguiar \& Hurst)


## Leisure since 1965, Aguiar \& Hurst

## Hours per Week Spent in Leisure for Full Sample, Men, and Women

| Time-use category (hours per week) | Average hours per week spent in leisure |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1965 | 1975 | 1985 | 1993 | 2003 | $\begin{aligned} & \text { Difference: } \\ & \text { 2003-1965 } \end{aligned}$ |
| Panel 1: Full sample |  |  |  |  |  |  |
| Leisure Measure 1 | 30.77 | 33.24 | 34.78 | 37.47 | 35.33 | 4.56 |
| Leisure Measure 2 | 102.23 | 106.62 | 107.82 | 110.04 | 107.73 | 5.50 |
| Leisure Measure 3 | 105.90 | 109.74 | 111.46 | 113.16 | 113.23 | 7.33 |
| Leisure Measure 4 | 109.93 | 114.06 | 114.33 | 116.39 | 117.98 | 8.05 |
| Panel 2: Men |  |  |  |  |  |  |
| Leisure Measure 1 | 31.80 | 33.36 | 35.15 | 37.65 | 37.40 | 5.60 |
| Leisure Measure 2 | 101.68 | 105.33 | 106.81 | 108.50 | 107.88 | 6.20 |
| Leisure Measure 3 | 103.12 | 106.73 | 108.47 | 109.97 | 111.13 | 8.01 |
| Leisure Measure 4 | 106.75 | 110.62 | 110.68 | 112.82 | 115.04 | 8.29 |
| Panel 3: Women |  |  |  |  |  |  |
| Leisure Measure 1 | 29.89 | 33.14 | 34.46 | 37.32 | 33.54 | 3.65 |
| Leisure Measure 2 | 102.70 | 107.75 | 108.69 | 111.38 | 107.59 | 4.89 |
| Leisure Measure 3 | 108.31 | 112.35 | 114.05 | 115.92 | 115.06 | 6.75 |
| Leisure Measure 4 | 112.69 | 117.05 | 117.49 | 119.48 | 120.52 | 7.83 |

All means are calculated using fixed demographic weights, as described in the text. Leisure Measure 1 refers to the time individuals spent socializing, in passive leisure, in active leisure, volunteering, in pet care, and gardening. Leisure Measure 2 refers to the time individuals spent in Leisure Measure 1 plus time spent sleeping, eating, and in personal activities (excluding own medical care). Leisure Measure 3 includes Leisure Measure 2 plus time spent in child care. Leisure Measure 4 is defined as any time not allocated to market or nonmarket work. See Table IX and text for additional detail. The relevant sample sizes are as reported in Table II. The sample restrictions are described in the footnote to Table I.

## Leisure since 1965, Aguiar \& Hurst



Figure I
Breakdown of Leisure by Activity, Deviations from 1965
This figure plots the evolution of the subcomponents of Leisure 2 for the full sample, represented as differences from each subcomponent's mean in 1965. All means are calculated using fixed demographic weights, as described in the text.

## Rise in leisure inequality



Figure II
Key Percentiles of Leisure 2 Distribution, Deviations from 1965
This figure plots the evolution of key percentiles of the cross-sectional distribution of Leisure 2 for the full sample, represented as differences from each percentile point's value in 1965. The percentile points represent the unconditional sample distribution in each year, unadjusted for demographic changes.

## Leisure shifted to lower-waged workers



Figure IV
Change by Percentile Point for Leisure 2 by Educational Attainment 1965-2003
This figure plots the change at each percentile point of the Leisure 2 distribution between 1965 and 2003, broken down by educational attainment. The percentile points represent the unconditional distribution of the respective subsample in each year, unadjusted for demographic changes.

## Important caveats

- Leisure has notably increased (Aguiar \& Hurst)
- Models abstract from a number of factors
- Nature of work/leisure dramatically evolves
- Innovations in home production-increased market labor
- The variety of market goods evolves: encouraged market labor
- Nature of leisure activities evolved-ambiguous effect


## Bick, et al., "How Do Hours worked vary with income?"

- Compare employment rates and average hours across large set of countries-compared as of year 2000, for ages 25-54
- Focus on 48 core countries with similar samples/definitions
- Workers working in sectors measured in GDP: includes agric. \& self-employed, but not home sector
- Respondents report actual hours worked over recent time period (last week, month); data collected over entire calendar year


## Bick, et al., Main findings

- Rich countries (top $3^{\text {rd }}$ GDP) work 18.9 hours per week, compared to 28.5 in poor countries (bottom $3^{\text {rd }}$ GDP), 40 percent difference in logs
- Elasticity of hours wrt GDP/hour is $\mathbf{- 0 . 1 2}$
- Employ. rates account for 3/4ths (same as for business cycles)
- Expands welfare differences, about $40 \%$ in income units-high income/low factor 19 rather than 12 (nature of work also different)
- Within countries
- Relative hours fall with relative wage in most countries, but in richest countries do not (in poorer countries fit relation across countries)
- Is stronger for men--reflect lack of non-market info?


## Main cross-section

Table 2: Employment Rates and Hours Per Employed

|  |  | Country Income Group |  |
| :--- | :---: | :---: | :---: |
|  | Low | Middle | High |
| Hours Per Adult | 28.5 | 22.2 | 18.9 |
| Employment Rate | 75.3 | 53.7 | 54.9 |
| Hours Per Worker | 38.4 | 41.2 | 34.5 |

## Main cross-section cont.

Figure 1: Average Hours Worked per Adult in Core Countries


## Holds controlling for gender, education

| Sex | Low | Country Income Group <br> Middle | High |
| :--- | :---: | :---: | :---: |
| All | 28.5 | 22.2 | 18.9 |
| Women | 24.4 | 16.3 | 14.6 |
| Men | 32.7 | 28.4 | 23.5 |


| Education | Country Income Group |  |  |
| :--- | :---: | :---: | :---: |
|  | Low | Middle | High |
| All Ages | 28.5 | 22.2 | 18.9 |
| Ages 25+ (Non-missing Educ.) | 33.0 | 25.7 | 20.7 |
| Ages 25+ |  |  |  |
| Less than Secondary | 31.8 | 19.8 | 12.2 |
| Secondary Completed | 37.3 | 29.3 | 23.4 |
| More than Secondary | 39.5 | 31.7 | 26.9 |

## Employent versus workweek

(a) Employment Rate



## Within country patterns

(a) Men

(b) Women


## Bick et al. (2019)

## WHY ARE AVERAGE HOURS WORKED LOWER IN RICHER COUNTRIES?

Alexander Bick<br>Nicola Fuchs-Schündeln<br>David Lagakos<br>Hitoshi Tsujiyama<br>Working Paper 26554<br>http://www.nber.org/papers/w26554<br>NATIONAL BUREAU OF ECONOMIC RESEARCH<br>1050 Massachusetts Avenue<br>Cambridge, MA 02138<br>December 2019

## Bick et al. (2019), cont. (Wagner's Law)

## (c) Government Revenue

 and Social Benefits Relative to GDP

## Bick et al. (2019), continued again

(b) Share of Government Revenues

Coming from Labor Income Taxation


## Chang-Kim, with two-earner family

- Allow for family
- Income processes assumed orthogonal

$$
U=\max _{\left\{c_{t}, h_{m t}, h_{f t}\right\}_{t=0}^{\infty}} E_{0}\left\{\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, h_{m t}, h_{f t}\right)\right\}
$$

with

$$
\begin{equation*}
u\left(c_{t}, h_{m t}, h_{f t}\right)=2 \ln \left(0.5 c_{t}\right)-B_{m} \frac{h_{m t}^{1+1 / \gamma}}{1+1 / \gamma}-B_{f} \frac{h_{f t}^{1+1 / \gamma}}{1+1 / \gamma} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
V_{e e}\left(a, x_{m}, x_{f} ; \lambda, \mu\right)=\max _{a^{\prime} \in \mathcal{A}}\left\{u(c, \bar{h}, \bar{h})+\beta E\left[\max \left\{V_{e e}^{\prime}, V_{e n}^{\prime}, V_{n e}^{\prime}, V_{n n}^{\prime}\right\} \mid x_{m}, x_{f}, \lambda\right]\right\} \tag{2}
\end{equation*}
$$

subject to

$$
\begin{aligned}
& c=w\left(x_{m} \bar{h}+x_{f} \bar{h}\right)+(1+r) a-a^{\prime} \\
& a^{\prime} \geq \bar{a}
\end{aligned}
$$

## Chang \& Kim parameters

## Table 2

PARAMETERS OF THE BENCHMARK ECONOMY

## Parameter

| $\alpha=0.64$ | Labor share in production function |
| :--- | :--- |
| $\beta=0.9807392$ | Discount factor |
| $\gamma=0.4$ | Intertemporal substitution elasticity |
| $B_{m}=93.5$ | Utility parameter for male |
| $B_{f}=150.1$ | Utility parameter for female |
| $\bar{h}=1 / 3$ | Amount of labor supply when working |
| $\rho_{x}=0.948(0.925)$ | Persistence of productivity $x$ for male (female) |
| $\sigma_{x}=0.269(0.319)$ | Standard deviation of $\epsilon_{x}$ for male (female) |
| $\bar{a}=-4.0$ | Borrowing constraint |

Description
Labor share in production function
Discount factor
Intertemporal substitution elasticity
Utility parameter for male
Utility parameter for female
Amount of labor supply when working
Persistence of productivity $x$ for male (female)
Standard deviation of $\epsilon_{x}$ for male (female)
Borrowing constraint

## Some steady-state features

LABOR-MARKET STEADY STATES

|  | CPS | Model I | Model II |
| :--- | ---: | :---: | ---: |
| Employment rates |  |  |  |
| Male | 77.33 | 77.34 | 77.36 |
| Female | 49.75 | 49.78 | 49.75 |
| Aggregate | 63.54 | 63.56 | 63.56 |
| Fraction of households |  |  |  |
| Both members working | 43.87 | 45.35 | 45.83 |
| Only male working | 33.46 | 31.98 | 31.52 |
| Only female working | 5.88 | 4.42 | 3.92 |
| Neither working | 16.79 | 18.23 | 18.72 |

Note: All variables are percentages. The statistics for the CPS are annual averages of married households in the March Supplements for the period of 1968-2001.

GINI INDICES FOR WEALTH AND EARNINGS

|  | PSID | Model I | Model II |
| :--- | :---: | :---: | :---: |
| Wealth | 0.76 | 0.64 | 0.61 |
| Earnings | 0.53 | 0.57 | 0.54 |

Note: The PSID statistics reflect the family wealth and earnings in the 1984 survey.

## Reservation wages for men



Notes: The graphs denote the reservation-wage schedule of the three types of male worker (whose wife has the highest, average, and lowest productivity). Wages (quarterly earnings) and assets are in 1983 dollars.

Figure 3

## Reservation wages for women



Notes: The graphs denote the reservation-wage schedule of the three types of female worker (whose husband has the highest, average, and lowest productivity). Wages (quarterly earnings) and assets are in 1983 dollars.

Figure 4

## Reservation wage schedules



Notes: The graph denotes the inverse cumulative distribution functions of reservation wages. Wages are quarterly earnings in 1983 dollars.

Figure 5
RESERVATION WAGES AND PARTICIPATION RATES: MODEL I

## Implied Frisch Elasticities at Extensive Margin

IMPLIED ELASTICITY FROM THE STEADY-STATE RESERVATION-WAGE DISTRIBUTION

| Model | Male | Female | Aggregate |
| :--- | :---: | :---: | :---: |
| Model I | 0.84 | 1.36 | 0.94 |
| Model II | 0.96 | 1.71 | 1.12 |

Note: The numbers reflect the elasticity of the labor-market participation rate with respect to reservation wage (evaluated around the steady state) based on the steady-state reservationwage distribution.

## Adjusting wedge for heterogeneous workers

## Assume:

- 75\% of movements in total hours are via employment (data)
- "Marginal" workers less productive by one third (Barsky, Parker, Solon)
- biases labor productivity countercyc: add back (3/4)*(1/3)=1/4
- Leave workforce causes drop of one-sixth (16.7\%) in consumption
- biases consumption procyc: subtract back $-(3 / 4) *(1 / 6)=1 / 8$


## Labor wedge "corrected" for heterog.

|  | Elasticity with respect to Total Hours: |  |
| :--- | :---: | :---: |
|  | Uncorrected | Corrected |
| Labor Productivity | -0.33 | -0.08 |
|  | $(.08)$ |  |
| Total hours | 1 | 1 |
| Consumption | 0.43 | 0.30 |
|  | $(.06)$ | -1.68 |
| Wedge | -2.19 |  |
|  | $(.11)$ |  |

Notes: Total hours and labor productivity is for private economy; Consumption is nondurables and services. Sample covers 1987 to 2018. All series are logged and HP-filtered. The wedge assumes an IES of 0.5 and a Frisch of 1.0. Correction assumes: (i) three-quarters of movements in total hours via employment; (ii) workers coming in and out of workforce cyclically are one-third less productive; (iii) consumption rises (fall) by one-sixth when enter (exit) workforce.

## Park: "Consumption, Reservations Wages, and Aggregate Labor Supply

Uses empirical joint distribution of wages and consumption to estimate supply elasiticity

Key insight-consumption is sufficient statistic for wealth and future earnings

## Reservation wage curve



Figure 2: Reservation Wage Curve

## Robustness of Conditioning on Consumption

The key result is that the reservation wage conditional on consumption is unique and independent of the state variables. Intuitively, individual saving decisions reflect their future expectations based on constraints they face, and these are all summarized in their consumption choices. Thus, given consumption and wage, the period utility cost of working determines whether they work or not. ${ }^{9}$

Within the class of models defined in equation (1), the reservation property conditional on consumption is robust to the following specification choices:

1. arbitrary heterogeneity in discount factors, borrowing constraints, and wage processes,
2. time horizon: infinite time versus life cycles,
3. flexibility of hours choices: both margins of labor supply versus indivisible labor,
4. separability between consumption and leisure in the period utility function,
5. two earner's problem when labor is indivisible.

## Distributions



Figure 3: Population Joint Distribution and Employment Rate


Figure 4: Observed Distribution of Workers

## Observed wages at a particular consumption and the extensive Frisch



Figure 5: Conditional Distribution and Extensive Margin Frisch Elasticity

## Allowing for measurement error



Figure 7: The Effects of Measurement Error on the Distribution

## Results for extensive Frisch

| Aggregate |  | $q^{*}=q^{* *}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 |
|  |  | 0.22 | 0.31 | 0.40 | 0.48 | 0.54 |
|  |  | (0.02) | (0.03) | (0.04) | (0.05) | (0.05) |
| Gender | Male | $\begin{gathered} 0.21 \\ (0.01) \end{gathered}$ | $\begin{gathered} 0.28 \\ (0.01) \end{gathered}$ | $\begin{gathered} 0.34 \\ (0.02) \end{gathered}$ | $\begin{gathered} 0.40 \\ (0.02) \end{gathered}$ | $\begin{gathered} 0.45 \\ (0.02) \end{gathered}$ |
|  | Female | $\begin{gathered} 0.23 \\ (0.03) \end{gathered}$ | $\begin{gathered} 0.34 \\ (0.05) \end{gathered}$ | $\begin{gathered} \mathbf{0 . 5 2} \\ (0.07) \end{gathered}$ | $\begin{gathered} 0.57 \\ (0.08) \end{gathered}$ | $\begin{gathered} 0.64 \\ (0.08) \end{gathered}$ |
| Age | [25,34] | $\begin{gathered} 0.26 \\ (0.03) \end{gathered}$ | $\begin{gathered} 0.35 \\ (0.04) \end{gathered}$ | $\begin{gathered} 0.43 \\ (0.05) \end{gathered}$ | $\begin{gathered} 0.55 \\ (0.06) \end{gathered}$ | $\begin{gathered} 0.65 \\ (0.08) \end{gathered}$ |
|  | [35,54] | $\begin{gathered} 0.19 \\ (0.02) \end{gathered}$ | $\begin{gathered} 0.29 \\ (0.02) \end{gathered}$ | $\begin{gathered} 0.39 \\ (0.04) \end{gathered}$ | $\begin{gathered} 0.45 \\ (0.05) \end{gathered}$ | $\begin{gathered} 0.50 \\ (0.05) \end{gathered}$ |
|  | [55,65] | $\begin{gathered} 0.23 \\ (0.03) \end{gathered}$ | $\begin{gathered} 0.31 \\ (0.04) \end{gathered}$ | $\begin{gathered} 0.41 \\ (0.06) \end{gathered}$ | $\begin{gathered} 0.47 \\ (0.06) \end{gathered}$ | $\begin{gathered} 0.48 \\ (0.06) \end{gathered}$ |
| Education | Non-college | $\begin{gathered} 0.25 \\ (0.03) \end{gathered}$ | $\begin{gathered} 0.35 \\ (0.04) \end{gathered}$ | $\begin{gathered} \mathbf{0 . 5 1} \\ (0.06) \end{gathered}$ | $\begin{gathered} 0.57 \\ (0.07) \end{gathered}$ | $\begin{gathered} 0.64 \\ (0.06) \end{gathered}$ |
|  | College | $\begin{gathered} 0.16 \\ (0.01) \end{gathered}$ | $\begin{gathered} 0.23 \\ (0.02) \end{gathered}$ | $\begin{gathered} 0.28 \\ (0.02) \end{gathered}$ | $\begin{gathered} 0.34 \\ (0.03) \end{gathered}$ | $\begin{gathered} 0.40 \\ (0.03) \end{gathered}$ |
| Race | White | $\begin{gathered} 0.20 \\ (0.01) \end{gathered}$ | $\begin{gathered} 0.28 \\ (0.02) \end{gathered}$ | $\begin{gathered} 0.36 \\ (0.03) \end{gathered}$ | $\begin{gathered} 0.44 \\ (0.04) \end{gathered}$ | $\begin{gathered} 0.52 \\ (0.04) \end{gathered}$ |
|  | Non-white | $\begin{gathered} 0.36 \\ (0.06) \end{gathered}$ | $\begin{gathered} 0.52 \\ (0.08) \end{gathered}$ | $\begin{gathered} \mathbf{0 . 6 1} \\ (0.08) \end{gathered}$ | $\begin{gathered} 0.65 \\ (0.10) \end{gathered}$ | $\begin{gathered} 0.67 \\ (0.13) \end{gathered}$ |
| Marital Status | Married | $\begin{gathered} 0.21 \\ (0.01) \end{gathered}$ | $\begin{gathered} 0.29 \\ (0.02) \end{gathered}$ | $\begin{gathered} 0.36 \\ (0.03) \end{gathered}$ | $\begin{gathered} 0.44 \\ (0.03) \end{gathered}$ | $\begin{gathered} 0.50 \\ (0.03) \end{gathered}$ |
|  | Single | $\begin{gathered} 0.25 \\ (0.06) \end{gathered}$ | $\begin{gathered} 0.38 \\ (0.08) \end{gathered}$ | $\begin{gathered} 0.59 \\ (0.11) \end{gathered}$ | $\begin{gathered} 0.65 \\ (0.10) \end{gathered}$ | $\begin{gathered} 0.68 \\ (0.12) \end{gathered}$ |

## Krusell, Mukoyama, Rogerson and Sahin

- Look at Labor Supply Response to Cyclical Fluctuations
- Reflects both comparative advantage and search frictions
- Unlike most DMP models, allow wealth effect
- Give rich depiction of labor flows
- Job-to-job, exogenous and endogenous separations from employment
- Endogenous search: transitions between employed, unemployed, OLF
- Movements between unemployed/OLF give insight into labor supply (i.e. substitution and wealth effects), not imposing competitive labor demand


## Data: Stocks

Dataset: Current Population Survey 1978Q1-2012Q3.

|  | $u$ | lfpr | $E$ |
| :---: | :---: | :---: | :---: |
| $\operatorname{std}(x)$ | 0.1170 | 0.0026 | 0.0099 |
| $\operatorname{corrcoef}(x, Y)$ | -0.84 | 0.21 | 0.83 |
| $\operatorname{corrcoef}\left(x, x_{-1}\right)$ | 0.93 | 0.69 | 0.92 |

- Unemployment rate is countercyclical.
- Labor force participation rate is weakly procyclical.
- Employment rate is procyclical.


## Data: Averages of gross worker flows

| Unadjusted Data |  |  |  | Abowd-Zellner Correction |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FROM | TO |  |  | FROM | TO |  |  |
|  | $E$ | $U$ | $N$ |  | $E$ | $U$ | $N$ |
| $E$ | 0.957 | 0.015 | 0.028 | $E$ | 0.972 | 0.014 | 0.014 |
| $U$ | 0.254 | 0.535 | 0.211 | $U$ | 0.228 | 0.637 | 0.135 |
| $N$ | 0.047 | 0.028 | 0.925 | $N$ | 0.022 | 0.021 | 0.957 |

- Correcting for misreporting reduces flows between $U$ and $N$, but there still are large flows.


## Abowd-Zellner (1985) correction

$$
\left[\begin{array}{c}
\widehat{E} \\
\widehat{U} \\
\widehat{N}
\end{array}\right]_{t}=\underbrace{\left[\begin{array}{ccc}
1-\varepsilon_{E U}-\varepsilon_{E N} & \varepsilon_{U E} & \varepsilon_{N E} \\
\varepsilon_{E U} & 1-\varepsilon_{U E}-\varepsilon_{U N} & \varepsilon_{N U} \\
\varepsilon_{E N} & \varepsilon_{U N} & 1-\varepsilon_{N E}-\varepsilon_{N E}
\end{array}\right]}_{\mathbf{E}}\left[\begin{array}{l}
E \\
U \\
N
\end{array}\right]_{t}
$$

$$
\begin{aligned}
& \widehat{U N}_{t} \approx\left(1-\varepsilon_{U N}-\varepsilon_{N U}\right) U N_{t}+\varepsilon_{U N} U U_{t}+\varepsilon_{N U} N N_{t}, \text { and } \\
& \widehat{N U}_{t} \approx\left(1-\varepsilon_{U N}-\varepsilon_{N U}\right) N U_{t}+\varepsilon_{U N} U U_{t}+\varepsilon_{N U} N N_{t}
\end{aligned}
$$

## Abowd-Zellner cont.

$$
\begin{gathered}
\mathbf{N}_{t}=\left[\begin{array}{ccc}
E E & U E & N E \\
E U & U U & N U \\
E N & U N & N N
\end{array}\right]_{t} \\
\mathbf{N}_{t}=\mathbf{E}^{-1} \widehat{\mathbf{N}}_{t}\left(\mathbf{E}^{-1}\right)^{\prime}
\end{gathered}
$$

## Abowd-Zellner estimates

Table 1: Abowd and Zellner (1985) estimates of classification errors

| Original | Status |  |  |
| :--- | :---: | :---: | :---: |
| intermined on reinterview |  |  |  |
| interview status | Employed | Unemployed | Non-participant |
| Employed | 98.78 | 1.91 | 0.50 |
| Unemployed | 0.18 | 88.57 | 0.29 |
| Non-participant | 1.03 | 9.52 | 99.21 |

Source: Abowd and Zellner (1985, Table 6).

## Cyclicality of Flows

Unadjusted Data

|  | $f_{E U}$ | $f_{E N}$ | $f_{U E}$ | $f_{U N}$ | $f_{N E}$ | $f_{N U}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{std}(x)$ | 0.075 | 0.033 | 0.077 | 0.053 | 0.041 | 0.064 |
| $\operatorname{corrcoef}(x, Y)$ | -0.70 | 0.35 | 0.79 | 0.66 | 0.61 | -0.70 |
| $\operatorname{corrcoef}\left(x, x_{-1}\right)$ | 0.69 | 0.22 | 0.82 | 0.71 | 0.52 | 0.78 |
| Abowd-Zellner Correction |  |  |  |  |  |  |
|  | $f_{E U}$ | $f_{E N}$ | $f_{U E}$ | $f_{U N}$ | $f_{N E}$ | $f_{N U}$ |
| $\operatorname{std}(x)$ | 0.089 | 0.083 | 0.088 | 0.106 | 0.103 | 0.072 |
| $\operatorname{corrcoef}(x, Y)$ | -0.63 | 0.43 | 0.76 | 0.61 | 0.52 | -0.23 |
| $\operatorname{corrcoef}\left(x, x_{-1}\right)$ | 0.59 | 0.29 | 0.75 | 0.62 | 0.38 | 0.30 |

- $E U$ and $U E$ are intuitive, given that the labor demand (frictions from the worker's perspective) is cyclical.
- $N E$ and $N U$ can also be interpreted through the lens of labor market frictions.
- $E N$ and $U N$ are the least intuitive.


## Model Overview

- Discrete-time, partial equilibrium model of consumer behavior
- Consumers make consumption/saving decision and labor supply decision.
- Frictional labor market: job offers come with some probability. There are exogenous separations.
- No insurance markets but can save (self-insure).
- Incorporates on-the-job search and realistic unemployment insurance system.


## Unemployed vs. OLF

Employed: In the Current Population Survey (CPS), classified as employed if, during the survey reference week, they meet any of the following criteria:

- worked at least 1 hour as a paid employee
- worked at least 1 hour in their own business, profession, trade, or farm
- were temporarily absent from their job, business, or farm
- worked without pay for min. 15 hours in business/farm owned by member of family

Unemployed: In CPS, classified as unemployed if meet all of the following criteria:

- They were not employed during the survey reference week.
- They were available for work during the survey reference week, except for temporary illness.
- They made at least one specific, active effort to find a job during the 4-week period ending with the survey reference week OR they were temporarily laid off and expect to be recalled.
- Classification as unemployed in no way depends upon a person's eligibility for, or receipt of, unemployment insurance benefits.


## Ignore search frictions



## Add rich set of frictions, choices governing flows

- Two exogenous flows: Exogenous job-to-job and exogenous separations
- Endogenous separations, endogenous take up of offers, endogenous search
- A number of qualitative predictions:
- Separation rate decreasing in $\frac{w_{i}}{c_{i}}$
- Probability unemployed versus OLF increasing in $\frac{w_{i}}{c_{i}}$
- Probability transit unemployed to employed increasing in $\frac{w_{i}}{c_{i}}$
- $\frac{C}{Y / L}$ remains key statistic for judging cyclicality of endogenous choices


## Comparative advantage Gets "smoothed" out



## Comp. adv. still key to search/separation decisions

- Focus on search decision
- Take perfect-insurance case: critical $z^{*}$, search if, only if, $z \geq z^{*}$
- perturb $z^{*}$ today and next period to hold matches constant going forward

Net benefit (ignoring heterogeneity in match quality)

$$
\begin{aligned}
& =-\gamma+\left(\lambda_{u}-\lambda_{n}\right)\left(\frac{z_{i}(1-\theta) Y}{L} \frac{1}{C}-\alpha+(1-\sigma) \beta \frac{\gamma}{\left(\lambda_{u}-\lambda_{n}\right)}\right) \\
& \Rightarrow z^{*}=\left(\frac{\alpha}{1-\theta}\right) \frac{C}{Y / L}\left(1+\frac{\gamma / a}{\left(\lambda_{u}-\lambda_{n}\right)}(1-\beta(1-\sigma))\right)
\end{aligned}
$$

- Threshold (as without frictions) dictated by statistic: $\frac{Y / L}{C}=\frac{(Y / E)(E / L)}{C}$


[^0]:    Source: Average weekly hours data for 1830-80: Whaples (1990, Table 2.1). 1890-1970: Historical Statistics of the United States: Colonial Times to 1970 (Series D765 and D803). 1970-2015: Statistical Abstract of the United States the number for nonfarm establishments. This graph shows an updates series of the data in Greenwood and Vandenbroucke (2008). Regressing the log of hours on a constant and year gives a slope coefficient of -0.00315 in the full sample (and -0.00208 for the years 1970-2015).

[^1]:    Source: Maddison (2001). The sample includes the following 25 countries: Austria, Belgium, Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland, United Kingdom, Ireland, Spain, Australia, Canada, United States, Argentina, Brazil, Chile, Colombia, Mexico, Peru, Venezuela, Japan. Regressing the log of hours on a country fixed effect and year gives a slope coefficient of -0.00462 in the full sample (and -0.00398 for the period 1950-1998).

