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Abstract

I study a problem in which the principal is a decision maker and the agent is an “ex-
perimenter.” Neither the agent nor the principal observes the true state, but the agent
can conduct an experiment that reveals information about the true state. The agent has
private information about which experiments are feasible, his type. Before the agent con-
ducts an experiment, the principal commits to a decision rule which is contingent on the
experiments and their results. When the first-best outcome is unachievable, the principal
faces a trade-off between the quality of the experiment and the ex post optimal decisions
given experimental results. I characterize two kinds of optimal decision rules: one that
sacrifices the ex post optimal decisions for the quality of the experiment, and the other
that resolves the trade-off the other way around; which one is optimal depends on the
properties of each type’s set of feasible experiments.
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1 Introduction

Consider an agent who seeks “approval” for a “project” with unknown quality from a princi-

pal. Neither the agent nor the principal can directly observe the quality of the project. The

agent can provide some evidence associated with the project’s true quality by conducting

an experiment or a test. However, while the principal wants to approve the project only if

its quality is “Good,” the agent always wants to get approval regardless of the true quality.

Thus, the agent has an incentive to choose an experiment or test which favors him, rather

than the most informative one.

There is a simple decision rule to which the principal can commit to resolve this conflict

of interests: the principal announces that she will approve the project only if the agent

conducts the “best” experiment and the result from it is good; otherwise, she will disapprove.

However, when the principal does not know which experiments are feasible for the agent, this

decision rule is not implementable as she cannot determine the best experiment; furthermore,

it also might backfire on the principal: if the experiment, which the principal believes is

the best, is not feasible in fact, the principal disapproves the project even when the agent

provides evidence supporting the project by conducting the second-best experiment—the

most informative experiment among feasible ones.

Example . (the FDA and a Pharmaceutical Company) Consider a pharmaceutical company

seeking approval for a new drug from the FDA. The company needs to design and conduct a

clinical trial1 to persuade the FDA. Knowing that the company might select a clinical trial

in favor of the approval decision, the FDA might want to declare2 that it approves only if

the trial is of high quality and the results are good. The quality of a clinical trial depends

on the number of participants and the recruited participants’ characteristics. However, the

FDA cannot verify how many participants the company can recruit or whether it selectively

recruits the participants with a certain characteristic. Hence, it is hard to determine the

best design and the FDA might set an unrealistically high quality requirement. It especially

backfires on the FDA when the new drug is for a rare disease3 or its decision needs to be

made in time.4

1The clinical trials are often conducted by third-parties called CRO (Contract Research Organization).
However, their studies are funded by pharmaceutical companies; Beckelman, Li, and Gross (2003) show that
company-sponsored studies favor the companies’ interests.

221 CFR §314.126 articulates the characteristics of adequate and well-controlled clinical trials.
3The FDA rejected the new drug application for Waylivra which is a treatment for a rare disease. In

response, a bill called the HEART Act of 2020 which intends to make the approval process “smoother” has
been initiated with the support of the patient community (See https://www.cnn.com/2020/07/19/health/rare-
disease-fda-drug-review-process-bill-wellness/index.html).

4Facing the COVID-19 pandemic, the FDA granted EUA (Emergency Use Authorization) for some vaccines
instead of requiring the usual stringent standard for the clinical trials due to the urgent need for vaccines.
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Then, the question becomes “facing uncertainty about which experiments are feasible for

the agent, what is the optimal decision rule to which the principal wants to commit?” To

address this question, I study a principal-agent model in which the principal is a decision

maker and the agent is an “experimenter.” The principal wants the agent to conduct the most

informative experiment so that she can make a right decision contingent on the true state.

However, the agent, who is only interested in getting approval from the principal, prefers

a less informative experiment which has the highest false positive rate up to the degree

to which the positive outcome is still convincing enough to get approval. The principal can

observe what kind of experiment has been conducted and the experimental outcomes, but she

does not know what experiments are feasible for the agent. Hence, the principal cannot tell

whether the agent does not conduct the most informative experiment due to the feasibility

constraint or not. In the model, the principal moves first and commits to a decision rule

which is contingent on what she can observe, an experiment and the experimental outcomes.

The principal’s decision rule is publicly announced. The agent privately learns his type, a set

of feasible experiments, and conducts an experiment among all feasible experiments for him.

Then, the principal makes her decision according to the decision rule to which she committed.

I assume that there is no transfer from the principal to the agent.

The model is in a binary environment; there are two states, {Good,Bad}, two types of

the agent, and the principal has two actions, {Approval,Disapproval}. Furthermore, I only

consider the experiments which have binary outcomes, {good, bad}, for simplicity. Then a

binary experiment can be summarized by two probabilities, P (g|G) and P (b|B): two prob-

abilities of generating the true positive and the true negative outcomes. More importantly,

I assume that one type (“big” type) has a larger set of feasible experiments than the other

(“small” type). The principal knows that there are two types of the agent and the set of

feasible experiments for each type but does not know the true type of the agent. Then the

principal’s problem becomes that of designing an incentive compatible menu offer (which does

not involve transfers): a menu offer consisting of two options, where each option is destined

for each type. Each option consists of three items, an experiment and two approval proba-

bilities respectively associated with good and bad outcomes. In short, the principal writes a

menu offer which specifies (i) what experiment she wants each type of the agent to conduct

and (ii) how she will make her decision based on the outcomes when the agent conducts an

experiment specified in the menu offer. Note that, since the big type has a larger set of

feasible experiments, the principal can easily make the menu offer “incentive compatible” for

the small type by asking the big type to conduct an experiment that is feasible for him but

not for the small type. However, to make the menu offer incentive compatible for the big
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type, the principal needs to make the big type’s option more attractive than the small type’s

since any experiment feasible for the small type is always feasible for the big type.

While I consider this binary environment, I allow the set of feasible experiments for

each type of the agent to be as general as possible. The main result of this paper is a

characterization of the principal’s optimal decision rule which is robust to a certain class

of the structures on the sets of feasible experiments. I start by characterizing the first-best

outcome, the best outcome the principal could achieve if she could observe the type of the

agent. In the first-best case, as the principal knows what experiments are feasible for the

agent, the principal can force the agent to conduct the experiment that the principal most

prefers among the feasible experiments for the agent; the principal can simply achieve this

by declaring she will approve only if the agent conducts her “favorite” experiment among all

feasible experiments and the good outcome is realized. Thus, no matter what the type of the

agent is, the agent ends up conducting the principal’s favorite experiment, and the principal

makes a “right” decision based on the experimental outcomes.

First I show that, despite the information asymmetry, the principal can still achieve the

first-best outcome under certain set structures. If the principal’s favorite experiment in the

big type’s set generates the positive outcome more frequently than that in the small type’s

set, the following decision rule can induce the first-best outcome: the decision rule (or the

menu offer) which assigns the principal’s favorite experiment in each type’s set to each type

and approve only if the positive outcome is realized. Note that, under this decision rule,

the higher the probability of generating the positive outcome, the higher the probability of

getting the Approval action. Thus, when a set structure satisfies the condition above, the big

type does not have an incentive to conduct the experiment designated to the small type (the

principal’s favorite experiment in the small type’s set). Furthermore, the small type cannot

conduct the principal’s favorite experiment in the big type’s set since the big type’s set is

bigger than the small type’s. Thus the principal’s decision rule is incentive compatible, and

she can achieve the first-best outcome.

Then I consider the cases in which the condition above does not hold: the principal’s

favorite experiment in the small type’s set generates the positive outcome more frequently

than that in the big type’s set. In this case, the previous menu offer is not incentive compatible

anymore; the big type would conduct the principal’s favorite experiment in the small type’s

set which more frequently gives him the approval decision. Thus any incentive compatible

menu offer requires the principal to give up either (i) assigning her favorite experiment to each

type or (ii) the ex post optimal decisions (approve only if the positive outcome is realized). In

other words, the principal faces a trade-off between information quality and decision quality.
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The optimal way to resolve this trade-off depends on a given set structure. I mainly

focus on the decision rule which can achieve one of two desirable outcomes in the first-best

case, assigning the favorite experiments or making the ex post optimal decisions. First, I

show that the principal’s optimal decision rule is to assign her favorite experiment to each

type at the cost of giving up the ex post optimal decisions if the favorite experiment in each

set satisfies some quality requirements in terms of informativeness measured by the positive

or negative likelihood ratios. In particular, if the principal’s favorite experiment in each set

Blackwell-dominates all experiments in that set,5 the favorite experiment coincides with the

most informative experiment in terms of the positive and negative likelihood ratios and, thus,

meets the quality requirements.

Under this kind of optimal decision rule, the principal incentivises the big type to conduct

her favorite experiment in the big type’s set by adjusting the ex post decisions based on the

outcomes. There are two ways to achieve this: (i) the principal takes the Approval action with

a positive probability even when the negative outcome is realized from the principal’s favorite

experiment in the big type’s set, and (ii) the principal takes the Disapproval action with a

positive probability even when the positive outcome is realized from the principal’s favorite

experiment in the small type’s set. I also show that it is optimal to make this adjustment

only to the type whose probability of being true is relatively lower than the other: if the

probability that the agent is the big type is relatively lower than the other, the principal only

distorts the ex post decisions associated with the experiment assigned to the big type, and

vice versa. Note that this contrasts to the classical result often referred to as “no distortion

at the top but distortion everywhere”: if the big type is relatively unlikely, distortion occurs

at the “top” (i.e., the ex post decisions for the big type.)

Secondly, I show that the other way of resolving the trade-off can also be optimal: the

principal’s optimal decision rule is to make the ex post optimal decisions at the cost of giving

up the favorite experiments if the principal’s favorite experiment in each type’s set sufficiently

deviates from the most informative experiment in terms of the positive or negative likelihood

ratios. Here the principal’s ex post decision is simple and clear: she takes the approval action

only if the outcome is positive. Then this decision rule assigns an experiment to each type

so that this decision rule is incentive compatible: an experiment assigned to each type has

the same ex ante probability of generating the positive outcome. This decision rule does not

incur a loss in terms of ex post optimality; but the loss occurs as the assigned experiments

are not the first-best choices.

5That is, the experiment that the principal most prefers is themost informative one in the sense of Blackwell
(1953).
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1.1 Related Literature

This paper relates to the literature which studies a problem between a decision maker (a re-

ceiver) and an information provider (a sender). The cheap-talk literature studies information

transmission without commitment (c.f. Crawford and Sobel (1982)) or with commitment to

a mediation scheme (Blume, Board, and Kawamura (2007) and Goltsman, Hörner, Pavlov,

and Squintani (2009)). Kamenica and Gentzkow (2011) have looked at a model in which a

sender provides information by committing to an information structure (or an experiment).

Herresthal (2017) studies a problem in which a sender conducts a given experiment in a

dynamic setting. She provides conditions under which a decision maker benefits from non-

transparency in the sender’s information acquisition process. The agent in this paper also

provides information by conducting an experiment; but here the agent can select an experi-

ment he wants to conduct and the decision maker observes both the experiment conducted

and the outcomes from it. Thus, the way that the agent provides information is essentially

the same as how the sender in Kamenica and Gentzkow (2011) does. However, the main focus

of this paper is on the decision maker’s side. The model in this paper can be thought of as

an “upside down version” of the model in Kamenica and Gentzkow (2011) in the sense that,

here, the decision maker moves first and commits to a decision rule while, in their paper, the

sender moves first and commits to an information structure.

This paper also relates to the mechanism design literature which studies principal-agent

problems. Most studies assume that different types of the agent have the same set of actions

(c.f. Myerson (1979)). The model in this paper is different from these studies since types

differ in the set of actions available to them. Green and Laffont (1986) consider a model in

which types of the agent have different message spaces. This structure on the message space

prevents a type from mimicking other types if that type does not have messages which other

types have. They provide a necessary and sufficient condition for the revelation principle

to be valid in their setting. The model in this paper satisfies their condition and thus the

revelation principle can be applied. Among the mechanism design literature, Carroll (2017)

looks at a problem in which the agent collects information for the principal. Then he shows

that a simple contract which approximates a linear contract is optimal for the principal. In

both Carroll (2017) and this paper, the principal is uncertain about which experiments are

feasible for the agent. However, he departs from the traditional Bayesian approach which this

paper takes: in his setting, the principal does not have a prior belief over the different sets

of feasible experiments and looks for a contract which gives her the maximum payoff among

all possible worst-case scenarios. Furthermore, in his work, the agent privately observes the

experimental outcomes; but here the experimental outcomes are publicly disclosed.
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Recently, there have been many studies on information design (c.f. Bergemann and Morris

(2016a)), and Kamenica and Gentzkow (2011) is a special case of the information design

problem as Bergemann and Morris (2016b) address. Thus the agent in this paper can be

considered as an information designer. Furthermore, the principal in this paper can be

considered as a mechanism designer whose problem is to design her decision rule. This

paper connects these two design problems; here I look at a mechanism design problem in

which the agent is an information designer. To my knowledge, there are two papers which

also connect these two fields, Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017), and Yoder

(2022). Kolotilin et al. (2017) consider a situation in which the information designer cannot

observe the private information of a decision maker. In their setting, the information designer

designs not only an information structure but also a mechanism which elicits the private

information of the decision maker. Yoder (2022) is more closely related to this paper as

his work also considers a similar setting in which the agent is an information designer and

the principal is a mechanism designer. The principal in his setting writes a contract which

involves a transfer to the agent. However, I consider a setting in which such a transfer is

impossible. Furthermore, the agent’s private information here is about the set of feasible

experiments; but in his work, the agent is privately informed about the costs of conducting

experiments.6

The remainder of this paper is structured as follows. In section 2, I formally introduce

the model. In section 3, I characterize the optimal decision rules. Finally, section 4 concludes

this paper.

2 The Model

There are an agent (he) and a principal (she). There are two states, Ω = {G,B}, with

a common prior, P (G) = p ∈ (0, 1/2) (G for “Good” state and B for “Bad” state). The

principal has two actions, A = {A,D} (A for “Approval” and D for “Disapproval”). The

principal’s payoff depends on both the action taken by her and the true state while the agent’s

payoff only depends on the principal’s action. While the agent always wants the principal to

take action A, the principal wants to take action A only if the state is G. Table 1 summarizes

the payoffs of both the agent and the principal, where the first entry is the agent’s payoff and

the second one is the principal’s payoff in each cell.7

6Though I assume that there is no cost of conducting experiments for both types, one might think that
the small type’s cost of conducting experiments that are only feasible for the big type is prohibitive.

7For simplicity I assume all payoffs are either 1 or 0. But, for example, replacing 1 with 10 and 0 with -5
will not affect the main results in this paper. That is, all essential results in this paper remain valid under any
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G B

A 1,1 1,0

D 0,0 0,1

Table 1: Payoff Matrix

Neither the agent nor the principal can directly observe the true state. However, the

agent has a “tool” to investigate the true state while the principal does not. Namely, the

agent can conduct an experiment that provides information about the true state and the

principal only can learn about the true state via the agent’s experiment.

The agent can conduct an experiment only if that experiment is available to him. I assume

that the agent has different sets of feasible experiments depending on his type. Namely, there

are two types of the agent, Θ = {θ1, θ2}, which determine the set of feasible experiments. I

denote type θi’s set of feasible experiments by Si for i = 1, 2. The agent’s type is private

information but the prior distribution over the agent’s type space, P (θ1) = t, is commonly

known. I assume that a typical element in Si is a binary experiment, πk
i , that has binary

outcomes, {g, b}. Then πk
i ∈ Si is characterized by the following two distributions over the

outcome space, {g, b}, conditioning on the true states:

πk
i (g|G, θi) = yki πk

i (g|B, θi) = 1− xki

πk
i (b|G, θi) = 1− yki πk

i (b|B, θi) = xki
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Figure 1: Examples of Si

S1
<latexit sha1_base64="aJlIi5W3PZ0sikdYRTVVsaL1Yx0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFS+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZqNPpev1R2K+4cZJV4OSlDjnq/9NUbxCyNUBomqNZdz02Mn1FlOBM4LfZSjQllYzrErqWSRqj9bH7qlJxbZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMT3vgZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTtCF4yy+vkla14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gDUkY1/</latexit>

S2
<latexit sha1_base64="kLcpFIHym7cLgoy9chW3l97DFMM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFS+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94iThfkSHSoSCUbRSo9Gv9ktlt+LOQVaJl5My5Kj3S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MbPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AHWFY2A</latexit>

Figure 2: Example of S1 and S2

First note that an experiment, πk
i , is fully characterized by xki and yki , where x

k
i and yki are

respectively the probability of generating the true negative and the true positive outcomes.

preference such that UP (A,G) > UP (D,G), UP (D,B) > UP (A,B), and UA(A, ·) > UA(D, ·) at both states,
where UA(·) and UP (·) are the payoffs of the principal and the agent at a cell respectively. Furthermore, one
might think that the principal must get strictly lower payoffs in cell (A,B) than in cell (D,G). As long as
UP (A,G) > UP (D,G) and UP (D,B) > UP (A,B), it is possible to incorporate such a preference into the
model.
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Thus an experiment can be represented by a point, (x, y), in the unit square, [0, 1]× [0, 1], in

R2. Then the set of all possible experiments is simply the unit square in R2. It is without loss

of generality to assume that the set of all possible experiments is the “upper-right” triangle

shown as SE in Figure 1; that is, we can restrict our attention to the experiments such that

y ≥ 1− x.8

Secondly, since an experiment is a point, Si is a collection of some points in SE . More

specifically, I define Si as follows:

Definition 1. Si := {(xi, yi)|xi ∈ [xli, x
r
i ] and yi ∈ [1 − xi, S̄i(xi)] for each xi ∈ [xli, x

r
i ]},

where S̄i(xi) is a single-valued function such that S̄i(x
l
i) = 1− xli and S̄i(xi) ∈ [1− xi, 1] for

each xi ∈ (xli, x
r
i ].

According to Definition 1, the set of all possible experiments, SE , is Si with xli = 0, xri = 1,

and S̄i(xi) = 1 for xi ∈ [0, 1]. Note that S̄i(xi) determines the shape of Si. I focus on a

certain set of Si by assuming the properties of S̄i(xi) as follows.

Assumption 1. S̄i(xi) is continuous on [xli, x
r
i ], and it satisfies the following:

(a) for any x′i, x
′′
i ∈ [xli, x

r
i ] and α ∈ (0, 1), S̄i(αx

′
i + (1− α)x′′i ) ≥ αS̄i(x

′
i) + (1− α)S̄i(x

′′
i ),

(b) for x′i ≤ x′′i , S̄i(x
′
i) ≥ S̄i(x

′′
i ),

(c) there exist some xi ∈ [xli, x
r
i ] such that pS̄i(xi) > (1− p)(1− xi),

(d) there is no subinterval (l, h) ⊂ [xli, x
r
i ] on which S̄i(xi) is differentiable everywhere and

∂S̄i(xi)
∂xi

= −1−p
p for all xi ∈ (l, h), where l ∕= h.

The continuity of S̄i(xi) guarantees Si to be a closed set. On the one hand, the concave

S̄i(xi) guarantees Si to be a convex set: for any (x′i, y
′
i), (x

′′
i , y

′′
i ) ∈ Si and α ∈ (0, 1), αx′i +

(1 − α)x′′i ∈ (xli, x
r
i ); αy

′
i + (1 − α)y′′i ∈ (1 − (αx′i + (1 − α)x′′i ),αS̄i(x

′
i) + (1 − α)S̄i(x

′′
i )] ⊂

[1 − (αx′i + (1 − α)x′′i ), S̄i(αx
′
i + (1 − α)x′′i )] by Assumption 1.(a). On the other hand, at

the boundary of Si, the decreasing S̄i(xi) captures the usual property of an experiment: any

attempt to decrease “Type II error” (the false negative rate, 1− xi) increases “Type I error”

(the false positive rate, 1− yi). S
′
i in Figure 1 is an example which satisfies Assumption 1.(a)

and (b). Note that S̄′
i(xi) is a continuous function on [x′li , x

′r
i ], and it is concave and weakly

8For example, π = (1, 1) is qualitatively the same as π′ = (0, 0); simply π = (1, 1) is the mirror image of
π′ = (0, 0) with respect to the line segment, y = 1 − x. It is worth noting that this restriction imposes a
“meaning” to each outcome. Under the restriction, y ≥ 1− x, µ(G|g) ≥ µ(G|b), where µ(·|j) is the posterior
beliefs over the state space when outcome j is realized for j = g, b: the principal’s posterior belief that the
state is G is higher after observing g than b. That is, g is the good news and b is the bad news as in Milgrom
(1981).
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decreasing in xi ∈ [x′li , x
′r
i ]. S

′
i is indeed a convex and closed subset in the upper-right triangle

of the unit square in R2. Assumption 1.(c) simply excludes some trivial cases. Assumption

1.(d) says that any part of S̄i(xi) cannot be a linear function with a slope of −1−p
p ; this

assumption is only for expositional convenience as will be clear later.

Lastly, I assume that S2 ⊂ S1. That is, different types of the agent have different Si in

the sense that type θ1 can conduct any experiment that is feasible for type θ2 while type θ2

cannot. More specifically, I assume that π2 ∈ S2 is in the interior of S1 unless π2 is on the

line segment, y = 1− x.

Assumption 2. S2 ⊂ S1. Moreover, let S2 := {(x2, y2) ∈ S2|y2 = 1− x2}. Then, for every

π2 = (x2, y2) ∈ S2\S2, there exists some ε > 0 such that

{(x, y) ∈ [0, 1]2|
!

(x2 − x)2 + (y2 − y)2 < ε} ⊂ S1.

Assumption 2 simply excludes cases in which S1 and S2 share their boundaries except the

southwest one, a line segment of y = 1 − x. Figure 2 shows an example that satisfies

Assumption 2: S1 = SE , and S2 is the smaller triangle that is nested in S1. In this example,

type θ1 can conduct all possible experiments, and type θ2 only can conduct experiments in

the smaller triangle. Furthermore, for any π2 ∈ S2\S2, there exists an ε-ball around it which

is completely contained in S1.

I assume that the principal can observe both the experiment that the agent conducts and

the experimental outcomes. That is, the principal knows the structure of the experiment

chosen by the agent ({πi(·|ω)}ω∈{G,B}, the probability distributions over the outcome space,

{g, b}, conditioning on the true state). In addition, the principal also observes the outcomes

of an experiment. Observing an experiment and an experimental outcome, the principal

updates her beliefs about the true state by using Bayes’ rule.

The timeline of the interaction between the principal and the agent is as follows: (1) the

principal moves first and commits to a decision rule which she will follow later to make her

decision; (2) the agent observes the principal’s decision rule and privately learns his type

(i.e., the set of feasible experiments for him); (3) the agent conducts an experiment and an

outcome of that experiment is realized; (4) finally, the principal makes a decision according

to the decision rule to which she commits based on what she observed, the experiment chosen

by the agent and an outcome of that experiment.

The principal’s decision rule specifies what action she will take when she observes an

experiment and each outcome of the experiment. I allow the principal to randomize over her

action space, A = {A,D}. I denote by Ak
j the probability that the principal takes action

A when outcome j is realized from an experiment, πk = (xk, yk), for j = g, b. Accordingly

9



(Ak
g , A

k
b ) is a pair of probabilities that the principal takes action A when the outcome is either

g or b given an experiment, πk. Then a decision rule of the principal specifies (Ak
g , A

k
b ) to every

experiment that is possibly feasible for the agent (every feasible experiment for either type θ1

or θ2: every πk ∈ S1 ∪ S2 = S1). Formally, a decision rule is M : S1 × {g, b} → ∆{A,D}. A
simple example of the principal’s decision rule is as follows: for all πk ∈ S1, (A

k
g , A

k
b ) = (1, 0).

This decision rule simply says that, for any experiment, the principal will take action A with

probability 1 if she observes outcome g and take action D with probability 1 otherwise.

Observing the principal’s decision rule, the agent learns his type and conducts an ex-

periment which is feasible for him. Thus, a strategy of each type of the agent is simply

s(θi) : M → Si, where M is the set of all possible decision rules of the principal.9

2.1 The Principal’s Problem

In this subsection, I formally state the principal’s problem. Suppose that the principal

commits to a decision rule, M ∈ M. Given this decision rule, M , the agent chooses an

experiment in Si after learning his type. That is, each type chooses π′
i(M, θi) = (x′i, y

′
i) ∈ Si

such that

π′
i(M, θi) ∈ argmax

πk
i ∈Si

EUA(πk
i |M, θi),

where EUA(πk
i |M, θi) is the (ex ante) expected payoff that type θi can get by conducting an

experiment, πk
i ∈ Si. Recall that the agent gets 0 for action D and 1 for action A. Thus

EUA(πk
i |M, θi) is simply the expected probability that the principal takes action A before

the realization of the experimental outcomes. More precisely, given a decision rule M ,

EUA(πk
i |M, θi) = Ak

gP (g|πk
i ) +Ak

bP (b|πk
i ),

= Ak
g(py

k
i + (1− p)(1− xki )) +Ak

b (p(1− yki ) + (1− p)xki ).

It is worth noting that P (g|πk
i ) is the probability that πk

i generates the positive outcome (g)

and P (b|πk
i ) is the probability that πk

i generates the negative outcome (b).

Now suppose that type θi conducts π′
i(M, θi) and outcome j is realized for j = g, b. As

the principal follows the decision rule, M , she takes action A with probability A′
j as specified

in the decision rule, M , if she observes outcome j from π′
i(M, θi) = (x′i, y

′
i). Then, following

9Later I focus on the direct mechanisms. Then the agent’s strategy becomes a report of his type after
observing a direct mechanism (or simply conducts an experiment within a “menu offer” provided by the
principal). If one takes the game form of this problem seriously, the solution concept is the Subgame Perfect
Equilibrium. The principal’s choice of a decision rule induces a subgame; in that subgame, the agent learns
his type and conducts an experiment; then, the principal behaves according to what she committed to. Lastly,
after the agent’s equilibrium behavior is described in every subgame, the principal chooses a decision rule
which leads her to the subgame that gives her the highest payoff.

10



the decision rule, the principal obtains the (ex post) payoff below:

EUP (M |π′
i, j) = A′

j{UP (A,G)µ(G|j,π′
i) + UP (A,B)µ(B|j,π′

i)}

+(1−A′
j){UP (D,G) · µ(G|j,π′

i) + UP (D,B)µ(B|j,π′
i)},

= A′
j · µ(G|j,π′

i) + (1−A′
j) · µ(B|j,π′

i),
10

= A′
j · µ(G|j,π′

i) + (1−A′
j) · (1− µ(G|j,π′

i)),

where EUP (·) denotes the principal’s expected payoff and µ(G|j,π′
i) is the principal’s pos-

terior belief after observing outcome j of π′
i. Then, the principal’s interim expected payoff

before observing an outcome from π′
i is simply

EUP (M |π′
i) = P (g|π′

i) · EUP (M |π′
i, g) + P (b|π′

i) · EUP (M |π′
i, b),

= (1− p)− (1− 2p)A′
b + (A′

g −A′
b)(py

′
i − (1− p)(1− x′i)).

11

Based on the principal’s preference represented by EUP (M |πk
i ), I introduce two notions, ex

post optimality and favorite experiments, where ex post optimality relates to the principal’s

preference over the action space while favorite experiments relate to that over the set of

feasible experiments.

Definition 2. (Ex post Optimality) Given πk
i ∈ Si, (A

k
g , A

k
b ) is ex post optimal if (Ak

g , A
k
b )

maximizes the principal’s (interim) expected payoff.

Ex post optimality simply means that the principal needs to make an optimal decision

given an experiment. An experiment, πk
i ∈ Si, generates either outcome g or b which induces a

posterior belief, µ(G|j,πk
i ) for j = g or b. If µ(G|j,πk

i ) ≥ 1/2, action A is optimal; otherwise,

action D is optimal. For example, given πf = (1, 1), outcome g induces µ(G|g,πf ) = 1 and

outcome b does µ(G|b,πf ) = 0; thus (Af
g , A

f
b ) = (1, 0) is ex post optimal. Note that there are

experiments that fail to convince the principal to take action A. These experiments cannot

induce µ(G|j,πi) ≥ 1/2 with any of its outcomes because they are uninformative. I call

such experiments non-convincing experiments. As an extreme example, πu = (1, 0) generates

outcome b with probability 1 regardless of the true state. Thus, it is fully uninformative; it

always induces µ(G|b,πu) = p < 1/2 and fails to convince the principal to take action A.

An experiment πk
i = (xki , y

k
i ) is not convincing if and only if either pyki < (1− p)(1− xki ) or

πk
i = (1, 0).12 Note that any non-convincing experiment induces µ(G|j,πk

i ) < 1/2 for j = g, b

10Recall that UP (A,G) = UP (D,B) = 1 and UP (A,B) = UP (D,G) = 0.
11One can easily get the expression in the second line by substituting the explicit form of µ(G|π′

i, j) for
j = g, b.

12Note that πu′
= (0, 1) is the other extreme case; it always generates outcome g regardless of the true

state; it is also a non-convincing experiment because it satisfies p · 1 < (1− p)(1− 0).

11



(e.g., suppose p = P (G) = 0.3, and consider πk
i = (0.8, 0.2).) Thus, for any non-convincing

experiment πk
i , (Ak

g , A
k
b ) = (0, 0) is optimal. Any experiment that is not non-convincing

is convincing, and it induces either µ(G|g,πk
i ) ≥ 1/2 or µ(G|b,πk

i ) < 1/2. Thus for any

convincing experiment πk
i , (A

k
g , A

k
b ) = (1, 0) is optimal. It is also worth noting that Si must

have some convincing experiments under Assumption 1.(c).13

Let M̄ denote a simple decision rule under which the principal makes the ex post optimal

decisions for every πk
i ∈ Si. More precisely, let M̄ map every convincing πk

i to (Ak
g , A

k
b ) =

(1, 0) and every non-convincing πk
i to (Ak

g , A
k
b ) = (0, 0).

Definition 3. (Favorite Experiment) The principal’s favorite experiment is denoted by π̂i ∈
Si, and it maximizes the principal’s (interim) expected payoff under M̄ , i.e.,

π̂i ∈ argmax
πk
i ∈Si

EUP (M̄ |πk
i ).

A favorite experiment, π̂i, is simply an experiment that the principal most prefers among all

experiments in Si when she always makes the ex post optimal decisions. Assuming that the

principal employs M̄ ,

EUP (M̄ |πk
i ) = max{1− p, pyki + (1− p)xki }.

For a non-convincing experiment, (Ak
g , A

k
b ) = (0, 0), and the principal obtains a constant

payoff of 1− p. For a convincing experiment, (Ak
g , A

k
b ) = (1, 0), and the principal’s payoff is

pyki +(1−p)xki . For any convincing πk
i , py

k
i +(1−p)xki ≥ 1−p. Hence, whenever there exists

a convincing πk
i ∈ Si, π̂i is simply a maximizer of pyki + (1− p)xki .

14

Figure 3 demonstrates π̂i ∈ Si for i = 1, 2. In Figure 3, the experiments below the line,

y = 1−p
p (1− x), are non-convincing, and the experiments on or above the line are convincing

(except for πk
i = (1, 0)). Note that the principal’s payoff increases as the indifference curve

moves toward the northeast ; as xi and yi increase, πi becomes more informative in the sense

of Blackwell (1953)15; the principal makes a better decision with a more informative πi; thus,

the principal’s payoff increases. Hence the principal’s favorite experiment in S1 is π̂1 = (1, 1),

and that in S2 is π̂2 = (0.8, 0.8) in Figure 3.

Note that there exists a unique π̂i in Si under Assumption 1. The slope of the principal’s

indifference curve is −1−p
p . If S̄i(xi) has any part which is a linear function with a slope of

13If both types only have non-convincing experiments in Si, the principal’s problem has a simple solution,
which is always to take action D with probability one for any outcome from every experiment.

14It is worth noting that π̂i can be defined under other classes of decision rules other than M̄ . Note that,
holding Ak

g > Ak
b fixed, EUP (M |πk

i ) is proportional to pyk
i +(1− p)xk

i which is maximized at π̂i. Hence, π̂i is
also an experiment that the principal most prefers under a class of decision rules such that Ak

g = Ag > Ak
b = Ab

for every πk
i .

15Weber (2010) shows that πi = (xi, yi) is at least informative as π′
i = (x′

i, y
′
i) in the sense of Blackwell if

and only if xi ≥ x′
i and yi ≥ y′

i.
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Figure 3: Favorite Experiments
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Figure 4: Multiple π̂i

−1−p
p , any experiment on that part will be a favorite experiment as in Figure 4. Assumption

1.(d) guarantees that we do not have such a case. The uniqueness of π̂i is not necessary but

makes it easier to state the results succinctly. I discuss how to deal with the multiple π̂i in

the Appendix.16

Returning to the discussion on the principal’s problem, the principal’s ex ante payoff from

a decision rule, M , is

EUP (M) = t · EUP (M |π′
1) + (1− t) · EUP (M |π′

2),

and the principal’s problem becomes

max
M∈M

t · EUP (M |π′
1) + (1− t) · EUP (M |π′

2),

s.t. π′
i ∈ argmax

πk
i ∈Si

EUA(πk
i |M, θi) for i = 1, 2.

The problem seems complicated since a decision rule is a mapping from S1×{g, b} to∆{A,D}.
However, the revelation principle can be applied to this problem: it can be shown that an

outcome can be achieved via a decision rule M ∈ M if and only if the same outcome can be

achieved via a menu offer,M ′ = {(π1, A1
g, A

1
b), (π2, A

2
g, A

2
b)}, such that each triple, (πi, A

i
g, A

i
b),

is destined for type θi. In the rest of this paper, a decision rule means a menu offer unless I

mention that I use the original form of the decision rule.

A menu offer, M ′, has two triples where each triple consists of an experiment, πi, and

two probabilities, Ai
g and Ai

b. For example, a triple, (πi, A
i
g, A

i
b), means that, if the agent

conducts πi, the principal will take action A with probability Ai
j when the outcome of πi is

j for j = g, b. The revelation principle also implies that it suffices to only consider incentive

16There are two possible cases: (i) when we can construct a first-best decision rule by exploiting the multi-
plicity of π̂i or (ii) when we can choose a specific (π̂1, π̂2) to which we can apply the results in this paper.
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compatible menu offers; i.e., type θi prefers (πi, A
i
g, A

i
b) to (πj , A

j
g, A

j
b) for i ∕= j. Hence we

can write the principal’s problem as follows:

max
m1,m2

tEUP (m1) + (1− t)EUP (m2)

s.t. EUA(m1|θ1) ≥ EUA(m2|θ1) (IC constraint for type θ1),

EUA(m2|θ2) ≥ EUA(m1|θ2) (IC constraint for type θ2),

π1 ∈ S1, π2 ∈ S2,

where mi = (πi, A
i
g, A

i
b) for i = 1, 2, and the IC constraint for type θ2 is valid only if π1 ∈ S2.

Note that there are cases in which the IC constraint for type θ2 can be ignored. If π1 in

m1 is chosen so that it does not belong to S2 (i.e., π1 ∈ S1\S2), type θ2 only has one option

which is to conduct π2 ∈ S2. Thus the IC constraint for type θ2 is redundant in this case. In

short, depending on which menu offer we are considering, the IC constraint for type θ2 can

be “on or off” in the maximization problem. The set of possible menu offers can be divided

into two classes: one that assigns π1 ∈ S1\S2 and π2 ∈ S2 and the other that assigns π1 ∈ S2

and π2 ∈ S2. The following proposition tells us that it is innocuous to restrict our attention

to the menu offers that assign π1 ∈ S1\S2 and π2 ∈ S2.

Proposition 1. There always exists an incentive compatible menu offer with π1 ∈ S1\S2

and π2 ∈ S2 that gives the principal a higher payoff than every menu offer with π1 ∈ S2 and

π2 ∈ S2.

The proof of Proposition 1 is relegated to the Appendix. A rough intuition is that, if a menu

offer assigns π1 ∈ S2 and π2 ∈ S2, the optimal choice for both π1 and π2 is π̂2; Assumption 2

guarantees that a set of experiments around π̂2 is feasible for type θ1; then, I can always find

π′
1 = (x̂2 + εx, ŷ2 + εy) ∈ S1\S2 that (i) the principal strictly prefers over π̂2 and (ii) gives as

much payoff to type θ1 as π̂2.

By Proposition 1, we can exclude the menu offers with π1 ∈ S2 and π2 ∈ S2. Then, the

IC constraint for type θ2 can be ignored, and the principal’s problem is simplified as follows:

max
m1,m2

tEUP (m1) + (1− t)EUP (m2)

s.t. EUA(m1|θ1) ≥ EUA(m2|θ1) (IC constraint for type θ1),

π1 ∈ S1\S2, π2 ∈ S2,

where mi = (πi, A
i
g, A

i
b) for i = 1, 2.

14



2.2 The Benchmark: the First-best Outcome

In this subsection, I establish the benchmark: the best outcome that the principal can achieve

when there is no uncertainty about the agent’s type. Here I use the original form of the

decision rule instead of a menu offer to discuss the first-best outcome.

Suppose that the principal can observe the agent’s type. Then the principal can exert

her commitment power contingent on the types of the agent. If the agent’s type is θi, the

principal simply looks over all experiments which are feasible for that type (every πk
i ∈ Si),

identifies π̂i in Si, and demands the agent to conduct it. The principal can do this by saying

that she will take action D regardless of experimental outcomes if the agent conducts any

πk
i ∕= π̂i (i.e., by setting (Ak

g , A
k
b ) to (0, 0) for any πk

i ∕= π̂i). Then, the agent does not have

any better alternative than conducting π̂i among feasible experiments for him. Thus, the

agent will conduct π̂i, and the principal can simply make an optimal decision based on an

experimental outcome of π̂i. In short, if the principal can observe the type of the agent,

the principal can (i) assign her favorite experiment to the agent and (ii) make the ex post

optimal decisions based on the experimental outcomes of her favorite experiment. This is

the first-best outcome and denoted by [(π̂1, 1, 0), (π̂2, 1, 0)].
17 For example, when S1 and S2

are given as in Figure 3, the first-best outcome is simply [
"
(1, 1), 1, 0

#
,
"
(0.8, 0.8), 1, 0

#
].

3 Optimal Decision Rules

In this section, I characterize the principal’s optimal decision rules when she cannot observe

the agent’s type. A reasonable question to start with is “Is it possible to achieve the first-best

outcome even when the principal does not know the agent’s type?” The answer is that it

depends on the properties of two favorite experiments, π̂1 and π̂2.

Remark 1. The principal can achieve the first-best outcome if and only if π̂1 generates the

positive outcome more frequently than π̂2 (that is, pŷ1+(1−p)(1− x̂1) ≥ pŷ2+(1−p)(1− x̂2),

where π̂1 = (x̂1, ŷ1) and π̂2 = (x̂2, ŷ2)).

The following example in Figure 5 is helpful to understand Remark 1 above. In the

example, I assume p = P (G) = 0.3. Suppose that each type of the agent has S1 and S2,

respectively. Then π̂1 = (1, 1) and π̂2 = (0.8, 0.8). Now consider the following menu offer,

{(π̂1, 1, 0), (π̂2, 1, 0)}. Given this menu offer, the agent’s payoff is equal to the probability

that π̂i generates the positive outcome. It is easy to see that type θ1 would conduct π̂2 rather

17To avoid possible confusions, I use [(·), (·)] for an outcome and {(·), (·)} for a menu offer. An outcome,
[(π1, A

1
g, A

1
b), (π2, A

2
g, A

2
b)], means that, if the agent’s type is θi, then that type conducts πi and the principal

takes action A with probability Ai
j if the outcome of πi is j, where j = g, b.
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than π̂1 as the former has a higher probability to generate the positive outcome than the

latter. However, if type θ2 has S′
2, π̂

′
2 = (0.9, 0.7) and it generates the positive outcome less

frequently than π̂1. Thus, {(π̂1, 1, 0), (π̂′
2, 1, 0)} is incentive compatible and the principal can

achieve the first-best outcome.
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Figure 5: Example

3.1 Optimal Decision Rules

From now on, I focus only on the cases in which the principal cannot achieve the first-best

outcome. That is, I assume that pŷ1 + (1− p)(1− x̂1) < pŷ2 + (1− p)(1− x̂2) for the rest of

the paper. I start by curtailing the set of experiments, Si.

3.1.1 Curtailing Sets of Experiments

First I can exclude the non-convincing experiments. Recall that an experiment, πi = (xi, yi),

is non-convincing if either pyi < (1 − p)(1 − xi) or πi = (1, 0). These non-convincing ex-

periments are not informative. Hence, the principal who wants an informative experiment

does not assign these non-convincing experiments under an optimal decision rule. Figure 6

shows how non-convincing experiments in Si are excluded: in both examples, πi = (1, 0) ∕∈ Si

and all experiments below the line, y = 1−p
p (1 − x), are excluded. I denote by Πi the set of

convincing experiments in Si (the shaded areas in Figure 6).

From now on, I only consider Πi as non-convincing experiments would not be assigned

under an optimal decision rule. Note that given any πi ∈ Πi, pyi− (1− p)(1−xi) ≥ 0. Thus,

16



��� ��� ��� ��� ��� ��� �

���

���

���

���

���
�

y =
1� p

p
(1� x)

<latexit sha1_base64="7XObk9LB+g+BMjb5uQ7HItgsaug=">AAAB/nicbVDLSsNAFJ34rPUVFVduBotQFy1JFXQjFN24rGAf0IYymU7aoZPJMDMRQwj4K25cKOLW73Dn3zhts9DWAxcO59zLvff4glGlHefbWlpeWV1bL2wUN7e2d3btvf2WimKJSRNHLJIdHynCKCdNTTUjHSEJCn1G2v74ZuK3H4hUNOL3OhHEC9GQ04BipI3Utw+Tq14gEU7dishSkZXdyuNpsW+XnKozBVwkbk5KIEejb3/1BhGOQ8I1ZkiprusI7aVIaooZyYq9WBGB8BgNSddQjkKivHR6fgZPjDKAQSRNcQ2n6u+JFIVKJaFvOkOkR2rem4j/ed1YB5deSrmINeF4tiiIGdQRnGQBB1QSrFliCMKSmlshHiGThjaJTUJw519eJK1a1T2r1u7OS/XrPI4COALHoAxccAHq4BY0QBNgkIJn8ArerCfrxXq3PmatS1Y+cwD+wPr8AYublI4=</latexit> ⇧i
<latexit sha1_base64="wPG4pGD7CPA5YgwtpHBrR6QfehY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3btZjfsboQQ+h+8eFDEq//Hm//GTZuDtj4YeLw3w8y8IOZMG9f9dkpr6xubW+Xtys7u3v5B9fCoo2WiCG0TyaXqBVhTzgRtG2Y47cWK4ijgtBtMb3O/+0SVZlI8mDSmfoTHgoWMYGOlzqDFhqwyrNbcujsHWiVeQWpQoDWsfg1GkiQRFYZwrHXfc2PjZ1gZRjidVQaJpjEmUzymfUsFjqj2s/m1M3RmlREKpbIlDJqrvycyHGmdRoHtjLCZ6GUvF//z+okJr/2MiTgxVJDFojDhyEiUv45GTFFieGoJJorZWxGZYIWJsQHlIXjLL6+STqPuXdQb95e15k0RRxlO4BTOwYMraMIdtKANBB7hGV7hzZHOi/PufCxaS04xcwx/4Hz+ANHmjqE=</latexit>

Si
<latexit sha1_base64="lQsQESJzsCBS1uChaMHN1Ct6kyo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFS+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94iThfkSHSoSCUbRSo9EX/VLZrbhzkFXi5aQMOer90ldvELM04gqZpMZ0PTdBP6MaBZN8WuylhieUjemQdy1VNOLGz+anTsm5VQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2hC85ZdXSata8S4r1Yercu02j6MAp3AGF+DBNdTgHurQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwApgI23</latexit>

xcr
i

<latexit sha1_base64="0ouX2pM29p239/z4LevJtH0VccE=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4xkUcCSGaHXpgwO7vOzBrJhp/w4kFjvPo73vwbB9iDgpV0UqnqTneXHwuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLV8qlGwSXWDTcCW7FCGvoCm/7oeuo3H1FpHsk7M46xG9KB5AFn1Fip9XSfMjXp8V6x5JbdGcgy8TJSggy1XvGr049YEqI0TFCt254bm25KleFM4KTQSTTGlI3oANuWShqi7qazeyfkxCp9EkTKljRkpv6eSGmo9Tj0bWdIzVAvelPxP6+dmOCym3IZJwYlmy8KEkFMRKbPkz5XyIwYW0KZ4vZWwoZUUWZsRAUbgrf48jJpVMreWblye16qXmVx5OEIjuEUPLiAKtxADerAQMAzvMKb8+C8OO/Ox7w152Qzh/AHzucPbrGQOQ==</latexit>

xcl
i<latexit sha1_base64="BPB9WsSJ6vzMfsOd0dOrhgC4Yrc=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4xkUcCSGaHXpgwO7vOzBrJhp/w4kFjvPo73vwbB9iDgpV0UqnqTneXHwuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLV8qlGwSXWDTcCW7FCGvoCm/7oeuo3H1FpHsk7M46xG9KB5AFn1Fip9XSfMjHp8V6x5JbdGcgy8TJSggy1XvGr049YEqI0TFCt254bm25KleFM4KTQSTTGlI3oANuWShqi7qazeyfkxCp9EkTKljRkpv6eSGmo9Tj0bWdIzVAvelPxP6+dmOCym3IZJwYlmy8KEkFMRKbPkz5XyIwYW0KZ4vZWwoZUUWZsRAUbgrf48jJpVMreWblye16qXmVx5OEIjuEUPLiAKtxADerAQMAzvMKb8+C8OO/Ox7w152Qzh/AHzucPZYeQMw==</latexit>

NEB(⇧i)
<latexit sha1_base64="UGn08YWMWn+aRd9aViukexP2fBU=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3WY6e9YsmtuDOgZeJlpAQZGr3iV7cvSRJRYQjHWnc8NzZ+ipVhhNNJoZtoGmMywgPasVTgiGo/nV08QSdW6aNQKlvCoJn6eyLFkdbjKLCdETZDvehNxf+8TmLCSz9lIk4MFWS+KEw4MhJN30d9pigxfGwJJorZWxEZYoWJsSEVbAje4svLpFWteGeV6t15qVbP4sjDERxDGTy4gBrcQAOaQEDAM7zCm6OdF+fd+Zi35pxs5hD+wPn8ARvrj+U=</latexit>

Straight line with the slope of
1� p

p
<latexit sha1_base64="vObiyTDWIxX2VPV5xRYp3z784Qs=">AAACHXicbVBNSwMxEM36bf2qevQSLIIXy64W9Ch68VjRVqEtJZvOdoPZTUhm1bLsH/HiX/HiQREPXsR/Y1p78OvBwOO9mWTmhVoKi77/4U1MTk3PzM7NlxYWl5ZXyqtrTasyw6HBlVTmMmQWpEihgQIlXGoDLAklXIRXx0P/4hqMFSo9x4GGTsL6qYgEZ+ikbrnWRrjF/AwNE/0Y6fAdeiMwphgDtVJpoCqiRTsyjOfBji5yXXTLFb/qj0D/kmBMKmSMerf81u4pniWQIpfM2lbga+zkzKDgEopSO7OgGb9ifWg5mrIEbCcfXVfQLaf0aKSMqxTpSP0+kbPE2kESus6EYWx/e0PxP6+VYXTQyUWqM4SUf30UZZKiosOoaE8Y4CgHjjBuhNuV8pi5HNAFWnIhBL9P/kuau9Vgr7p7WqscHo3jmCMbZJNsk4Dsk0NyQuqkQTi5Iw/kiTx7996j9+K9frVOeOOZdfID3vsnNi6imQ==</latexit>

��� ��� ��� ��� ��� ��� �

���

���

���

���

���
�

y =
1� p

p
(1� x)

<latexit sha1_base64="7XObk9LB+g+BMjb5uQ7HItgsaug=">AAAB/nicbVDLSsNAFJ34rPUVFVduBotQFy1JFXQjFN24rGAf0IYymU7aoZPJMDMRQwj4K25cKOLW73Dn3zhts9DWAxcO59zLvff4glGlHefbWlpeWV1bL2wUN7e2d3btvf2WimKJSRNHLJIdHynCKCdNTTUjHSEJCn1G2v74ZuK3H4hUNOL3OhHEC9GQ04BipI3Utw+Tq14gEU7dishSkZXdyuNpsW+XnKozBVwkbk5KIEejb3/1BhGOQ8I1ZkiprusI7aVIaooZyYq9WBGB8BgNSddQjkKivHR6fgZPjDKAQSRNcQ2n6u+JFIVKJaFvOkOkR2rem4j/ed1YB5deSrmINeF4tiiIGdQRnGQBB1QSrFliCMKSmlshHiGThjaJTUJw519eJK1a1T2r1u7OS/XrPI4COALHoAxccAHq4BY0QBNgkIJn8ArerCfrxXq3PmatS1Y+cwD+wPr8AYublI4=</latexit>

NEB(⇧0
i)

<latexit sha1_base64="b+ckSoc3SpqYC5eqPsIQcCCKWh4=">AAAB8nicbVBNSwMxEJ31s9avqkcvwSLWS9mtgh5LRfAkFewHbJeSTbNtaDZZkqxQSn+GFw+KePXXePPfmLZ70NYHA4/3ZpiZFyacaeO6387K6tr6xmZuK7+9s7u3Xzg4bGqZKkIbRHKp2iHWlDNBG4YZTtuJojgOOW2Fw5up33qiSjMpHs0ooUGM+4JFjGBjJf/+tlbq1NlZl513C0W37M6AlomXkSJkqHcLX52eJGlMhSEca+17bmKCMVaGEU4n+U6qaYLJEPepb6nAMdXBeHbyBJ1apYciqWwJg2bq74kxjrUexaHtjLEZ6EVvKv7n+amJroMxE0lqqCDzRVHKkZFo+j/qMUWJ4SNLMFHM3orIACtMjE0pb0PwFl9eJs1K2bsoVx4ui9VaFkcOjuEESuDBFVThDurQAAISnuEV3hzjvDjvzse8dcXJZo7gD5zPH36EkBY=</latexit>

⇧0
i

<latexit sha1_base64="00a7N5iejzpVGeK3sQeHoeUDcIc=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvoqeyqoMeiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIb63nfqLCyura+UdwsbW3v7O6V9w+aRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoduq3npg2XMkHO05YEJOB5BGnxDqp2a3z0x7vlSte1ZsBLxM/JxXIUe+Vv7p9RdOYSUsFMabje4kNMqItp4JNSt3UsITQERmwjqOSxMwE2ezaCT5xSh9HSruSFs/U3xMZiY0Zx6HrjIkdmkVvKv7ndVIbXQcZl0lqmaTzRVEqsFV4+jruc82oFWNHCNXc3YrpkGhCrQuo5ELwF19eJs3zqn9RPb+/rNRu8jiKcATHcAY+XEEN7qAODaDwCM/wCm9IoRf0jj7mrQWUzxzCH6DPH/1gjr4=</latexit>

S0
i

<latexit sha1_base64="cPdeKOhGOY3gFaJqS7RUwTWUPio=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9ltBT0WvXisaD+gXUo2zbahSXZJskJZ+he8eFDEq3/Im//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpv5nSeqNIvko5nG1Bd4JFnICDaZ9HA+YINyxa26c6BV4uWkAjmag/JXfxiRRFBpCMda9zw3Nn6KlWGE01mpn2gaYzLBI9qzVGJBtZ/Ob52hM6sMURgpW9Kgufp7IsVC66kIbKfAZqyXvUz8z+slJrz2UybjxFBJFovChCMToexxNGSKEsOnlmCimL0VkTFWmBgbT8mG4C2/vEratapXr9buLyuNmzyOIpzAKVyAB1fQgDtoQgsIjOEZXuHNEc6L8+58LFoLTj5zDH/gfP4AiiWN6A==</latexit>

x0cl
i<latexit sha1_base64="d42JrZRqsQfdX7/OKY5K+rzPOks=">AAAB8HicbVBNTwIxEJ3FL8Qv1KOXRmL0RHbBRI9ELx4xkQ8DK+mWLjS03U3bNZINv8KLB43x6s/x5r+xwB4UfMkkL+/NZGZeEHOmjet+O7mV1bX1jfxmYWt7Z3evuH/Q1FGiCG2QiEeqHWBNOZO0YZjhtB0rikXAaSsYXU/91iNVmkXyzoxj6gs8kCxkBBsr3T+dPqSET3qsVyy5ZXcGtEy8jJQgQ71X/Or2I5IIKg3hWOuO58bGT7EyjHA6KXQTTWNMRnhAO5ZKLKj209nBE3RilT4KI2VLGjRTf0+kWGg9FoHtFNgM9aI3Ff/zOokJL/2UyTgxVJL5ojDhyERo+j3qM0WJ4WNLMFHM3orIECtMjM2oYEPwFl9eJs1K2auWK7fnpdpVFkcejuAYzsCDC6jBDdShAQQEPMMrvDnKeXHenY95a87JZg7hD5zPH8cekGQ=</latexit>

x0cr
i

<latexit sha1_base64="a/OPMQAjYMjZXZSKvb2IdQKrTow=">AAAB8HicbVBNTwIxEJ3FL8Qv1KOXRmL0RHbBRI9ELx4xkQ8DK+mWLjS03U3bNZINv8KLB43x6s/x5r+xwB4UfMkkL+/NZGZeEHOmjet+O7mV1bX1jfxmYWt7Z3evuH/Q1FGiCG2QiEeqHWBNOZO0YZjhtB0rikXAaSsYXU/91iNVmkXyzoxj6gs8kCxkBBsr3T+dPqRETXqsVyy5ZXcGtEy8jJQgQ71X/Or2I5IIKg3hWOuO58bGT7EyjHA6KXQTTWNMRnhAO5ZKLKj209nBE3RilT4KI2VLGjRTf0+kWGg9FoHtFNgM9aI3Ff/zOokJL/2UyTgxVJL5ojDhyERo+j3qM0WJ4WNLMFHM3orIECtMjM2oYEPwFl9eJs1K2auWK7fnpdpVFkcejuAYzsCDC6jBDdShAQQEPMMrvDnKeXHenY95a87JZg7hD5zPH9BIkGo=</latexit>

Straight line with the slope of
1� p

p
<latexit sha1_base64="vObiyTDWIxX2VPV5xRYp3z784Qs=">AAACHXicbVBNSwMxEM36bf2qevQSLIIXy64W9Ch68VjRVqEtJZvOdoPZTUhm1bLsH/HiX/HiQREPXsR/Y1p78OvBwOO9mWTmhVoKi77/4U1MTk3PzM7NlxYWl5ZXyqtrTasyw6HBlVTmMmQWpEihgQIlXGoDLAklXIRXx0P/4hqMFSo9x4GGTsL6qYgEZ+ikbrnWRrjF/AwNE/0Y6fAdeiMwphgDtVJpoCqiRTsyjOfBji5yXXTLFb/qj0D/kmBMKmSMerf81u4pniWQIpfM2lbga+zkzKDgEopSO7OgGb9ifWg5mrIEbCcfXVfQLaf0aKSMqxTpSP0+kbPE2kESus6EYWx/e0PxP6+VYXTQyUWqM4SUf30UZZKiosOoaE8Y4CgHjjBuhNuV8pi5HNAFWnIhBL9P/kuau9Vgr7p7WqscHo3jmCMbZJNsk4Dsk0NyQuqkQTi5Iw/kiTx7996j9+K9frVOeOOZdfID3vsnNi6imQ==</latexit>

Figure 6: Πi and NEB(Πi)

the principal’s ex ante payoff increases in Ai
g but decreases in Ai

b for i = 1, 2. This helps us

to understand more about the optimal action-probability pairs, (Ai
g, A

i
b) for i = 1, 2.

Remark 2. For every (π1,π2) ∈ Π1 × Π2, (i) A1
g = 1 and A2

b = 0 are optimal, and (ii)

A1
b < 1 and A2

g > 0 are optimal.

The first result is immediate. Given any (π1,π2) ∈ Π1 ×Π2, the IC constraint is

A1
g(py1 + (1− p)(1− x1)) +A1

b(1− (py1 + (1− p)(1− x1)))

≥ A2
g(py2 + (1− p)(1− x2)) +A2

b(1− (py2 + (1− p)(1− x2))).

As the left-hand side of the IC constraint increases in A1
g and the right-hand side of it does

in A2
b , the principal can be better off by increasing A1

g and decreasing A2
b without violating

the IC constraint. Hence, A1
g = 1 and A2

b = 0 are optimal. Given that A1
g = 1 and A2

b = 0,

the IC constraint reduces to

A1
b + (1−A1

b)(py1 + (1− p)(1− x1)) ≥ A2
g(py2 + (1− p)(1− x2)).

Note that if either A1
b = 1 or A2

g = 0, the IC constraint is vacuously satisfied with strict

inequality. Thus, the principal can be better off by decreasing A1
b from 1 or increasing A2

g

from 0 without violating the IC constraint.18

Now recall that the principal prefers one experiment to the other if the former is in the

“northeast” of the latter. By using this property, I can further reduce the possible candidates

for experiments that are assigned under an optimal decision rule. I denote the “northeast

boundary” of Πi by NEB(Πi).

Definition 4. An experiment, πi = (xi, yi) ∈ Πi, is on the NEB(Πi) if, for any ε > 0,

(xi + pε, yi + (1− p)ε) is not in Πi.

18The detailed proof for the second result in Remark 2 is relegated to the Appendix.
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Figure 6 visualizes how to find NEB(Πi). It is straightforward to tell whether an experiment

is on the NEB(Πi); (1) choose an experiment in Πi, (2) draw a straight line that has a slope

of 1−p
p from the chosen experiment to the northeast of that experiment, (3) if no part of this

line segment except the chosen experiment belongs to Πi, the chosen experiment is on the

NEB(Πi); otherwise, it is not.

With the precise definition of NEB(Πi), I state the following lemma.

Lemma 1. An optimal decision rule assigns an experiment on NEB(Πi).

The intuition of Lemma 1 is simple. Note that, given any decision rule, type θ1’s payoff

depends on the probability that πi generates the positive outcome, pyi+(1−p)(1−xi). Then

type θ1 is indifferent among experiments on a line through πi = (xi, yi) with a slope of 1−p
p

as they have the same probability of generating the positive outcome. Hence, the principal

can choose any experiment on the line segment without altering the IC constraint of type θ1.

Then, the principal would choose the one at the most “northeast”.

The procedure so far gives us two “lines,” NEB(Πi) for i = 1, 2, rather than two convex

sets. Note that S̄i(xi) dictates the shape of NEB(Πi). Let Ni(xi) be the part of S̄i(xi)

above y = 1−p
p (1 − x): Ni(xi) := {S̄i(xi)|pS̄i(xi) ≥ (1 − p)(1 − xi)}. Then, I say NEB(Πi)

is non-increasing (or concave) if and only if Ni(xi) is non-increasing (or concave) in xi. One

caveat here is that Ni(xi) does not always coincide with NEB(Πi). For example, in the left

panel of Figure 6, Ni(xi) : [x
cl
i , x

cr
i ] → [S̄i(x

cl
i ), S̄i(x

cr
i )] exactly describes NEB(Πi). However,

in the right panel, Ni(x
′
i) = 0.9 for x′i ∈ [x′cli , x′cri ] does not include the vertical line at x′cri ,

which is a part of NEB(Π′
i). Nonetheless, NEB(Π′

i) is “non-increasing” in the sense that for

any π′
i = (x′i, y

′
i) ∈ NEB(Π′

i), y
′
i does not increase as x′i increases; it is also “concave” in the

sense, that for any π′
i,π

′′
i ∈ NEB(Π′

i) and α ∈ (0, 1), απ′
i + (1− α)π′′

i is “below” NEB(Π′
i).

Under Assumption 1, we have a decreasing and concave NEB(Πi) which is always non-

empty. Then, under Assumption 2, we have NEB(Π1) in the northeast of NEB(Π2) as

shown in Figure 7. It is worth mentioning that π̂i is always included in NEB(Πi).

NEB(⇧1)
<latexit sha1_base64="sBTyo7jnOML8mK2VGC7dBPbqc9U=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3W8057xZJbcWdAy8TLSAkyNHrFr25fkiSiwhCOte54bmz8FCvDCKeTQjfRNMZkhAe0Y6nAEdV+Ort4gk6s0kehVLaEQTP190SKI63HUWA7I2yGetGbiv95ncSEl37KRJwYKsh8UZhwZCSavo/6TFFi+NgSTBSztyIyxAoTY0Mq2BC8xZeXSata8c4q1bvzUq2exZGHIziGMnhwATW4gQY0gYCAZ3iFN0c7L8678zFvzTnZzCH8gfP5A8bEj60=</latexit>

NEB(⇧2)
<latexit sha1_base64="WYPJlDRsIdVk1K8itDGPnj1rgnk=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3Wq572iiW34s6AlomXkRJkaPSKX92+JElEhSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox1KBI6r9dHbxBJ1YpY9CqWwJg2bq74kUR1qPo8B2RtgM9aI3Ff/zOokJL/2UiTgxVJD5ojDhyEg0fR/1maLE8LElmChmb0VkiBUmxoZUsCF4iy8vk1a14p1VqnfnpVo9iyMPR3AMZfDgAmpwAw1oAgEBz/AKb452Xpx352PemnOymUP4A+fzB8hJj64=</latexit> ⇡̂1

<latexit sha1_base64="U9NAmKSwkuwqXeoIKK8g9Ptbh38=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpj2vV6m6NXcOskq8glShQLNX+Qr6CctirpBJaozvuSmGOdUomOTTcpAZnlI2pkPuW6pozE2Yz0+eknOr9Mkg0bYUkrn6eyKnsTGTOLKdMcWRWfZm4n+en+HgJsyFSjPkii0WDTJJMCGz/0lfaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMEjgGV7hzUHnxXl3Phata04xcwJ/4Hz+AEwvkUI=</latexit>

⇡̂2
<latexit sha1_base64="RC/KxCsJcS6dHiXTjetcp9juN+U=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpr16r1J1a+4cZJV4BalCgWav8hX0E5bFXCGT1Bjfc1MMc6pRMMmn5SAzPKVsTIfct1TRmJswn588JedW6ZNBom0pJHP190ROY2MmcWQ7Y4ojs+zNxP88P8PBTZgLlWbIFVssGmSSYEJm/5O+0JyhnFhCmRb2VsJGVFOGNqWyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYJDAM7zCm4POi/PufCxa15xi5gT+wPn8AU2zkUM=</latexit>

⇡̄2(⇡̂1)
<latexit sha1_base64="pYrub3mbB2BD8hsZDgFB64aDJPA=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JKhVvCGBObtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/aGWlQ==</latexit>

Figure 7: NEB(Πi)

⇡̄1(⇡̂2)
<latexit sha1_base64="OIrDZVLPj03vdaJuT0p4XosJ1+U=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JHAr3pDAnGtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/ZWWlQ==</latexit>

NEB(⇧1)
<latexit sha1_base64="sBTyo7jnOML8mK2VGC7dBPbqc9U=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3W8057xZJbcWdAy8TLSAkyNHrFr25fkiSiwhCOte54bmz8FCvDCKeTQjfRNMZkhAe0Y6nAEdV+Ort4gk6s0kehVLaEQTP190SKI63HUWA7I2yGetGbiv95ncSEl37KRJwYKsh8UZhwZCSavo/6TFFi+NgSTBSztyIyxAoTY0Mq2BC8xZeXSata8c4q1bvzUq2exZGHIziGMnhwATW4gQY0gYCAZ3iFN0c7L8678zFvzTnZzCH8gfP5A8bEj60=</latexit>

NEB(⇧2)
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Figure 8: Proposition 2
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Given NEB(Πi) for i = 1, 2, we can be even more precise about the experiments assigned

under an optimal decision rule. I introduce two definitions used to state this next result.

Definition 5. Given an experiment, πi = (xi, yi), on NEB(Πi), π̄j(πi) = (x̄j , ȳj) is the

experiment on NEB(Πj) such that pyi + (1− p)(1− xi) = pȳj + (1− p)(1− x̄j) for i ∕= j.

Given an experiment, πi, on NEB(Πi), π̄j(πi) is the experiment on NEB(Πj) that can

constitute an incentive compatible decision rule along with the given πi while keeping ex post

optimality in both types. For example, consider π̂1 and π̄2(π̂1). Geometrically, π̄2(π̂1) is the

point on NEB(Π2) which intersects with the straight line drawn from π̂1 on NEB(Π1) with

a slope of 1−p
p as shown in Figure 7. It is easy to see that {(π̂1, 1, 0), (π̄2(π̂1), 1, 0)} is incentive

compatible.

Definition 6. Relative locations of experiments, πi and π′
i, on NEB(Πi):

(a) πi ! π′
i: πi is in the northwest of or equal to π′

i (i.e., yi ≥ y′i and xi ≤ x′i),

(b) πi ≻ π′
i: πi is in the northwest of π′

i (i.e., yi > y′i and xi < x′i).

It is worth noting that, given the optimal action-probability pairs in Remark 2, the agent

prefers πi to π′
i if and only if πi ! π′

i. Furthermore, note that, as we are interested in the

cases such that pŷ1 + (1 − p)(1 − x̂1) < pŷ2 + (1 − p)(1 − x̂2), we have π̂2 ≻ π̄2(π̂1) (or,

equivalently, π̄1(π̂2) ≻ π̂1)).

With two definitions above, I state Proposition 2 which concludes the “curtailing process.”

Proposition 2. An optimal decision rule assigns (π1,π2) such that π̄1(π̂2) ! π1 ! π̂1 and

π̂2 ! π2 ! π̄2(π̂1).

Figure 8 visualizes Proposition 2. It is easy to find π̂i on NEB(Πi). Then each π̂i determines

π̄j(π̂i) on NEB(Πj). Proposition 2 says that these four experiments, π̂1, π̂2, π̄1(π̂2) and

π̄2(π̂1), confine the candidates for experiments assigned under an optimal decision rule.19

The intuition behind it is simple: if a decision rule assigns πi which is “far from” π̂i, we can

improve the principal’s payoff by moving πi closer to π̂i.

3.1.2 Simplifying the Problem

In this subsection, I introduce statements that further simplify our problem.

19Note that the existence of π̄1(π̂2) is guaranteed. However, there are cases in which π̄2(π̂1) is excluded
and not on the NEB(Π2) as it is a non-convincing experiment. I do not explicitly discuss such cases in this
paper. However, in those cases, I only need to replace π̄2(π̂1) with π2, where π2 = (xcr

2 , S̄2(x
cr
2 )). Then, one

can easily see that every statement which involves π̄2(π̂1) in this paper (i.e., Propositions 2 or 5) is still valid
after replacing π̄2(π̂1) with π2.
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Lemma 2. The IC constraint for type θ1 binds under an optimal decision rule given that

pŷ1 + (1− p)(1− x̂1) < pŷ2 + (1− p)(1− x̂2).

By Lemma 2, we do not need to consider any decision rule with a non-binding IC constraint.

Furthermore, any decision rule with (π1,π2) such that py1+(1−p)(1−x1) > py2+(1−p)(1−x2)

cannot be optimal since there are no optimal action-probability pairs that make type θ1’s IC

constraint bind (i.e., the optimal action-probability pairs in Remark 2).

Lemma 3. For any decision rule with (π1,π2) ∈ NEB(Π1)×NEB(Π2) such that π2 ≻ π̄2(π1)

(i.e., py1+(1− p)(1−x1) < py2+(1− p)(1−x2)), it is optimal to give up ex post optimality

just for one type.

The core intuition behind Lemma 3 is the fact that the principal’s payoff is linear in A1
b and

A2
g given a pair of two experiments, (π1,π2): it is better to put the cost of distortion in the

decisions to one type than to distribute the cost to both types.

Finally, lemmas above altogether lead us to Proposition 3 which pins down the optimal

action-probability pairs given any pair of experiments, (π1,π2), under our consideration and,

thus, further reduces the set of candidates for optimal decision rules.

Proposition 3. Given any (π1,π2) ∈ NEB(Π1)×NEB(Π2) such that py1+(1−p)(1−x1) ≤
py2 + (1− p)(1− x2),

(a) if τ(π1,π2) ≥ 1−t
t , M2(π1,π2) := {(π1, 1, 0), (π2, A2

g(π1,π2), 0)} is optimal,

(b) if τ(π1,π2) ≤ 1−t
t , M1(π1,π2) := {(π1, 1, A1

b(π1,π2)), (π2, 1, 0)} is optimal ,

where A2
g(π1,π2) =

py1+(1−p)(1−x1)
py2+(1−p)(1−x2)

, A1
b(π1,π2) =

(py2+(1−p)(1−x2))−(py1+(1−p)(1−x1))
1−(py1+(1−p)(1−x1))

, and

τ(π1,π2) =

$
py2 + (1− p)(1− x2)

py2 − (1− p)(1− x2)

%
·
$
1− 2p+ py1 − (1− p)(1− x1)

1− (py1 + (1− p)(1− x1))

%
.

Remark 2 and Lemma 2 imply that an optimal decision rule assigns (π1,π2) such that py1 +

(1−p)(1−x1) ≤ py2+(1−p)(1−x2), which is the pair of experiments considered in Proposition

3. Then, Proposition 3 implies that we can focus on either M1(π1,π2) or M2(π1,π2) with

(π1,π2) such that py1 + (1− p)(1− x1) ≤ py2 + (1− p)(1− x2).

First suppose that the principal wants to assign (π1,π2) such that py1+(1− p)(1−x1) =

py2 + (1− p)(1− x2). Then, the principal does not need to sacrifice ex post optimality. Note

that, given (π1,π2) such that py1+(1−p)(1−x1) = py2+(1−p)(1−x2), the optimal action-

probability pairs in each decision rule are ex post optimal: A2
g(π1,π2) = 1 and A1

b(π1,π2) = 0,

and M1(π1,π2) = M2(π1,π2) = {(π1, 1, 0), (π2, 1, 0)} := M̄(π1,π2). Thus, regardless of the

values of τ(π1,π2) and t, it is optimal for the principal to make the ex post optimal decisions.
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Now suppose that the principal wants to assign (π1,π2) such that py1+(1− p)(1−x1) <

py2 + (1− p)(1− x2). Then, she needs to give up the ex post optimal decisions. By Lemma

3, either M1 = {(π1, 1, A1
b > 0), (π2, 1, 0)} or M2 = {(π1, 1, 0), (π2, A2

g < 1, 0)} is optimal.

Then, by Lemma 2, we can immediately obtain A1
b and A2

g from the binding IC constraint

under each decision rule. Thus, both A1
b and A2

g are the probabilities of making an ex post

sub-optimal decision to optimally incentivize type θ1 to conduct the experiment destined to

him, i.e., π1. Note that both A1
b and A2

g are functions of (π1,π2) and are in (0, 1) given that

py1 + (1 − p)(1 − x1) < py2 + (1 − p)(1 − x2). By comparing the principal’s two different

ex ante payoffs under two decision rules, the sufficient condition for each decision rule to

payoff-dominate the other is immediate. Intuitively, if t = P (θ1) is relatively high so that

τ(π1,π2) ≥ 1−t
t , M2(π1,π2) is optimal, i.e., it is better to sacrifice the ex post optimal

decisions for type θ2; otherwise, M
1(π1,π2) is optimal.

3.1.3 Optimal Decision Rules: Favorite Experiments vs. Ex post Optimality

As we focus on the cases in which the first-best outcome is not feasible, the principal needs

to give up either the favorite experiments or/and ex post optimality.20 I focus on two kinds

of optimal decision rules which possess at least one of two desirable properties: (i) decision

rule that assigns the favorite experiments at the cost of giving up ex post optimality and (ii)

decision rule that achieves ex post optimality at the cost of giving up the favorite experiments.

I characterize sufficient conditions under which each decision rule is optimal.

I first introduce two special experiments which relate to the sufficient conditions.

Definition 7. (Two Special Experiments)

(a) π̃i = (x̃i, ỹi) is the experiment on NEB(Πi) which maximizes yi
1−xi

(the positive likeli-

hood ratio):

π̃i ∈ argmax
πi∈NEB(Πi)

yi
1− xi

,

(b) π̊i = (̊xi, ẙi) is the experiment on NEB(Πi) which minimizes 1−yi
xi

(the negative likeli-

hood ratio):

π̊i ∈ argmin
πi∈NEB(Πi)

1− yi
xi

.

20It is worth mentioning that the trade-off between the favorite experiments and ex post optimality is
meaningful due to the restrictions on Si: Si contains only some but not all binary experiments. Consider
(π̂i, A

i
g < 1, Ai

b > 0). By reflecting the randomness of (Ai
g < 1, Ai

b > 0) in π′
i, one might be able to construct π′

i

so that (π′
i, A

′i
g = 1, A′i

b = 0) gives as much payoff to both the principal and the agent as (π̂i, A
i
g < 1, Ai

b > 0)
does. However, the constructed experiment, π′

i, might not be in Si due to the restrictions on Si. Even if Si

includes all possible binary experiments, this kind of construction might require more than two outcomes, and
thus, π′

i might not be in Si.
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Note that yi
1−xi

is the ratio of the frequency of the true positive outcome to that of the false

positive outcome; 1−yi
xi

is the ratio of the frequency of the false negative outcome to that of

the true negative outcome. It is easy to see that both yi
1−xi

and 1−yi
xi

are reasonable measures

for the “quality” of experiments: given πi and π′
i, πi Blackwell-dominates π′

i if and only if

yi ≥ y′i and xi ≥ x′i, which implies that yi
1−xi

≥ y′i
1−x′

i
and 1−yi

xi
≤ 1−y′i

x′
i
. Then, according

to the first measure, yi
1−xi

, π̃i is the best experiment in Si as π̃i has the highest value of
yi

1−xi
. If we employ the second measure, 1−yi

xi
, π̊i is the best experiment in Si as π̊i has the

lowest value of 1−yi
xi

. Figure 9 summarizes a geometrical property of π̃i and π̊i in [0, 1]2.
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Figure 9: π̃i and π̊i on NEB(Πi)

Note that yi
1−xi

is merely the absolute value of the slope of a straight line connecting an

experiment πi = (xi, yi) and (1, 0); 1−yi
xi

is merely the absolute value of the slope of a straight

line connecting an experiment πi = (xi, yi) and (0, 1). Thus, π̃i is the point that maximizes

|− yi
1−xi

|; π̊i is the point that minimizes |− 1−yi
xi

|.
Lastly, the properties of S̄i(xi) determine the relative locations of three special experi-

ments, π̊i, π̃i, and π̂i, as shown in Figure 9.

Lemma 4. (Relative Locations of π̊i, π̂i, and π̃i)

(a) π̊i ! π̂i ! π̃i: ẙi ≥ ŷi ≥ ỹi (and, thus, x̊i ≤ x̂i ≤ x̃i),

(b) if {(xi, Ni(xi))} ≡ NEB(Πi) and Ni(xi) is twice-differentiable at every xi ∈ [xcli , x
cr
i ],

π̊i ∕= π̂i and π̃i ∕= π̂i.

The proof of Lemma 4 is relegated to the online Appendix as the results are evident as

shown in Figure 9. Given the relative locations of π̊i, π̂i, and π̃i, it is worth discussing the
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changes in the quality of πi along NEB(Πi). Note that, as πi moves along NEB(Πi), the

quality improvement in one dimension necessarily involves the quality worsening in the other

dimension due to Assumption 1.(b): if xi increases, yi decreases, and vice versa. Hence it is

impossible to tell whether πi becomes more informative or not in the sense of Blackwell (1953)

unless Ni(xi) is a horizontal line. However, it is still possible to discuss the quality changes of

πi in terms of three quality measures introduced so far, 1−yi
xi

, the principal’s preference over

NEB(Πi), and
yi

1−xi
. Note that as πi approaches one of three “best” experiments, π̊i, π̂i, and

π̃i, the quality of πi increases in terms of the quality measure that defines the corresponding

“best” experiment. For example, as πi approaches π̃i from either side of π̃i,
yi

1−xi
increases. I

say the quality improvement of πi is unambiguous if πi becomes closer to all of three “best”

experiments, π̊i, π̂i, and π̃i; if πi becomes closer to one or two of three “best” experiments, I

say the quality improvement of πi is ambiguous.21

The unambiguous improvement occurs (i) when πi approaches π̊i from the northwest

(i.e., πi → π̊i ! π̂i ! π̃i) and (ii) when πi approaches π̃i from the southeast (i.e., π̊i ! π̂i !
π̃i ← πi). The quality improvement is ambiguous in any other cases. More importantly,

note that the unambiguous improvement is always superior to the ambiguous one in terms

of the decrease (or increase) of yi due to the changes in xi since NEB(Πi) is concave. For

example, as clear in Figure 9, given the same increase in xi, the unambiguous improvement

(πi → π̊i ! π̂i ! π̃i) requires a smaller decrease in yi = Ni(xi) than any other ambiguous

improvements (̊πi ! πi → π̂i ! π̃i or π̊i ! π̂i ! πi → π̃i).
22

Now I state Proposition 4 which provides sufficient conditions for the favorite experiments

to be assigned under an optimal decision rule.

Proposition 4. If (i) π̊1 = π̂1 and (ii) π̃2 = π̂2, an optimal decision rule assigns π̂1 to type

θ1 and π̂2 to type θ2.

An immediate observation is that the sufficient conditions in Proposition 4 cannot be sat-

isfied if {(xi, Ni(xi))} ≡ NEB(Πi) and Ni(xi) is twice-differentiable as one can see in Lemma

4. That is, a “non-smooth” NEB(Πi) is a necessary condition for the sufficient conditions in

Proposition 4 to be satisfied. Figures 10 and 11 show two examples when the sufficient condi-

21Weber (2010) proposes the confidence order over the set of binary experiments, and it is related to the
unambiguous improvement. Given two experiments, πi = (xi, yi) and π′

i = (x′
i, y

′
i), a Bayesian decision maker

is at least confident in π′
i as in πi if

y′
i

1−x′
i
≥ yi

1−xi
and

1−y′
i

x′
i

≤ 1−yi
xi

. Then, according to his terminology, if

π′
i is a result of an unambiguous improvement of πi, a Bayesian decision maker is at least confident in π′

i as
in πi. For example, π̊i is a result of the unambiguous improvement of any πi ! π̊i. Thus, the principal is at
least confident in π̊i as in any πi ! π̊i.

22In the Appendix, I present a simple exercise with a differentiable Ni(xi) which demonstrates that a
decrease in yi has a lower upper bound and an increase in yi has a higher lower bound for the unambiguous
improvement than an ambiguous improvement.
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Figure 10: π̊1 = π̂1 ≻ π̃1 and π̊2 ≻ π̂2 = π̃2
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Figure 11: π̊i = π̂i = π̃i for i = 1, 2

tions in Proposition 4 are satisfied. In Figure 10, {(xi, Ni(xi))} ≡ NEB(Πi) but Ni(xi) is not

differentiable at some xi; in Figure 11, Ni(xi) is differentiable but {(xi, Ni(xi))} ∕≡ NEB(Πi).

Note that, in Figure 11, both S1 and S2 take the form of an upper-right triangle. Then,

π̊i = π̂i = π̃i must hold. Thus, the conditions in Proposition 4 are automatically satisfied. It

is worth noting that π̂i Blackwell-dominates every πi ∈ Si in this upper-right triangle case.23

Thus, we have the following Corollary.

Corollary 1. If π̂i Blackwell-dominates every πi ∈ Si for i = 1, 2, an optimal decision rule

assigns the favorite experiment to each type of the agent.

When the conditions in Proposition 4 hold, we know what experiments are assigned under

an optimal decision rule. For a complete characterization of an optimal decision rule, we need

to find the optimal action-probability pairs. We can use Proposition 3 to find these pairs as

(π̂1, π̂2) satisfies pŷ1+(1−p)(1−x̂1) < pπ̂2+(1−p)(1−x̂2). We can simply calculate τ(π̂1, π̂2)

and compare it with 1−t
t . If t is low enough, (1−t)/t > τ(π̂1, π̂2) will hold. Then, it is optimal

to have A1
b(π̂1, π̂2) > 0. If t is high enough, then it is optimal to have A2

g(π̂1, π̂2) < 1.

To see a rough intuition behind Proposition 4, choose and fix any π2 such that π̂2 !
π2 ! π̄2(π̂1) which then defines π̄1(π2) such that π̄1(π̂2) ! π̄1(π2) ! π̂1. Given the chosen π2,

the principal’s choice set for π1 is {π1|π̄1(π̂2) ! π1 ! π̂1} (Proposition 2). As π1 approaches

π̄1(π2) from π̄1(π̂2) (i.e., π̄1(π̂2) ! π1 → π̄1(π2) ! π̂1), the principal trades off an increase in x1

for the associated decrease in y1. This always benefits the principal because π1 becomes closer

to π̂1 while satisfying type θ1’s IC constraint with the ex post optimal decisions. Thus, π̄1(π2)

payoff-dominates every π1 such that π̄1(π̂2) ! π1 ≻ π̄1(π2), and type θ1’s IC constraint binds

at π̄1(π2) with the principal’s ex post optimal decisions by definition of π̄1(π2) (Lemma 2). As

23Under Assumption 1, Si takes the form of an upper-right triangle if and only if π̂i Blackwell-dominates
every πi ∈ Si.
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π1 approaches π̂1 from π̄2(π1) (i.e., π̄1(π2) ! π1 → π̂1), the principal trades off an increase in

x1 for the associated decrease in y1 and distortion in the ex post optimal decisions. Note that

for a given π2 and any π1 such that π̄1(π2) ≻ π1, py1+(1−p)(1−x1) < py2+(1−p)(1−x2).

Thus, distortion in the ex post optimal decisions is necessary to satisfy type θ1’s IC constraint.

This distortion imposes an additional cost for having π1 closer to π̂1. Furthermore, note that

the distortion becomes severer as π1 becomes closer to π̂1, i.e., A
1
b(π1,π2) > 0 increases and

A2
g(π1,π2) < 1 decreases as π1 → π̂1 from π̄1(π2) (Lemma 3 and Proposition 3).24 Hence, for

the principal to give up ex post optimality and prefer π1 such that π̄1(π2) ≻ π1 to π̄1(π2),

the benefit from an increase in x1 must be high enough to compensate for the associated

decrease in y1 and the additional cost of making ex post sub-optimal decisions.

Recall that the unambiguous improvement from the northwest (i.e., π1 → π̊1 ! π̂1 ! π̃1)

has a large increase in x1 relative to the associated decrease in y1. In fact, an increase in

x1 by any unambiguous improvement of π1 is large enough so that its benefit covers the

associated decreases in y1 and the additional cost imposed by ex post sub-optimality. To

see it more clearly, consider M1(π1;π2) given any π2 such that π̂2 ! π2 ! π̄2(π̂1) as an

example. Furthermore, assume that {(x1, N1(x1))} ≡ NEB(Π1) and N1(x1) is differentiable

for expositional convenience. Under M1(π1;π2), the principal’s expected payoff is

EUP (M1(·)) = (1− t)EUP (M1|π2) + t
&
1− p+ pN1(x1)− (1− p)(1− x1)

−A1
b(π1;π2)(1− 2p+ pN1(x1)− (1− p)(1− x1))

'

= (1− t)EUP (M1|π2) + t
&
p+ (1− p)x1 − p(1−N1(x1))

−
$
1− 1− uA(π2)

(1− p)x1 + p(1−N1(x1))

%
{(1− p)x1 − p(1−N1(x1))}

( )* +
:=CAb

(π1;π2), additional cost due to A1
b > 0

'
,

where uA(π2) = py2 + (1− p)(1− x2). Note that, if there is no additional cost, the principal

can always benefit from having π1 closer to π̂1 since its marginal gain is always positive, i.e.,

∂[(1− p)x1− p(1−N1(x1))]/∂x1 = (1− p)+ pN ′
1(x1) ≥ 0 for any π1 ! π̂1. Taking the partial

derivative of the additional cost with respect to x1, we have

∂CAb
(·)

∂x1
= (1− p) + pN ′

1(x1)−
2p(1− p)(1− uA(π2))

[(1− p)x1 + p(1−N1(x1))]2
"
N ′

1(x1)x1 + (1−N1(x1))
#
.

For any π1 ! π̊1, N
′
1(x1)x1+(1−N1(x1)) ≥ 0 by definition of π̊1.

25 Thus, as far as the quality

24If the distortion in the ex post optimal decisions is independent of the choice of π1, the optimal choice for
π1 is always π̂1. It is immediate by the principal’s payoff from an experiment π′

i, EUP (M |π′
i) = (1− p)− (1−

2p)A′
b + (A′

g −A′
b)(py

′
i − (1− p)(1− x′

i)), and definition of π̂i.
25As π1 → π̊1 from the northwest, (1 − Ni(xi))/xi decreases, which implies ∂[(1 − N1(x1))/x1]/∂x1 =

[−N ′
1(x1)x1 − (1−N1(x1))]/x

2
1 ≤ 0 for any π1 ! π̊1.
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improvement of π1 is unambiguous (i.e., π1 → π̊1), the marginal gain, pN ′
1(x1) + (1 − p), is

always greater than the marginal cost, ∂CAb
(·)/∂x1.26

Given the relative locations of the three “best” experiments (i.e., π̊1 ! π̂1 ! π̃1) by

Lemma 4, the condition, π̊1 = π̂1, guarantees that having π1 closer to π̂1 from the northwest

is always an unambiguous improvement (i.e., π1 → π̊1 = π̂1 ! π̃1). This, in turn, implies

that the benefit from an increase in x1 is relatively large to compensate for the associated

decrease in y1 and the additional cost due to ex post sub-optimality until π1 = π̂1(= π̊1).

Thus, given any π2 such that π̂2 ! π2 ! π̄2(π̂1), the principal is willing to assign π̂1 to type

θ1 even though the distortion is maximized at π̂1. A similar intuition can be found for the

other condition, π̂2 = π̃2. Now the condition guarantees that having π2 closer to π̂2 from the

southeast is always an unambiguous improvement (i.e., π̊2 ! π̂2 = π̃2 ← π2). Thus, given

any π1 such that π̄1(π̂2) ! π1 ! π̂1, the principal is willing to assign π̂2 to type θ2 at the cost

of giving up ex post optimality.

Propositions 4 and 3 fully characterize the optimal decision rule in which the favorite

experiments are assigned to each type at the cost of giving up ex post optimality. If type

θ1 is highly likely compared to type θ2, it is optimal to distort the action-probability pair

associated with π̂2, and vice versa. Here the principal incentivises type θ1 to conduct π̂1 by

increasing the payoff from π̂1 (i.e., A1
b > 0) or decreasing that from π̂2 (i.e., A2

g < 1). It is

worth mentioning that this contrasts to the classical “no distortion at the top” result: here

distortion is optimally made at type θ1 (or “high” type) if type θ2 is highly likely than type

θ1.

Now I provide the sufficient conditions for the decision rule which achieves ex post op-

timality at the cost of giving up the favorite experiments to be optimal. The sufficient

conditions again relate to the relative locations of π̊1 and π̃2.

Proposition 5. If (i) π̊1 ! π̄1(π̂2) and (ii) π̄2(π̂1) ! π̃2, an optimal decision rule achieves

ex post optimality; that is, (Ai
g, A

i
b) = (1, 0) for i = 1, 2.

Figure 12 visualizes the conditions in Proposition 5. Recall that, in Proposition 4, we have

π̊1 = π̂1 and π̃2 = π̂2. In Proposition 5, π̊1 and π̃2 are “sufficiently far from” π̂1 and π̂2,

respectively.

As we have seen in Proposition 4, the principal is willing to trade off ex post optimality for

an unambiguous quality improvement of πi. However, given (π1,π2) specified in Proposition

26It is possible to show that ∂EUP (M2(·))/∂x1 > 0 for any π1 ! π̊1 with a similar exercise. However, it
requires an additional assumption on the likelihood of types (i.e., τ(π1,π2) ≥ 1−t

t
), which is natural because

the distortion occurs in the decisions for type θ2 while the benefit occurs in the decisions for type θ1. If
τ(π1,π2) < 1−t

t
, then EUP (M1(·)) > EUP (M2(·)) by Proposition 3. Hence, the principal employs M1(·),

and we return to the discussion on M1(·) above.

26



NEB(⇧1)
<latexit sha1_base64="sBTyo7jnOML8mK2VGC7dBPbqc9U=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3W8057xZJbcWdAy8TLSAkyNHrFr25fkiSiwhCOte54bmz8FCvDCKeTQjfRNMZkhAe0Y6nAEdV+Ort4gk6s0kehVLaEQTP190SKI63HUWA7I2yGetGbiv95ncSEl37KRJwYKsh8UZhwZCSavo/6TFFi+NgSTBSztyIyxAoTY0Mq2BC8xZeXSata8c4q1bvzUq2exZGHIziGMnhwATW4gQY0gYCAZ3iFN0c7L8678zFvzTnZzCH8gfP5A8bEj60=</latexit>

NEB(⇧2)
<latexit sha1_base64="WYPJlDRsIdVk1K8itDGPnj1rgnk=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3Wq572iiW34s6AlomXkRJkaPSKX92+JElEhSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox1KBI6r9dHbxBJ1YpY9CqWwJg2bq74kUR1qPo8B2RtgM9aI3Ff/zOokJL/2UiTgxVJD5ojDhyEg0fR/1maLE8LElmChmb0VkiBUmxoZUsCF4iy8vk1a14p1VqnfnpVo9iyMPR3AMZfDgAmpwAw1oAgEBz/AKb452Xpx352PemnOymUP4A+fzB8hJj64=</latexit>

⇡̄1(⇡̂2)
<latexit sha1_base64="OIrDZVLPj03vdaJuT0p4XosJ1+U=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JHAr3pDAnGtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/ZWWlQ==</latexit>

⇡̂1
<latexit sha1_base64="U9NAmKSwkuwqXeoIKK8g9Ptbh38=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpj2vV6m6NXcOskq8glShQLNX+Qr6CctirpBJaozvuSmGOdUomOTTcpAZnlI2pkPuW6pozE2Yz0+eknOr9Mkg0bYUkrn6eyKnsTGTOLKdMcWRWfZm4n+en+HgJsyFSjPkii0WDTJJMCGz/0lfaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMEjgGV7hzUHnxXl3Phata04xcwJ/4Hz+AEwvkUI=</latexit>

⇡̂2
<latexit sha1_base64="RC/KxCsJcS6dHiXTjetcp9juN+U=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpr16r1J1a+4cZJV4BalCgWav8hX0E5bFXCGT1Bjfc1MMc6pRMMmn5SAzPKVsTIfct1TRmJswn588JedW6ZNBom0pJHP190ROY2MmcWQ7Y4ojs+zNxP88P8PBTZgLlWbIFVssGmSSYEJm/5O+0JyhnFhCmRb2VsJGVFOGNqWyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYJDAM7zCm4POi/PufCxa15xi5gT+wPn8AU2zkUM=</latexit>

⇡̄2(⇡̂1)
<latexit sha1_base64="pYrub3mbB2BD8hsZDgFB64aDJPA=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JKhVvCGBObtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/aGWlQ==</latexit>

⇡̊1
<latexit sha1_base64="ULa0jWA0qxdDXJsykOm9vHuobRg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRV0GXRjcsK9gFNCJPppB06mYSZSaGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOmHKmtON8W5WNza3tnepubW//4PDIPj7pqiSThHZIwhPZD7GinAna0Uxz2k8lxXHIaS+c3Bd+b0qlYol40rOU+jEeCRYxgrWRAtv2YqzHkolR7qVsHriBXXcazgJonbglqUOJdmB/ecOEZDEVmnCs1MB1Uu3nWGpGOJ3XvEzRFJMJHtGBoQLHVPn5IvkcXRhliKJEmic0Wqi/N3IcKzWLQzNZ5FSrXiH+5w0yHd36ORNppqkgy0NRxpFOUFEDGjJJieYzQzCRzGRFZIwlJtqUVTMluKtfXifdZsO9ajQfr+utu7KOKpzBOVyCCzfQggdoQwcITOEZXuHNyq0X6936WI5WrHLnFP7A+vwBzECTwg==</latexit>

⇡̃2
<latexit sha1_base64="HxIFlEoHLahznmhgunbvovf8DTM=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84DsEmZne5Mhsw9nZgNhyXd48aCIVz/Gm3/jJNmDJhY0FFXddHf5qeBK2/a3tba+sbm1Xdop7+7tHxxWjo7bKskkwxZLRCK7PlUoeIwtzbXAbiqRRr7Ajj+6m/mdMUrFk/hRT1L0IjqIecgZ1UbyXM1FgLmb8mm/3q9U7Zo9B1klTkGqUKDZr3y5QcKyCGPNBFWq59ip9nIqNWcCp2U3U5hSNqID7Bka0wiVl8+PnpJzowQkTKSpWJO5+nsip5FSk8g3nRHVQ7XszcT/vF6mwxsv53GaaYzZYlGYCaITMkuABFwi02JiCGWSm1sJG1JJmTY5lU0IzvLLq6RdrzmXtfrDVbVxW8RRglM4gwtw4BoacA9NaAGDJ3iGV3izxtaL9W59LFrXrGLmBP7A+vwB5CmSLA==</latexit>

Figure 12: Proposition 5

2, the conditions in Proposition 5 make it that any change in πi is an ambiguous improvement.

Hence, given a decision rule with ex post optimality, M̄(·), there is no quality improvement

of πi for which the principal is willing to trade off ex post optimality. To be more specific,

consider two decision rules, M1(π1,π2) andM2(π1,π2) with (π1,π2) such that py1+(1−p)(1−
x1) < py2+(1−p)(1−x2). By Proposition 3, one of these two decision rules must be optimal

if it is optimal for the principal to give up ex post optimality. However, each of these two

decision rules is payoff-dominated by a decision rule with ex post optimality. For example,

M̄(π̄1(π2),π2) payoff-dominates M1(π1,π2). Note that they share the same π2. However,

π̄1(π2) ≻ π1(! π̂1) since pȳ1 + (1− p)(1− x̄1) = py2 + (1− p)(1− x2) > py1 + (1− p)(1− x1)

by definition of π̄1(π2). Thus, under M1(π1,π2), the principal trades off ex post optimality

for an ambiguous improvement of π1 toward π̂1. However, the net benefit of this ambiguous

improvement is negative. To see this, we can use the same functional forms for the marginal

gain and cost from the discussion on Proposition 4. Now, ∂CAb
(·)/∂x1 > pN ′

1(x1) + (1 −
p) for any π1 such that π̄1(π2) ≻ π1 since (i) N ′

1(x1)x1 + (1 − N1(x1)) < 0 for any π1

such that π̊1 ≻ π1 by definition of π̊1 and (ii) we have π̊1 ! π̄1(π̂2) ! π̄1(π2) ≻ π1 ! π̂1.

Hence EUP (M̄(π̄1(π2),π2)) > EUP (M1(π1,π2)) for any π1 such that π̄1(π2) ≻ π1 ! π̂1.

Similarly, M̄(π1, π̄2(π1)) payoff-dominates M2(π1,π2). Since both M1(π1,π2) and M2(π1,π2)

we consider here are not optimal, it must be optimal for the principal to achieve ex post

optimality.

Note that Proposition 5 does not completely characterize an optimal decision rule as

Propositions 3 and 4 do. However, Proposition 5 is still helpful. As we know the optimal

(Ai
g, A

i
b) for i = 1, 2, we only need to find an optimal πi = (xi, yi) for i = 1, 2. Furthermore, we

know that the IC constraint for type θ1 must be binding. Thus, if {(xi, Ni(xi))} ≡ NEB(Πi)

and yi = Ni(xi) is differentiable, it is relatively easy to formulate a maximization problem
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with the binding constraint and two choice variables, x1 and x2.
27

Propositions 4 and 5 tell us an optimal way to resolve the trade-off between the favorite

experiments and ex post optimality. Whether an optimal decision rule assigns the favorite

experiments or achieves ex post optimality depends on the relative locations of two “best”

experiments, π̊1 and π̃2, which determines whether having πi closer to π̂i is an unambiguous

or ambiguous improvement of πi. Under the conditions in Proposition 4, having πi closer

to π̂i is always an unambiguous improvement. Thus, the principal is willing to trade off ex

post optimality for the favorite experiment. Under the conditions in Proposition 5, having

πi closer to π̂i is always an ambiguous improvement. Thus, the principal does not trade off

ex post optimality for any quality improvement of πi toward π̂i.

Lastly, I do not exhaustively consider all possible relative locations of π̊1 and π̃2. While

one can complete the analysis for every possible case, the results would not provide intuition

beyond that given in this paper.28 For example, if π̄1(π̂2) ≻ π̊1 ≻ π̂1, π̂2 ≻ π̃2 ≻ π̄2(π̂1), and

π̄1(π̃2) ! π̊1, the principal will be willing to give up ex post optimality to have πi as closer

to π̂i as possible until such an improvement is ambiguous.

4 Conclusion

I study a principal-agent problem in which the agent’s action is to conduct an experiment

that reveals information about the true state and the principal only can infer the true state

via the agent’s experiment. While the principal wants to take an appropriate action that

depends on the true state, the agent always wants to induce the same action regardless of

the true state. On top of these misaligned interests between the agent and the principal,

there is information asymmetry: the agent privately observes his type which determines the

set of feasible experiments for him. The agent has two types, big and small types: the big

type has a larger set of feasible experiments than the small type. The principal can commit

to a decision rule before the agent chooses an experiment he wants to conduct. While the

principal cannot observe the type of the agent, she can observe the experiment conducted

by the agent and its outcome. Thus, the principal’s decision rule is contingent on both an

experiment and the experimental outcomes.

The main result of this paper is a partial characterization of the principal’s optimal

27I do not discuss the first-order conditions in the maximization problem for the optimal πi here as they do
not give much information without an explicit form of Ni(xi).

28In a note that is available upon request, I characterize optimal decision rules for other cases in which the
relative locations of π̊1 and π̃2 are different from the sufficient conditions in Propositions 4 or 5. However, the
results do not add much to those in this paper while the analysis requires the differentiability of Ni(xi) and
involves tediously long proofs.
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decision rules. The crucial factor that shapes an optimal decision rule is a trade-off between

imposing restrictions on experiments and making the ex post optimal decisions based on the

experimental outcomes; to demand each type of the agent to conduct the principal’s favorite

experiment among the feasible ones, the principal needs to give up making the ex post optimal

decisions, and vice versa.

I first characterize the condition under which there is no such a trade-off: if the princi-

pal’s favorite experiment in the big type’s feasible set generates the positive outcome more

frequently than that in the small type’s feasible set, the principal can assign her favorite

experiments and make the ex post optimal decisions.

Then I focus on the cases in which the principal does face the trade-off between assigning

her favorite experiments and making the ex post optimal decision. I mainly focus on two

kinds of optimal decision rules which possess at least one of two desirable properties in the

first-best outcome: (i) a decision rule which assigns the favorite experiments at the cost of

giving up the ex post optimal decisions and (ii) a decision rule which achieves the ex post

optimal decisions at the cost of giving up the favorite experiments. I provide the sufficient

conditions under which each decision rule is optimal.

On the one hand, if the favorite experiments are the results of some unambiguous quality

improvements, it is optimal for the principal to assign her favorite experiments to both types.

To do so, the principal needs to give up ex post optimality. As it is too costly to give up

ex post optimality for both types, the principal deviates from the ex post optimal decisions

only for the relatively unlikely type.

On the other hand, it is optimal for the principal to achieve ex post optimality only if

the favorite experiments are always results of ambiguous quality improvements. To achieve

ex post optimality, the principal needs to give up assigning the favorite experiments to both

types. In this case, it is not easy to pin down the experiments assigned under an optimal

decision rule without specific functional forms for NEB(Πi). However, I provide possible

candidates for the experiments that are assigned under an optimal decision rule (Proposition

2); those candidates cannot be arbitrarily far from the favorite experiment. Furthermore,

two experiments assigned under this optimal decision rule must be paired in a specific way;

they should have the same ex ante probability of generating the positive outcomes.
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1 Appendix

The Multiplicity of the Favorite Experiments

Without Assumption 1.(d), a part of S̄i(xi) can be linear and share the same slope with

the principal’s indifference curve. Thus, there might exist multiple π̂i. We have already seen

such a case in Figure 4 given in the left panel of the figure below.
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⇡̂⇤
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⇡̂⇤
2

Example B

If there are multiple π̂i in Si, we can either (i) exploit the multiplicity to construct a

decision rule that can achieve the first-best outcome or (ii) choose (π̂1, π̂2) to which we can

apply the results in this paper.

When we have the cases such as Example A, we can exploit the multiplicity of π̂i to

construct a decision rule that can achieve the first-beset outcome as follows. In example A,

the principal’s indifference curve is parallel to both line segments at the northeast of S1 and S2.

Thus every point on the line segment at the northeast of Si is π̂i. Furthermore, the principal

is indifferent among these experiments. Then, we can always find two favorite experiments,

π̂1 and π̂2, which satisfy the condition in Remark 1. In Example A, π̂1 = (0.9, 56) and

π̂2 = (0.9, 1330) are chosen in such a way assuming that p = P (G) = 0.3; p· 56+(1−p)·(1−0.9) =

0.32 > p · 1330 + (1− p) · (1− 0.9) = 0.20. Then by setting both (A1
g, A

1
b) and (A2

g, A
2
b) to (1, 0)

we have the following menu offer, {((0.9, 56), 1, 0), ((0.9,
13
30), 1, 0)}, which can achieve the first-

best outcome.

However, there are cases in which we cannot do the construction above. One of such

cases is given in Example B above. In these cases, we can choose a unique pair of favorite

experiments satisfying a certain condition. By treating the chosen pair as if it is the pair of

the unique favorite experiments in the main text, we can apply the results in the main text

to these cases. Denote by Fi the set of favorite experiments given Πi; denote by π̂k
i a favorite

experiment in Fi. Formally, it is not possible to construct a decision rule that achieves the

1



first-best outcome as above if

max
π̂k
1∈F1

pŷk1 + (1− p)(1− x̂k1) < min
π̂k
2∈F2

pŷk2 + (1− p)(1− x̂k2).

Denote by π̂∗
1 the favorite experiment that maximizes pŷk1 +(1− p)(1− x̂k1); denote by π̂∗

2 the

favorite experiment that minimizes pŷk2 + (1 − p)(1 − x̂k2). Example B demonstrates how to

find (π̂∗
1, π̂

∗
2). Note that (π̂∗

1, π̂
∗
2) minimizes |pŷk1 +(1−p)(1− x̂k1)−(pŷk2 +(1−p)(1− x̂k2))|, and

it is uniquely defined. Given (π̂∗
1, π̂

∗
2), we can apply the results in the main text to these cases

by treating π̂∗
i as if it is the unique π̂i. For example, consider Example B. Given (π̂∗

1, π̂
∗
2), one

can easily apply Proposition 2 and check that it is true with similar logic in its proof. Then

Lemma 2 and other results can be applied as well. One can check the sufficient conditions in

Proposition 4 are satisfied in Example B. Thus an optimal decision rule assigns π̂∗
i to type θi.

Lastly, the optimal action-probability pairs are determined by Proposition 3. To see a rough

intuition why we focus on (π̂∗
1, π̂

∗
2), note that pŷki + (1− p)(1− x̂ki ) is the agent’s payoff when

he conducts π̂k
i and the principal makes the ex post optimal decisions. With (π̂∗

1, π̂
∗
2) that

minimizes the difference between the agent’s payoffs from conducting these two experiments,

the principal can have the IC constraint satisfied with the minimum distortion in the ex post

optimal decisions when she needs to sacrifice them.

These two ways to handle the multiplicity of π̂i can be applied to the cases in which Si

has multiple π̂i but Sj has a unique π̂j .

Comparisons of unambiguous and ambiguous improvements

For expositional convenience, assume that NEB(Πi) ≡ {(x,Ni(xi))} and Ni(xi) is twice-

differentiable. First consider the case when πi → π̊i ! π̂i ! π̃i which is an unambiguous

improvement. In this case, xi increases, and, thus, yi = Ni(xi) decreases. As πi → π̊i from

the northwest, ν(πi) :=
1−Ni(xi)

xi
decreases by definition of π̊i. Thus, we must have

∂ν(πi)

∂xi
=

−N ′
i(xi)xi − (1−Ni(xi))

x2i
≤ 0 ⇐⇒ −N ′

i(xi) ≤
1−Ni(xi)

xi
≤ 1− p

p
,

where 1−Ni(xi)
xi

≤ 1−p
p holds since any πi ∈ NEB(Πi) is convincing.1 Now consider an

ambiguous improvement of πi while πi moves in the same direction (toward the southeast),

i.e., π̊i ! πi → π̂i ! π̃i. In this case, as πi is already in the southeast of π̊i, ν(πi) must

1For any convincing πi, pNi(xi)− (1−p)(1−xi) ≥ 0. Then it must be true that pNi(xi)− (1−p)(1−xi) ≥
0 ≥ 2p − 1 since p < 1/2. This implies that 1 − 2p + pNi(xi) − (1 − p)(1 − xi) ≥ 0, which is equivalent to
1−Ni(xi)

xi
≤ 1−p

p
.

2



increase. Furthermore, as πi approaches π̂i from the northwest, pNi(xi)−(1−p)(1−xi) must

increase. Then we must have

1−Ni(xi)

xi
≤ −N ′

i(xi) ≤
1− p

p
,

where the last inequality comes from ∂[pNi(xi) − (1 − p)(1 − xi)]/∂xi ≥ 0. Thus, −N ′
i(xi)

has a tighter upper bound in the unambiguous improvement. Note that −N ′
i(xi) measures

the absolute value of the decrease in yi = Ni(xi) associated with an infinitesimal increase

in xi because N ′
i(xi) ≤ 0. In other words, the quality worsening in yi = Ni(xi) associated

with the same amount of the quality improvement in xi must be less in the unambiguous

improvement.

In the comparison between the unambiguous and ambiguous improvement from the south-

east (i.e., π̊i ! π̂i ! π̃i ← πi and π̊i ! π̂i ← πi ! π̃i), the quality improvement in yi = Ni(xi)

associated with the same amount of the quality worsening in xi is always bigger in the unam-

biguous improvement. That is, for the unambiguous improvement (i.e., π̊i ! π̂i ! π̃i ← πi),

we have

−N ′
i(xi) ≥

Ni(xi)

1− xi
≥ 1− p

p
.

For the ambiguous improvement (i.e., π̊i ! π̂i ← πi ! π̃i), we have

Ni(xi)

1− xi
≥ −N ′

i(xi) ≥
1− p

p
.

Hence, −N ′
i(xi) which represents the quality increase in yi = Ni(xi) associated with the

same amount of the quality decrease in xi has a tighter lower bound in the unambiguous

improvement.

Proof of Proposition 1

Proof. Consider menu offers such that π1 ∈ S2 and π2 ∈ S2. Among these menu offers,

the menu offer which maximizes the principal’s ex ante payoffs is {(π̂2, 1, 0), (π̂2, 1, 0)}. Now
I show that there always exists a menu offer such that π1 ∈ S1\S2 and π2 ∈ S2 which is

incentive compatible and payoff-dominates {(π̂2, 1, 0), (π̂2, 1, 0)}.
Note that π̂2 ∈ S2\S2 under Assumption 1.(c): if π̂2 ∈ S2, every π2 ∈ S2 is non-convincing,

which implies that there is no xi such that pS̄i(xi) > (1− p)(1− xi). Thus, by Assumption

2, there exists some ε > 0 such that

{(x, y)|
!

(x̂2 − x)2 + (ŷ2 − y)2 < ε} ⊂ S1.

3



Then, note that π′
1 = (x̂2+ pε, ŷ2+(1− p)ε) ∈ S1\S2. First note that π

′
1 /∈ S2 as π′

1 gives the

principal a higher payoff than π̂2. That is, if π′
1 ∈ S2, π̂2 cannot be the favorite experiment

in S2. Secondly, note that π′
1 ∈ {(x, y)|

!
(x̂2 − x)2 + (ŷ2 − y)2 < ε} ⊂ S1. Thus, π

′
1 ∈ S1.

Then, consider a menu offer, {(π′
1, 1, 0), (π̂2, 1, 0)}, where π′

1 = (x̂2 + pε, ŷ2 + (1 − p)ε).

This is a menu offer such that π1 ∈ S1\S2 and π2 ∈ S2. Furthermore, {(π′
1, 1, 0), (π̂2, 1, 0)} is

incentive compatible and payoff-dominates {(π̂2, 1, 0), (π̂2, 1, 0)}.
For the incentive compatibility, we only need to consider type θ1’s IC constraint which is

EUA(π′
1, 1, 0|θ1) ≥ EUA(π̂2, 1, 0|θ1). Note that

EUA(π′
1, 1, 0|θ1) = p(ŷ2 + (1− p)ε) + (1− p)(1− (x̂2 + pε)) = pŷ2 + (1− p)(1− x̂2)

= EUA(π̂2, 1, 0|θ1).

Hence, {(π′
1, 1, 0), (π̂2, 1, 0)} is incentive compatible.

Furthermore, the principal can obtain a strictly higher payoffs since type θ1 conducts an

experiment that is more preferred by the principal: π′
1 has higher values for both x1 and y1

than π̂2. More specifically, under {(π̂2, 1, 0), (π̂2, 1, 0)}, the principal’s payoff is

EUP (·) = (1− p) + t(pŷ2 − (1− p)(1− x̂2)) + (1− t)(pŷ2 − (1− p)(1− x̂2)),

but, under {(π′
1, 1, 0), (π̂2, 1, 0)}, the principal’s payoff is

EUP (·) = (1− p) + t(p(ŷ2 + (1− p)ε)− (1− p)(1− (x̂2 + pε))) + (1− t)(pŷ2 − (1− p)(1− x̂2))

which is strictly higher than the payoff from {(π̂2, 1, 0), (π̂2, 1, 0)}.

Proof of Remark 1

Proof. Suppose π̂1 and π̂2 satisfy pŷ1+(1−p)(1− x̂1) ≥ pŷ2+(1−p)(1− x̂2). Then the follow-

ing menu offer, {(π̂1, 1, 0), (π̂2, 1, 0)}, implements the first-best outcome, [(π̂1, 1, 0), (π̂2, 1, 0)].

Note that under this menu offer, type θ1’s IC constraint holds: if type θ1 conducts π̂1, he

gets pŷ1 + (1 − p)(1 − x̂1) while he gets pŷ2 + (1 − p)(1 − x̂2) by conducting π̂2. Thus type

θ1 does not have an incentive to conduct π̂2 instead of π̂1.
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Proof of Remark 2

Proof. The first result in Remark 2 is proved in the main text. Here I prove the second

result, A1
b < 1 and A2

g > 0 are optimal. Given the first result, A1
g = 1 and A2

b = 0 are

optimal, we can focus on the incentive compatible decision rules with A1
g = 1 and A2

b = 0,

i.e., {(π1, 1, A1
b), (π2, A

2
g, 0)} with (π1,π2) ∈ Π1×Π2 and (A1

b , A
2
g) satisfying the IC constraint

below:

py1 + (1− p)(1− x1) +A1
b(1− (py1 + (1− p)(1− x1))) ≥ A2

g(py2 + (1− p)(1− x2)).

Note that pyi + (1− p)(1− xi) ∈ (0, 1) for i = 1, 2 since πi ∈ Πi implies that πi ∕= (1, 0) and

πi ∕= (0, 1).

First, I show that A1
b < 1 is optimal. Choose any (π1,π2) ∈ Π1 ×Π2 and any A2

g ∈ [0, 1].

Holding the chosen (π1,π2) and A2
g fixed, the IC constraint gives the lower bound for A1

b :

A1
b ≥ max

"
0,

A2
g(py2 + (1− p)(1− x2))− (py1 + (1− p)(1− x1))

1− (py1 + (1− p)(1− x1))

#
.

Since the principal’s expected payoff decreases in A1
b , the optimal solution for A1

b is the lower

bound, the lowest value among all A1
b satisfying the IC constraint. If we have (π1,π2) and

A2
g such that A2

g(py2 + (1− p)(1− x2)) ≤ py1 + (1− p)(1− x1), A
1
b = 0 is optimal; otherwise,

A1
b =

A2
g(py2+(1−p)(1−x2))−(py1+(1−p)(1−x1))

1−(py1+(1−p)(1−x1))
is optimal. In either case, the optimal solution for

A1
b is less than 1: py1+(1−p)(1−x1) ∈ (0, 1) for all π1 ∈ Π1 and A2

g(py2+(1−p)(1−x2)) < 1

for all A2
g ∈ [0, 1] and for all π2 ∈ Π2.

Second, now choose and fix any (π1,π2) ∈ Π1×Π2 and any A1
b ∈ [0, 1]. The IC constraint

gives the upper bound for A2
g:

min

$
1,

py1 + (1− p)(1− x1) +A1
b(1− (py1 + (1− p)(1− x1)))

py2 + (1− p)(1− x2)

%
≥ A2

g.

Since the principal’s expected payoff (weakly) increases in A2
g, an optimal solution for A2

g is the

upper bound, the highest value among all A2
g satisfying the IC constraint. If we have (π1,π2)

and A1
b such that py1+(1−p)(1−x1)+A1

b(1− (py1+(1−p)(1−x1))) ≥ py2+(1−p)(1−x2),

A2
g = 1 is optimal; otherwise, A2

g =
py1+(1−p)(1−x1)+A1

b(1−(py1+(1−p)(1−x1)))

py2+(1−p)(1−x2)
is optimal. In either

case, the optimal solution for A2
g is greater than 0: for all πi ∈ Πi, pyi+(1−p)(1−xi) ∈ (0, 1)

for i = 1, 2.
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Proof of Lemma 1

Proof. I show that a decision rule is not optimal if it does not assign πi ∈ NEB(Πi) for

i = 1, 2. By Remark 2, it suffices to consider incentive compatible decision rules such that

A1
g = 1, A1

b < 1, A2
g > 0, and A2

b = 0, i.e., {(π1, 1, A1
b < 1), (π2, A

2
g > 0, 0)}. Among these

decision rules, consider {(π1, 1, A1
b < 1), (π2, A

2
g > 0, 0)} with either πi ∕∈ NEB(Πi) for

i = 1, 2 or πi ∕∈ NEB(Πi) and πj ∈ NEB(Πj) for i ∕= j. Type θ1’s IC constraint is

&
py1 + (1− p)(1− x1)

'
+A1

b

&
1− (py1 + (1− p)(1− x1))

'
≥ A2

g

&
py2 + (1− p)(1− x2)

'
.

Fix A1
b and A2

g as they are given. Then the inequality above always holds as far as there is

no change in the values of py1 + (1− p)(1− x1) and py2 + (1− p)(1− x2).

Let py1 + (1− p)(1− x1) = h1 and py2 + (1− p)(1− x2) = h2. Then every πi on the line,

yi =
1−p
p xi +

hi−(1−p)
p , has the same value of pyi + (1− p)(1− xi).

Since πi is not on NEB(Πi), an experiment, π′
i = (xi + pε, yi + (1 − p)ε), should be

available for type θi; that is, given an experiment, πi = (xi, yi), if we slightly move to the

“northeast” of it along the line, yi =
1−p
p xi +

hi−(1−p)
p , there should be an experiment which

is on the line and within Πi.

Note that p(yi+(1− p)ε)+ (1− p)(1− (xi+ pε)) = pyi+(1− p)(1−xi) for i = 1, 2. Thus

replacing πi with π′
i = (xi + pε, y + (1− p)ε) does not make any change in type θ1’s original

IC constraint; that is, a decision rule which assigns π′
i to type θi instead of πi is incentive

compatible.

Furthermore the decision rule with π′
i gives a strictly higher payoff to the principal than

that under the decision rule with πi since EUP (·) is increasing in both xi and yi. Note

that π′
i = (xi + pε, yi + (1 − p)ε) is a strictly better experiment than πi = (xi, yi) because

P (b|B;π′
i) = xi + pε > P (b|B;πi) = xi and P (g|G;π′

i) = yi + (1− p)ε > P (g|G;πi) = yi.

Thus, if πi is not on NEB(Πi), we can always find a π′
i which can improve the principal’s

payoffs without violating the IC constraint. This completes the proof.

Proof of Proposition 2

Proof. By Remark 2 and Lemma 1, it suffices to consider the following class of decision rules,

{(π1, 1, A1
b < 1), (π2, A

2
g > 0, 0)} with (π1,π2) ∈ NEB(Π1) × NEB(Π2). For expositional

convenience, I use {(π1, 1, A1
b), (π2, A

2
g, 0)} to denote a decision rule in this class.

I start by proving the following argument which I frequently invoke in this proof:

Given M = {(π1, 1, A1
b), (π2, A

2
g, 0)}, EUP (M) increases as πi approaches π̂i for

i = 1, 2, holding A1
b and A2

g fixed.
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Recall that π̂i is the unique maximizer of (1−p)+pyi− (1−p)(1−xi) = pyi+(1−p)xi which

is the principal’s interim expected payoff when making the ex post optimal decisions given

a convincing πi. Given that NEB(Πi) is concave and decreasing, pyi + (1 − p)xi increases

before π̂i and decreases after π̂i. Hence pyi + (1− p)xi increases as πi approaches π̂i. Under

{(π1, 1, A1
b), (π2, A

2
g, 0)}, the principal’s ex ante payoff is

EUP (M) = t
(
(1− p)− (1− 2p)A1

b + (1−A1
b)
&
py1 − (1− p)(1− x1)

')

+(1− t)
(
(1− p) +A2

g

&
py2 − (1− p)(1− x2)

')

= t
(
(1− p)A1

b − (1− 2p)A1
b + (1−A1

b)
&
py1 + (1− p)x1

')

+(1− t)
(
(1− p)(1−A2

g) +A2
g

&
py2 + (1− p)x2

')
.

Since (1 − A1
b) > 0 and A2

g > 0, EUP (M) increases as pyi + (1 − p)xi increases. Thus,

EUP (M) increases as πi approaches π̂i, holding A1
b and A2

g fixed.

There are three cases to consider. For each case, I start with an incentive compatible

decision rule, M = {(π1, 1, A1
b), (π2, A

2
g, 0)}, such that either π1 or π2 does not satisfy the

condition in Proposition 2. Then I show that there exists an alternative incentive compatible

decision rule that payoff-dominates the decision rule I start with.

Case 1 : π1 ≻ π̄1(π̂2) (π1 is located in the northwest of π̄1(π̂2) as shown below)

⇡̄1(⇡̂2)
<latexit sha1_base64="OIrDZVLPj03vdaJuT0p4XosJ1+U=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JHAr3pDAnGtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/ZWWlQ==</latexit>

NEB(⇧1)
<latexit sha1_base64="sBTyo7jnOML8mK2VGC7dBPbqc9U=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3W8057xZJbcWdAy8TLSAkyNHrFr25fkiSiwhCOte54bmz8FCvDCKeTQjfRNMZkhAe0Y6nAEdV+Ort4gk6s0kehVLaEQTP190SKI63HUWA7I2yGetGbiv95ncSEl37KRJwYKsh8UZhwZCSavo/6TFFi+NgSTBSztyIyxAoTY0Mq2BC8xZeXSata8c4q1bvzUq2exZGHIziGMnhwATW4gQY0gYCAZ3iFN0c7L8678zFvzTnZzCH8gfP5A8bEj60=</latexit>

NEB(⇧2)
<latexit sha1_base64="WYPJlDRsIdVk1K8itDGPnj1rgnk=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3Wq572iiW34s6AlomXkRJkaPSKX92+JElEhSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox1KBI6r9dHbxBJ1YpY9CqWwJg2bq74kUR1qPo8B2RtgM9aI3Ff/zOokJL/2UiTgxVJD5ojDhyEg0fR/1maLE8LElmChmb0VkiBUmxoZUsCF4iy8vk1a14p1VqnfnpVo9iyMPR3AMZfDgAmpwAw1oAgEBz/AKb452Xpx352PemnOymUP4A+fzB8hJj64=</latexit>

⇡̂1
<latexit sha1_base64="U9NAmKSwkuwqXeoIKK8g9Ptbh38=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpj2vV6m6NXcOskq8glShQLNX+Qr6CctirpBJaozvuSmGOdUomOTTcpAZnlI2pkPuW6pozE2Yz0+eknOr9Mkg0bYUkrn6eyKnsTGTOLKdMcWRWfZm4n+en+HgJsyFSjPkii0WDTJJMCGz/0lfaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMEjgGV7hzUHnxXl3Phata04xcwJ/4Hz+AEwvkUI=</latexit>

⇡̂2
<latexit sha1_base64="RC/KxCsJcS6dHiXTjetcp9juN+U=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpr16r1J1a+4cZJV4BalCgWav8hX0E5bFXCGT1Bjfc1MMc6pRMMmn5SAzPKVsTIfct1TRmJswn588JedW6ZNBom0pJHP190ROY2MmcWQ7Y4ojs+zNxP88P8PBTZgLlWbIFVssGmSSYEJm/5O+0JyhnFhCmRb2VsJGVFOGNqWyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYJDAM7zCm4POi/PufCxa15xi5gT+wPn8AU2zkUM=</latexit>

⇡̄2(⇡̂1)
<latexit sha1_base64="pYrub3mbB2BD8hsZDgFB64aDJPA=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JKhVvCGBObtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/aGWlQ==</latexit>

⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

⇡̄2(⇡1)
<latexit sha1_base64="9t7UN5V0EkJR+mK8YfVQaBL4XHM=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSxCvZSkCnosevFYwdZCE8Jmu2mXbjZhdyOW0L/ixYMiXv0j3vw3btsctPXBMI/3ZtjZF6acKe0431ZpbX1jc6u8XdnZ3ds/sA+rXZVkktAOSXgieyFWlDNBO5ppTnuppDgOOX0Ixzcz/+GRSsUSca8nKfVjPBQsYgRrIwV21QuxzL2UTYNm3bTAPQvsmtNw5kCrxC1IDQq0A/vLGyQki6nQhGOl+q6Taj/HUjPC6bTiZYqmmIzxkPYNFTimys/nt0/RqVEGKEqkKaHRXP29keNYqUkcmskY65Fa9mbif14/09GVnzORZpoKsngoyjjSCZoFgQZMUqL5xBBMJDO3IjLCEhNt4qqYENzlL6+SbrPhnjeadxe11nURRxmO4QTq4MIltOAW2tABAk/wDK/wZk2tF+vd+liMlqxi5wj+wPr8AQrFk8g=</latexit>

Consider any incentive compatible decision rule, {(π1, 1, A1
b), (π2, A

2
g, 0)}, which assign

π1 ≻ π̄1(π̂2) and any π2 on NEB(Π2). Consider {(π1, 1, 0), (π̂2, 1, 0)}. First it is incentive

compatible as π̄2(π1) = (x̄2, ȳ2) ≻ π̂2 = (x̂2, ŷ2): py1 + (1 − p)(1 − x1) = pȳ2 + (1 − p)(1 −
x̄2) > pŷ2 + (1− p)(1− x̂2) holds. Second, it payoff-dominates any decision rule we consider

here: (i) the principal makes the ex post optimal decisions and (ii) type θ2 conducts π̂2

that the principal most prefers. Then, lastly, {(π1, 1, 0), (π̂2, 1, 0)} is payoff-dominated by

{(π̄1(π̂2), 1, 0), (π̂2, 1, 0)} as π̄1(π̂2) is closer to π̂1 than π1.
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Case 2 : π̄1(π̂2) ! π1 ! π̂1 (π1 is located “between” π̄1(π̂2) and π̂1 as shown below)

⇡̄1(⇡̂2)
<latexit sha1_base64="OIrDZVLPj03vdaJuT0p4XosJ1+U=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JHAr3pDAnGtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/ZWWlQ==</latexit>

NEB(⇧1)
<latexit sha1_base64="sBTyo7jnOML8mK2VGC7dBPbqc9U=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3W8057xZJbcWdAy8TLSAkyNHrFr25fkiSiwhCOte54bmz8FCvDCKeTQjfRNMZkhAe0Y6nAEdV+Ort4gk6s0kehVLaEQTP190SKI63HUWA7I2yGetGbiv95ncSEl37KRJwYKsh8UZhwZCSavo/6TFFi+NgSTBSztyIyxAoTY0Mq2BC8xZeXSata8c4q1bvzUq2exZGHIziGMnhwATW4gQY0gYCAZ3iFN0c7L8678zFvzTnZzCH8gfP5A8bEj60=</latexit>

NEB(⇧2)
<latexit sha1_base64="WYPJlDRsIdVk1K8itDGPnj1rgnk=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3Wq572iiW34s6AlomXkRJkaPSKX92+JElEhSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox1KBI6r9dHbxBJ1YpY9CqWwJg2bq74kUR1qPo8B2RtgM9aI3Ff/zOokJL/2UiTgxVJD5ojDhyEg0fR/1maLE8LElmChmb0VkiBUmxoZUsCF4iy8vk1a14p1VqnfnpVo9iyMPR3AMZfDgAmpwAw1oAgEBz/AKb452Xpx352PemnOymUP4A+fzB8hJj64=</latexit>

⇡̂1
<latexit sha1_base64="U9NAmKSwkuwqXeoIKK8g9Ptbh38=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpj2vV6m6NXcOskq8glShQLNX+Qr6CctirpBJaozvuSmGOdUomOTTcpAZnlI2pkPuW6pozE2Yz0+eknOr9Mkg0bYUkrn6eyKnsTGTOLKdMcWRWfZm4n+en+HgJsyFSjPkii0WDTJJMCGz/0lfaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMEjgGV7hzUHnxXl3Phata04xcwJ/4Hz+AEwvkUI=</latexit>

⇡̂2
<latexit sha1_base64="RC/KxCsJcS6dHiXTjetcp9juN+U=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpr16r1J1a+4cZJV4BalCgWav8hX0E5bFXCGT1Bjfc1MMc6pRMMmn5SAzPKVsTIfct1TRmJswn588JedW6ZNBom0pJHP190ROY2MmcWQ7Y4ojs+zNxP88P8PBTZgLlWbIFVssGmSSYEJm/5O+0JyhnFhCmRb2VsJGVFOGNqWyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYJDAM7zCm4POi/PufCxa15xi5gT+wPn8AU2zkUM=</latexit>

⇡̄2(⇡̂1)
<latexit sha1_base64="pYrub3mbB2BD8hsZDgFB64aDJPA=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JKhVvCGBObtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/aGWlQ==</latexit>

⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

⇡̄2(⇡1)
<latexit sha1_base64="9t7UN5V0EkJR+mK8YfVQaBL4XHM=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSxCvZSkCnosevFYwdZCE8Jmu2mXbjZhdyOW0L/ixYMiXv0j3vw3btsctPXBMI/3ZtjZF6acKe0431ZpbX1jc6u8XdnZ3ds/sA+rXZVkktAOSXgieyFWlDNBO5ppTnuppDgOOX0Ixzcz/+GRSsUSca8nKfVjPBQsYgRrIwV21QuxzL2UTYNm3bTAPQvsmtNw5kCrxC1IDQq0A/vLGyQki6nQhGOl+q6Taj/HUjPC6bTiZYqmmIzxkPYNFTimys/nt0/RqVEGKEqkKaHRXP29keNYqUkcmskY65Fa9mbif14/09GVnzORZpoKsngoyjjSCZoFgQZMUqL5xBBMJDO3IjLCEhNt4qqYENzlL6+SbrPhnjeadxe11nURRxmO4QTq4MIltOAW2tABAk/wDK/wZk2tF+vd+liMlqxi5wj+wPr8AQrFk8g=</latexit>

First, consider any incentive compatible decision rule, {(π1, 1, A1
b), (π2, A

2
g, 0)}, which as-

sign π1 assumed above and any π2 ≻ π̂2. Then, any such a decision rule is payoff-dominated

by {(π1, 1, A1
b), (π̂2, A

2
g, 0)} again as the principal prefers π̂2 to any other π2. Furthermore,

{(π1, 1, A1
b), (π̂2, A

2
g, 0)} is incentive compatible. Note that A1

b+(1−A1
b)(py1+(1−p)(1−x1)) ≥

A2
g(py2 + (1 − p)(1 − x2)) because {(π1, 1, A1

b), (π2, A
2
g, 0)} is incentive compatible. Then,

A2
g(py2 + (1− p)(1− x2)) > A2

g(pŷ2 + (1− p)(1− x̂2)) because π2 ≻ π̂2.

Second, consider any incentive compatible decision rule, {(π1, 1, A1
b), (π2, A

2
g, 0)}, which

assigns π1 assumed above and any π2 such that π̄2(π̂1) ≻ π2. Note that we have π̄2(π1) !
π̄2(π̂1) ≻ π2 which implies py1+(1−p)(1−x1) = pȳ2+(1−p)(1− x̄2) ≥ p¯̂y2+(1−p)(1− ¯̂x2) >

py2 + (1 − p)(1 − x2), where π̄2(π̂1) = (¯̂x2, ¯̂y2). Thus, the principal can make the ex post

optimal decisions without violating the IC constraint. Hence, {(π1, 1, 0), (π2, 1, 0)} is incen-

tive compatible and payoff-dominates {(π1, 1, A1
b), (π2, A

2
g, 0)}. Lastly, {(π1, 1, 0), (π2, 1, 0)} is

payoff-dominated by {(π1, 1, 0), (π̄2(π̂1), 1, 0)} as π̄2(π̂1) is closer to π̂2 than π2. The incentive

compatibility of {(π1, 1, 0), (π̄2(π̂1), 1, 0)} is immediate as π̄2(π1) ≻ π̄2(π̂1).

Case 3 : π̂1 ≻ π1 (π1 is located at the southeast of π̂1 as shown below)

⇡̄1(⇡̂2)
<latexit sha1_base64="OIrDZVLPj03vdaJuT0p4XosJ1+U=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JHAr3pDAnGtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/ZWWlQ==</latexit>

NEB(⇧1)
<latexit sha1_base64="sBTyo7jnOML8mK2VGC7dBPbqc9U=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3W8057xZJbcWdAy8TLSAkyNHrFr25fkiSiwhCOte54bmz8FCvDCKeTQjfRNMZkhAe0Y6nAEdV+Ort4gk6s0kehVLaEQTP190SKI63HUWA7I2yGetGbiv95ncSEl37KRJwYKsh8UZhwZCSavo/6TFFi+NgSTBSztyIyxAoTY0Mq2BC8xZeXSata8c4q1bvzUq2exZGHIziGMnhwATW4gQY0gYCAZ3iFN0c7L8678zFvzTnZzCH8gfP5A8bEj60=</latexit>

NEB(⇧2)
<latexit sha1_base64="WYPJlDRsIdVk1K8itDGPnj1rgnk=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYKoInqWBbsV1KNs22odlkSbJCWfovvHhQxKv/xpv/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKVloghtEsmlegiwppwJ2jTMcPoQK4qjgNN2MLqa+u0nqjST4t6MY+pHeCBYyAg2Vnq8va6Xuw3Wq572iiW34s6AlomXkRJkaPSKX92+JElEhSEca93x3Nj4KVaGEU4nhW6iaYzJCA9ox1KBI6r9dHbxBJ1YpY9CqWwJg2bq74kUR1qPo8B2RtgM9aI3Ff/zOokJL/2UiTgxVJD5ojDhyEg0fR/1maLE8LElmChmb0VkiBUmxoZUsCF4iy8vk1a14p1VqnfnpVo9iyMPR3AMZfDgAmpwAw1oAgEBz/AKb452Xpx352PemnOymUP4A+fzB8hJj64=</latexit>

⇡̂1
<latexit sha1_base64="U9NAmKSwkuwqXeoIKK8g9Ptbh38=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpj2vV6m6NXcOskq8glShQLNX+Qr6CctirpBJaozvuSmGOdUomOTTcpAZnlI2pkPuW6pozE2Yz0+eknOr9Mkg0bYUkrn6eyKnsTGTOLKdMcWRWfZm4n+en+HgJsyFSjPkii0WDTJJMCGz/0lfaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMEjgGV7hzUHnxXl3Phata04xcwJ/4Hz+AEwvkUI=</latexit>

⇡̂2
<latexit sha1_base64="RC/KxCsJcS6dHiXTjetcp9juN+U=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpr16r1J1a+4cZJV4BalCgWav8hX0E5bFXCGT1Bjfc1MMc6pRMMmn5SAzPKVsTIfct1TRmJswn588JedW6ZNBom0pJHP190ROY2MmcWQ7Y4ojs+zNxP88P8PBTZgLlWbIFVssGmSSYEJm/5O+0JyhnFhCmRb2VsJGVFOGNqWyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYJDAM7zCm4POi/PufCxa15xi5gT+wPn8AU2zkUM=</latexit>

⇡̄2(⇡̂1)
<latexit sha1_base64="pYrub3mbB2BD8hsZDgFB64aDJPA=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JKhVvCGBObtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/aGWlQ==</latexit>

⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

⇡̄2(⇡1)
<latexit sha1_base64="9t7UN5V0EkJR+mK8YfVQaBL4XHM=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSxCvZSkCnosevFYwdZCE8Jmu2mXbjZhdyOW0L/ixYMiXv0j3vw3btsctPXBMI/3ZtjZF6acKe0431ZpbX1jc6u8XdnZ3ds/sA+rXZVkktAOSXgieyFWlDNBO5ppTnuppDgOOX0Ixzcz/+GRSsUSca8nKfVjPBQsYgRrIwV21QuxzL2UTYNm3bTAPQvsmtNw5kCrxC1IDQq0A/vLGyQki6nQhGOl+q6Taj/HUjPC6bTiZYqmmIzxkPYNFTimys/nt0/RqVEGKEqkKaHRXP29keNYqUkcmskY65Fa9mbif14/09GVnzORZpoKsngoyjjSCZoFgQZMUqL5xBBMJDO3IjLCEhNt4qqYENzlL6+SbrPhnjeadxe11nURRxmO4QTq4MIltOAW2tABAk/wDK/wZk2tF+vd+liMlqxi5wj+wPr8AQrFk8g=</latexit>
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Consider any incentive compatible decision rule, {(π1, 1, A1
b), (π2, A

2
g, 0)}, which assigns

π1 assumed above and any π2 on NEB(Π2). Then, {(π̂1, 1, A1
b), (π2, A

2
g, 0)} payoff-dominates

{(π1, 1, A1
b), (π2, A

2
g, 0)} as the principal prefers π̂1 to any other π1. Furthermore, the incentive

compatibility of {(π̂1, 1, A1
b), (π2, A

2
g, 0)} is immediate as π̂1 ≻ π1: the incentive compatibility

of {(π1, 1, A1
b), (π2, A

2
g, 0)} implies A1

b+(1−A1
b)(py1+(1−p)(1−x1)) ≥ A2

g(py2+(1−p)(1−x2));

then, since π̂1 ≻ π1, A
1
b+(1−A1

b)(pŷ1+(1−p)(1−x̂1)) > A1
b+(1−A1

b)(py1+(1−p)(1−x1)).

Proof of Lemma 2

Proof. I show that, if the IC constraint is not binding under a decision rule, we can always

improve the principal’s payoff.

Proposition 2 and Remark 2 imply that we can focus on the following class of decision

rules, {(π1, 1, A1
b), (π2, A

2
g, 0)} with A1

b < 1, A2
g > 0, and (π1,π2) ∈ NEB(Π1) × NEB(Π2)

such that π̄1(π̂2) ! π1 ! π̂1 and π̂2 ! π2 ! π̄2(π̂1). Consider any such a decision rule with a

non-binding IC constraint,

&
py1 + (1− p)(1− x1)

'
+A1

b

&
1− (py1 + (1− p)(1− x1))

'
> A2

g

&
py2 + (1− p)(1− x2)

'
.

The principal’s payoff is

EUP (·) = t
*
(1− p)− (1− 2p)A1

b + (1−A1
b)(py1 − (1− p)(1− x1))

+

+(1− t)
*
(1− p) +A2

g(py2 − (1− p)(1− x2))
+
.

Note that pyi−(1−p)(1−xi) ≥ 0 for any (π1,π2) ∈ NEB(Π1)×NEB(Π2) and 1−2p > 0

for p ∈ (0, 1/2). Thus, EUP (·) decreases in A1
b . Hence, we can increase EUP (·) by decreasing

A1
b until the IC constraint binds.

If the IC constraint is not binding after decreasing A1
b to 0, we have

py1 + (1− p)(1− x1) > A2
g

&
py2 + (1− p)(1− x2)

'
.

Given any π2 such that π̂2 ! π2 ! π̄2(π̂1), we have

pŷ2 + (1− p)(1− x̂2) ≥ py2 + (1− p)(1− x2) ≥ p¯̂y2 + (1− p)(1− ¯̂x2).

Recall that EUP (·) increases as π2 approaches π̂2 given A2
g > 0. Furthermore, as π2 ap-

proaches π̂2, the right-hand side of the IC constraint above increases. Since the IC constraint

is not binding with the given π2, now we can increase EUP (·) by replacing π2 with π′
2 that

is closer to π̂2 (i.e., π̂2 ! π′
2 ← π2) until the IC constraint binds.
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If the IC constraint is not binding after replacing π2 with π̂2, we have

py1 + (1− p)(1− x1) > A2
g

&
pŷ2 + (1− p)(1− x̂2)

'
.

Since pŷ2 − (1 − p)(1 − x̂2) > 0, EUP (·) increases in A2
g. Now we can increase EUP (·) by

increasing A2
g until the IC constraint binds.

Now the IC constraint must bind with some A2
g ≤ 1. Note that for any π1 such that

π̄1(π̂2) ! π1 ! π̂1, we have

py1 + (1− p)(1− x1) ≤ pŷ2 + (1− p)(1− x̂2)

because π̄1(π̂2) ! π1 implies py1 + (1 − p)(1 − x1) ≤ p¯̂y1 + (1 − p)(1 − ¯̂x1), and p¯̂y1 + (1 −
p)(1 − ¯̂x1) = pŷ2 + (1 − p)(1 − x̂2) by the definition of π̄1(π̂2). Hence, for any π1 such that

π̄1(π̂2) ! π1 ! π̂1, there always exists A2
g(π1, π̂2) = py1+(1−p)(1−x1)

pŷ2+(1−p)(1−x̂2)
≤ 1 that makes the IC

constraint bind. This completes the proof.

Proof of Lemma 3

Proof. The result is immediate by the fundamental theorem of linear programing. By Remark

2, we have A1
g = 1 and A2

b = 0. Once we choose and fix (π1,π2) such that py1+(1−p)(1−x1) <

py2 + (1 − p)(1 − x2), then the principal’s payoff is linear in A1
b and A2

g. Furthermore, all

constraints in the principal’s problem are also linear in A1
b and A2

g. Then, by the fundamental

theorem of linear programming, if there exists an optimal solution, there is an optimal solution

at an extreme point of the feasible set (a basic feasible solution). Given that the IC constraint

must be binding (by Lemma 2) and (A1
b , A

2
g) ∈ [0, 1)× (0, 1] (by Remark 2), the feasible set

for (A1
b , A

2
g) is

$
(A1

b , A
2
g) ∈ [0, 1)× (0, 1]

,,,,A
2
g =

(1−
&
py1 + (1− p)(1− x1)

'

py2 + (1− p)(1− x2)
A1

b +
py1 + (1− p)(1− x1)

py2 + (1− p)(1− x2)

%
.

Then, there are two extreme points on this feasible set, which are
-
A1′

b =
py2 + (1− p)(1− x2)− (py1 + (1− p)(1− x1))

1− (py1 + (1− p)(1− x1))
, A2′

g = 1

.
and

-
A1′′

b = 0, A2′′
g =

py1 + (1− p)(1− x1)

py2 + (1− p)(1− x2)

.
,

where A1′
b ∈ (0, 1) and A2′′

g ∈ (0, 1) given that py1 + (1− p)(1− x1) < py2 + (1− p)(1− x2).

Thus, one of these two is an optimal solution.
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Proof of Proposition 3

Proof. By Lemma 3, we know that given any pair of π1 and π2 such that py1+(1−p)(1−x1) <

py2 + (1− p)(1− x2), either

M1 := {(π1, 1, A1
b > 0), (π2, 1, 0)} or M2 := {(π1, 1, 0), (π2, A2

g < 1, 0)}

must be optimal, where A1
b = py2+(1−p)(1−x2)−(py1+(1−p)(1−x1))

1−(py1+(1−p)(1−x1))
and A2

g = py1+(1−p)(1−x1)
py2+(1−p)(1−x2)

.

Then,

EUP (M2)− EUP (M1)

= t
&
(1− 2p+ py1 − (1− p)(1− x1))A

1
b

'
+

&
1− t

'
(A2

g − 1)(py2 − (1− p)(1− x2))

Note that EUP (M2)− EUP (M1) ⋛ 0 if and only if

t
&
(1− 2p+ py1 − (1− p)(1− x1))A

1
b

'
⋛

&
1− t

'
(1−A2

g)(py2 − (1− p)(1− x2))

⇔ 1− 2p+ py1 − (1− p)(1− x1)

1−A2
g

·
A1

b

py2 − (1− p)(1− x2)
:= τ(π1,π2) ⋛

1− t

t
.

Lastly, given (π1,π2) such that py1 + (1 − p)(1 − x1) = py2 + (1 − p)(1 − x2), A
1
b = 0 and

A2
g = 1. Hence, M1(π1,π2) = M2(π1,π2) := M̄(π1,π2) = {(π1, 1, 0), (π2, 1, 0)}.

Proof of Proposition 4

Proof. Proposition 4 consists of two claims: (1) if π̊1 = π̂1, it is optimal to assign π̂1 to type

θ1 and (2) if π̃2 = π̂2, it is optimal to assign π̂2 to type θ2. I prove each claim below.

Lemma 5. If π̊1 = π̂1, either M1(π̂1,π2) or M2(π̂1,π2) is optimal given any π2 such that

π̂2 ! π2 ! π̄2(π̂1).

Proof. By Proposition 2, we know that an optimal decision rule assigns (π1,π2) such that

π̄1(π̂2) ! π1 ! π̂1 and π̂2 ! π2 ! π̄2(π̂1). Thus we only need to consider decision rules which

assign such a pair of π1 and π2.

The proof strategy is as follows. I first choose an arbitrary π2 such that π̂2 ! π2 ! π̄2(π̂1).

Then I consider all decision rules which assign the chosen π2 along with different π1 such that

π̄1(π̂2) ! π1 ! π̂1. Among these decision rules, I show that the decision rule which assigns

the chosen π2 and π̂1 payoff-dominates any other decision rules which assigns the chosen π2

and any other π1 ∕= π̂1. Finally, since π2 is arbitrarily chosen, this is true for any π2 such

that π̂2 ! π2 ! π̄2(π̂1). The following figure is helpful to understand the proof strategy here.
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(a)
<latexit sha1_base64="sOjZUoNK33Nc8nqmGB8ygq4L+xA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWULvZDYZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TRVmDxiJW7QA1E1yyhuFGsHaiGEaBYK1gdDvzW09MaR7LRzNOmB/hQPKQUzRWeijjea9YcivuHGSVeBkpQYZ6r/jV7cc0jZg0VKDWHc9NjD9BZTgVbFroppolSEc4YB1LJUZM+5P5qVNyZpU+CWNlSxoyV39PTDDSehwFtjNCM9TL3kz8z+ukJrz2J1wmqWGSLhaFqSAmJrO/SZ8rRo0YW4JUcXsroUNUSI1Np2BD8JZfXiXNasW7qFTvL0u1myyOPJzAKZTBgyuowR3UoQEUBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AifmNTg==</latexit>

(b)
<latexit sha1_base64="7tVg+AhPeiaMnY5qvG8kDXGmdb0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVI44T7kd0oEQoGEUrPZSD816x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqa1Yp3UaneX5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4Ai36NTw==</latexit>

⇡̄1(⇡̂2)
<latexit sha1_base64="OIrDZVLPj03vdaJuT0p4XosJ1+U=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JHAr3pDAnGtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/ZWWlQ==</latexit>

⇡̂1
<latexit sha1_base64="U9NAmKSwkuwqXeoIKK8g9Ptbh38=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpj2vV6m6NXcOskq8glShQLNX+Qr6CctirpBJaozvuSmGOdUomOTTcpAZnlI2pkPuW6pozE2Yz0+eknOr9Mkg0bYUkrn6eyKnsTGTOLKdMcWRWfZm4n+en+HgJsyFSjPkii0WDTJJMCGz/0lfaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMEjgGV7hzUHnxXl3Phata04xcwJ/4Hz+AEwvkUI=</latexit>

⇡̂2
<latexit sha1_base64="RC/KxCsJcS6dHiXTjetcp9juN+U=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpr16r1J1a+4cZJV4BalCgWav8hX0E5bFXCGT1Bjfc1MMc6pRMMmn5SAzPKVsTIfct1TRmJswn588JedW6ZNBom0pJHP190ROY2MmcWQ7Y4ojs+zNxP88P8PBTZgLlWbIFVssGmSSYEJm/5O+0JyhnFhCmRb2VsJGVFOGNqWyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYJDAM7zCm4POi/PufCxa15xi5gT+wPn8AU2zkUM=</latexit>

⇡2
<latexit sha1_base64="3Dko6JGAMj+mmDNO5z4Revw0ypo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k91LRr/crVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27rNUfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB84nz95eY52</latexit>

⇡̄2(⇡̂1)
<latexit sha1_base64="pYrub3mbB2BD8hsZDgFB64aDJPA=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JKhVvCGBObtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/aGWlQ==</latexit>

⇡̄1(⇡2)
<latexit sha1_base64="oKDF8Bf1d3LVSv8NrhWCMVsNAxE=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSxCvZSkCnosevFYwdZCE8Jmu2mXbjZhdyOW0L/ixYMiXv0j3vw3btsctPXBMI/3ZtjZF6acKe0431ZpbX1jc6u8XdnZ3ds/sA+rXZVkktAOSXgieyFWlDNBO5ppTnuppDgOOX0Ixzcz/+GRSsUSca8nKfVjPBQsYgRrIwV21QuxzL2UTQO3blrQPAvsmtNw5kCrxC1IDQq0A/vLGyQki6nQhGOl+q6Taj/HUjPC6bTiZYqmmIzxkPYNFTimys/nt0/RqVEGKEqkKaHRXP29keNYqUkcmskY65Fa9mbif14/09GVnzORZpoKsngoyjjSCZoFgQZMUqL5xBBMJDO3IjLCEhNt4qqYENzlL6+SbrPhnjeadxe11nURRxmO4QTq4MIltOAW2tABAk/wDK/wZk2tF+vd+liMlqxi5wj+wPr8AQq/k8g=</latexit>

⇡̊1
<latexit sha1_base64="ULa0jWA0qxdDXJsykOm9vHuobRg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRV0GXRjcsK9gFNCJPppB06mYSZSaGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOmHKmtON8W5WNza3tnepubW//4PDIPj7pqiSThHZIwhPZD7GinAna0Uxz2k8lxXHIaS+c3Bd+b0qlYol40rOU+jEeCRYxgrWRAtv2YqzHkolR7qVsHriBXXcazgJonbglqUOJdmB/ecOEZDEVmnCs1MB1Uu3nWGpGOJ3XvEzRFJMJHtGBoQLHVPn5IvkcXRhliKJEmic0Wqi/N3IcKzWLQzNZ5FSrXiH+5w0yHd36ORNppqkgy0NRxpFOUFEDGjJJieYzQzCRzGRFZIwlJtqUVTMluKtfXifdZsO9ajQfr+utu7KOKpzBOVyCCzfQggdoQwcITOEZXuHNyq0X6936WI5WrHLnFP7A+vwBzECTwg==</latexit>

Choose and fix any π2 such that π̂2 ! π2 ≻ π̄2(π̂1). Then π̄1(π2) is defined. Note that

any π1 ≻ π̄1(π2) (any π1 on region (a) in the figure above) cannot be optimal by Lemma

2 because such a π1 and the chosen π2 cannot make the IC constraint binding with the

optimal action-probability pairs in Remark 2. Thus we only need to consider π1 such that

π̄1(π2) ! π1 ! π̂1 (π1 on region (b) in the figure above). If π2 = π̄2(π̂1), it is immediate that

π̂1 is optimal.

The chosen π2 and π1 such that π̄1(π2) ≻ π1 ! π̂1 satisfy py1 + (1 − p)(1 − x1) < py2 +

(1− p)(1−x2). Thus, by Proposition 3, either M1(π1;π2) = {(π1, 1, A1
b(π1;π2)), (π2, 1, 0)} or

M2(π1;π2) = {(π1, 1, 0), (π2, A2
g(π1;π2), 0)} is optimal, where

A1
b(π1;π2) =

py2 + (1− p)(1− x2)− (py1 + (1− p)(1− x1))

1− (py1 + (1− p)(1− x1))
, and

A2
g(π1;π2) =

py1 + (1− p)(1− x1)

py2 + (1− p)(1− x2)
.

Note that, if π1 = π̄1(π2), M
1(π1;π2) = M2(π1;π2) = M̄(π1;π2) = {(π1, 1, 0), (π2, 1, 0)}.

Thus, we can write the principal’s ex ante payoff under each decision rule for any π1 such

that π̄1(π2) ! π1 ! π̂1 as follows:

EUP (M1(π1;π2)) = t
&
1− p+ py1 − (1− p)(1− x1)−A1

b(π1;π2)(1− 2p+ py1 − (1− p)(1− x1))
'

+
&
1− t

'&
1− p+ py2 − (1− p)(1− x2)

'
,

EUP (M2(π1;π2)) = t(1− p+ py1 − (1− p)(1− x1))

+(1− t)
&
1− p+A2

g(π1;π2)(py2 − (1− p)(1− x2))
'
,

where EUP (M1(π1;π2)) = EUP (M2(π1;π2)) = EUP (M̄(π1;π2)) if π1 = π̄1(π2). It is also

worth noting that EUP (M i(π1;π2)) for i = 1, 2 varies only in the choice of π1 as π2 is fixed.

First, consider M1(π1;π2). With simple algebra, we can write EUP (M1(π1;π2)) as a

function of the negative likelihood ratio of π1, ν := 1−y1
x1

. Denote (1− t)(1− p+ py2 − (1−
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p)(1− x2)) by c̄2 as this part is invariant with a fixed π2. Then, we have

EUP (M1(π1;π2)) = t
*
p+ (1−A1

b)
&
(1− p)x1 − p(1− y1)

'+
+ c̄2,

= t

/
p+

1− (py2 + (1− p)(1− x2))

1− (py1 + (1− p)(1− x1))

&
(1− p)x1 − p(1− y1)

'0
+ c̄2,

= t

/
p+ (1− (py2 + (1− p)(1− x2))

-
(1− p)x1 − p(1− y1)

(1− p)x1 + p(1− y1)

.0
+ c̄2,

= t

/
p+ (1− (py2 + (1− p)(1− x2))

-
(1− p)− p

&1−y1
x1

'

(1− p) + p
&1−y1

x1

'
.0

+ c̄2,

= t

/
p+ (1− (py2 + (1− p)(1− x2))

-
(1− p)− p · ν
(1− p) + p · ν

.0
+ c̄2.

Then, it is immediate to see that EUP (M1(π1;π2)) decreases in the negative likelihood ratio,

ν := 1−y1
x1

. Thus, EUP (M1(π1;π2)) is maximized at π̊1 which has the lowest 1−y1
x1

. Then, as

π̂1 = π̊1, we have

EUP (M1(̊π1 = π̂1;π2)) ≥ EUP (M1(π1;π2)) for any π1 s.t. π̄1(π2) ! π1 ! π̂1.

Now consider M2(π1;π2). Note that it is impossible to write EUP (M2(π1;π2)) as a

function of the negative likelihood ratio as for EUP (M1(π1;π2)). Instead, I directly com-

pare M2(π̂1;π2) and M2(π1;π2) with any π1 such that π̄1(π2) ! π1 ! π̂1. By subtracting

EUP (M2(π1;π2)) from EUP (M2(π̂1;π2)), we have

EUP (M2(π̂1;π2))− EUP (M2(π1;π2))

= t
&
(pŷ1 − (1− p)(1− x̂1))− (py1 − (1− p)(1− x1))

'

+
&
1− t

'&
A2

g(π̂1;π2)−A2
g(π1;π2)

'&
py2 − (1− p)(1− x2)

'
.

Note that EUP (M2(π̂1;π2))− EUP (M2(π1;π2)) ≥ 0 if and only if

(pŷ1 − (1− p)(1− x̂1))− (py1 − (1− p)(1− x1))

(A2
g(π1;π2)−A2

g(π̂1;π2))(py2 − (1− p)(1− x2))
≥ 1− t

t
,

where A2
g(π1;π2)−A2

g(π̂1;π2) =
py1+(1−p)(1−x1)−(pŷ1+(1−p)(1−x̂1))

py2+(1−p)(1−x2)
≥ 0 as π1 ! π̂1. Denote the

left-hand side of the inequality above by ρ1(π̂1,π1;π2). By rearranging terms, we have

ρ1(π̂1,π1,π2) =

-
py2 + (1− p)(1− x2)

py2 − (1− p)(1− x2)

.-
(pŷ1 − (1− p)(1− x̂1))− (py1 − (1− p)(1− x1))

(py1 + (1− p)(1− x1))− (pŷ1 + (1− p)(1− x̂1))

.
.

Note that ρ1(π̂1,π1;π2) and τ(π1,π2) =
1
py2+(1−p)(1−x2)
py2−(1−p)(1−x2)

21
1−2p+py1−(1−p)(1−x1)
1−(py1+(1−p)(1−x1))

2
share the

same fraction,
1
py2+(1−p)(1−x2)
py2−(1−p)(1−x2)

2
. Then, with tedious algebra after subtracting τ(π1,π2) from

ρ1(π̂1,π1,π2), we have

ρ1(π̂1,π1,π2)− τ(π1,π2) =

-
py2 + (1− p)(1− x2)

py2 − (1− p)(1− x2)

.-
2p(1− p)

D1D2

&
(1− y1)x̂1 − (1− ŷ1)x1

'.
,
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where D1 = (py1 + (1− p)(1− x1))− (pŷ1 + (1− p)(1− x̂1)) > 0 and D2 = 1− (py1 + (1−
p)(1− x1)) > 0. Now note that

ρ1(π̂1,π1,π2)− τ(π1,π2) ≥ 0 ⇐⇒ 1− y1
x1

≥ 1− ŷ1
x̂1

,

which is true under the assumption that π̂1 = π̊1. Then, if τ(π1,π2) ≥ 1−t
t , then we must

have ρ1(π̂1,π1,π2) ≥ τ(π1,π2) ≥ 1−t
t , which immediately implies that EUP (M2(π̂1;π2)) ≥

EUP (M2(π1;π2)) for any π1 such that π̄1(π2) ! π1 ! π̂1.

Now choose any π1 such that π̄1(π2) ! π1 ! π̂1. Suppose τ(π1,π2) ≤ 1−t
t . Then, we must

have EUP (M1(π̂1;π2)) ≥ EUP (M1(π1;π2)) ≥ EUP (M2(π1;π2)). Suppose that τ(π1,π2) ≥
1−t
t . Then, we must have EUP (M2(π̂1;π2)) ≥ EUP (M2(π1;π2)) ≥ EUP (M1(π1;π2)). This

completes the proof that a decision rule which assigns π̂1 payoff-dominates any decision rule

which assigns π1 ∕= π̂1 such that π̄1(π̂2) ! π1 ! π̂1.

Lemma 6. If π̃2 = π̂2, either M1(π1, π̂2) or M2(π1, π̂2) is optimal given any π1 such that

π̄1(π̂2) ! π1 ! π̂1.

The detailed proof of Lemma 6 above is relegated to the online Appendix as the proof

follows almost identical steps in the proof of Lemma 5 above. Basically I repeat the same

steps in the proof of Lemma 5 but start by fixing a π1 such that π̄1(π̂2) ! π1 ! π̂1. Then I

show that a decision rule which assigns the chosen π1 and π̂2 payoff-dominates any decision

rule which assigns the chosen π1 and π2 ∕= π̂2 such that π̂2 ! π2 ! π̄2(π̂1).

Finally by Lemma 5 and 6, if (1) π̊1 = π̂1 and (2) π̃2 = π̂2, an optimal decision rule

assigns π̂1 to type θ1 and π̂2 to type θ2.

Proof of Proposition 5

Proof. Proposition 5 consists of two claims: (1) if π̊1 ! π̄1(π̂2), then any decision rule with

A1
b > 0 cannot be optimal and (2) if π̄2(π̂1) ! π̃2, then any decision rule with A2

g < 1 cannot

be optimal. In the following I prove the first claim and the detailed proof for the second

claim is relegated to the online Appendix.

Lemma 7. If π̊1 ! π̄1(π̂2), any decision rule with A1
b(π1,π2) > 0 cannot be optimal given

any π2 such that π̂2 ! π2 ! π̄2(π̂1).

14



Proof. The proof strategy is similar to that in Lemma 5. By Proposition 2, it suffices to

consider (π1,π2) such that π̄1(π̂2) ! π1 ! π̂1 and π̂2 ! π2 ! π̄2(π̂2). I fix a π2 such that

π̂2 ! π2 ! π̄2(π̂1). Then I show that any decision rule with A1
b > 0 cannot be optimal since

such a decision rule is payoff-dominated by a decision rule which assigns π̄1(π2) along with a

chosen π2 without sacrificing ex post optimality: EUP (M̄(π̄1(π2);π2)) ≥ EUP (M1(π1;π2))

for any π1 such that π̄1(π̂2) ! π1 ! π̂1. The figure below is similar to that in the proof of

Lemma 5 but is different due to the position of π̊1 on NEB(Π1).

⇡̂2
<latexit sha1_base64="RC/KxCsJcS6dHiXTjetcp9juN+U=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpr16r1J1a+4cZJV4BalCgWav8hX0E5bFXCGT1Bjfc1MMc6pRMMmn5SAzPKVsTIfct1TRmJswn588JedW6ZNBom0pJHP190ROY2MmcWQ7Y4ojs+zNxP88P8PBTZgLlWbIFVssGmSSYEJm/5O+0JyhnFhCmRb2VsJGVFOGNqWyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYJDAM7zCm4POi/PufCxa15xi5gT+wPn8AU2zkUM=</latexit>

⇡̄2(⇡̂1)
<latexit sha1_base64="pYrub3mbB2BD8hsZDgFB64aDJPA=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JKhVvCGBObtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/aGWlQ==</latexit>

⇡̊1
<latexit sha1_base64="ULa0jWA0qxdDXJsykOm9vHuobRg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRV0GXRjcsK9gFNCJPppB06mYSZSaGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOmHKmtON8W5WNza3tnepubW//4PDIPj7pqiSThHZIwhPZD7GinAna0Uxz2k8lxXHIaS+c3Bd+b0qlYol40rOU+jEeCRYxgrWRAtv2YqzHkolR7qVsHriBXXcazgJonbglqUOJdmB/ecOEZDEVmnCs1MB1Uu3nWGpGOJ3XvEzRFJMJHtGBoQLHVPn5IvkcXRhliKJEmic0Wqi/N3IcKzWLQzNZ5FSrXiH+5w0yHd36ORNppqkgy0NRxpFOUFEDGjJJieYzQzCRzGRFZIwlJtqUVTMluKtfXifdZsO9ajQfr+utu7KOKpzBOVyCCzfQggdoQwcITOEZXuHNyq0X6936WI5WrHLnFP7A+vwBzECTwg==</latexit>

⇡̄1(⇡̂2)
<latexit sha1_base64="OIrDZVLPj03vdaJuT0p4XosJ1+U=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JHAr3pDAnGtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/ZWWlQ==</latexit>

⇡̂1
<latexit sha1_base64="U9NAmKSwkuwqXeoIKK8g9Ptbh38=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpj2vV6m6NXcOskq8glShQLNX+Qr6CctirpBJaozvuSmGOdUomOTTcpAZnlI2pkPuW6pozE2Yz0+eknOr9Mkg0bYUkrn6eyKnsTGTOLKdMcWRWfZm4n+en+HgJsyFSjPkii0WDTJJMCGz/0lfaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMEjgGV7hzUHnxXl3Phata04xcwJ/4Hz+AEwvkUI=</latexit>

⇡2
<latexit sha1_base64="3Dko6JGAMj+mmDNO5z4Revw0ypo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k91LRr/crVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27rNUfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB84nz95eY52</latexit>

⇡̄1(⇡2)
<latexit sha1_base64="oKDF8Bf1d3LVSv8NrhWCMVsNAxE=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSxCvZSkCnosevFYwdZCE8Jmu2mXbjZhdyOW0L/ixYMiXv0j3vw3btsctPXBMI/3ZtjZF6acKe0431ZpbX1jc6u8XdnZ3ds/sA+rXZVkktAOSXgieyFWlDNBO5ppTnuppDgOOX0Ixzcz/+GRSsUSca8nKfVjPBQsYgRrIwV21QuxzL2UTQO3blrQPAvsmtNw5kCrxC1IDQq0A/vLGyQki6nQhGOl+q6Taj/HUjPC6bTiZYqmmIzxkPYNFTimys/nt0/RqVEGKEqkKaHRXP29keNYqUkcmskY65Fa9mbif14/09GVnzORZpoKsngoyjjSCZoFgQZMUqL5xBBMJDO3IjLCEhNt4qqYENzlL6+SbrPhnjeadxe11nURRxmO4QTq4MIltOAW2tABAk/wDK/wZk2tF+vd+liMlqxi5wj+wPr8AQq/k8g=</latexit>

(a)
<latexit sha1_base64="sOjZUoNK33Nc8nqmGB8ygq4L+xA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWULvZDYZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TRVmDxiJW7QA1E1yyhuFGsHaiGEaBYK1gdDvzW09MaR7LRzNOmB/hQPKQUzRWeijjea9YcivuHGSVeBkpQYZ6r/jV7cc0jZg0VKDWHc9NjD9BZTgVbFroppolSEc4YB1LJUZM+5P5qVNyZpU+CWNlSxoyV39PTDDSehwFtjNCM9TL3kz8z+ukJrz2J1wmqWGSLhaFqSAmJrO/SZ8rRo0YW4JUcXsroUNUSI1Np2BD8JZfXiXNasW7qFTvL0u1myyOPJzAKZTBgyuowR3UoQEUBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AifmNTg==</latexit>

(b)
<latexit sha1_base64="7tVg+AhPeiaMnY5qvG8kDXGmdb0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVI44T7kd0oEQoGEUrPZSD816x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqa1Yp3UaneX5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4Ai36NTw==</latexit>

Choose and fix any π2 such that π̂2 ! π2 ! π̄2(π̂1). Then, π̄1(π2) is defined accordingly.

Note that any π1 such that π̄1(π̂2) ! π1 ≻ π̄1(π2) (π1 on region (a) in the figure above) cannot

be optimal by Lemma 2: such a π1 and the chosen π2 cannot make the IC constraint binding

with the optimal action-probability pairs in Remark 2. Hence, we only need to consider π1

such that π̄1(π2) ! π1 ! π̂1 (π1 on region (b) in the figure above).

Now consider M1(π1;π2). We know that, for π1 such that π̄1(π2) ! π1 ! π̂1,

EUP (M1(π1;π2)) = t

/
p+ (1− (py2 + (1− p)(1− x2))

-
(1− p)− p · ν
(1− p) + p · ν

.0
+ c̄2,

where EUP (M1(π1;π2)) = EUP (M̄(π1;π2)) at π1 = π̄1(π2), ν = 1−y1
x1

, and c̄2 = (1− t)(1−
p + py2 − (1 − p)(1 − x2)). As EUP (M1(π1;π2)) decreases in ν = 1−y1

x1
, it is optimal to

choose π1 which has the lowest 1−y1
x1

. It is easy to see that 1−y1
x1

is minimized at π̊1 then

increases as π1 → π̂1 when NEB(Π1) is decreasing and concave. Thus, among π1 such that

π̄1(π2) ! π1 ! π̂1, π̄1(π2) has the lowest ν. Thus, we must have

EUP (M̄(π̄1(π2);π2)) ≥ EUP (M1(π1;π2)) for any π1 s.t. π̄1(π2) ! π1 ! π̂1.

Note that A1
b(π1,π2) associated with M1(π1;π2) is strictly positive if π̄1(π2) ≻ π1. This
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completes the proof: M̄(π̄1(π2);π2) always payoff-dominates M1(π1;π2) with π1 such that

π̄1(π2) ≻ π1 ! π̂1 if π̊1 ! π̄1(π̂2).

Lemma 8. If π̄2(π̂1) ! π̃2, any decision rule with A2
g(π1,π2) < 1 cannot be optimal given

any π1 such that π̄1(π̂2) ! π1 ! π̂1.

The proof for Lemma 8 is relegated to the online Appendix as this proof also follows

almost identical steps in that for Lemma 7 except that I start by choosing and fixing π1 such

that π̄1(π̂2) ! π1 ! π̂1.

Now suppose that it is optimal for the principal to give up ex post optimality, i.e., a

decision rule with (π1,π2) such that py1+(1−p)(1−x1) < py2+(1−p)(1−x2) is optimal. Then,

by Proposition 3, eitherM1(π1,π2) orM
2(π1,π2) with (π1,π2) such that py1+(1−p)(1−x1) <

py2 + (1− p)(1− x2) must be optimal. In the figure below, M i represents these two decision

⇡̂2
<latexit sha1_base64="RC/KxCsJcS6dHiXTjetcp9juN+U=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpr16r1J1a+4cZJV4BalCgWav8hX0E5bFXCGT1Bjfc1MMc6pRMMmn5SAzPKVsTIfct1TRmJswn588JedW6ZNBom0pJHP190ROY2MmcWQ7Y4ojs+zNxP88P8PBTZgLlWbIFVssGmSSYEJm/5O+0JyhnFhCmRb2VsJGVFOGNqWyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYJDAM7zCm4POi/PufCxa15xi5gT+wPn8AU2zkUM=</latexit>

⇡̄2(⇡̂1)
<latexit sha1_base64="pYrub3mbB2BD8hsZDgFB64aDJPA=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JKhVvCGBObtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/aGWlQ==</latexit>

⇡̊1
<latexit sha1_base64="ULa0jWA0qxdDXJsykOm9vHuobRg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRV0GXRjcsK9gFNCJPppB06mYSZSaGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOmHKmtON8W5WNza3tnepubW//4PDIPj7pqiSThHZIwhPZD7GinAna0Uxz2k8lxXHIaS+c3Bd+b0qlYol40rOU+jEeCRYxgrWRAtv2YqzHkolR7qVsHriBXXcazgJonbglqUOJdmB/ecOEZDEVmnCs1MB1Uu3nWGpGOJ3XvEzRFJMJHtGBoQLHVPn5IvkcXRhliKJEmic0Wqi/N3IcKzWLQzNZ5FSrXiH+5w0yHd36ORNppqkgy0NRxpFOUFEDGjJJieYzQzCRzGRFZIwlJtqUVTMluKtfXifdZsO9ajQfr+utu7KOKpzBOVyCCzfQggdoQwcITOEZXuHNyq0X6936WI5WrHLnFP7A+vwBzECTwg==</latexit>

⇡̄1(⇡̂2)
<latexit sha1_base64="OIrDZVLPj03vdaJuT0p4XosJ1+U=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JHAr3pDAnGtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/ZWWlQ==</latexit>

⇡̂1
<latexit sha1_base64="U9NAmKSwkuwqXeoIKK8g9Ptbh38=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpj2vV6m6NXcOskq8glShQLNX+Qr6CctirpBJaozvuSmGOdUomOTTcpAZnlI2pkPuW6pozE2Yz0+eknOr9Mkg0bYUkrn6eyKnsTGTOLKdMcWRWfZm4n+en+HgJsyFSjPkii0WDTJJMCGz/0lfaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMEjgGV7hzUHnxXl3Phata04xcwJ/4Hz+AEwvkUI=</latexit>

⇡2
<latexit sha1_base64="3Dko6JGAMj+mmDNO5z4Revw0ypo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpl262YTdiVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXplIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJJpxn2WyER3Qmq4FIr7KFDyTqo5jUPJ2+H4bua3n7g2IlGPOEl5ENOhEpFgFK3k91LRr/crVbfmzkFWiVeQKhRo9itfvUHCspgrZJIa0/XcFIOcahRM8mm5lxmeUjamQ961VNGYmyCfHzsl51YZkCjRthSSufp7IqexMZM4tJ0xxZFZ9mbif143w+gmyIVKM+SKLRZFmSSYkNnnZCA0ZygnllCmhb2VsBHVlKHNp2xD8JZfXiWtes27rNUfrqqN2yKOEpzCGVyAB9fQgHtogg8MBDzDK7w5ynlx3p2PReuaU8ycwB84nz95eY52</latexit>

⇡̄1(⇡2)
<latexit sha1_base64="oKDF8Bf1d3LVSv8NrhWCMVsNAxE=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSxCvZSkCnosevFYwdZCE8Jmu2mXbjZhdyOW0L/ixYMiXv0j3vw3btsctPXBMI/3ZtjZF6acKe0431ZpbX1jc6u8XdnZ3ds/sA+rXZVkktAOSXgieyFWlDNBO5ppTnuppDgOOX0Ixzcz/+GRSsUSca8nKfVjPBQsYgRrIwV21QuxzL2UTQO3blrQPAvsmtNw5kCrxC1IDQq0A/vLGyQki6nQhGOl+q6Taj/HUjPC6bTiZYqmmIzxkPYNFTimys/nt0/RqVEGKEqkKaHRXP29keNYqUkcmskY65Fa9mbif14/09GVnzORZpoKsngoyjjSCZoFgQZMUqL5xBBMJDO3IjLCEhNt4qqYENzlL6+SbrPhnjeadxe11nURRxmO4QTq4MIltOAW2tABAk/wDK/wZk2tF+vd+liMlqxi5wj+wPr8AQq/k8g=</latexit>

⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

⇡̄2(⇡1)
<latexit sha1_base64="9t7UN5V0EkJR+mK8YfVQaBL4XHM=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSxCvZSkCnosevFYwdZCE8Jmu2mXbjZhdyOW0L/ixYMiXv0j3vw3btsctPXBMI/3ZtjZF6acKe0431ZpbX1jc6u8XdnZ3ds/sA+rXZVkktAOSXgieyFWlDNBO5ppTnuppDgOOX0Ixzcz/+GRSsUSca8nKfVjPBQsYgRrIwV21QuxzL2UTYNm3bTAPQvsmtNw5kCrxC1IDQq0A/vLGyQki6nQhGOl+q6Taj/HUjPC6bTiZYqmmIzxkPYNFTimys/nt0/RqVEGKEqkKaHRXP29keNYqUkcmskY65Fa9mbif14/09GVnzORZpoKsngoyjjSCZoFgQZMUqL5xBBMJDO3IjLCEhNt4qqYENzlL6+SbrPhnjeadxe11nURRxmO4QTq4MIltOAW2tABAk/wDK/wZk2tF+vd+liMlqxi5wj+wPr8AQrFk8g=</latexit>

M i
<latexit sha1_base64="yed/tbqvPbiB/5rNEq9xRifQ4jA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL16EiOYByRpmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0fXUbz5xbUSkHnAccz+kAyX6glG00v3to+gWS27ZnYEsEy8jJchQ6xa/Or2IJSFXyCQ1pu25Mfop1SiY5JNCJzE8pmxEB7xtqaIhN346O3VCTqzSI/1I21JIZurviZSGxozDwHaGFIdm0ZuK/3ntBPuXfipUnCBXbL6on0iCEZn+TXpCc4ZybAllWthbCRtSTRnadAo2BG/x5WXSqJS9s3Ll7rxUvcriyMMRHMMpeHABVbiBGtSBwQCe4RXeHOm8OO/Ox7w152Qzh/AHzucPHteNsA==</latexit>

⇡̃2
<latexit sha1_base64="HxIFlEoHLahznmhgunbvovf8DTM=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84DsEmZne5Mhsw9nZgNhyXd48aCIVz/Gm3/jJNmDJhY0FFXddHf5qeBK2/a3tba+sbm1Xdop7+7tHxxWjo7bKskkwxZLRCK7PlUoeIwtzbXAbiqRRr7Ajj+6m/mdMUrFk/hRT1L0IjqIecgZ1UbyXM1FgLmb8mm/3q9U7Zo9B1klTkGqUKDZr3y5QcKyCGPNBFWq59ip9nIqNWcCp2U3U5hSNqID7Bka0wiVl8+PnpJzowQkTKSpWJO5+nsip5FSk8g3nRHVQ7XszcT/vF6mwxsv53GaaYzZYlGYCaITMkuABFwi02JiCGWSm1sJG1JJmTY5lU0IzvLLq6RdrzmXtfrDVbVxW8RRglM4gwtw4BoacA9NaAGDJ3iGV3izxtaL9W59LFrXrGLmBP7A+vwB5CmSLA==</latexit>

<latexit sha1_base64="ydW75TgTJrjusY/QktL60UYLReY=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICUpRV0W3bgRKtgHNCFMppN26GQSZiZCCVm78VfcuFDErV/gzr9xmmah1QvDOZxzL3fu8WNGpbKsL6O0tLyyulZer2xsbm3vmLt7XRklApMOjlgk+j6ShFFOOooqRvqxICj0Gen5k6uZ37snQtKI36lpTNwQjTgNKEZKS5556PhIpDdZLUcnppln1zR4jZPTOXhm1apbecG/xC5IFRTV9sxPZxjhJCRcYYakHNhWrNwUCUUxI1nFSSSJEZ6gERloylFIpJvmp2TwWCtDGERCP65grv6cSFEo5TT0dWeI1FguejPxP2+QqODCTSmPE0U4ni8KEgZVBGe5wCEVBCs21QRhQfVfIR4jgbDS6VV0CPbiyX9Jt1G3z+rN22a1dVnEUQYH4AjUgA3OQQtcgzboAAwewBN4Aa/Go/FsvBnv89aSUczsg19lfHwDfiuZfA==</latexit>

M̄(⇡̄1(⇡2),⇡2)

<latexit sha1_base64="eHGqRkqCRi21zYijiNKnr0IXdZU=">AAACCnicbZBNS8MwGMfT+TbnW9Wjl+gQNpDRjqEeh168CBPcC6ylpFm6haVpSVJhlJ29+FW8eFDEq5/Am9/GrOtBN/8Q+OX/PA/J8/djRqWyrG+jsLK6tr5R3Cxtbe/s7pn7Bx0ZJQKTNo5YJHo+koRRTtqKKkZ6sSAo9Bnp+uPrWb37QISkEb9Xk5i4IRpyGlCMlLY889jxkUhvpxUnpp59lt00Tr363KlWPbNs1axMcBnsHMogV8szv5xBhJOQcIUZkrJvW7FyUyQUxYxMS04iSYzwGA1JXyNHIZFumq0yhafaGcAgEvpwBTP390SKQiknoa87Q6RGcrE2M/+r9RMVXLop5XGiCMfzh4KEQRXBWS5wQAXBik00ICyo/ivEIyQQVjq9kg7BXlx5GTr1mn1ea9w1ys2rPI4iOAInoAJscAGa4Aa0QBtg8AiewSt4M56MF+Pd+Ji3Fox85hD8kfH5A3opmXs=</latexit>

M̄(⇡1, ⇡̄2(⇡1))

rules. Note that M1(π1,π2) has A1
b(π1,π2) > 0. Thus, by Lemma 7, M1(π1,π2) considered

here cannot be optimal and payoff-dominated by M̄(π̄1(π2),π2). Note that M2(π1,π2) has

A2
g(π1,π2) < 1. Thus, by Lemma 8, M2(π1,π2) considered here cannot be optimal and payoff-

dominated by M̄(π1, π̄2(π1)). Then, both M1(π1,π2) and M2(π1,π2) with (π1,π2) such that

py1 + (1− p)(1− x1) < py2 + (1− p)(1− x2) are not optimal. Hence it is not optimal for the

principal to give up ex post optimality, which implies that an optimal decision rule achieves

ex post optimality.
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I include the relegated proofs from the main text or the Appendix.

Proof of Lemma 4

Proof. Note that π̂i = (x̂i, ŷi) ∈ NEB(Πi); if π̂i /∈ NEB(Πi), there is π′
i = (x̂i + pε, ŷi +

(1 − p)ε) ∈ Πi for some ε > 0; then the principal prefers π′
i to π̂i, which is a contradiction.

Furthermore, both π̊i and π̃i are defined on NEB(Πi). Hence, π̂i, π̊i, and π̃i are on NEB(Πi).

Now recall that NEB(Πi) does not always coincide with Ni(xi). That is, if S̄i(x
cr
i ) >

1−p
p (1 − xcri ), then Ni(x

cr
i ) := S̄(xcri ) but NEB(Πi) includes the vertical line connecting

S̄i(x
cr
i ) and 1−p

p (1− xcri ):

υ :=

!
πi = (xi, yi)

"""xi = xcri , yi ∈
#1− p

p
(1− xcri ), S̄i(x

cr
i )

$%
⊂ NEB(Πi).

As I use Ni(xi) instead of NEB(Πi) in this proof, I first argue that neither of π̂i, π̊i or

π̃i can be on the vertical line of NEB(Πi): π̂i, π̊i, π̃i /∈ υ. Let π′
i = (xcri , Ni(x

cr
i )). By

definition, Ni(x
cr
i ) > yi for any yi associated with πi ∈ υ. Suppose that π̂i ∈ υ. Then, it

is a contradiction as the principal prefers π′
i to π̂i ∈ υ. Similarly, π̃i, π̊ /∈ υ. Note that π′

i

has a higher positive likelihood ratio and a lower negative likelihood ratio than every πi ∈ υ:
Ni(x

cr
i )

1−xcr
i

> yi
1−xcr

i
and

1−Ni(x
cr
i )

xcr
i

< 1−yi
xcr
i

for every πi = (xcri , yi) ∈ υ. Thus when we discuss the

relative locations of π̂i, π̃i, and π̊i, we only need to focus on Ni(xi) not NEB(Πi).

For π̊i ! π̂i in (a), suppose that π̂i ≻ π̊i (i.e., x̂i < x̊i, and, thus, Ni(x̂i) ≥ Ni(̊xi)). By

definition of π̂i,

pNi(x̂i)− (1− p)(1− x̂i) ≥ pNi(̊xi)− (1− p)(1− x̊i),

⇐⇒ Ni(x̂i)−Ni(̊xi)

x̂i − x̊i
≤ −1− p

p
.

By definition of π̊i, we have

1−Ni(̊xi)

x̊i
≤ 1−Ni(x̂i)

x̂i
⇐⇒ −1−Ni(̊xi)

x̊i
≤ Ni(x̂i)−Ni(̊xi)

x̂i − x̊i
.

Thus, we must have

−1−Ni(̊xi)

x̊i
≤ Ni(x̂i)−Ni(̊xi)

x̂i − x̊i
≤ −1− p

p
,

which implies

1−Ni(̊xi)

x̊i
≥ 1− p

p
⇐⇒ 2p− 1 ≥ pNi(̊xi)− (1− p)(1− x̊i).

As π̊i is on NEB(Πi), it is a convincing experiment. Hence, pNi(̊xi) − (1 − p)(1 − x̊i) ≥ 0.

This implies that 2p − 1 ≥ 0. This contradicts to the assumption that p ∈ (0, 1/2). Thus,

π̊i ! π̂i (i.e., x̊i ≤ x̂i, and, thus, Ni(̊xi) ≥ Ni(x̂i)).
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For π̂i ! π̃i in (a), assume that π̃i ≻ π̂i (i.e., x̃i < x̂i, and, thus, Ni(x̃i) ≥ Ni(x̂i)). Again, by

definition of π̂i, we have

pNi(x̂i)− (1− p)(1− x̂i) ≥ pNi(x̃i)− (1− p)(1− x̃i)

⇐⇒ −1− p

p
≤ Ni(x̃i)−Ni(x̂i)

x̃i − x̂i
.

Then, by definition of π̃i, we have

Ni(x̃i)

1− x̃i
≥ Ni(x̂i)

1− x̂i
⇐⇒ Ni(x̃i)−Ni(x̂i)

x̃i − x̂i
≤ −Ni(x̃i)

1− x̃i
.

Thus, we have

−1− p

p
≤ Ni(x̃i)−Ni(x̂i)

x̃i − x̂i
≤ −Ni(x̃i)

1− x̃i
,

which implies that

1− p

p
≥ Ni(x̃i)

1− x̃i
⇐⇒ 0 ≥ pNi(x̃i)− (1− p)(1− x̃i).

However, pNi(x̃i) − (1 − p)(1 − x̃i) ≥ 0 as π̃i is on NEB(Πi). This implies that pNi(x̃i) −
(1 − p)(1 − x̃i) = 0, which is equivalent to 1−p

p = Ni(x̃i)
1−x̃i

. By definition of π̃i, we must have
Ni(x̃i)
1−x̃i

= 1−p
p ≥ Ni(xi)

1−xi
for all πi ∈ NEB(Πi). Then, Ni(xi)

1−xi
= 1−p

p for all πi ∈ NEB(Πi).

This is only possible when NEB(Πi) ≡ {(xi, Ni(xi) =
1−p
p (1 − xi)) for xi ∈ [xcli , x

cr
i ]}. This

contradicts to Assumption 1.(c). Thus, we conclude that π̂i ! π̃i (i.e. x̂i ≤ x̃i, and, thus

Ni(x̂i) ≥ Ni(x̃i)).

For (b), suppose that {(xi, Ni(xi))} ≡ NEB(Πi) and Ni(xi) is twice-differentiable at

every xi ∈ [xcli , x
cr
i ]. Then, under Assumption 1, we have N ′

i(xi) ≤ 0 and N ′′
i (xi) ≤ 0. Then,

by definition of π̂i = (x̂i, Ni(x̂i)) and differentiability of Ni(xi), we have

∂
&
pNi(xi)− (1− p)(1− xi)

'

∂xi
xi=x̂i

= pN ′
i(x̂i) + (1− p) = 0 ⇐⇒ N ′

i(x̂i) = −1− p

p
,

∂2
&
pNi(xi)− (1− p)(1− xi)

'

∂x2i
= pN ′′

i (xi) ≤ 0 for any xi.

Note that it is impossible to have a corner solution for pN ′
i(xi) + (1− p) = 0 when Ni(xi) is

differentiable at every xi ∈ [xcli , x
cr
i ]: x̂i ∈ (xcli , x

cr
i ). As Ni(xi) is differentiable, by the mean

value theorem, there exits xmi ∈ (xcli , x
cr
i ) such that

N ′
i(x

m
i ) =

Ni(x
cl
i )−Ni(x

cr
i )

xcli − xcri
= −1− p

p
,

where the second equality comes from the fact that both xcli and xcri are on y = −1−p
p x+ 1−p

p

when {(xi, Ni(xi))} ≡ NEB(Πi). It is immediate that xmi = x̂i.
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With differentiability of Ni(xi), we can find π̊i by studying the first and second derivatives

of 1−Ni(xi)
xi

:

∂ 1−Ni(xi)
xi

∂xi
=

−N ′
i(xi)xi − (1−Ni(xi))

x2i
,

∂2 1−Ni(xi)
xi

∂x2i
=

−N ′′
i (xi)x

3
i −

(
−N ′

i(xi)xi − (1−Ni(xi))
)
2xi

x4i
.

Suppose that ∂ 1−Ni(xi)
xi

/∂xi ≥ 0 for all xi ∈ [xcli , x
cr
i ]. Then, π̊i = (xcli , Ni(x

cl
i )) ∕= π̂i. Now

suppose that ∂ 1−Ni(xi)
xi

/∂xi ≤ 0 for all xi ∈ [xcli , x
cr
i ]. Then, π̊i = (xcri , Ni(x

cr
i )), which implies

that π̂i ≻ π̊i as x̂i < xcri . However, it is not possible as π̊i ! π̂i. Lastly, suppose that there

exists xi ∈ (xcli , x
cr
i ) such that ∂ 1−Ni(xi)

xi
/∂xi = 0. Note that, at xi which makes the first

derivative above zero, the second derivative above is greater than zero. Thus, 1−Ni(xi)
xi

is

minimized at πi such that −N ′
i(xi)xi− (1−Ni(xi)) = 0. In other words, π̊i is the experiment

such that −N ′
i (̊xi) =

1−Ni (̊xi)
x̊i

.

We already know that π̊i ! π̂i: x̊i ≤ x̂i, and, thus, Ni(̊xi) ≥ Ni(x̂i). Suppose that π̊i = π̂i

(i.e., x̊i = x̂i). Then, we must have

N ′
i (̊xi) = N ′

i(x̂i) ⇐⇒ −1−Ni(̊xi)

x̊i
= −1− p

p
,

which implies that

2p− 1 = pNi(̊xi)− (1− p)(1− x̊i).

Note that π̊i is on NEB(Πi). Thus, it is a convincing experiment which guarantees that

pNi(̊xi)− (1− p)(1− x̊i) ≥ 0. This implies that 2p− 1 ≥ 0, which contradicts to the assump-

tion that p ∈ (0, 1/2). Thus, π̊1 ∕= π̂1.

Similarly, with differentiability of Ni(xi), we can find π̃i by studying the first and second

derivatives of Ni(xi)
1−xi

:

∂Ni(xi)
1−xi

∂xi
=

N ′
i(xi)(1− xi) +Ni(xi)

(1− xi)2
,

∂2Ni(xi)
1−xi

∂x2i
=

N ′′
i (xi)(1− xi)(1− xi)

2 + (N ′
i(xi)(1− xi) +Ni(xi))2(1− xi)

(1− xi)4
.

Suppose that ∂Ni(xi)
1−xi

/∂xi ≥ 0 for all xi ∈ [xcli , x
cr
i ]. Then, π̃ = (xcri , Ni(x

cr
i )) ∕= π̂i. Suppose

that ∂Ni(xi)
1−xi

/∂xi ≤ 0 for all xi ∈ [xcli , x
cr
i ]. Then, π̃i = (xcli , Ni(x

cl
i )), which implies that

π̃i ≻ π̂i as x
cl
i < x̂i. However, it is not possible as π̂i ! π̃i. Lastly, suppose that there exists

3



xi ∈ (xcli , x
cr
i ) such that ∂Ni(xi)

1−xi
/∂xi = 0. Note that, at xi which makes the first derivative

above zero, the second derivative is less than zero. Thus, at πi such that N ′
i(xi)(1 − xi) +

Ni(xi) = 0, Ni(xi)
1−xi

is maximized. In other words, π̃i = (x̃i, Ni(x̃i)) is the experiment such

that −N ′
i(x̃i) =

Ni(x̃i)
1−x̃i

. We already know that π̂i ! π̃i: x̂i ≤ x̃i, and thus, Ni(x̂i) ≥ Ni(x̃i).

Suppose that π̂i = π̃i (i.e., x̂i = x̃i). Then, we must have

N ′
i(x̂i) = N ′

i(x̃i) ⇐⇒ −Ni(x̃i)

1− x̃i
= −1− p

p
,

which implies that

pNi(x̃i)− (1− p)(1− x̃i) = pNi(x̂i)− (1− p)(1− x̂i) = 0.

This implies that pNi(xi)− (1−p)(1−xi) = 0 for all πi ∈ NEB(Πi), which is a contradiction

to Assumption 1.(c). Hence, π̂i ∕= π̃i.

Proof of Lemma 6

Proof. The proof strategy is exactly opposite to that for Lemma 5. I first choose and fix an

arbitrary π1 such that π̄1(π̂2) ! π1 ! π̂1. Then I consider all decision rules which assign the

chosen π1 along with different π2 such that π̂2 ! π2 ! π̄2(π̂1). Among these decision rules, I

show that the decision rule which assigns the chosen π1 and π̂2 payoff-dominates any other

decision rules which assign the chosen π1 and any other π2 ∕= π̂2. The following figure helps

to understand the proof strategy again.

⇡̃2
<latexit sha1_base64="HxIFlEoHLahznmhgunbvovf8DTM=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWME84DsEmZne5Mhsw9nZgNhyXd48aCIVz/Gm3/jJNmDJhY0FFXddHf5qeBK2/a3tba+sbm1Xdop7+7tHxxWjo7bKskkwxZLRCK7PlUoeIwtzbXAbiqRRr7Ajj+6m/mdMUrFk/hRT1L0IjqIecgZ1UbyXM1FgLmb8mm/3q9U7Zo9B1klTkGqUKDZr3y5QcKyCGPNBFWq59ip9nIqNWcCp2U3U5hSNqID7Bka0wiVl8+PnpJzowQkTKSpWJO5+nsip5FSk8g3nRHVQ7XszcT/vF6mwxsv53GaaYzZYlGYCaITMkuABFwi02JiCGWSm1sJG1JJmTY5lU0IzvLLq6RdrzmXtfrDVbVxW8RRglM4gwtw4BoacA9NaAGDJ3iGV3izxtaL9W59LFrXrGLmBP7A+vwB5CmSLA==</latexit>

⇡̄1(⇡̂2)
<latexit sha1_base64="OIrDZVLPj03vdaJuT0p4XosJ1+U=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JHAr3pDAnGtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/ZWWlQ==</latexit> ⇡̂1

<latexit sha1_base64="U9NAmKSwkuwqXeoIKK8g9Ptbh38=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpj2vV6m6NXcOskq8glShQLNX+Qr6CctirpBJaozvuSmGOdUomOTTcpAZnlI2pkPuW6pozE2Yz0+eknOr9Mkg0bYUkrn6eyKnsTGTOLKdMcWRWfZm4n+en+HgJsyFSjPkii0WDTJJMCGz/0lfaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMEjgGV7hzUHnxXl3Phata04xcwJ/4Hz+AEwvkUI=</latexit>

⇡̂2
<latexit sha1_base64="RC/KxCsJcS6dHiXTjetcp9juN+U=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpr16r1J1a+4cZJV4BalCgWav8hX0E5bFXCGT1Bjfc1MMc6pRMMmn5SAzPKVsTIfct1TRmJswn588JedW6ZNBom0pJHP190ROY2MmcWQ7Y4ojs+zNxP88P8PBTZgLlWbIFVssGmSSYEJm/5O+0JyhnFhCmRb2VsJGVFOGNqWyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYJDAM7zCm4POi/PufCxa15xi5gT+wPn8AU2zkUM=</latexit>

⇡̄2(⇡̂1)
<latexit sha1_base64="pYrub3mbB2BD8hsZDgFB64aDJPA=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JKhVvCGBObtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/aGWlQ==</latexit>

⇡̄2(⇡1)
<latexit sha1_base64="9t7UN5V0EkJR+mK8YfVQaBL4XHM=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WSxCvZSkCnosevFYwdZCE8Jmu2mXbjZhdyOW0L/ixYMiXv0j3vw3btsctPXBMI/3ZtjZF6acKe0431ZpbX1jc6u8XdnZ3ds/sA+rXZVkktAOSXgieyFWlDNBO5ppTnuppDgOOX0Ixzcz/+GRSsUSca8nKfVjPBQsYgRrIwV21QuxzL2UTYNm3bTAPQvsmtNw5kCrxC1IDQq0A/vLGyQki6nQhGOl+q6Taj/HUjPC6bTiZYqmmIzxkPYNFTimys/nt0/RqVEGKEqkKaHRXP29keNYqUkcmskY65Fa9mbif14/09GVnzORZpoKsngoyjjSCZoFgQZMUqL5xBBMJDO3IjLCEhNt4qqYENzlL6+SbrPhnjeadxe11nURRxmO4QTq4MIltOAW2tABAk/wDK/wZk2tF+vd+liMlqxi5wj+wPr8AQrFk8g=</latexit>

⇡1
<latexit sha1_base64="HOtT/knFpXQvJu3D0VmkGYGdmzo=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvtpF262YTdjVBCf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXpoJr47rfztr6xubWdmmnvLu3f3BYOTpu6SRTDH2WiER1QqpRcIm+4UZgJ1VI41BgOxzfzfz2EyrNE/loJikGMR1KHnFGjZX8Xsr7Xr9SdWvuHGSVeAWpQoFmv/LVGyQsi1EaJqjWXc9NTZBTZTgTOC33Mo0pZWM6xK6lksaog3x+7JScW2VAokTZkobM1d8TOY21nsSh7YypGellbyb+53UzE90EOZdpZlCyxaIoE8QkZPY5GXCFzIiJJZQpbm8lbEQVZcbmU7YheMsvr5JWveZd1uoPV9XGbRFHCU7hDC7Ag2towD00wQcGHJ7hFd4c6bw4787HonXNKWZO4A+czx939Y51</latexit>

(a)
<latexit sha1_base64="sOjZUoNK33Nc8nqmGB8ygq4L+xA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWULvZDYZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TRVmDxiJW7QA1E1yyhuFGsHaiGEaBYK1gdDvzW09MaR7LRzNOmB/hQPKQUzRWeijjea9YcivuHGSVeBkpQYZ6r/jV7cc0jZg0VKDWHc9NjD9BZTgVbFroppolSEc4YB1LJUZM+5P5qVNyZpU+CWNlSxoyV39PTDDSehwFtjNCM9TL3kz8z+ukJrz2J1wmqWGSLhaFqSAmJrO/SZ8rRo0YW4JUcXsroUNUSI1Np2BD8JZfXiXNasW7qFTvL0u1myyOPJzAKZTBgyuowR3UoQEUBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AifmNTg==</latexit>

(b)
<latexit sha1_base64="7tVg+AhPeiaMnY5qvG8kDXGmdb0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVI44T7kd0oEQoGEUrPZSD816x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqa1Yp3UaneX5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4Ai36NTw==</latexit>

Choose and fix any π1 such that π̄1(π̂2) ≻ π1 ! π̂1. Note that any π2 such that π̄2(π1) ≻
π2 ! π̄2(π̂1) (π2 on region (a) in the figure above) cannot be optimal because such a π2

cannot make the IC constraint binding with the optimal action-probability pairs in Remark
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2. Thus, we only need to consider π2 such that π̂2 ! π2 ! π̄1(π2) (π2 on region (b) in the

figure above). If π1 = π̄1(π̂2), it is immediate that π̂2 is optimal.

The chosen π1 and π2 such that π̂2 ! π2 ≻ π̄2(π1) satisfy py1 + (1 − p)(1 − x1) < py2 +

(1− p)(1−x1). Thus, by Proposition 3, either M1(π2;π1) = {(π1, 1, A1
b(π2;π1)), (π2, 1, 0)} or

M2(π2;π1) = {(π1, 1, 0), (π2, A2
g(π2;π1), 0)} is optimal, where

A1
b(π2;π1) =

py2 + (1− p)(1− x2)− (py1 + (1− p)(1− x1))

1− (py1 + (1− p)(1− x1))
, and

A2
g(π2;π1) =

py1 + (1− p)(1− x1)

py2 + (1− p)(1− x2)
.

Note that, if π2 = π̄2(π1), M
1(π2;π1) = M2(π2;π1) = M̄(π2;π1) = {(π1, 1, 0), (π2, 1, 0)}.

Then, the principal’s ex ante payoff under each decision rule for any π2 such that π̂2 ! π2 !
π̄2(π1) is

EUP (M1(π2;π1)) = t
(
1− p+ py1 − (1− p)(1− x1)−A1

b(π2;π1)(1− 2p+ py1 − (1− p)(1− x1)
)

+
(
1− t

)(
1− p+ py2 − (1− p)(1− x2)

)
,

EUP (M2(π2;π1)) = t(1− p+ py1 − (1− p)(1− x1))

+(1− t)
(
1− p+A2

g(π2;π1)(py2 − (1− p)(1− x2))
)
,

where EUP (M1(π2;π1)) = EUP (M2(π2;π1)) = EUP (M̄(π2;π1)) if π2 = π̄2(π1).

Consider M2(π2;π1). With simple algebra, we can write EUP (M2(π2;π1)) as a function

of the positive likelihood ratio of π2, φ := y2
1−x2

. Denote t
(
1− p+ py1 − (1− p)(1− x1)

)
by

c̄1 as this part would not change as π2 changes. Then we have

EUP (M2(π2;π1)) = c̄1 + (1− t)
&
1− p+

py1 + (1− p)(1− x1)

py2 + (1− p)(1− x2)

(
py2 − (1− p)(1− x2)

)'
,

= c̄1 + (1− t)

*
1− p+ (py1 + (1− p)(1− x1))

+
py2 − (1− p)(1− x2)

py2 + (1− p)(1− x2)

,-
,

= c̄1 + (1− t)

.

/1− p+ (py1 + (1− p)(1− x1))

0

1
p
2

y2
1−x2

$
− (1− p)

p
2

y2
1−x2

$
+ (1− p)

3

4

5

6 ,

= c̄1 + (1− t)

*
1− p+ (py1 + (1− p)(1− x1))

+
pφ− (1− p)

pφ+ (1− p)

,-
.

It is easy to see that ∂EUP (M2(π2;π1))/∂φ > 0. Thus, EUP (M2(π2;π1)) is maximized at

π2 = π̃2 which has the highest y2
1−x2

. Then, as π̃2 = π̂2, we have

EUP (M2(π̃2 = π̂2;π1)) ≥ EUP (M2(π2;π1)) for any π2 s.t. π̂2 ! π2 ! π̄2(π1).
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Now consider M1(π2;π1). Note that it is not possible to write EUP (M1(π2;π1)) as a

function of the positive likelihood ratio as for EUP (M2(π2;π1)). As in Lemma 5, I directly

compare M1(π̂2;π1) and M1(π2;π1) with any π2 such that π̂2 ! π2 ! π̄2(π1). By subtracting

EUP (M1(π2;π1)) from EUP (M1(π̂2;π1)), we have

EUP (M1(π̂2;π1))− EUP (M1(π2;π1))

= t(A1
b(π2;π1)−A1

b(π̂2;π1))(1− 2p+ py1 − (1− p)(1− x1))

+(1− t)(pŷ2 − (1− p)(1− x̂2)− (py2 − (1− p)(1− x2))).

Note that EUP (M1(π̂2;π1))− EUP (M1(π2;π1)) ≥ 0 if and only if

1− t

t
≥

(A1
b(π̂2;π1)−A1

b(π2;π1))(1− 2p+ py1 − (1− p)(1− x1))

pŷ2 − (1− p)(1− x̂2)− (py2 − (1− p)(1− x2))
,

where A1
b(π̂2;π1)b−A1

b(π2;π1) =
pŷ2+(1−p)(1−x̂2)−(py2+(1−p)(1−x2))

1−(py1+(1−p)(1−x1))
≥ 0 as π̂2 ! π2. Denote the

right-hand side of the inequality above by ρ2(π̂2,π2;π1). By rearraging terms, we have

ρ2(π̂2,π2;π1) =

+
pŷ2 + (1− p)(1− x̂2)− (py2 + (1− p)(1− x2))

pŷ2 − (1− p)(1− x̂2)− (py2 − (1− p)(1− x2))

,+
1− 2p+ py1 − (1− p)(1− x1)

1− (py1 + (1− p)(1− x1))

,
.

Note that τ(π1,π2) =
2
py2+(1−p)(1−x2)
py2−(1−p)(1−x2)

$2
1−2p+py1−(1−p)(1−x1)
1−(py1+(1−p)(1−x1))

$
and ρ2(π̂2,π2;π1) share the

same fraction, 1−2p+py1−(1−p)(1−x1)
1−(py1+(1−p)(1−x1))

. By subtracting ρ2(π̂2,π2;π1) from τ(π1,π2), we have

τ(π1,π2)− ρ2(π̂2,π2;π1) =

+
2p(1− p)

D′
1D

′
2

,
(ŷ2(1− x2)− y2(1− x̂2))

+
1− 2p+ py1 − (1− p)(1− x1)

1− (py1 + (1− p)(1− x1))

,
,

where D′
1 = py2 − (1− p)(1− x2) and D′

2 = pŷ2 − (1− p)(1− x̂2)− (py2 − (1− p)(1− x2)).

Then, note that

τ(π1,π2)− ρ2(π̂2,π2;π1) ≥ 0 ⇐⇒ ŷ2
1− x̂2

≥ y2
1− x2

,

which is true under the assumption that π̂2 = π̃2. Hence, if 1−t
t ≥ τ(π1,π2), we must have

1−t
t ≥ τ(π1,π2) ≥ ρ2(π̂2,π2;π1), which implies EUP (M1(π̂2;π1)) ≥ EUP (M1(π2;π1)) for

any π2 such that π̂2 ! π2 ! π̄2(π1).

Choose any π2 such that π̂2 ! π2 ! π̄2(π1). If τ(π1,π2) ≥ 1−t
t , then we must have

EUP (M2(π̂2;π1)) ≥ EUP (M2(π2;π1)) ≥ EUP (M1(π2;π1)). If τ(π1,π2) ≤ 1−t
t , then we

must have EUP (M1(π̂2;π1)) ≥ EUP (M1(π2;π1)) ≥ EUP (M2(π2;π1)). This completes the

proof that a decision rule which assigns π̂2 payoff-dominates any decision rule which assigns

π2 ∕= π̂2 such that π̂2 ! π2 ! π̄2(π̂1).
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Proof for Lemma 8

Proof. The proof strategy is similar to that in Lemma 7. Choose and fix a π1 such that

π̄1(π̂2) ! π1 ! π̂1. Then I show that any decision rule with A2
g < 1 cannot be optimal since

such a decision rule is payoff-dominated by the decision rule which assigns π̄2(π1) along with

a chosen π1 without sacrificing ex post optimality: EUP (M̄(π̄2(π1);π1)) ≥ EUP (M2(π2;π1))

for any π2 such that π̂2 ! π2 ! π̄2(π̂1). The figure below is helpful to visualize the proof

strategy here.

⇡̂2
<latexit sha1_base64="RC/KxCsJcS6dHiXTjetcp9juN+U=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpr16r1J1a+4cZJV4BalCgWav8hX0E5bFXCGT1Bjfc1MMc6pRMMmn5SAzPKVsTIfct1TRmJswn588JedW6ZNBom0pJHP190ROY2MmcWQ7Y4ojs+zNxP88P8PBTZgLlWbIFVssGmSSYEJm/5O+0JyhnFhCmRb2VsJGVFOGNqWyDcFbfnmVtOs177JWf7iqNm6LOEpwCmdwAR5cQwPuoQktYJDAM7zCm4POi/PufCxa15xi5gT+wPn8AU2zkUM=</latexit>

⇡̄2(⇡̂1)
<latexit sha1_base64="pYrub3mbB2BD8hsZDgFB64aDJPA=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JKhVvCGBObtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/aGWlQ==</latexit>

⇡̄1(⇡̂2)
<latexit sha1_base64="OIrDZVLPj03vdaJuT0p4XosJ1+U=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYhLopSRV0WXTjsoK9QBPCZDpth04mYeZEKKFufBU3LhRx61u4822ctllo6w8DH/85hzPnDxPBNTjOt1VYWV1b3yhulra2d3b37P2Dlo5TRVmTxiJWnZBoJrhkTeAgWCdRjEShYO1wdDOttx+Y0jyW9zBOmB+RgeR9TgkYK7CPvJCozEv4JHAr3pDAnGtngV12qs5MeBncHMooVyOwv7xeTNOISaCCaN11nQT8jCjgVLBJyUs1SwgdkQHrGpQkYtrPZhdM8KlxergfK/Mk4Jn7eyIjkdbjKDSdEYGhXqxNzf9q3RT6V37GZZICk3S+qJ8KDDGexoF7XDEKYmyAUMXNXzEdEkUomNBKJgR38eRlaNWq7nm1dndRrl/ncRTRMTpBFeSiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx7y1YOUzh+iPrM8f/ZWWlQ==</latexit>

⇡̂1
<latexit sha1_base64="U9NAmKSwkuwqXeoIKK8g9Ptbh38=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YAklM122y7dbMLuRCihP8OLB0W8+mu8+W/ctjlo64OBx3szzMyLUikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJsk04y2WyER3I2q4FIq3UKDk3VRzGkeSd6Lx3czvPHFtRKIecZLyMKZDJQaCUbSSH4wo5kEqpj2vV6m6NXcOskq8glShQLNX+Qr6CctirpBJaozvuSmGOdUomOTTcpAZnlI2pkPuW6pozE2Yz0+eknOr9Mkg0bYUkrn6eyKnsTGTOLKdMcWRWfZm4n+en+HgJsyFSjPkii0WDTJJMCGz/0lfaM5QTiyhTAt7K2EjqilDm1LZhuAtv7xK2vWad1mrP1xVG7dFHCU4hTO4AA+uoQH30IQWMEjgGV7hzUHnxXl3Phata04xcwJ/4Hz+AEwvkUI=</latexit>

(a)
<latexit sha1_base64="sOjZUoNK33Nc8nqmGB8ygq4L+xA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWULvZDYZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TRVmDxiJW7QA1E1yyhuFGsHaiGEaBYK1gdDvzW09MaR7LRzNOmB/hQPKQUzRWeijjea9YcivuHGSVeBkpQYZ6r/jV7cc0jZg0VKDWHc9NjD9BZTgVbFroppolSEc4YB1LJUZM+5P5qVNyZpU+CWNlSxoyV39PTDDSehwFtjNCM9TL3kz8z+ukJrz2J1wmqWGSLhaFqSAmJrO/SZ8rRo0YW4JUcXsroUNUSI1Np2BD8JZfXiXNasW7qFTvL0u1myyOPJzAKZTBgyuowR3UoQEUBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AifmNTg==</latexit>

(b)
<latexit sha1_base64="7tVg+AhPeiaMnY5qvG8kDXGmdb0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMevEY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVI44T7kd0oEQoGEUrPZSD816x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/MT52SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2/vEqa1Yp3UaneX5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNkc6L8+58LFpzTjZzDH/gfP4Ai36NTw==</latexit>

⇡1

⇡̄2(⇡1)

<latexit sha1_base64="qjT7V9LZ071P5lavgjxDFnGPT+s=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBA8hd2g6DHoxWME84DsEmZne5Mhsw9nZgNhyXd48aCIVz/Gm3/jJNmDJhY0FFXddHf5qeBK2/a3tba+sbm1Xdop7+7tHxxWjo7bKskkwxZLRCK7PlUoeIwtzbXAbiqRRr7Ajj+6m/mdMUrFk/hRT1L0IjqIecgZ1UbyXM1FgLmb8mm/3q9U7Zo9B1klTkGqUKDZr3y5QcKyCGPNBFWq59ip9nIqNWcCp2U3U5hSNqID7Bka0wiVl8+PnpJzowQkTKSpWJO5+nsip5FSk8g3nRHVQ7XszcT/vF6mwxsv53GaaYzZYlGYCaITMkuABFwi02JiCGWSm1sJG1JJmTY5lU0IzvLLq6RdrzlXNfvhstq4LeIowSmcwQU4cA0NuIcmtIDBEzzDK7xZY+vFerc+Fq1rVjFzAn9gff4A5C2SLA==</latexit>

⇡̃2

Choose and fix any π1 such that π̄1(π̂2) ! π1 ! π̂1. Then, π̄2(π1) is defined accordingly.

Note that any π2 such that π̄2(π1) ≻ π2 ! π̄2(π̂1) (π2 on region (a) in the figure above)

cannot be optimal since such a π2 and the chosen π1 cannot make the IC constraint binding

with the optimal action-probability pairs in Remark 2. Thus, we only need to consider π2

such that π̂2 ! π2 ! π̄2(π1) (π2 on region (b) in the figure above).

Now consider M2(π2;π1). We know that, for π2 such that π̂2 ! π2 ! π̄2(π1),

EUP (M2(π2;π1)) = c̄1 + (1− t)

*
1− p+ (py1 + (1− p)(1− x1))

+
pφ− (1− p)

pφ+ (1− p)

,-
,

where EUP (M2(π2;π1)) = EUP (M̄(π2;π1)) at π2 = π̄2(π1), φ = y2
1−x2

, and c̄1 = t(1 − p +

py1 − (1− p)(1− x1)). As EUP (M2(π2;π1)) increases in φ, it is optimal to choose π2 which

has the highest y2
1−x2

. It is easy to see that y2
1−x2

increases as π2 → π̃2 from the left of it and is

maximized at π̃2 since we have a decreasing and concave NEB(Π2). As π̄2(π̂1) ! π̃2, among

π2 such that π̂2 ! π2 ! π̄2(π1), π̄2(π1) has the highest φ. Then, we must have

EUP (M̄(π̄2(π1);π1)) ≥ EUP (M2(π2;π1)) for any π2 s.t. π̂2 ! π2 ! π̄2(π1).

Note that A2
g(π2;π1) associated with M2(π2;π1) is strictly less than 1 if π2 ≻ π̄2(π1). This

completes the proof: M̄(π̄2(π1);π1) always payoff-dominates M2(π2;π1) with π2 such that

π̂2 ! π2 ! π̄2(π̂1) if π̄2(π̂1) ! π̃2.
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