Screening for Experiments

Daehong Min Korea Information Society Development Institute

> Seoul National University Tae-Sung Kim Memorial Seminar

> > April 25, 2024

Motivation

Information Design Problems:

$$ID \rightarrow Information \ Structure \rightarrow DM$$

- ► The FDA (DM) vs. a drug company (an Information Designer)
 - $\bullet \ \ Conflict \ of \ interests \Rightarrow misaligned \ preferences \ over \ experiments$
 - The FDA might want to control the quality of drug experiments
 - But the FDA might not know what experiments are feasible for the drug company
- Q What is an optimal decision rule for DM when DM does not know what experiments an information designer can conduct?

Motivation

Information Design Problems:

DM o Decision Rule o ID o Information Structure o DM

e.g., The FDA (DM) vs. a drug company (an Information Designer)

- Conflict of interests ⇒ misaligned preferences over experiments
- The FDA might want to control the quality of drug experiments
- But the FDA might not know what experiments are feasible for the drug company
- Q What is an optimal decision rule for DM when DM does not know what experiments an information designer can conduct?

Literature Review

- Information Design
 - Kamenica and Gentzkow (2011), Bergemann and Morris (2016)
- Mechanism Design
 - Myerson (1979), Green and Laffont (1986)
- Information Design + Mechanism Design
 - Kolotilin et al. (2017), Yoder (2022)

The Model BASIC SETUP

► Two players: Agent (a drug company) and Principal (the FDA)

► Two states of the world: $\{G, B\}$ with P(G) = p.

Preferences:

	Good	Bad
Approve	1,1	1,0
<i>D</i> isapprove	0,0	0,1

The Model

AGENT'S SET OF ACTIONS

- ▶ Agent's type space: $\{\theta_1, \theta_2\}$ with $P(\theta_1) = t$
- $ightharpoonup S_i$: Type θ_i 's set of feasible experiments (convex & closed)
- ▶ A typical element in S_i : a binary experiment, π_i^k ,

	Good state	Bad state
g (positive)	$\pi_i^k(g G) = y_i^k$	$\pi_i^k(g B) = 1 - x_i^k$
b (negative)	$\pi_i^k(b G) = 1 - y_i^k$	$\pi_i^k(b B) = x_i^k$

Assumptions on S_i

- (a) S_i is closed and convex.
- (b) The "northeast boundary" of S_i is non-increasing and concave.

Assumptions on S_i

(c) $S_2 \subset S_1$

The Model

TIMING OF THE GAME & PRINCIPAL'S DECISION RULE

- ▶ Principal \rightarrow Decision Rule \rightarrow Agent \rightarrow Experiment \rightarrow Decision
 - Decision Rule: contingent on observables

i.e.,
$$d: S_1 \times \{g,b\} \rightarrow \Delta\{A,D\}$$
, c.f. $S_1 = S_2 \cup S_1$

- By the revelation principle, the principal's decision rule is equivalent to an incentive compatible menu offer
 - $M = \{(\pi_1, A_g^1, A_b^1), (\pi_2, A_g^2, A_b^2)\},$

 A_g^i : the probability of action A associated with π_i and g,

 A_b^i : the probability of action A associated with π_i and b.

Principal's Problem

▶ Given $M = \{(\pi_1, A_g^1, A_b^1), (\pi_2, A_g^2, A_b^2)\}$, denote (π_i, A_g^i, A_b^i) by m_i for i = 1, 2

$$\max_{m_1,m_2} t \cdot EU^P(m_1) + (1-t) \cdot EU^P(m_2)$$
s.t. $EU^A(m_1|\theta_1) \ge EU^A(m_2|\theta_1)$ (IC for type θ_1)
$$EU^A(m_2|\theta_2) \ge EU^A(m_1|\theta_2)$$
 (IC for type θ_2)
$$\pi_1 \in S_1 \text{ and } \pi_2 \in S_2$$
 (Feasibility Constraints)

$$EU^{P}(m_{i}) = (1-p) - (1-2p)A_{b}^{i} + (A_{g}^{i} - A_{b}^{i})(\underbrace{py_{i}}_{true\ positive} - \underbrace{(1-p)(1-x_{i})}_{false\ positive})$$

$$EU^{A}(m_{i}|\theta_{i}) = A_{b}^{i} + (A_{g}^{i} - A_{b}^{i}) \underbrace{(py_{i} + (1-p)(1-x_{i}))}_{Postive\ outcome}$$

Ex post Optimality

$$EU^{P}(m_{i}) = (1-p) - (1-2p)A_{b}^{i} + (A_{g}^{i} - A_{b}^{i})(\underbrace{py_{i}}_{true\ positive} - \underbrace{(1-p)(1-x_{i})}_{false\ positive})$$

► Ex post Optimality: $(A_g^i, A_b^i) = (1, 0)$

Favorite Experiment in S_i : $\hat{\pi}_i$

$$EU^{P}(m_{i}) = (1-p) - (1-2p)A_{b}^{i} + (A_{g}^{i} - A_{b}^{i})(py_{i} - (1-p)(1-x_{i})),$$

= $py_{i} + (1-p)x_{i}$ if $(A_{g}^{i}, A_{b}^{i}) = (1, 0).$

The First-best Outcome: Observable Types

• The (ex ante) First-best Outcome: $[(\hat{\pi}_1, 1, 0), (\hat{\pi}_2, 1, 0)]$, Favorite Experiments and Ex post Optimality

Summary of Results

Depending on the properties of S_1 and S_2 ,

- Cases in which the first-best outcome is achievable
 - $\blacktriangleright \{(\hat{\pi}_1, 1, 0), (\hat{\pi}_2, 1, 0)\}$

Cases in which the first-best outcome is not achievable:

Favorite experiments vs. Ex post Optimality

- Favorite Experiments with distortion in ex post decisions
 - $\blacktriangleright \{(\hat{\pi}_1, A_g^1, A_b^1), (\hat{\pi}_2, A_g^2, A_b^2)\}$
 - optimal if $\hat{\pi}_i$ meets *quality* requirements
- Ex post optimal decisions with distortion in assigning experiments
 - $\{(\pi_1,1,0),(\pi_2,1,0)\}$
 - optimal if $\hat{\pi}_i$ fails to meet *quality* requirements

Cases when the FB outcome is achievable

Remark

The principal can achieve the first-best outcome if $\hat{\pi}_1$ generates the positive outcome more frequently than $\hat{\pi}_2$

$$M = \{(\hat{\pi}_1, 1, 0), (\hat{\pi}_2, 1, 0)\}\$$
 vs. $M' = \{(\hat{\pi}_1, 1, 0), (\hat{\pi}'_2, 1, 0)\}\$

Simplifying the Problem: Experiments

Lemma

An optimal decision rule must assign π_i on the $NEB(\Pi_i)$ for i = 1, 2.

Simplifying the Problem: IC Constraints

$$\max_{m_1,m_2} t \cdot EU^P(m_1) + (1-t) \cdot EU^P(m_2)$$

s.t. $EU^A(m_1|\theta_1) \geq EU^A(m_2|\theta_1)$ (IC for type θ_1) $EU^A(m_2|\theta_2) \geq EU^A(m_1|\theta_2)$ (IC for type θ_2) $\pi_1 \in NEB(\Pi_1)$ and $\pi_2 \in NEB(\Pi_2)$

Simplifying the Problem: IC Constraints

$$\max_{m_1, m_2} t \cdot EU^{P}(m_1) + (1 - t) \cdot EU^{P}(m_2)$$

s.t. $EU^A(m_1|\theta_1) \ge EU^A(m_2|\theta_1)$ (IC for type θ_1) $\pi_1 \in NEB(\Pi_1)$ and $\pi_2 \in NEB(\Pi_2)$

Two "Best" Experiments

according to other quality measures

Definition

- (1) $\tilde{\pi}_i$ is the experiment which maximizes the positive likelihood ratio, $\frac{y_i}{1-x_i}$.
- (2) $\mathring{\pi}_i$ is the experiment which minimizes the *negative likelihood* ratio, $\frac{1-y_i}{x_i}$.
 - The positive and negative likelihood ratios measure the quality of experiments

Two "Best" Experiments

Corollary

```
If \hat{\pi}_i Blackwell-dominates every \pi_i \in S_i (i.e., \hat{y}_i \geq y_i and \hat{x}_i \geq x_i for any \pi_i = (x_i, y_i) \in S_i,) an optimal decision rule should have \pi_i = \hat{\pi}_i for i = 1, 2, i.e., \{(\hat{\pi}_1, A_p^1, A_p^1), (\hat{\pi}_2, A_p^2, A_p^2)\}.
```


Proposition

If (i) $\hat{\pi}_1 = \mathring{\pi}_1$ and (ii) $\hat{\pi}_2 = \tilde{\pi}_2$, an optimal decision rule should have $\pi_i = \hat{\pi}_i$ for i = 1, 2, i.e., $\{(\hat{\pi}_1, A_g^1, A_b^1), (\hat{\pi}_2, A_g^2, A_b^2)\}$.

Proposition

If $\hat{\pi}_1$ is "far from" $\mathring{\pi}_1$ and $\hat{\pi}_2$ is "far from" $\tilde{\pi}_2$, an optimal decision rule must achieve the ex post optimal decisions: $(A_g^i, A_b^i) = (1,0)$ for i=1,2.

 $\blacktriangleright \{(\hat{\pi}_1, A_g^1, A_b^1), (\hat{\pi}_2, A_g^2, A_b^2)\}$

Proposition

- (a) If θ_1 is "more likely" than θ_2 , $(A_g^1=1,A_b^1=0)$ and $(A_g^2<1,A_b^2=0)$ are optimal.
- (b) If θ_1 is "less likely" than θ_2 , $(A_g^1=1,A_b^1>0)$ and $(A_g^2=1,A_b^2=0)$ are optimal.
 - ► The principal sacrifices *ex post optimality* to incentivise the agent to conduct $\hat{\pi}_i$.
 - Ex post optimality is sacrificed for the type which is "less likely" than the other.

- $\{(A_g^1, A_b^1), (A_g^2, A_b^2)\}$ comes for free
- ▶ What is left is to find an appropriate (π_1, π_2)
- ▶ If $NEB(\Pi_i)$ is a well-defined function, it can be written as $N_i(x_i)$.

$$\max_{x_1, x_2} \left\{ t \cdot (pN_1(x_1) - (1-p)x_1) + (1-t) \cdot (pN_2(x_2) - (1-p)x_2) \right\}$$
s.t.
$$pN_1(x_1) + (1-p)x_1 = pN_2(x_2) + (1-p)x_2$$

$$\underline{x}_1 \le x_1 \le \overline{x}_1$$

$$\underline{x}_2 \le x_2 \le \overline{x}_2$$

Concluding Remarks

- Study a simple principal-agent problem
 - Mechanism Designer vs. Information Designer
- Optimal decision rules
 - First-best outcome might be achievable
 - Two kinds of optimal decision rules
 - Favorite experiments with distortions in ex post decision-making
 - ▶ Optimal when $\hat{\pi}_i$ meets some quality requirements
 - 2. Ex post optimal decisions with distortions in assigning experiments
 - ▶ Optimal when $\hat{\pi}_i$ fails to meet some quality requirements

Simplifying the Problem: Experiments

Definition of $\bar{\pi}_i(\pi_i)$

Given π_i on $NEB(\Pi_i)$, $\bar{\pi}_j(\pi_i)$ is an experiment on $NEB(\Pi_j)$ such that $\{(\pi_i, 1, 0), (\bar{\pi}_j(\pi_i), 1, 0)\}$ is incentive compatible (or $py_i + (1-p)(1-x_i) = p\bar{y}_i + (1-p)(1-\bar{x}_i)$.)

Simplifying the Problem: Experiments

Proposition

An optimal M must have π_1 "between" $\bar{\pi}_1(\hat{\pi}_2)$ and $\hat{\pi}_1$ and π_2 "between" $\hat{\pi}_2$ and $\bar{\pi}_2(\hat{\pi}_1)$.

Simplifying the Problem: Action-probability pairs

$$A_b^1 + (1 - A_b^1)(py_1 + (1 - p)(1 - x_1) \ge A_g^2(py_2 + (1 - p)(1 - x_2))$$

Lemma

An optimal M has

- (a) a binding IC constraint and
- (b) either $A_b^1 \ge 0$ or $A_g^2 \le 1$.

$$\Rightarrow M^1 = \{(\pi_1, 1, A_b^1 \ge 0), (\pi_2, 1, 0)\} \text{ or } M^2 = \{(\pi_1, 1, 0), (\pi_2, A_g^2 \le 1, 0)\}$$

Simplifying the Problem: Action-probability pairs

Proposition

Given
$$(\pi_1, \pi_2)$$
 such that $py_1 + (1-p)(1-x_1) \le py_2 + (1-p)(1-x_2)$,

- (a) if $\tau(\pi_1,\pi_2)>\frac{1-t}{t}$, $(A_g^1=1,A_b^1=0)$ and $(A_g^2(\pi_1,\pi_2)\leq 1,A_b^2=0)$ are optimal,
- (b) if $\tau(\pi_1, \pi_2) < \frac{1-t}{t}$, $(A_g^1 = 1, A_b^1(\pi_1, \pi_2) \ge 0)$ and $(A_g^2 = 1, A_b^2 = 0)$ are optimal,

where

$$\tau(\pi_1, \pi_2) = \begin{pmatrix} \frac{py_2 + (1-p)(1-x_2)}{py_2 - (1-p)(1-x_2)} \end{pmatrix} \cdot \begin{pmatrix} \frac{1-2p + py_1 - (1-p)(1-x_1)}{1-(py_1 + (1-p)(1-x_1))} \end{pmatrix},$$

$$A_g^2(\pi_1, \pi_2) = \frac{py_1 + (1-p)(1-x_1)}{py_2 + (1-p)(1-x_2)}$$
, and

$$A_b^1(\pi_1, \pi_2) = \frac{(py_2 + (1-p)(1-x_2)) - (py_1 + (1-p)(1-x_1))}{1 - (py_1 + (1-p)(1-x_1))}.$$

