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Abstract

I study a dynamic agency problem such that the agent has multi-technologies to

complete a task: the winging it technology requires one breakthrough with a low ar-

rival rate, whereas the studying technology requires two breakthroughs with high arrival

rates. The intermediate breakthrough of the studying technology is assumed to be ob-

served by both the principal and the agent. To derive the incentive scheme, the principal

compares an immediate payo� (to induce winging it) and a deadline extension (to in-

duce studying) to maximize her expected payo�. When the winging it and studying

technologies are equally e�cient, the recommended action of the agent in the optimal

contract would be one of three types: (i) winging it always; (ii) studying always; (iii)

switching once from studying to winging it. The form of the optimal contract depends

on the payo� of the project and the e�ectiveness of the studying technology.

JEL Classi�cation: J41, L14, D86

Keywords: Dynamic Agency, Skill Improvement, Speed of Completion, Multi-

technology, Poisson Arrival

∗I am grateful to Attila Ambrus, Arjada Bardhi, Fei Li, Pino Lopomo, Curtis Taylor and Huseyin Yildirim
for comments and suggestions.

1

mailto:yonggyun.kim@duke.edu


A woodsman was once asked, �What would you do if you had just �ve minutes

to chop down a tree?� He answered, �I would spend the �rst two and a half minutes

sharpening my axe.� (Jaccard, 1956, p.12)1

1 Introduction

A traditional interpretation of skill in economics is productivity, which means that the level

of skill determines how much cost it would take to produce a certain number of products or

how many products one can produce with a constrained amount of resources.2 Nonetheless,

in practice, another key nature of skill is speed�how fast one can �nish a given task. Many

�rms and workers can invest in skills to expedite the completion of some tasks. For exam-

ple, automobile companies invest in 3D printing and collaborative robots to speed up the

manufacturing processes (Koenig, 2019). A woodman, who wants to chop down a tree, may

spend some time in sharpening the ax. A research assistant (RA), who needs to complete an

empirical project, may learn advanced skills such as STATA or R to facilitate the project.

The obvious bene�t of investing in skills related to speed is that once advanced skills are

acquired, the task can be completed faster than before. On the contrary, since an agent's

e�ort is constrained, there are opportunity costs of investing in such skills: the agent is

forgoing chances to complete the task with a current mediocre skill. Automobile companies

can divert resources from investment to production. The woodman can try to chop down the

tree with the dull ax rather than sharpening the ax. The RA has an option to complete the

task with a basic skill such as Excel. Therefore, workers or companies often need to choose

between investing in an advanced skill (studying) and completing tasks with a current basic

skill (winging it).

This paper studies a dynamic principal agent model with multi-technologies that re�ect

the economic situations described above. A principal delegates a project to be completed to

an agent. The project requires an ultimate breakthrough and running the project incurs a

�ow cost to the principal. The agent initially has a basic skill and can choose to complete

the project with the basic skill but the breakthrough arrives with a low rate. The agent

can also invest in an advanced skill, and then the agent can acquire the skill with an arrival

rate, which is higher than the arrival rate of the breakthrough with the basic skill. Once

the advanced skill is obtained, the breakthrough arrives with a rate higher than the basic

skill's arrival rate. The agent is also able to divert e�orts for a private bene�t. Then, an

1I thank Huseyin Yildirim for bringing this quote to my attention.
2A classic paper that holds this viewpoint is Spence (1973), which assumes that the agent's skill determines

the marginal cost.
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action of the agent with the basic skill can be summarized as a choice among the winging it

technology (completing the project with the basic skill), the studying technology (investing

in the advanced skill), and the leisure (shirking for a private bene�t). I assume that no

further skill can be acquired once the advanced skill is obtained. Hence, the agent with

the advanced skill chooses between the working technology (completing the project with the

advanced skill) and the leisure. The agent's choice of technologies is hidden to the principal,

but the agent and the principal can observe the skill improvement and the completion of the

project. Both the principal and the agent are risk neutral, do not discount the future, and

the agent is protected by limited liability. I study how the principal should optimally design

the contract and how recommended actions change over time.

I start by analyzing the �rst best case, i.e., the case such that the agent's action is also

observable to the principal. In this case, there are two candidates for the optimal recom-

mended action schedule: the winging it only schedule and the studying only schedule, of

which recommended actions are to choose the speci�ed technology until the ultimate break-

through or the skill improvement is attained. It is shown that one of these two schedules

would be the optimal schedule and the principal chooses the schedule with the shorter ex-

pected duration. This is because the principal wants to minimize the expected �ow cost,

which is proportional to the expected duration. Hence, it is natural to de�ne the notion of

e�ciency for the technologies based on the expected duration of the above schedules: one

technology is more e�cient than the other if and only if the expected duration of the schedule

corresponding to the technology is shorter than the other.

The main analysis of this paper is to solve the case such that the agent's action is unob-

servable to the principal, the agent's skill improvement is veri�able, and both technologies

are equally e�cient, i.e., recommending each technology is indi�erent to the principal in the

�rst best. In this case, the hidden action assumption drives the principal to employ a �nite

deadline to induce the agent not to shirk. At each instance of time, the recommended action

is determined by comparing the principal's expected payo�s from each technology. Unlike to

the �rst best case, the principal would no longer be indi�erent between recommending each

technology. This is because the �nite deadline distorts the probability of ultimate break-

through and the expected duration for each technology in a di�erent way. If the principal

wants to induce the agent to wing it, the agent needs to be compensated by the immediate

payment upon the success of the project. On the contrary, if the principal wants to induce

the agent to study, since the skill improvement does not give an immediate bene�t to the

principal, the principal extends the deadline upon the skill improvement, i.e., gives more

time to the agent to complete the project with the advanced skill.

By comparing the expected payo�s from each incentive scheme, I show that incentive
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compatibility constraints always bind and derive that the optimal contract would take one

of the following forms:

1. Winging it always: The agent is recommended to wing it until the deadline and

immediately paid upon the ultimate breakthrough. If the agent does not make the

breakthrough until the deadline, the contract is terminated.

2. Studying always: The agent is recommended to study until the deadline. If the agent

improves the skill, the deadline is extended and the agent is recommended to complete

the project with the advanced skill. If the agent does not make the skill improvement

until the deadline, the contract is terminated.

3. Switching once from studying to winging it: The agent is recommended to study

until the intermediate deadline and if the agent improves the skill before the interme-

diate deadline, the deadline is extended and the agent is recommended to complete

the project with the advanced skill. If the agent does not make the skill improvement

until the intermediate deadline, the agent is recommended to wing it until the deadline

and immediately paid upon the ultimate breakthrough. If the agent does not make

the breakthrough until the deadline, the contract is terminated.

Moreover, the form of the optimal contract is determined by the payo� of the project and

the e�ectiveness of the studying technology, which is de�ned as the ratio of the ultimate

breakthrough arrival rate with the advanced skill to the skill improvement arrival rate.

When the technologies are not equally e�cient, the optimal contract may take a form

other than the aforementioned forms. I present numerical examples such that there are two

switches of recommended actions in the optimal contract or incentive compatibility con-

straints do not bind. From these examples, we can see how the e�ciency of the technologies

a�ects the optimal contract.

In the rest of this section, I discuss the related literature. In Section 2, I introduce the

model. The �rst best case is analyzed in Section 3. In Section 4, I characterize the optimal

contract when the agent's action is not observable to the principal and both technologies

are equally e�cient. The numerical examples for unequally e�cient technologies case are

presented in Section 5, then I conclude and list possible extensions of this model in Section

6.

1.1 Related Literature

The dynamic moral hazard literature has been enriched by recent developments of continuous

time methods in contract theory. One strand of the literature utilizes Poisson processes to
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set up problems (Biais et al., 2010; Green and Taylor, 2016a; Bonatti and H�orner, 2017;

Varas, 2017; Sun and Tian, 2017), and I follow this approach since this paper focuses on the

completion of the project.

The most closely related study is the one by Green and Taylor (2016a), who study a

model in which multiple breakthroughs are needed to complete a project and an agent needs

to exert an e�ort (unobservable to the principal) to achieve breakthroughs. If the agent were

assumed to complete the project only with the advanced skill, this paper would be identical

to their model: the skill improvement serves as the �rst breakthrough and the completion of

the project serves as the second breakthrough.3 However, the option to complete the project

with the basic skill, which is not considered by Green and Taylor (2016a), allows the agent

to face a technology allocation problem between completing the project with the basic skill

and improving the skill.

The technology allocation problem is naturally related to the multitasking problem in

the sense that the agent has multiple options to pursue. In the seminal paper, Holmstrom

and Milgrom (1991) considers an economic situation in which a production worker faces

multiple tasks such as producing outputs and maintaining quality in a static environment.4

Several subsequent multitasking problems are also explored in dynamic setups (Manso, 2011;

Capponi and Frei, 2015; Varas, 2017; Szydlowski, forthcoming). A common assumption on

these previous studies is that each task has a di�erent payo� structure.5 For example, Manso

(2011) studies a two-armed bandit problem in a simple agency model with two periods. The

main assumption is that if the agent chooses to explore (or chooses the risky arm), the

payo� is stochastic and if the agent chooses to exploit (or chooses the safe arm), the payo�

is constant. In contrast, the two technologies in this paper are same in the payo� structure.

The di�erence of these technologies is `how' the ultimate breakthrough is made�by the basic

skill or by the advanced skill.

2 Model

A principal (she) hires an agent (he) to complete a project. The project is conducted in

continuous time and can be potentially operated over an in�nite horizon: t ∈ [0,∞). The

3To be precise, it is identical to the tangible �rst breakthrough case of the working paper version of the
paper (Green and Taylor, 2016b). In the published version of the paper, they only consider the case such
that the principal cannot observe the �rst breakthrough.

4Dewatripont et al. (2000) and Laux (2001) also study multitasking problems in static environments.
5The only paper that does not have this assumption is Varas (2017). He considers a dynamic model with

a Poisson process in which the agent chooses between a good project and a bad project. These projects look
identical to the principal and yield the same payo�, but di�er in the rate of failure.
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project requires an ultimate breakthrough and I denote it as the success or use the term �the

project succeeds.� When the project succeeds, the principal realizes a payo� Π > 0 and the

game ends. While the project is running, the principal incurs an operating cost of c > 0

per unit time. The principal is assumed to have an in�nite amount of resources to fund the

project while the agent is protected by the limited liability. The principal and the agent are

both risk neutral and patient, i.e., do not discount the future.

The distinctive feature of this model is that the arrival rate of the breakthrough depends

on the agent's skill. I assume that there are two levels of skills: a basic skill and an advanced

skill. At the beginning of the game, the agent is only equipped with a basic skill. The agent

may acquire an advanced skill by investing in the skill. Denote the agent with the basic skill

as the low type and the agent with the advanced skill as the high type. Assume that the

skill improvement is publicly observable, thus, the principal knows the agent's type.

At each instance of time t, the agent allocates 1 unit of e�ort to the completion of the main

task (at), the skill improvement (bt), and the leisure (lt): at + bt + lt = 1 and at, bt, lt ≥ 0.

The allocation of e�orts is unobservable to the principal. Let λ be a triple (λL, λS, λH) such

that c < λLΠ, λL < λS, and λL < λH . The arrival rate for the main breakthrough is λLat

for the low type agent and λHat for the high type agent. The high type agent always assigns

bt = 0 because there is no room for improving the skill. The skill improvement for the low

type agent arrives with the rate λSbt and the low type agent becomes the high type agent

when the skill is improved.6 The agent (regardless of the type) receives φlt as a private �ow

bene�t and φ is assumed to be 0 < φ < c.

Then, the low type agent's action can be considered as a choice among three technologies:

(i) the winging it technology (at) with which the success requires one breakthrough with a

low arrival rate (λL); (ii) the studying technology (bt) with which the success requires two

breakthrough with high arrival rates (λS, λH); (iii) the leisure (lt) with which the success

never arrives. For the high type agent, an action can be understood as a choice between the

working technology (at) and the leisure.

3 Observable Action and Skill Improvement

In this section, I assume that the agent's allocation of e�orts and type are observable to the

principal and characterize the �rst best contract.

6Since the skill improvement is assumed to be arrived with a Poisson arrival rate λSbt, the current e�ort
level is the sole factor of the skill improvement. If one wants to consider that a past e�ort a�ects the chance
of the current skill improvement, the arrival rate would need to be proportional to the cumulative e�ort
level.
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I consider two benchmark e�ort schedules and will show that one of the schedules is the

�rst-best schedule. Let τs be the (random) date that the skill is improved and τm be the

(random) date that the main task is completed. Then, the two schedules are de�ned as

follows:

Winging It Only Schedule

at = 1 for t ≤ τm,

Studying Only Schedule

bt = 1 for t ≤ τs and at = 1 for τs < t ≤ τm.

In other words, the winging it only schedule means that the agent tries to complete the

task only with the basic skill, i.e., only chooses the winging it arm, whereas the studying only

schedule means that the agent tries to attain the skill �rst and then completes the main task

with the advanced skill, i.e., only chooses the studying technology until the skill is improved.

Note that the low type agent does not switch technologies over time for both schedules.

The probability distribution function of τm for the winging it only schedule is given by

λLe
−λLτm . On the other hand, for the studying only schedule, the probability distribution of

τm conditional on skill improvement at τs is λLe
−λL(τm−τs) for τm > τs and 0 for τm ≤ τs. The

marginal probability distribution of τs for the studying only schedule is given by λSe
−λSτs .

Then, the expected pro�ts for both schedules are given as follows:

Winging It Only Schedule: E∗w ≡
∫ ∞

0

(
Π−

∫ τm

0

c dt

)
λLe

−λLτmdτm

= Π− c

λL

Studying Only Schedule: E∗s ≡
∫ ∞

0

∫ ∞
τs

(
Π−

∫ τm

0

cdt

)
λHe

−λH(τm−τs)dτm λSe
−λSτsdτs

= Π− c

λS
− c

λH

By comparing the expected pro�ts, we can easily see that the winging it only schedule is

indi�erent to the studying only schedule if and only if

1

λL
=

1

λS
+

1

λH
. (3.1)

Denote that the winging it technology is more e�cient if the left hand side of (3.1) is

greater than the right hand side, the studying technology is more e�cient if the right hand
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side is greater than the left hand side, and both technologies are equally e�cient if the

equality holds. Note that 1/λL is the expected duration of the winging it only schedule and

1/λS+1/λH is the expected duration of the studying only schedule. Therefore, the e�ciency

relation gives clear intuition for comparing two schedules: the shorter the expected duration

is, the greater the expected payo� is. Furthermore, the following proposition shows that the

one of two benchmark schedules is the �rst-best schedule.

Proposition 3.1. Suppose that the agent's allocation of e�orts and skill improvement are

observable to the principal. If the winging it technology is more e�cient (1/λL < 1/λS +

1/λH), the winging it only schedule is the �rst best schedule, i.e., it gives the highest expected

pro�t to the principal. If the studying technology is more e�cient (1/λL > 1/λS + 1/λH),

the studying only schedule it the �rst best schedule.

4 Optimal Contracts for Equally E�cient Technologies

In this section, I derive optimal contracts for the case where both technologies are equally

e�cient, the skill improvement is observable to the principal and the agent, but the agent's

action is unobservable to the principal.

4.1 Contract

At the beginning of the game, the principal o�ers a contract to the agent and fully commits

to all contractual terms. If the agent rejects the o�er, the principal and the agent receive

zero. Recall that the agent is low type at the time a contract is proposed, and the arrivals

of the success and the skill improvement are observed by both players. Note that if the

agent has not made the success or the skill improvement, the calendar time would be the

only relevant variable that summarizes the public history. A contract is denoted by ΓL ≡{
aL, bL, RL,ΓH , TL

}
, where each variable is de�ned as follows at the calendar time t:

• aLt ∈ [0, 1]: the recommended e�ort to the completion of the main task conditional on

no success and no skill improvement;

• bLt ∈ [0, 1]: the recommended e�ort to the skill improvement conditional on no success

and no skill improvement;
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• RL
t ≥ 0: the monetary payment from the principal to the agent for success conditional

on no skill improvement;7

• ΓHt ≡ {aH,t, RH,t, TH,t}: an updated contract for skill improvement at time t conditional

on no success;

� aH,ts ∈ [0, 1]: the recommended e�ort to the completion of the main task at time

s ≥ t conditional on skill improvement at time t and no success;

� RH,t
s ≥ 0: a monetary payment from the principal to the agent for success at time

s ≥ t conditional on skill improvement at time t and no success;

� TH,t ≥ t: the date at which the project is terminated conditional on skill improve-

ment at time t and no success;

• TL ≥ 0: the date at which the project is terminated conditional on no success and no

skill improvement.

Action processes aH,t and (aL, bL) induce probability distributions PaH,t over a date of

success τm and PaL,bL over a pair of dates of the skill improvement and the success (τm, τs).

Let EaH,t and EaL,bL denote the corresponding expectation operators. If the agent is high

type and adheres to the recommended action of ΓHt , the principal's expected utility at time

t is given by

PH
t (ΓHt ) = EaH,t

[(
Π−RH,t

τm

)
· 1{t≤τm≤TH,t} −

∫ TH,t∧τm

t

c ds

]
,

where the �rst term in the expectation is the net pro�t from the success and the second term

is the (cumulative) operating cost. The agent's expected utility is given by

UH
t (ΓHt ) = EaH,t

[
RH,t
τm · 1{t≤τm≤TH,t} +

∫ TH,t∧τm

t

φ(1− aH,ts )ds

]
,

where the �rst term is the payo� from the success and the second term is the bene�t from

the leisure.

If the agent is low type and adheres to the recommended actions of ΓL, the principal's

7Since both the principal and the agent are risk neutral and do not discount the future, without loss of
generality, all monetary payment to the agent can be backloaded (see, e.g., Ray (2002)).
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(ex ante) expected utility is given by

PL
0 (ΓL) =EaL,bL

[(
Π−RL

τm

)
· 1{τm≤τs∧TL} + PH

τs (ΓHτs) · 1{τs<τm∧TL} −
∫ TL∧τm∧τs

0

c dt

]
,

where the �rst term is the net pro�t from the success, the second term is the expected payo�

from the skill improvement at time s, and the last term is the (cumulative) operating cost.

The agent's expected utility is given by

UL
0 (ΓL) =EaL,bL

[
RL
τm · 1{τm≤TL} + UH

τs (ΓHτs) · 1{τs<τm∧TL} +

∫ TL∧τm∧τs

0

φ(1− aLt − bLt ) dt

]
,

where the �rms term is the payo� from the success, the second term is the expected payo�

from the skill improvement at time s, and the last term is the bene�t from the leisure.

De�nition 4.1. A contract ΓL =
{
aL, bL, RL,ΓH , TL

}
is incentive compatible if

1. for all t ≤ TL, the recommended action pro�le aH,t maximizes the high type agent's

expected utility, i.e.,

UH
t (ΓHt ) ≥ Eã

[
RH,t
τm · 1{τm≤TH,t} +

∫ TH,t∧τm

t

φ(1− ãs)ds

]

for any action process ã ∈ {{as}t≤s≤TH,t : as ∈ [0, 1]};

2. the recommended action pro�le (aL, bL) maximizes the low type agent's expected util-

ity, i.e.,

UL
0 (ΓL) ≥ Eã,b̃

[
RL
τm · 1{τm≤TL} + UH

τs (ΓHτs) · 1{τs<τm∧TL} +

∫ TL∧τm∧τs

0

φ(1− ãt − b̃t) dt

]

for any action process (ã, b̃) ∈ {{at, bt}0≤t≤TL : (at, bt, at + bt) ∈ [0, 1]3}.

The objective of the principal is to �nd a contract ΓL that maximizes her ex ante expected

utility PL
0 (ΓL) subject to the incentive compatibility constraint and the individual rationality

constraint, i.e., UL
0 (ΓL) ≥ 0. Denote such contract as an optimal contract.
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4.2 The Principal's Problems

To derive the optimal contract, I consider the agent's promised utility for each type as a

state variable and write a contract recursively.8 Denote uH (uL) ∈ R+ as a promised utility

for the high (low) type agent.

4.2.1 When the agent is high type

The Hamilton-Jacobi-Bellman (HJB) equation for the high type agent's promise keeping

constraint UH
t (ΓHt ) = uH gives

0 = max
a∈[0,1]

u̇H + φ(1− a) + λHa(R− uH), (PKH)

where u̇H ≡ duH/dt, the second term is the bene�t from the leisure, and the last term is the

expected additional payo� from completing the task.

Denote a value function VH(uH) as a function that maximizes the principal's expected

utility PH
t (ΓHt ) subject to UH

t (ΓHt ) = uH .
9 The HJB equation for the value function VH(uH)

is

0 = max
R≥0, a≥0

− c+ (Π−R− VH(uH))λHa+ V ′H(uH) u̇H (HJBH)

subject to (PKH). Since the outside option of the agent is zero, if the agent's promised

utility is equal to zero, the project would not be operated and the principal would also end

up getting zero, i.e., VH(0) = 0. This equation serves as a boundary condition.

The above maximization problem is identical to the problem in the single-stage case of

Green and Taylor (2016a), thus I can directly use their results. They show that to induce

a = 1 from (PKH), λH(R − uH) ≥ φ should hold and it eventually binds at the optimal

contract. Then, they derive VH(uH) as follows:

VH(uH) =

(
Π− c

λH
− uH

)
−
(

Π− c

λH

)
e−

λH
φ
uH , (4.1)

where the �rst term is the �rst best payo� minus the promised utility uH and the second

term is the agency cost. This payo� can be realized by the contract with a �nite deadline,

T = uH/φ, and a diminishing payo�, R(τm) = φ(1/λH + T − τm).10

8This is a typical approach in the dynamic contract literature (see, e.g., Spear and Srivastava, 1987).
9We can disregard the time subscript of the high type because no matter what the time is, the contract

that maximizes the principal's utility subject to the same promised utility of the agent would be identical.
10See Proposition 1 in Green and Taylor (2016a).
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4.2.2 When the agent is low type

The HJB equation for the agent's promise keeping constraint UL
0 (ΓL) = uL gives

0 = max
a,b≥0,
a+b≤1

u̇L + φ(1− a− b) + (R− uL)λLa+ (uH − uL)λSb, (PKL)

where u̇L ≡ duL/dt, the second term is the bene�t from the leisure, the third term is

the expected additional payo� from completing the task and the last term is the expected

additional promised utility from improving the skill.

Denote a value function VL(uL) as a function that maximizes the principal's expected

utility PL
0 (ΓL) subject to UL

0 (ΓL) = uL. The HJB equation for VL(uL) gives that

0 = max
R≥0, uH≥0,
a,b≥0, 1≥a+b

− c+ (Π−R− VL(uL))λLa+ (VH(uH)− VL(uL))λSb+ V ′L(uL) u̇L (HJBL)

subject to (PKL), and the boundary condition is VL(0) = 0.

The above maximization problem solves the principal's problem under the constraint

that the agent's promised utility is equal to uL. Therefore, to derive the optimal contract,

the principal solves

max
uL≥0

VL(uL). (MPL)

The rest of the section is devoted to derive VL and solve the above maximization problem.

4.3 Preview of the Main Result

4.3.1 Immediate Payment vs. Deadline Extension

Since (HJBL) and (PKL) are linear in both a and b, we can focus on the pure e�ort levels

(see Lemma A.3 for the detailed argument). Now I introduce two contractual modes with

the pure e�ort levels de�ned as follows:

1. Inducing to wing it with a least incentive (Mode W)

• The agent is recommended to fully wing it, receives φ/λL (the least amount of

incentive not to shirk) in addition to the current promised utility as a payment

when the project succeeds, and receives nothing when the skill is improved, i.e.,

an instantaneous contractual term (a, b, R, uH) is given as (1, 0, uL + φ/λL, 0);

• if the principal wants to induce the agent to fully wing it (i.e., a = 1), the

inequalities λL(R− uL) ≥ φ and λL(R− uL) ≥ λS(uH − uL) need to hold. Then,
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we can see that (a, b, R, uH) = (1, 0, uL +φ/λL, 0) is incentive compatible and the

�rst IC constraint binds.

2. Inducing to study with a least incentive (Mode S)

• The agent is recommended to fully study, receives nothing when the project suc-

ceeds, and receives φ/λS (the least amount of incentive not to shirk) in addition

to the current promised utility as a promised utility for the high type when the

skill is improved, i.e., an instantaneous contractual term (a, b, R, uH) is given as

(0, 1, 0, uL + φ/λS);

• if the principal wants to induce the agent to fully study (i.e., b = 1), the inequali-

ties λS(uH − uL) ≥ φ and λS(uH − uL) ≥ λL(R− uL) need to hold. Then, we can

see that (a, b, R, uH) = (1, 0, uL+φ/λL, 0) is incentive compatible and the �rst IC

constraint binds.

In the appendix, I show that at each instance of the time, one of the above contractual

modes will be executed in the optimal contract. The contractual mode may switch over time

in the optimal contract. To simplify the argument, in the main text of the paper, I will focus

on comparing the above two contractual modes.

Mode W and Mode S mainly di�er in the arrival rate and the form of compensation to

the agent. Under Mode W, the agent succeeds with a lower arrival rate (λL) and he receives

an immediate payment upon success. Under Mode S, the agent makes a skill improvement

with a relatively higher arrival rate (λS) and he is compensated in the form of the promised

utility for the high type agent upon the skill improvement. Note that u̇L is equal to −φ under

Mode W and Mode S. Then, if the agent's promised utility level for the low type is uL, the

principal employs one of the above contractual modes, and the agent has not made success or

skill improvement for uL/φ unit of time, the promised utility becomes zero and the contract

is terminated, i.e., the deadline of the contract would be uL/φ. Since u̇H is also equal to

−φ under the optimal contract for the high type agent and the updated promised utility is

uL+φ/λS, the updated deadline becomes uL/φ+1/λS, i.e., the deadline is extended by 1/λS.

Once the deadline is extended, the agent is expected to exert full e�orts on completing the

project with the advanced skill. In sum, the agent is compensated by an immediate payment

with a lower probability under Mode W, whereas he is compensated by a deadline extension

with a higher chance under Mode S.

At each instance of the time, the principal chooses the contractual mode by comparing the

expected payo�s from the immediate payment and the deadline extension. In the appendix,

it is shown that Mode W would be preferred to Mode S only if
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1. the time is close to the deadline,

2. the payo� from the project (Π) is small enough, and

3. κ ≡ λH/λS is low enough.

Under the assumption that both technologies are equally e�cient, i.e., 1/λL = 1/λS + 1/λH ,

note that λS and λH can be written as follows:

λS = (1 + 1/κ)λL and λH = (1 + κ)λL. (4.2)

Then, κ can be interpreted as the e�ectiveness of the skill improvement because low κ

implies that it is easy to obtain the advanced skill but it is hard to complete the task with

the advanced skill.

Intuitive explanations for the above three necessary conditions are as follows.

1. If the time is adequately far from the deadline, the principal would bene�t from check-

ing the intermediate progress and it would lessen the moral hazard problem, thus,

Mode S might be preferred over Mode W. However, if it is close to the deadline, Mode

S requires two breakthroughs for a relatively short period of time, whereas Mode W

only requires a breakthrough. Therefore, it may be possible that Mode W is preferred

to Mode S for the principal when the time is close to the deadline.

2. Since Mode S employs a deadline extension as a compensation method, the probability

of making a success and the expected length of the contract under Mode S would

be greater than that under Mode W. Note that the expected revenue is Π times the

probability of making a success and the expected cost is c times the expected length

of the contract. Then, since the expected cost under Mode S is larger than that

under Mode W due to the deadline extension, if Π is small enough, Mode W might be

preferred to Mode S.

3. Recall that if the skill is improved under Mode S, the deadline would be extended by

1/λS. Then, the agent will have a chance to complete the task with the arrival rate λH .

Note that a lower κ means that the deadline extension is shorter and the arrival rate is

lower, i.e., it is less likely that the second breakthrough arrives. Therefore, when κ is

low, the deadline extension might be a less appealing compensation method than the

immediate payment.
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4.3.2 Thresholds

In this subsection, I argue that the form of the optimal contract is determined by three

factors: (i) the recommended action at the deadline, (ii) the length of the contract, and (iii)

feasibility. From these factors, three thresholds of Π depending on κ would also be derived

to characterize the optimal contract.

Firstly, the �rst and the second necessary condition of the previous subsection imply that

if Π is very big and Mode S is preferred to Mode W at the deadline, Mode S would also be

preferred to Mode W for any time during the contract. Then, for a given κ, let ΠS(κ) be a

threshold that characterizes the above property, i.e., if Π > ΠS(κ), Mode S is preferred over

Mode W at the deadline, whereas if Π < ΠS(κ), Mode W is preferred over Mode S at the

deadline.

Secondly, note that as Π increases, the principal would also want to increase the length

of the contract to have more chances for a success to compensate the expected cost. Then,

if Π is small, the length of the contract would be short and Mode W might be preferred over

mode S during the contract. De�ne ΠW (κ) to be the corresponding threshold for a given κ,

i.e., if Π < ΠW (κ), Mode W is preferred over Mode S while the contract is running, whereas

if Π > ΠW (κ), there is an instance such that Mode S is preferred over Mode W.

Lastly, if Π is very small, it might be optimal for the principal not to begin the contract

in the �rst place. Denote that the project is feasible if contracting with the agent for a

positive length of the time is pro�table to the principal. De�ne ΠF (κ) to be the threshold

that determines feasibility for a given κ, i.e., if Π > ΠF (κ), the project is feasible, whereas if

Π < ΠF (κ), the project is infeasible. A remark is that there might be some cases such that

the project is infeasible even if it is optimal to have make a contract under the �rst best,

i.e., ΠF (κ) > c/λL.

The next step is to compare the above three thresholds. In Lemma 4.3, it will be shown

that there exists a threshold of κ (κ∗) such that the order of three thresholds would be

determined according to whether κ is greater than or less than κ∗. Speci�cally, if κ is greater

than κ∗, ΠF (κ) would be greater than both ΠS(κ) and ΠW (κ), whereas if κ is smaller than

κ∗, the inequality ΠS(κ) > ΠW (κ) > ΠF (κ) holds. The result is mainly due to the third

necessary condition of the previous subsection: if κ is high enough, Mode W may not be

preferred to Mode S. These relationships among thresholds are illustrated in the left �gure

of Figure 1.
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Figure 1: Thresholds and optimal contracts when (c, φ, λL) = (1, 0.5, 1)

4.3.3 Candidates for the Optimal Contract

I introduce three candidates for the optimal contract (with the deadline TL): (i) executing

ModeW always, (ii) executing Mode S always, (iii) executing Mode S before T s and executing

Mode W after T s (< TL), i.e., switching from Mode S to Mode W. I specify these three

candidates in terms of the contract introduced in Section 4.1.

1. Contract W

• for all 0 ≤ t ≤ TL,

� (aLt , b
L
t , R

L
t ) = (1, 0, φ(TL− t+1/λL)), i.e., the recommended action is always

to wing it and the agent's payment upon success diminishes over time;

� if the skill is improved, the contract is terminated;

2. Contract S

• for all 0 ≤ t ≤ TL,

� (aLt , b
L
t , R

L
t ) = (0, 1, 0), i.e., the recommended action is always to study and

the agent is not paid even if he succeeds by winging it;

� the updated contract ΓHt upon skill improvement at time t is given as follows:

∗ the deadline is extended by 1/λS, i.e., T
H = TL + 1/λS;

∗ for all t ≤ s ≤ TH , (aH,ts , RH,t
s ) = (1, φ(TH − s+ 1/λH));

3. Contract SW
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• there is a switch of the recommended action at T s (< TL):

� for all 0 ≤ t < T s,

∗ (aLt , b
L
t , R

L
t ) = (0, 1, 0), i.e., the recommended action is to study and the

agent is not paid even if he succeeds by winging it;

∗ the updated contract ΓHt upon skill improvement at time t is given as

follows:

· the deadline is extended by 1/λS, i.e., T
H = TL + 1/λS;

· for all t ≤ s ≤ TH , (aH,ts , RH,t
s ) = (1, φ(TH − s+ 1/λH));

� for all T s ≤ t ≤ TL,

∗ (aLt , b
L
t , R

L
t ) = (1, 0, φ(TL− t+ 1/λL)), i.e., the recommended action is to

wing it and the agent is paid when he succeeds;

∗ if the skill is improved, the contract is terminated.

The main result of the paper is that the optimal contract would take a form of one of

above three contracts when both technologies are equally e�cient. Moreover, the optimal

contract would be determined as follows (Theorem 1):

1. when κ is above a threshold κ∗,

(a) if Π is above a threshold ΠF (κ), Π is also greater than ΠS(κ) from ΠF (κ) > ΠS(κ),

thus Mode S is preferred to Mode W at the deadline and the optimal contract

would take a form of Contract S;

(b) if Π is below ΠF (κ), the project is infeasible;

2. when κ is below a threshold κ∗,

(a) if Π is very big (Π > ΠS(κ)), thus Mode S is preferred to Mode W at the deadline

and the optimal contract would take a form of Contract S;

(b) if Π is moderately big (ΠS(κ) ≥ Π > ΠW (κ)), Mode W is preferred to Mode S at

the deadline but the length of the contract is long enough to have a switch of the

recommended action, thus the optimal contract would take a form of Contract

SW;

(c) if Π is moderately small (ΠW (κ) ≥ Π > ΠF (κ)), Mode W is preferred to Mode S at

the deadline and the length of the contract is so short that the only recommended

action is to wing it, thus the optimal contract would take a form of Contract W;

(d) if Π is below ΠF (κ), the project is infeasible.
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4.4 Derivation of the Optimal Contract

In this subsection, I characterize the optimal contract by solving the principal's maximization

problem (MPL). Five steps to derive the optimal contract are as follows:

1. determine the recommended action at the deadline and derive ΠS(κ);

2. derive the value function;

3. check the feasibility of the project and derive ΠF (κ);

4. check the length of the contract and derive ΠW (κ);

5. specify the contract.

4.4.1 The Recommended Action at the Deadline

Since we have the boundary condition VL(0) = 0, it is natural to begin with solving the

value function near uL = 0. In other words, I will determine which contractual mode would

be selected at the deadline. To determine which contractual modes to recommend, we need

to compare the right hand sides of (HJBL) at uL = 0 for two contractual modes:

Mode W: − c+ λLΠ− φ− φV ′L(0),

Mode S: − c+ λSVH

(
φ

λS

)
− φV ′L(0)

= −c+

(
1 +

1

κ

)(
1− e−κ

)
λLΠ︸ ︷︷ ︸

Expected payo� from
the deadline extension

− 1

κ

(
1− e−κ

)
c︸ ︷︷ ︸

Expected cost from
the deadline extension

−φ− φV ′L(0).

In Mode W, the principal's expected instantaneous payo� is λLΠ and the principal incurs

the operating cost c and pays φ to the agent in expectation. In Mode S, with the arrival

rate λS, the agent's type becomes high and the promised utility is refueled to φ/λS (and

the deadline is extended), thus the principal earns λSVH(φ/λS) in expectation and incurs

the operating cost c. λSVH(φ/λS) can be decomposed to three parts: (i) the expected

payo� from the deadline extension ((1 + 1/κ) (1− e−κ)λLΠ); (ii) the expected cost from the

deadline extension (−1/κ · (1− e−κ)c); (iii) the incentive payment to the agent (−φ).

Note that λL < (1 + 1/κ) (1− e−κ)λL, equivalently eκ > κ + 1, for all κ > 0. From this

observation, we can see that Mode S would be preferred if Π is large enough and Mode W

would be preferred if Π is small. The following lemma determines the threshold.
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Lemma 4.1. De�ne

ΠS(κ) ≡ 1− e−κ

1− (κ+ 1)e−κ
· c
λL
.11 (4.3)

When ΠS(κ) ≥ Π > c/λL, Mode W is preferred to Mode S at the deadline, i.e., λLΠ− φ ≥
λSVH(φ/λS). When Π > ΠS(κ), Mode S is preferred to Mode W at the deadline, i.e.,

λSVH(φ/λS) > λLΠ− φ. In addition, ΠS(κ) is decreasing in κ.

4.4.2 Value Function Derivation

In this subsection, I characterize the principal's value function for the low type agent. I guess

the value function in the main text and verify in the appendix. The guess of the value function

is based on the following intuition: (i) when it is close to the termination, it may be easier

for the principal to induce the agent to wing it than to induce to study because winging

it requires only one breakthrough for success; (ii) when the time is moderately far from

the deadline, the principal may prefer inducing the agent to study because the principal can

obtain an additional bene�t by observing the agent's intermediate breakthrough. I introduce

two value functions re�ecting this intuition (derivation of the value functions is relegated to

Appendix A.2.1).

1. Let V w
L : R+ → R be the value function that induces the agent to wing it (a = 1) with

R = uL + φ/λL (Mode W) for all uL ≥ 0. Then, (HJBL) becomes

0 = −c+ λL

(
Π− φ

λL
− uL − V w

L (uL)

)
− φV w

L
′(uL) (4.4)

with the boundary condition V w
L (0) = 0.

By solving the di�erential equation, we obtain

V w
L (uL) =

(
Π− c

λL

)(
1− e−

λL
φ
uL
)
− uL. (4.5)

2. Let V ws
L (·|us) : [us,∞) → R be the value function that induces the agent to wing it

(a = 1) with R = uL + φ/λL (Mode W) for 0 ≤ uL < us and to study (b = 1) with

uH = uL + φ/λS (Mode S) for uL ≥ us. Then, (HJBL) for uL ≥ us becomes

0 = −c+ λS

(
VH

(
uL +

φ

λS

)
− V ws

L (uL|us)
)
− φV ws

L
′(uL|us) (4.6)

11Note that 1− e−κ > 1− (κ+ 1)e−κ > 0 for all κ > 0, thus, ΠS(κ) > c/λL.
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with the boundary condition V ws
L (us|us) = V w

L (us).

By solving the di�erential equation, we obtain

V ws
L (uL|us) =

(
Π− c

λH
− c

λS

)(
1− e

λS
φ

(us−uL)
)

+ (V w
L (us) + us)e

λS
φ

(us−uL)

−
(

Π− c

λH

)
λSe

−λH
λS
−λH

φ
us

λS − λH

(
e
λH
φ

(us−uL) − e
λS
φ

(us−uL)
)
− uL.12

(4.7)

Note that V w
L depends on λL and V ws

L depends on λL and κ (Recall that λL and κ

determine λS and λH by (4.2)). Throughout the paper, I will mostly omit that these value

functions depend on λL or κ, but when I need to describe that V ws
L depends on κ, I will

denote it at V ws
L (·|us, κ).

The following lemma is useful for the derivation of the value funcion.

Lemma 4.2. Suppose that both technologies are equally e�cient. Then, the followings hold:

(a) V w
L (uL) < Π− c/λL − uL, V w

L
′(uL) > −1 and V w

L
′′(uL) < 0;

(b) Suppose that us satisfy V
w
L
′(us) ≤ V ws

L
′(us|us). Then, for all uL ≥ us, V

ws
L (uL|us) <

Π− c/λL − uL, V ws
L
′(uL|us) > −1 and V ws

L
′′(uL|us) < 0.

The �rst result means that contracting with Mode W cannot achieve the �rst best level

Π − c/λL − uL, but performs better than immediately paying out the promised utility

(V w
L
′(uL) > −1). Moreover, the principal's value would be strictly concave with respect

to uL. The second result means that if Mode W is executed from [0, us) and the instanta-

neous bene�t from Mode S at us is greater than that from Mode W, the same result as above

holds for contracting with Mode S (for uL ≥ us). The assumption V w
L
′(us) ≤ V ws

L
′(us|us) is

essential for the result. If the assumption is violated, V ws
L (·|us) may no longer be concave.

For example, see Figure 2d. In the example, V w
L
′(0) > 0 > V ws

L
′(0|0), so the assumption

does not hold. We can easily see that V ws
L (·|0) is not concave.

The principal's value function for the low type agent would consist of two parts: (i) when

the promised utility uL is lower than a threshold us(κ), i.e., close to the deadline, Mode W

is executed and the principal's value function is V w
L (uL); (ii) when the promised utility uL is

12When λS = λH , the penultimate term needs to be changed. Note that

lim
λS→λH

e
λH
φ (us−uL) − e

λS
φ (us−uL)

λS − λH
=

(uL − us)e
λH
φ (us−uL)

φ
.

Hence, the penultimate term becomes − (Π− c/λH) (uL − us)e−1−λHuL/φ/φ.

20



(a) Π = 7 (b) Π = 2.5

(c) Π = 1.8 (d) Π = 1.5

Figure 2: The value functions and benchmark value functions when parameter values are
λL = 1, λS = 4, λH = 4/3, c = 1, φ = 0.5

higher than us(κ), i.e., far from the deadline, Mode S is executed and the principal's value

function is V ws
L (uL|us(κ)). The threshold us(κ) is identi�ed by the smooth pasting condition

V w
L
′(us(κ)) = V ws

L
′(us|us), equivalently,

λL

(
Π− φ

λL
− us − V w

L (us)

)
= λS

(
VH

(
us +

φ

λS

)
− V w

L (us)

)
. (4.8)

One caveat is that if Π is greater than ΠS(κ), by the argument in the previous subsection,

Mode S is preferred to Mode W at the deadline, so only second part of the conjecture

contract would be executed in this case. The following proposition formally states the above

arguments.
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Proposition 4.1. Assume that both technologies are equally e�cient and λH/λS is equal to

κ. Then, the principal's value function for the low-skilled agent are characterized as follows:

(a) if Π > ΠS(κ), the value function is VL(uL) = V ws
L (uL|0, κ);

(b) if ΠS(κ) ≥ Π > c/λL,

(i) de�ne us(κ) ≡ φ
λL

[
1
κ

log
(
λHΠ−c
λLΠ−c

)
− 1
]
, then us(κ) ≥ 0;

(ii) V w
L
′(us(κ)) = V ws

L
′(us(κ)|us(κ), κ);

(iii) for all uL ≤ us(κ), the value function is VL(uL) = V w
L (uL);

(iv) for all uL > us(κ), the value function is VL(uL) = V ws
L (uL|us(κ), κ).

Note that VL also depends on κ and denote VL(·|κ) if needed. To illustrate, consider a

numerical example with c = 1, φ = .5, λL = 1, λS = 4, λH = 4/3 and κ = 1/3. Graphs of the

value function with two benchmark functions (V w
L and V ws

L (·|0)) for several cases are shown

in Figure 2. Note that ΠS(1/3) = (1−e−1/3)/(1−(4/3)e−1/3) ≈ 6.35. Since 7 > ΠS(1), Mode

S would be executed for all uL and the value function VL would be exactly same as V ws
L (·|0).

This is illustrated in Figure 2a. For Figures 2b, 2c and 2d, since Π is less than ΠS(κ), we

can see that there is a switch of the contractual mode at us(κ) in the value function.

An important property of the value function to note is concavity. This is because the two

parts of the value function are strictly concave and they are smoothly pasted (V w
L
′(us(κ)) =

V ws
L
′(us(κ)|us(κ))).

Corollary 4.2. The principal's value function for the low type agent VL is concave.

4.4.3 Feasibility

The next step is to check the feasibility of the project. If the maximum of the value function

VL is greater than 0, the principal earns positive expected payo� from the contract, thus the

project is feasible. If V ′L(0) > 0, there exists uL > 0 such that V (uL) > 0, thus the project is

feasible. On the other hand, if V ′L(0) ≤ 0, since VL is concave (Corollary 4.2), the maximum

of the value function is 0 at uL = 0, so the project is infeasible. Note that from (HJBL),

V ′L(0) > 0 is equivalent to

max

[
λLΠ− φ, λSVH

(
φ

λS

)]
> c, (4.9)
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i.e., the project is feasible if at least one of the instantaneous payo� at the deadline covers

the operating cost c. Recall that λHVH (φ/λS) = (1 + 1/κ) (1 − e−κ)λLΠ − (1 − e−κ)c/κ.

De�ne a threshold ΠF (κ) as

ΠF (κ) ≡ min

[
c+ φ

λL
,

1

(κ+ 1)λL

(
c+

κ

1− e−κ
(c+ φ)

)]
. (4.10)

Then, it can be shown that ΠF (κ) < Π is equivalent to (4.9).

In the previous numerical example, (c+φ)/λL = 1.5 and
(
c+ κ

1−e−κ (c+ φ)
)
/((κ+1)λL) ≈

2.07, thus, ΠF (κ) = 1.5. The graph of the value function when Π = 1.5 is shown in Figure

2d. We can see that the value function takes negative values for all positive promised utility

levels. Therefore, the principal is better not to contract with the agent in the �rst place,

i.e., the project is infeasible. For examples with Π higher than 1.5 (Figure 2a, 2b and 2c),

there exist positive promised utility levels for the agent that yield positive expected payo�s

for the principal, i.e., the project is feasible.

4.4.4 The Length of the Contract

The next step is to solve the maximization problem (MPL), equivalently to check the length

of the contract. De�ne ū(κ) be the solution of (MPL) when λH/λS is equal to κ. Since VL is

concave and di�erentiable, ū(κ) is the solution of V ′L(uL|κ) = 0 when the project is feasible.

Then, at the beginning of the contract, the agent's promised utility is ū(κ), and as time goes

by, the promised utility diminishes conditional that the agent has made neither success nor

skill improvement.

To check whether there is a switch of the recommended action during the contract, we

need to compare us(κ) and ū(κ). If ū(κ) ≤ us(κ), the principal always recommends the

agent to wing it. Whereas, if ū(κ) > us(κ), for uL with ū(κ) ≥ uL ≥ us(κ), the principal's

recommendation would be to study, while for uL with us(κ) > uL, the recommendation

would be to wing it. Since VL is concave and V ′L(ū(κ)) = 0, it is enough to check whether

V ′L(us(κ)) is greater or smaller than 0.

By the de�nition of us(κ) in Proposition 4.1(b)(i) and V ′L(us(κ)) = V w
L
′(us(κ)), V ′L(us(κ)) =

0 is equivalent to
(λLΠ− c)1+κ

(1 + κ)λLΠ− c

(
e

φ

)κ
= 1. (4.11)

Moreover, V ′L(us(κ)) > 0 is equivalent to the inequality that the left hand side of the above

equation is greater than 1. Note that the left hand side is increasing in Π, is equal to

zero when Π is equal to c/λL, and diverges as Π goes to in�nity. Therefore, there exists a

unique solution that satisfy (4.11) and denote the solution as ΠW (κ). Then, Π > ΠW (κ) is
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equivalent to us(κ) > ū(κ).

In the previous numerical example, by solving (4.11), we can obtain that ΠW (1/3) ≈ 1.91.

For Figure 2a and 2b, Π is greater than ΠW (1/3) and we can see that ū is greater than us.
13

In contrast, Π is smaller than ΠW (1/3) and we can see that us is greater than ū.
14 In this

example, ΠS(1/3) ≈ 6.35 > ΠW (1/3) ≈ 1.91 > ΠF (1/3) = 1.5. This order is preserved for κ

smaller than some threshold κ∗. For κ greater than κ∗, ΠF would be greater than ΠS and

ΠW . The following lemma characterizes these relationships.

Lemma 4.3. De�ne κ∗ as a positive solution of

0 = φ+ (c+ φ)κ− φeκ.

Then,

1. if κ > κ∗,

ΠF (κ) =
1

(κ+ 1)λL

(
c+

κ

1− e−κ
(c+ φ)

)
> max [ΠW (κ), ΠS(κ)] ,

2. if κ = κ∗,

ΠF (κ∗) =
c+ φ

λL
=

1

(κ∗ + 1)λL

(
c+

κ∗

1− e−κ∗
(c+ φ)

)
= ΠW (κ∗) = ΠS(κ∗);

3. if κ < κ∗,

ΠF (κ) =
c+ φ

λL
< ΠW (κ) < ΠS(κ);

4. as κ→ 0,

lim
κ→0

ΠW (κ) =
c+ φ · ψ (c/φ)

λL
and lim

κ→0
ΠS(κ) =∞,

where ψ : R+ → [1,∞) is the inverse function of x log(x) for x ≥ 1.

The left panel of Figure 1 illustrates graphs of ΠS, ΠW and ΠF when c = 1, φ = 0.5 and

λL = 1. We can see that the three graphs coincide at (κ∗, (c + φ)/λL). When κ is smaller

than κ∗, ΠS is greater than ΠW and ΠW is greater than ΠF . In this case, the form of the

value function depends on the project's payo� (Π).

13When Π = 7, there is no switch, thus, we can consider us = 0. By solving the the maximum of VL, we

can derive that ū ≈ 1.08 > us. When Π = 2.5, us = φ
λL

[
1
κ log

(
λHΠ−c
λLΠ−c

)
− 1
]
≈ .16 and we can derive that

ū ≈ .59 > us.
14When Π = 1.8, us ≈ .34 and we can derive that ū ≈ .235 < us. When Π = 1.5, the value function is

maximized at the origin, i.e., ū = 0 and us ≈ .54 > ū.
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1. If Π is very big (Π > ΠS), the principal's value function corresponds to V ws
L (uL|0),

i.e., the recommended action is always to study and the agent is compensated by the

deadline extension. In other words, if the advanced skill is e�ective enough, the winging

it technology would never be recommended.

2. If Π is moderately big (ΠS ≥ Π > ΠW ), the principal's value function corresponds to

V w
L (uL) for uL ≤ us(κ) and V ws

L (uL|us(κ)) for uL > us(κ), moreover, ū(κ) > us(κ). At

the beginning of the contract, the agent's promised utility level is ū(κ) and the agent

is recommended to study and compensated by the deadline extension. Conditional on

no skill improvement, the promised utility decreases as time goes on. If the promised

utility reaches us(κ), the recommended action switches to winging it from then on and

the agent is compensated by the immediate payment upon success.

3. If Π is moderately small (ΠW ≥ Π > ΠF ), us(κ) ≥ ū(κ), thus, the principal's value

function corresponds to V w
L (uL) for all uL ≤ ū(κ). Therefore, the agent is always

recommended to wing it and compensated by the immediate payment upon success.

4. If Π is very small (ΠF ≥ Π), the project is infeasible.

When κ is bigger than κ∗, ΠF is greater than both ΠS and ΠW . It means that whenever the

project is feasible, the principal's value function corresponds to V ws
L (uL|0). It is same as the

case of low κ (κ < κ∗) and the very big project payo� (Π > ΠS(κ)).

4.4.5 Implementation

The last step to characterize the optimal contract is to specify a contract that implements

(ū(κ), VL(ū(κ))), i.e., a pair of the agent's promised utility level and the principal's expected

payo�, of which the expected payo� is maximized. According to the discussion in the last

subsection, there would be three candidates for the optimal contract: (i) executing Mode

S always (Contract S), (ii) switching from Mode S to Mode W (Contract SW), and (iii)

executing Mode W always (Contract W). Since u̇L = −φ for all candidates of the optimal

contract, the deadline would be TL = ū(κ)/φ. The optimal contract would be determined

by comparing ū(κ) and us(κ): (i) if us(κ) = 0, Mode S would be always executed, (ii) if

us(κ) < ū(κ), the contractual mode would be switched at the time of which the promised

utility is equal to us(κ), i.e., T s = (ū(κ)−us(κ))/φ, and (iii) if us(κ) > ū(κ), Mode W would

be always executed. The next theorem summarizes the above discussion.

Theorem 1. Suppose that both technologies are equally e�cient. The optimal contract is

characterized as follows:
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1. when κ ≥ κ∗ & Π > ΠF (κ) or κ < κ∗ & Π > ΠS(κ), Contract S with TL = ū(κ)/φ is

the optimal contract;

2. when κ < κ∗ and ΠS(κ) ≥ Π > ΠW (κ), Contract SW with TL = ū(κ)/φ and T s =

(ū(κ)− us(κ))/φ is the optimal contract;

3. when κ < κ∗ and ΠW (κ) ≥ Π > ΠF (κ), Contract W with TL = ū(κ)/φ is the optimal

contract;

4. when ΠF (κ) ≥ Π, the project is infeasible.

5 Examples for Unequally E�cient Technologies

In this section, I relax the assumption that technologies are equally e�cient. Then, it is

no longer true that one of three contracts introduced in the previous section should be the

optimal contract. Since there are too many subcases for the unequally e�cient technologies

case, rather than characterizing optimal contracts for every cases, I provide two numerical

examples that are somewhat di�erent from the optimal contracts under the equally e�cient

technologies case.

5.1 The Role of E�ciency

Before presenting the numerical examples, I will illustrate that the e�ciency determines the

recommended action at the time far from the deadline, i.e., large enough uL. By (4.5) and

(4.7), we can derive that

lim
uL→∞

V w
L (uL) + uL = Π− c

λL
,

lim
uL→∞

V ws
L (uL|us) + uL = Π− c

λS
− c

λH
,

for all us ≥ 0.

When both technologies are equally e�cient, both V w
L (uL) and V ws

L (uL|us) converge to an
asymptotic line Π−c/λL−uL. Nevertheless, Proposition 4.1 suggests that the recommended

action is to study when it is far from the deadline.

When technologies are unequally e�cient, V w
L (uL) and V ws

L (uL|us) no longer converge to
the same asymptotic line and the result of Proposition 4.1 may not hold . Graphs in Figure

3a and 3b illustrate that as uL increases, V w
L (uL) converges to Π− c/λL− uL and V ws

L (uL|0)
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(a) Winging it is more e�cient (b) Studying is more e�cient

Figure 3: The benchmark value functions and asymptotic lines

converges to Π − c/λS − c/λH − uL. When the winging it technology is more e�cient,

V w
L (uL) would be greater than V ws

L (uL|us) for large enough uL. It means for large enough

uL, switching the recommended action from studying (for us ≤ u ≤ uL) to winging it (for

0 ≤ u < us) may not be optimal because it gives less expected payo� than winging it always

(for 0 ≤ u ≤ uL). Likewise, when the studying technology is more e�cient, V ws
L (uL|us)

would be greater than V w
L (uL) for large enough uL. In this case, winging it always may not

be preferred to switching from studying to winging it. From these observations, we can guess

that the recommended technology would be more e�cient one when the time is far from the

deadline.

5.2 The Winging It Technology is more E�cient

In this subsection, I present a numerical example of which optimal contract involves two

switches of contractual modes as follows:

1. Mode W is executed when the time is far from the deadline (0 ≤ t ≤ T s,1);

2. Mode S is executed when the time is moderately far from the deadline (T s,1 < t < T s,2);

3. Mode W is executed when the time is close to the deadline (T s,2 ≤ t ≤ TL).

The contract that has the above property can be described as follows:

• for all 0 ≤ t ≤ T s,1 and T s,2 ≤ t ≤ TL,
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� (aLt , b
L
t , R

L
t ) = (1, 0, φ(TL − t+ 1/λL)), i.e., the recommended action is to wing it

and the agent is paid when he succeeds;

� if the skill is improved, the contract is terminated;

• for all T s,1 < t < T s,2,

� (aLt , b
L
t , R

L
t ) = (0, 1, 0), i.e., the recommended action is to study and the agent is

not paid even if he succeeds by winging it;

� the updated contract ΓHt upon skill improvement at time t is given as follows:

∗ the deadline is extended by 1/λS, i.e., T
H = TL + 1/λS;

∗ for all t ≤ s ≤ TH , (aH,ts , RH,t
s ) = (1, φ(TH − s+ 1/λH)).

De�ne some points of the agent's promised utility as follows:

ū = φ · TL, us,1 ≡ φ · (TL − T s,1), and us,2 ≡ φ · (TL − T s,2).

The value functions for 0 ≤ uL ≤ us,1 would be identical to those in the equally e�cient

technologies case ((4.5) for 0 ≤ uL ≤ us,2 and (4.7) for us,2 ≤ uL ≤ us,1). For us,1 < uL,

the value function V wsw
L (·|us,2, us,1) : [us,1,∞) → R, is derived by solving the di�erential

equation identical to (4.4) with the boundary condition V wsw
L (us,1|us,2, us,1) = V ws

L (us,1|us,2):

V wsw
L (uL|us,2, us,1) ≡

(
Π− c

λL

)(
1− e

λL
φ

(us,1−uL)
)
− uL

+ (V ws
L (us,1|us,2) + us,1) e

λL
φ

(us,1−uL).

In sum, the value function is guessed as follows:

VL(uL) =


V w
L (uL), 0 ≤ uL ≤ us,2,

V ws
L (uL|us,1), us,2 ≤ uL ≤ us,1,

V wsw
L (uL|us,1, us,2), us,1 ≤ uL.

(5.1)

The next step is to identify us,1 and us,2 by the smooth pasting conditions V w
L
′(us,2) =

V ws
L
′(us,2|us,2) and V ws

L
′(us,1|us,2) = V wsw

L
′(us,1|us,2, us,1). First, solve V w

L
′(us,2) = V ws

L
′(us,2|us,2),

equivalently (4.8), to obtain us,2. If there are multiple positive solutions, the least pos-

itive solution should be chosen as us,2. Then, us,1 (> us,2) can be obtained by solving

V ws
L
′(us,1|us,2) = V wsw

L
′(us,1|us,2, us,1), equivalently

λS

(
VH

(
us,1 +

φ

λS

)
− V ws

L (us,1|us,2)

)
= λL

(
Π− φ

λL
− us,1 − V ws

L (us,1|us,2)

)
. (5.2)
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(a) (b)

Figure 4: The value function and benchmark functions when parameters are λL = 1, λS =
λH = 1.6, Π = 6.5, c = 1, φ = 0.9

I remark that when both technologies are equally e�cient the above equation would not have

a solution, thus the value function of this case does not have the third part of (5.1).

Now I present a numerical example of which value function takes a form of (5.1). Let

parameter values be (λL, λS, λH ,Π, c, φ) = (1, 1.6, 1.6, 6.5, 1, 0.9). Note that 1/λL < 1/λS +

1/λH , i.e., the winging it technology is more e�cient than the studying technology. First,

by solving (4.8), we can derive that us,2 ≈ 0.375.15 Second, by solving (5.2), we have

us,1 ≈ 1.342. Lastly, we can derive that VL is maximized at ū ≈ 1.599. Figure 4 illustrates

the value function VL and the benchmark value functions V w
L and V ws

L (·|0) for these parameter

values.

From (5.2), we can derive that T s,1 ≈ .181, T s,2 ≈ 1.360 and TL ≈ 1.776. Then, at the

beginning of the optimal contract, the agent's promised utility is ū and he is recommended

to wing it and compensated by the immediate payment. If the agent has not made success

until time T s,1, the recommended action is switched to study and if the agent improves skill,

the deadline would be extended by 1/λS = .625 and he is expected to complete the task

with the advanced skill. If the agent has not improved skill until time T s,2, the recommended

action is switched again to wing it and he is compensated by the immediate payment.

5.3 The Studying Technology is more E�cient

In previous cases, the optimal contract consists of Mode W or Mode S, i.e., the incentive

compatibility condition always binds. However, this may be no longer true when the studying

15The equation (4.8) has two solutions 0.375 and 1.436, and we need to choose the smaller one for us,2.
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technology is more e�cient. I present a numerical example of which value function is derived

as follows:16

1. Mode S is executed when the agent's promised utility is large enough (us,1 ≤ uL);

2. Studying is recommended and the updated promised utility upon the skill improvement

uH is equal to us,1 +φ/λS when the agent's promised utility is moderately large (us,2 <

uL < us,1);

3. Mode W is executed when the agent's promised utility is small enough (0 ≤ uL ≤ us,2).

The value functions for 0 ≤ uL ≤ us,2 would be identical to the one in the equally e�cient

technologies case, i.e., VL(uL) = V w
L (uL) as de�ned in (4.5). For us,2 < uL < us,1, the value

function V wn
L (·|us,2, us,1) : [us,2, us,1]→ R, is derived by plugging b = 1 and us,2 = us,1 +φ/λS

into (HJBL) and (PKL), i.e.,

0 = −c+
(
VH

(
us,1 +

φ

λS

)
− V wn

L (uL|us,2, us,1)

)
·λS−V wn

L
′(uL|us,2, us,1)·(φ+ (us,1 − uL) · λS) ,

with the boundary condition V wn
L (us,2|us,2, us,1) = V w

L (us,2). Then the solution of the above

di�erential equation V wn
L (·|us,2, us,1) can be derived as follows:

V wn
L (uL|us,2, us,1) ≡ V w

L (us,2) +

(
VH

(
us,1 +

φ

λS

)
− V w

L (us,2)− c

λS

)
· λS(uL − us,2)

φ+ (us,1 − us,2)λS
.

For us,1 ≤ uL, the value function V
wns
L (·|us,2, us,1) : [us,1,∞) → R, is derived by solving the

di�erential equation identical to (4.6) with the boundary condition V wns
L (us,1|us,2, us,1) =

V wn
L (us,1|us,2, us,1):

V wns
L (uL|us,2, us,1) ≡

(
Π− c

λH
− c

λS

)(
1− e

λS
φ

(us,1−uL)
)

+ (V wn
L (us,1|us,2, us,1) + us,1)e

λS
φ

(us,1−uL)

−
(

Π− c

λH

)
λSe

−λH
λS
−λH

φ
us,1

λS − λH

(
e
λH
φ

(us,1−uL) − e
λS
φ

(us,1−uL)
)
− uL.

In sum, the value function is guessed as follows:

VL(uL) =


V w
L (uL), 0 ≤ uL ≤ us,2,

V wn
L (uL|us,2, us,1), us,2 ≤ uL ≤ us,1,

V wns
L (uL|us,2, us,1), us,1 ≤ uL.

16In this case, the contractual terms in the optimal contract are not easily interpreted, so I present the
value function �rst and then derive the corresponding contract.
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Figure 5: The value function and benchmark value functions when parameters are λL =
1, λS = λH = 2.1, Π = 1.6, c = 1, φ = 0.5

The next step is to identify us,1 and us,2 by the smooth pasting conditions V w
L
′(us,2) =

V wn
L
′(us,2|us,2, us,1) and V wn

L
′(us,1|us,2, us,1) = V wns

L
′(us,1|us,2, us,1). The detailed derivation is

relegated to Appendix B.

Now I specify the contract that implements the above value function. In this case,

u̇L = −φ does not hold any longer for us,2 ≤ uL ≤ us,1. For this region, we have

0 = u̇L + (us,1 − uL)λS + φ ⇒ dt = − duL
φ+ λS(us,1 − uL)

.

Then, we can observe that the time t and the promised utility uL conditional on no skill

improvement and no success correspond as follows:

1. if 0 ≤ t ≤ T s,1 (and ū ≥ uL ≥ us,1),

t =
ū− uL
φ

⇐⇒ uL = ū− φt,

2. if T s,1 ≤ t ≤ T s,2 (and us,1 ≥ uL ≥ us,2),

t = T s,1 +
1

λS
log

[
1 +

λS(us,1 − uL)

φ

]
⇐⇒ uL = us,1 −

φ

λS

[
eλS(t−T s,1) − 1

]
,
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3. if T s,2 ≤ t ≤ TL (and us,2 ≥ uL ≥ 0),

t = T s,2 +
us,2 − uL

φ
⇐⇒ uL = us,2 + φ(T s,2 − t).

De�ne D : [us,2, us,1]→ R+ and D̄ as follows:

D(u) ≡ us,1 − u
φ

− 1

λS
log

[
1 +

λS(us,1 − u)

φ

]
, D̄ ≡ D(us,2).

Then, note that (i) T s,1 = (ū − us,1)/φ, (ii) t = T s,1 + (us,1 − uL)/φ − D(uL) = (ū −
uL)/φ−D(uL) for T s,1 ≤ t ≤ T s,2, and (iii) t = T s,2 + (us,2 − uL)/φ = (ū− uL)/φ− D̄ thus

TL = ū/φ− D̄.

Note that u̇H is still equal to −φ, thus, if the skill is improved at time t, the updated

deadline would be TH,t = t+uH/φ. For 0 ≤ t ≤ T s,1, TH,t = t+(uL+φ/λS)/φ = ū/φ+1/λS =

TL + D̄+ 1/λS. For T
s,1 ≤ t ≤ T s,2, TH,t = t+ (us,1 + φ/λS)/φ = TL + t− T s,1 + D̄+ 1/λS.

The contract that has the above property can be described as follows:

• for all 0 ≤ t ≤ T s,1,

� (aLt , b
L
t , R

L
t ) = (0, 1, 0), i.e., the recommended action is to study and the agent is

not paid even if he succeeds by winging it;

� the updated contract ΓHt upon skill improvement at time t is given as follows:

∗ the deadline is extended by D̄ + 1/λS, i.e., T
H = TL + D̄ + 1/λS;

∗ for all t ≤ s ≤ TH , (aH,ts , RH,t
s ) = (1, φ(TH − s+ 1/λH)).

• for all T s,1 < t < T s,2,

� (aLt , b
L
t , R

L
t ) = (0, 1, 0), i.e., the recommended action is to study and the agent is

not paid even if he succeeds by winging it;

� the updated contract ΓHt upon skill improvement at time t is given as follows:

∗ the deadline is extended by t− (ū− us,1)/φ+ D̄ + 1/λS, i.e., T
H = TL + t−

(ū− us,1)/φ+ D̄ + 1/λS;

∗ for all t ≤ s ≤ TH , (aH,ts , RH,t
s ) = (1, φ(TH − s+ 1/λH)).

• for all T s,2 ≤ t ≤ TL,

� (aLt , b
L
t , R

L
t ) = (1, 0, φ(TL − t+ 1/λL)), i.e., the recommended action is to wing it

and the agent is paid when he succeeds;
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� if the skill is improved, the contract is terminated.

Now I present a numerical example of which value function takes a form of (5.3). Let

parameter values be (λL, λS, λH ,Π, c, φ) = (1, 2.1, 2.1, 1.6, 1, 0.5). Note that 1/λL > 1/λS +

1/λH , i.e., the studying technology is more e�cient than the winging it technology. By solv-

ing the smooth pasting conditions V w
L
′(us,2) = V wn

L
′(us,2|us,2, us,1) and V wn

L
′(us,1|us,2, us,1) =

V wns
L

′(us,1|us,2, us,1), we can derive that us,2 ≈ .040 and us,1 ≈ .107. Then, we can derive that

VL is maximized at ū ≈ .231. Figure 4 illustrates the value function VL and the benchmark

value functions V w
L and V ws

L (·|0) for these parameter values.

From (5.2), we can derive that T s,1 ≈ .248, T s,2 ≈ .366 and TL ≈ .447. Then, at the

beginning of the optimal contract, the agent's promised utility is ū and he is recommended to

study and if the agent improves skill, the deadline would be extended by D̄+1/λS ≈ .492 and

he is expected to complete the task with the advanced skill. If the agent has not improved

skill until time T s,1, he is still recommended to study and if the agent improves skill, the

deadline would be extended by (t − T s,1) + D̄ + 1/λS. It means that whenever the agent

improves the skill, the remaining time for completing the project with the advanced skill

would be TL − T s,1 + D̄ + 1/λS ≈ .691. If the agent has not improved skill until time T s,2,

the recommended action is switched to wing it and he is compensated by the immediate

payment.

6 Concluding Remarks

In this paper, I study economic tradeo�s between improving the skill and completing the

project with the current skill and design an optimal incentive scheme in the dynamic principal

agent setup. When the winging it technology and the studying technology are equally

e�cient and the skill improvement is observable to the principal and the agent, I show

that the principal provides least incentive for the agent not to shirk and the recommended

action schedule would be one of winging it always, studying always, or switching once from

studying to winging it. The form of the optimal contract would be determined by the payo�

of the project and the e�ectiveness of the advanced skill. For the cases that the technologies

are unequally e�cient, I provide numerical examples that do not have the above form of the

optimal contract�there may be two switches (winging it → studying → winging it) or the

incentive compatibility condition may not bind.

There are many possible extensions of this paper. For example, the skill improvement

may not be observable to the principal. In this case, the principal also needs to consider an

incentive for the agent to report the progress truthfully. Also, I assume that the advanced
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skill surely exists and the arrival rates of the skill improvement and the project under the

advanced skill are publicly known. This assumption can be relaxed by adding uncertainty

on the advanced skill, e.g., the advanced skill exists under certain states or the arrival rate

of the project with the advanced skill depends on some state. Finally, I focus on the project

such that only one ultimate breakthrough pays o�. This assumption can be modi�ed by

considering projects which have �ow payo�s or multiple paying o� breakthroughs.
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A Proofs

A.1 Proofs for Section 3

Proof of Proposition 3.1. Let WH (WL) be the principal's maximum value when the agent's

action and type are observable to the agent's type is high (low).

When the agent is high type, the action process (a, l) induces a probability distribution

Pa,lH over τm. Let Ea,lH be the corresponding expectation operator. Then, WH can be written

as follows:

WH = max
(a,l)

Ea,lH [Π− c · τm] .

The HJB equation of WH is derived as follows:

WH = max
a∈[0,1]

(−c+ λHaΠ) dt+ (1− λHadt)WH

=⇒ 0 = max
a∈[0,1]

−c+ λH(Π−WH)a

The right hand side is maximized at a = 0 or a = 1. If a = 0, RHS is equal to −c < 0.

Hence, a should be equal to 1 and WH = Π − c/λH . Also note that λH(Π −WH) = c > 0,

thus, a = 1 is induced in the maximization problem.

When the agent is low type, the action process (a, b, l) induces a probability distribution

Pa,b,lL over τm and τs. Let Ea,b,lL be the corresponding expectation operator. Then, WL can be

written de�ned as follows:

WL = max
(a,b,l)

Ea,b,lL [Π · 1τm≤τs +WH · 1τm>τs − c · (τm ∧ τs)] .

The HJB equation of the social planner's value is derived as follows:

WL = max
a,b∈[0,1],a+b≤1

(−c+ λLaΠ + λSbWH) dt+ (1− λLadt− λSbdt)WL

⇒ 0 = max
a,b∈[0,1],a+b≤1

−c+ λL(Π−WL)a+ λS(WH −WL)b (A.1)

Since the maximization problem is linear in a and b, the optimal solution pair (a, b) would

be one of (1, 0), (0, 1), (0, 0). (0, 0) cannot be optimum because −c < 0.

When a = 1, solving (A.1) gives WL = Π − c/λL and λL(Π −WL) ≥ λS(WH −WL) is

required to induce a = 1. The inequality is equivalent to 1/λL ≤ 1/λH + 1/λS.

When b = 1, solving (A.1) gives WL = WH− c/λS = Π− c/λH− c/λS and λL(Π−WL) ≤
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λS(WH−WL) is required to induce b = 1. The inequality is equivalent to 1/λL ≥ 1/λH+1/λS.

Therefore, when the winging it arm is more e�cient (1/λL < 1/λS + 1/λH), the basic

skill schedule maximizes the principal's payo�, and when the studying arm is more e�cient

(1/λL > 1/λS + 1/λH), the advanced skill schedule maximizes the principal's payo�.

A.2 Proofs for Section 4

In this section, I provide proofs for Section 4. The section proceeds as follows:

1. derive candidates for the value function described in Section 4.4.2;

2. introduce functions that describe the agent's deviation from the recommended action

and provide some properties of the functions;

3. provide proofs of main results;

4. provide proofs of lemmas (in both the main text and the appendix).

A.2.1 Derivation of Value Function Candidates

1. V w
L takes the same form of VH as in (4.1) except that the arrival rate is changed from

λH to λL. Therefore, V
w
L should take a form as in (4.5).

2. By multiplying eλSuL/φ/φ to the HJB equation, it can be rewritten as follows:

λS
φ
e
λS
φ
uLV ws

L (uL|us) + e
λS
φ
uLV ws

L (uL|us) =
λS
φ
e
λS
φ
uL

(
VH

(
uL +

φ

λS

)
− c

λS

)
.

The left hand side is equal to d
duL

(
eλSuL/φV ws

L (uL|us)
)
. By plugging the closed form

solution of VH into the equation, the right hand side can be rewritten as follows:(
Π− c

λH
− c

λS
− uL

)
λS
φ
e
λS
φ
uL − e

λS
φ
uL −

(
Π− c

λH

)
λS
φ
e
λS−λH

φ
uL−

λH
λS

=
d

duL

((
Π− c

λH
− c

λS
− uL

)
e
λS
φ
uL −

(
Π− c

λH

)
λS

λS − λH
e
λS−λH

φ
uL−

λH
λS

)
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Then, by integrating the HJB equation from us to uL gives

e
λS
φ
uLV ws

L (uL|us)− e
λS
φ
usV ws

L (us|us)

=

(
Π− c

λH
− c

λS
− uL

)
e
λS
φ
uL −

(
Π− c

λH

)
λS

λS − λH
e
λS−λH

φ
uL−

λH
λS

−
(

Π− c

λH
− c

λS
− us

)
e
λS
φ
us +

(
Π− c

λH

)
λS

λS − λH
e
λS−λH

φ
us−

λH
λS .

By rearranging the above equation and using the boundary condition V ws
L (us|us) =

V w
L (us), V

ws
L is derived as in (4.7).

A.2.2 Some Useful Functions

In this subsection, I introduce functions that specify deviations from the given value func-

tions.17

1. Functions for deviation given V w
L

(a) De�ne

La1(u,R) ≡ λL(Π−R− V w
L (u))− c− λL(R− u)V w

L
′(u).

Given u = uL, maximizing this function with respect to R ≥ u+ φ/λL is equivalent to

maximize the right hand side of (HJBL) under the condition that a = 1 solves (PKL).

Note that ∂
∂R
La1 = −λL(1 + V w

L
′(u)) < 0 by Lemma 4.2. Therefore, for a �xed u, La1 is

maximized at R = u+ φ/λL. By the de�nition of V w
L , La1(u, u+ φ/λL) = 0.

(b) De�ne

Lb1(u,w) ≡λS(VH(w)− V w
L (u))− c− λS(w − u)V w

L
′(u) (A.2)

=λS

[(
Π− c

λH

)(
1− e−

λH
φ
u−λH

φ
(w−u)

)
(A.3)

−
(

Π− c

λL

)(
1− e−

λL
φ
u
)
− (w − u)

(
λLΠ− c

φ

)
e−

λL
φ
u

]
− c.18

Given u = uL, maximizing this function with respect to w ≥ u+ φ/λS is equivalent to

maximize the right hand side of (HJBL) under the condition that b = 1 solves (PKL).

17This approach is inspired by the tangible �rst breakthrough case of Green and Taylor (2016b). In their
paper, they only need to consider the deviation from working to shirking. In this paper, we also need to
consider the deviation from a technology to another technology, thus, we need to de�ne two functions for
each case.

18Note that Lb1 also depends on λ, Π, c and φ.
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Then, it is enough to show that Lb1(u,w) ≤ 0 for all u ≥ 0 and w ≥ u+ φ/λS.

De�ne x ≡ e−
λL
φ
u and y ≡ w − u. Note that u ≥ 0 and w ≥ u + φ/λS imply that

1 ≥ x > 0 and y ≥ φ/λS. Then, L
b
1 can be rewritten as follows:

L̃b1(x, y) ≡− λS
[(

Π− c

λH

)
e−

λH
φ
y · x

λH
λL −

(
1− λLy

φ

)(
Π− c

λL

)
x+

(
1

λH
+

1

λS
− 1

λL

)
c

]
.

Also note that from φV ws
L
′(0|0) = −c + λSVH(φ/λS) (by (4.6) and V ws

L (0|0) = 0), we

can see that

L̃b
1

(
1,

φ

λS

)
= Lb1

(
0,

φ

λS

)
= φV ws

L
′(0|0)− φV w

L
′(0). (A.4)

2. Functions for deviation given V ws
L

(a) De�ne

La2(u,R|us) ≡ λL (Π−R− V ws
L (u|us))− c− λL(R− u)V ws

L
′(u|us).

Note that if V w
L
′(us) ≤ V ws

L
′(us|us), ∂

∂R
La2 = −λL(1 + V ws

L
′(u|us)) < 0 by Lemma 4.2.

Therefore, given u, La2 is maximized at R = u+ φ/λL.

La2

(
u, u+

φ

λL
| us
)

= λL

(
Π− φ

λL
− u− V ws

L (u|us)
)
− c− λLφV ws

L
′(u|us)

= λLc

(
1

λH
+

1

λS
− 1

λL

)
−
(

Π− c

λH

)
λSe

−λH
λS
−λH

φ
us

λS − λH
(λH − λL)e

λH
φ

(us−u)

− (λS − λL)

Π− c

λH
− c

λS
− (V w

L (us) + us)−
(

Π− c

λH

)
λSe

−λH
λS
−λH

φ
us

λS − λH

 eλSφ (us−u)

De�ne x1 ≡ e
λS
φ

(us−u). Then, La2 can be rewritten as follows:

L̃a
2(x1|us) ≡λLc

(
1

λH
+

1

λS
− 1

λL

)
−
(

Π− c

λH

)
λSe

−λH
λS
−λH

φ
us

λS − λH
(λH − λL)x

λH
λS
1

− (λS − λL)

[
Π− c

λH
− c

λS
− (V w

L (us) + us)

−
(

Π− c

λH

)
λSe

−λH
λS
−λH

φ
us

λS − λH

x1.

(A.5)
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Also note that from φV w
L
′(us) = −c + λL (Π− φ/λL − us − V w

L (us)) (by (4.4)) and

V ws
L (us|us) = V w

L (us), we can see that

L̃a
2(1|us) = La2

(
us, us +

φ

λL
| us
)

= φV w
L
′(us)− φV ws

L
′(us|us). (A.6)

(b) De�ne

Lb2(u,w|us) ≡ λS (VH(w)− V ws
L (u|us))− c− λS(w − u)V ws

L
′(u|us).

Note that ∂
∂w
Lb2 = λS(V ′H(w)− V ws

L
′(u|us)) and ∂2

∂w2L
b
2 = λSV

′′
H(w) < 0

The following lemmas give useful properties of the above functions.

Lemma A.1. Suppose that λ, c, and Π are �xed and λLΠ > c is satis�ed. Then, L̃b
1 satis�es

the following properties:

(a) L̃b
1 is strictly concave in x;

(b) Suppose that 1/λL ≤ 1/λS + 1/λH holds for (b) and (c). If y ≥ φ/λL and x ≥ 0, then

L̃b
1(x, y) ≤ 0;

(c) De�ne

x∗(y) ≡

(λLΠ− c)
(

1− λLy
φ

)
e
λH
φ
y

(λHΠ− c)


λL

λH−λL

. (A.7)

If x∗(φ/λS) ≤ 1, for all φ/λL > y ≥ φ/λS and 1 ≥ x > 0,

L̃b
1(x, y) ≤ L̃b

1

(
x∗
(
φ

λS

)
,
φ

λS

)
.

If x∗(φ/λS) > 1, for all φ/λL > y ≥ φ/λS and 1 ≥ x > 0,

L̃b
1(x, y) ≤ L̃b

1

(
1,

φ

λS

)
.

Lemma A.2. Suppose that λ, c, and Π are �xed, λLΠ > c. Then, L̃a
2 and Lb2 satisfy the

following properties:

(a) L̃a
2 is strictly convex in x1;
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(b) Suppose that 1/λL = 1/λS + 1/λH and V w
L
′(us) ≤ V ws

L
′(us|us) hold for (b) and (c).

L̃a
2(x1|us) < 0 for all x1 ∈ (0, 1), thus, La2(u,R|us) < 0 for all R ≥ u+ φ/λL;

(c) For all u ≥ us and w ≥ u+ φ/λS, L
b
2(u,w|us) ≤ Lb2(u, u+ φ/λS|us) = 0.

A.2.3 Proofs of Main Results

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. (a) By Lemma 4.1, V ws
L
′′(0|0) > V w

L
′(0). By (b) and (c) of

Lemma A.2, for all a, b ∈ [0, 1] with a+ b ≤ 1, R ≥ u+ φ/λL and w ≥ u+ φ/λS,

0 ≥ a · La2(u,R|0) + b · Lb2(u,w|0),

whereas Lb2(u, u+ φ/λS|0) = 0.

Note that a · La2(u,R|0) + b · Lb2(u,w|0) is equal to the right hand side of (HJBL) with

VL(u) = V ws
L (u|0). Therefore, V ws

L (u|0) solves (HJBL).

(b) By Lemma 4.1 , V ws
L
′′(0|0) ≤ V w

L
′(0). and L̃b

1(1, φ/λS) ≤ 0. Also note that L̃b
1(0, φ/λS) =

0 from 1/λH + 1/λS − 1/λL = 0. Note that L̃b
1 is strictly concave in x1 ((a) of

Lemma A.1) and it is maximized at x∗(φ/λS) > 0 where x∗ is de�ned as (A.7). Then,

L̃b
1(x∗(φ/λS), φ/λS) has to be greater than 0 (if not, it contradicts L̃b

1(0, φ/λS) = 0) and

x∗(φ/λS) has to be less than 1 (if not, it contradicts the strict concavity of L̃b
1(·, φ/λS)

combined with L̃b
1(0, φ/λS) = 0 and L̃b

1(1, φ/λS) ≤ 0). Then, L̃b
1(x, φ/λS) is decreasing

in x for x ≥ x∗(φ/λS) and L̃b
1(x∗(φ/λS), φ/λS) > 0 ≥ L̃b

1(1, φ/λS), thus, there exists a

unique 1 ≥ x̄ > x∗(φ/λS) such that L̃b
1(x̄, φ/λS) = 0.

Note that x̄ satis�es(
Π− c

λH

)
e
−λH
λS x̄

λH
λL =

(
1

λL
− 1

λS

)
(λLΠ− c) x̄+

(
1

λL
− 1

λH
− 1

λS

)
c,

and we can derive that x̄ =
(
λLΠ−c
λHΠ−c

)1/κ

e. Then, for all y ≥ φ/λS,

∂

∂y
L̃b

1(x̄, y) =λS

[
λH
φ

(
Π− c

λH

)
e
−λH
λS x̄

λH
λL e

λH
φ

(
φ
λS
−y

)
+

1

φ
(λLΠ− c) x̄

]
≤λSλH

φ

(
1

λL
− 1

λH
− 1

λS

)
((λLΠ− c)x̄+ c) = 0.
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Therefore, L̃b
1(x̄, y) ≤ 0 for all y ≥ φ/λS. Since L̃

b
1(0, y) = 0 and L̃b

1 is concave in x, for

all x ≥ x̄ and y ≥ φ/λS, L̃
b
1(x, y) ≤ 0.

Note that x̄ = e−λLus(κ)/φ. Then, the above observation implies that, for all uL ≤ us(κ)

and uH ≥ u+ φ/λS, L
b
1(uL, uH) ≤ 0.

Now, we verify the value function for uL ≥ us(κ). For convenience, denote us for us(κ)

hereafter. Note that from Lb1(us, us + φ/λS) = 0 and (A.2), we have

V w
L
′(us) =

λS
φ

(
VH

(
us +

φ

λS

)
− V w

L (us)

)
− c

φ
.

By (4.6) and V w
L (us) = V ws

L (us|us), we also have

V ws
L
′(us|us) =

λS
φ

(
VH

(
us +

φ

λS

)
− V w

L (us)

)
− c

φ
.

Then, V w
L
′(us) = V ws

L
′(us|us) and we can apply Lemma A.2 in the same manner as in

(a).

A.2.4 Proofs of Lemmas

Lemma A.3. For given uL and VL(uL), if a mixed e�ort level (i.e., a, b > 0) solves (HJBL)

subject to (PKL), then the pure e�ort levels (i.e., a = 1 or b = 1) also solve (HJBL) subject

to (PKL).

Proof. Suppose that (a∗, b∗, R∗, u∗H) with a∗, b∗ > 0 solves (HJBL) subject to (PKL). Note

that (R∗ − uL)λL − φ = (u∗H − uL)λH − φ ≥ 0 from the maximization of (PKL). Also note

that (Π−R∗ − VL(uL))λL = (VH(u∗H)− VL(uL))λS ≥ 0 from the maximization of (HJBL).

Then, (a, b, R, uH) = (1, 0, R∗, 0), (a, b, R, uH) = (0, 1, 0, u∗H) and (a, b, R, uH) = (a∗, b∗, R∗, u∗H)

have the same values for the RHS of (HJBL) and the RHS of (PKL). Since (a∗, b∗, R∗, u∗H)

solves (HJBL) subject to (PKL), (1, 0, R∗, 0) and (0, 1, 0, u∗H) also solve (HJBL) subject to

(PKL).

Proof of Lemma 4.1. Since 1 − (κ + 1)e−κ > 0 for all κ > 0, λLΠ − φ ≥ λSVH(φ/λS) is

equivalent to

ΠS(κ) =
1− e−κ

1− (κ+ 1)e−κ
· c
λL
≥ Π.
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By di�erentiating ΠS, we have

Π′S(κ) = − eκ (e−κ + κ− 1)

(1− (κ+ 1)e−κ)2 ·
c

λL
.

Since e−κ > −κ+ 1, Π′S(κ) < 0, thus, ΠS is decreasing in κ.

Proof of Lemma 4.2. (a) By (4.5) and e−λLuL/φ > 0, V w
L (uL) < Π− c/λL − uL. By di�er-

entiating (4.5), we have

V w
L
′(uL) =

(
Π− c

λL

)
λL
φ
e−

λL
φ
uL − 1 > −1.

By di�erentiating once again, we have

V w
L
′′(uL) = −

(
Π− c

λL

)
λ2
L

φ2
e−

λL
φ
uL < 0.

(b) Note that for all us ≥ uL

e
λH
φ

(us−uL) − e
λS
φ

(us−uL)

λS − λH
≥ 0. (A.8)

Then, by (4.7), Π− c/λH − c/λS = Π− c/λL, V w
L (us) + us < Π− c/λL − uL and the

above inequality, we have

V ws
L (uL|us) < Π− c

λL
− uL.

Note that

V w
L
′(us) = − c

φ
− 1 +

λL
φ

(Π− us − V w
L (us)) ,

V ws
L
′(us|us) = − c

φ
− 1 +

λS
φ

((
Π− c

λH

)(
1− e−

λH
φ
us−

λH
λS

)
− V w

L (us)− us
)
.

Then, V w
L
′(us) ≤ V ws

L
′(us|us) is equivalent to

− Π +
λS c

(λS − λL)λH
+

λS
λS − λL

(
Π− c

λH

)
e
−λH

φ
us−

λH
λS ≤ − (us + V w

L (us)) . (A.9)
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By di�erentiating (4.7) twice, we have

V ws
L
′′(uL|us) =−

(
λS
φ

)2

e
λS
φ

(us−uL)

[(
Π− c

λH
− c

λS

)
− (V w

L (us) + us)

]
−
(

Π− c

λH

)
λSe

−λH
λS
−λH

φ
us

λS − λH

((
λH
φ

)2

e
λH
φ

(us−uL) −
(
λS
φ

)2

e
λS
φ

(us−uL)

)

=−
(
λS
φ

)2

e
λS
φ

(us−uL)

[(
Π− c

λH
− c

λS

)
− (V w

L (us) + us)

−
(

1 +
λH
λS

)(
Π− c

λH

)
e
−λH
λS
−λH

φ
us

]
−
(

Π− c

λH

)
λSe

−λH
λS
−λH

φ
us

(
λH
φ

)2
e
λH
φ

(us−uL) − e
λS
φ

(us−uL)

λS − λH

By using (A.9),

Π− c

λH
− c

λS
− (V w

L (us) + us)−
(

1 +
λH
λS

)(
Π− c

λH

)
e
−λH
λS
−λH

φ
us

≥ λL
λS − λL

(
1

λS
+

1

λH
− 1

λL

)(
c+ (λHΠ− c)e−

λH
φ
us−

λH
λS

)
= 0.

Then, plugging the above equation and the inequality (A.8) into the equation of

V ws
L
′′(uL|us), we can derive that V ws

L
′′(uL|us) ≤ 0.

Note that

V ws
L
′(uL|us) =

λS
φ
e
λS
φ

(us−uL)

[(
Π− c

λH
− c

λS

)
− (V w

L (us) + us)

]
+

(
Π− c

λH

)
λSe

−λH
λS
−λH

φ
us

λS − λH

(
λH
φ
e
λH
φ

(us−uL) − λS
φ
e
λS
φ

(us−uL)

)
− 1,

lim
uL→∞

V ws
L
′(uL|us) = −1.

Then, by the concavitiy of V ws
L (uL|us), V ws

L
′(uL|us) > −1.
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Proof of Lemma 4.3. Note that for all κ > 0 and λL > 0,

c+ φ

λL
>

1

(κ+ 1)λL

(
c+

κ

1− e−κ
(c+ φ)

)
⇔ (c+ φ)(κ+ 1)(eκ − 1) > c(eκ − 1) + (c+ φ)(κ+ 1− eκ)

⇔ 0 > g(κ) ≡ φ+ (c+ φ)κ− φeκ.

Also note that g(κ) is concave in κ, lim
κ→0

g(κ) = 0, lim
κ→∞

g(κ) = −∞ and lim
κ→0

g′(κ) = c > 0.

Then, there exists a unique positive solution of g(κ) = 0, which is κ∗. Then, g(κ) < 0 is

equivalent to κ > κ∗. Therefore,

ΠF (κ) =



c+ φ

λL
, if κ < κ∗,

c+ φ

λL
=

1

(κ∗ + 1)λL

(
c+

κ∗

1− e−κ∗
(c+ φ)

)
, if κ = κ∗,

1

(κ+ 1)λL

(
c+

κ

1− e−κ
(c+ φ)

)
, if κ > κ∗.

For i ∈ {F,W, S}, note that Πi(κ) can be considered as a unique solution (greater than

c/λ) of the equation

L(Π) = Ri(Π|κ),

where

L(Π) = (κ+ 1)λLΠ− c,

RF (Π|κ) =


κ

1− e−κ
(c+ φ) if κ ≥ κ∗

κ(c+ φ) + φ if κ ≤ κ∗
, 19

RW (Π|κ) = φ · eκ ·
(
λLΠ− c

φ

)κ+1

,

RS(Π|κ) = φ · eκ ·
(
λLΠ− c

φ

)
.

Note that L(c/λL) < Ri(c/λL|κ), lim
Π→∞

L(Π) > lim
Π→∞

Ri(Π|κ) and L and Ri(·|κ) cross only

once for all i ∈ {F,W, S} and κ > 0.

19Note that κ∗(c+ φ)/(1− e−κ∗
) = κ∗(c+ φ) + φ by the de�nition of κ∗.
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If Ri(Πi(κ)|κ) > Rj(Πi(κ)|κ),

L(Πi(κ)) = Ri(Πi(κ)|κ) > Rj(Πi(κ)|κ),

and it implies that Πj(κ) is smaller than Πi(κ). Similarly, Ri(Πi(κ)|κ) = Rj(Πi(κ)|κ) implies

that Πj(κ) is equal to Πi(κ) and Ri(Πi(κ)|κ) < Rj(Πi(κ)|κ) implies that Πj(κ) is greater

than Πi(κ).

1. When κ > κ∗, to prove that ΠF (κ) > max [ΠW (κ),ΠS(κ)], it is enough to show that

RF (ΠF (κ)|κ) < RW (ΠF (κ)|κ) and RF (ΠF (κ)|κ) < RS(ΠF (κ)|κ).

De�ne x(κ) as follows:

x(κ) =
κ

eκ − 1

(
c+ φ

φ

)
.

Then, x(κ) < 1 is equivalent to g(κ) < 0, i.e., κ > κ∗. Also note that

λLΠF (κ)− c
φ

=
κ

κ+ 1

(
c+ eκφ

eκ − 1

)
=
x(κ) + κ

κ+ 1
.

By using the de�nition of x(κ) and the above equation, we can see that

RF (ΠF (κ)|κ) = φ · eκ · x(κ),

RW (ΠF (κ)|κ) = φ · eκ ·
(
x(κ) + κ

κ+ 1

)κ+1

,

RS(ΠF (κ)|κ) = φ · eκ ·
(
x(κ) + κ

κ+ 1

)
.

(A.10)

Consider a function h(x) =
(
x+κ
1+κ

)κ+1
. Note that h′(x) =

(
x+κ
1+κ

)κ
and h′′(x) =

κ
1+κ

(
x+κ
1+κ

)κ−1
> 0. Then, h(x) > h(1) + h′(1)(x − 1) = x for x < 1. Hence,

RW (ΠF (κ)|κ) > RF (ΠF (κ)|κ). Also, we can easily see that
x+ κ

κ+ 1
> x is equivalent to

x < 1, i.e., RS(ΠF (κ)|κ) > RF (ΠF (κ)|κ).

2. When κ = κ∗, to prove that ΠF (κ) = ΠW (κ) = ΠS(κ), it is enough to show that

RF (ΠF (κ)|κ) = RW (ΠF (κ)|κ) = RS(ΠF (κ)|κ).

Note that x(κ∗) = 1. Hence, by (A.10), RF (ΠF (κ)|κ) = RW (ΠF (κ)|κ) = RS(ΠF (κ)|κ).

3. When κ < κ∗, to prove that ΠS(κ) > ΠW (κ) > ΠF (κ), it is enough to show that

RF (ΠF (κ)|κ) > RW (ΠF (κ)|κ) and RW (ΠS(κ)|κ) > RS(ΠS(κ)|κ).
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In this case, ΠF (κ) = (c+φ)/λL. Then, by the de�nition ofRF andRW , RF (ΠF (κ)|κ) =

κ(c+φ)+φ and RW (ΠF (κ)|κ) = φ ·eκ. Since κ < κ∗ is equivalent to κ(c+φ)+φ > φeκ,

RF (ΠF (κ)|κ) > RW (ΠF (κ)|κ).

Also note that

λLΠS(κ)− c
φ

=

1−e−κ
1−(κ+1)e−κ

c− c
φ

=
κ · c

(eκ − (κ+ 1))φ
> 1.

Then, since RW (ΠS(κ)|κ) = RS(ΠS(κ)|κ) ·
(
λLΠ−c
φ

)κ
, RW (ΠS(κ)|κ) > RS(ΠS(κ)|κ).

4. When κ→ 0, by L'Hospital's Rule,

lim
κ→0

ΠS(κ) = lim
κ→0

1− e−κ

1− (κ+ 1)e−κ
· c
λL

= lim
κ→0

e−κ

κ e−κ
· c
λL

=∞.

De�ne y(κ) ≡ (λLΠW (κ)− c) /φ > 0. Then, from (4.11), y(κ) satis�es the following

equations for all κ > 0:

y(κ)1+κ · eκ = (1 + κ)y(κ) +
c

φ
κ

⇒ (1 + κ) log [y(κ)] + κ = log

[
(1 + κ)y(κ) +

c

φ
κ

]
.

By di�erentiating the above equation by κ, we have

log [y(κ)] + 1 +
1 + κ

y(κ)
y′(κ) =

y(κ) + c
φ

(1 + κ)y(κ) + c
φ
κ

+
1 + κ

(1 + κ)y(κ) + c
φ
κ
y′(κ).

By sending κ→ 0, we have

y(0) · log [y(0)] =
c

φ
,

i.e., y(0) = ψ(c/φ). Then, we have

lim
κ→0

ΠW (κ) =
c+ φ · y(0)

λL
=
c+ φ · ψ

(
c
φ

)
λL

.
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Proof of Lemma A.1. (a) By λH > λL, Π > c/λL > c/λH , and x > 0,

∂2 L̃b
1

∂x2
= −λS

(
Π− c

λH

)
e−

λH
φ
y

(
λH
λL

)(
λH
λL
− 1

)
x
λH
λL
−2
< 0,

thus, L̃b
1 is strictly concave in x.

(b) By di�erentiating L̃b
1 once by x,

∂ L̃b
1

∂x
= −λS

[
λH
λL

(
Π− c

λH

)
e−

λH
φ
yx

λH−λL
λL −

(
1− λLy

φ

)(
Π− c

λL

)]
.

If y ≥ φ/λL and x ≥ 0, L̃b
1 is decreasing in x, thus, L̃b

1 is maximized at x = 0. Then,

since 1/λL ≤ 1/λS + 1/λH , for all 1 ≥ x > 0 and y ≥ φ/λL, the following inequalities

hold:

L̃b
1(x, y) ≤ L̃b

1(0, y) = −λS
(

1

λH
+

1

λS
− 1

λL

)
c ≤ 0.

(c) When φ/λL > y ≥ φ/λS and y is �xed, since L̃b
1(x, y) is concave in x, L̃b

1(·, y) is

maximized at

x∗(y) ≡

(λLΠ− c)
(

1− λLy
φ

)
e
λH
φ
y

(λHΠ− c)


λL

λH−λL

.

De�ne g(y) ≡ (1− λLy/φ) e(λH/φ)y. Then, di�erentiating g(y) gives

g′(y) =− λL
φ
e
λH
φ
y +

λH
φ

(
1− λLy

φ

)
e
λH
φ
y

=
λLλH
φ

e
λH
φ
y

(
− 1

λH
+

1

λL
− y

φ

)
.

Note that since y ≥ φ/λS and 1/λL ≤ 1/λS + 1/λH , g(y) is decreasing in y, hence,

x∗(y) is also decreasing in y.

Now, restrict attention to 1 ≥ x > 0. If x∗(y) < 1, the maximum value of L̃b
1(·, y) is

L̃b
1(x∗(y), y) =λS

[(
λH
λL
− 1

)(
Π− c

λH

)
e−

λH
φ
yx∗(y)

λH
λL −

(
1

λH
+

1

λS
− 1

λL

)
c

]
=λS

[(
1

λL
− 1

λH

)[
(λHΠ− c)−

λL
λH (λLΠ− c)

(
1− λLy

φ

)
e
λLy

φ

] λH
λH−λL

−
(

1

λH
+

1

λS
− 1

λL

)
c

]
.
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Note that (1 − λLy/φ)eλLy/φ is decreasing in y,20 thus, L̃b
1(x∗(y), y) is also decreasing

in y.

If x∗(y) ≥ 1, the maximum value of L̃b
1(·, y) is

L̃b
1(1, y) = −λS

[(
Π− c

λH

)
e−

λH
φ
y −

(
1− λLy

φ

)(
Π− c

λL

)
+

(
1

λH
+

1

λS
− 1

λL

)
c

]
.

Note that x∗(y) ≥ 1 implies that 0 > −λLy/φ ≥ (λHΠ − c)e−
λH
φ
y − (λLΠ − c). Also

note that
∂ L̃b

1(1, y)

∂y
=
λS
φ

[
(λHΠ− c) e−

λH
φ
y − (λLΠ− c)

]
< 0.

Therefore, L̃b
1(1, y) is decreasing in y.

When x∗(φ/λS) ≤ 1, x∗(y) ≤ 1 holds for all φ/λL > y ≥ φ/λS since x∗(y) is decreasing

in y. Then,

L̃b
1(x, y) ≤ L̃b

1(x∗(y), y) ≤ L̃b
1 (x∗ (φ/λS) , φ/λS)

from the optimality of x∗(y) and decreasingness of L̃b
1(x∗(y), y) in y.

When x∗(φ/λS) > 1, note that x∗(φ/λL) = 0, thus, there exists y∗ ∈ (φ/λS, φ/λL) such

that x∗(y∗) = 1. Then, x∗(y) < 1 for y > y∗ and x∗(y) > 1 for y < y∗. When y < y∗,

by using the decreasingness of L̃b
1(1, y) for x∗(y) > 1,

L̃b
1(x, y) ≤ L̃b

1(1, y) ≤ L̃b
1(1, φ/λS).

When y > y∗,

L̃b
1(x, y) ≤ L̃b

1(x∗(y), y) ≤ L̃b
1(x∗(y∗), y∗) = L̃b

1(1, y∗) ≤ L̃b
1(1, φ/λS).

By combining the above results, we can show that

max
1≥x>0,
φ
λL

>y≥ φ
λS

L̃b
1(x, y) =

L̃b
1

(
x∗
(
φ
λS

)
, φ
λS

)
if x∗

(
φ
λS

)
≤ 1,

L̃b
1

(
1, φ

λS

)
if x∗

(
φ
λS

)
> 1.

20Di�erentiating the term by y gives −(λ2
Ly/φ

2)eλLy/φ < 0.
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Proof of Lemma A.2. (a) By di�erentiating (A.5) twice, we have

L̃a
2

′′
(x1) =

(
Π− c

λH

)
e
−λH
λS
−λH

φ
us(λH − λL)

λS
x
λH
λS
−2

1 > 0,

from Π > c/λL > c/λH and λH − λL > 0. Therefore, L̃a
2 is strictly convex in x1.

(b) Note that L̃a
2(0) = 0 from 1/λL = 1/λS+1/λH and L̃a

2(1) = φ(V w
L
′(us)−V ws

L
′(us|us)) ≤

0 from (A.6) and V w
L
′(us) ≤ V ws

L
′(us|us). Then, by the convexity of L̃a

2 , for all x1 ∈
(0, 1),

L̃a
2(x1) < x1 L̃

a
2(1) + (1− x1) L̃a

2(0) ≤ 0.

(c) By di�erentiating (4.6) once, we can derive that

φV ws
L
′′(u|us) = λS

(
V ′H

(
u+

φ

λS

)
− V ws

L
′(u|us)

)
.

By (b) of Lemma 4.2, V ws
L
′′(u|us) < 0, thus, the following inequality holds:

0 ≥ ∂

∂w
Lb2(u, u+ φ/λS|us) = λS

(
V ′H

(
u+

φ

λS

)
− V ws

L
′(u|us)

)
.

Since ∂2

∂w2L
b
2 < 0, for a given u, Lb2(u,w|us) subject to w ≥ u + φ/λS is maximized at

w = u+ φ/λS. Also note that Lb2(u, u+ φ/λS|us) = 0 holds by (4.6).

B Details in Section 5.3

Will be added
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