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Abstract

We develop asymptotic approximation results that can be applied to sequential estimation and infer-

ence problems, adaptive randomized controlled trials, and other statistical decision problems that

involve multiple decision nodes with structured and possibly endogenous information sets. Our

results extend the classic asymptotic representation theorem used extensively in efficiency bound

theory and local power analysis. In adaptive settings where the decision at one stage can affect the

observation of variables in later stages, we show that a limiting data environment characterizes all

limit distributions attainable through a joint choice of an adaptive design rule and statistics applied

to the adaptively generated data, under local alternatives. We illustrate how the theory can be applied

to study the choice of adaptive rules and end-of-sample statistical inference in batched (groupwise)

sequential adaptive experiments.
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1 Introduction

Empirical problems that involve dynamic analysis of data, and adaptive choice of sampling design and

treatment allocations, are challenging to analyze using standard large-sample characterizations of sta-

tistical decision rules and optimality theory. In this paper, we develop a general approach to asymptotic

approximations that can be applied to sequential estimation and inference problems, adaptively ran-

domized controlled trials, and other statistical decision problems that involve multiple decision nodes

with structured and possibly endogenous information sets. Our novel asymptotic representation the-

orems parsimoniously characterize all limit distributions that can be attained by some choice of a dy-

namic, data-driven procedure in a multi-stage setting where the researcher can take actions after each

stage, including possibly adjusting allocations of a multi-valued treatment. These representations gen-

eralize classic limit experiment results, leading to an approximation of the sequential statistical decision

problem by a limiting data environment that interacts with the choice of adaptive sampling and treat-

ment allocation rules. Our results provide powerful tools in these dynamic, adaptive settings to char-

acterize the asymptotic behavior of statistical procedures, perform valid inference, search for optimal

policy rules, and obtain best adaptive sampling designs.

The empirical analysis of dynamic policies, for both individual-level policies and aggregate policy rules,

is an important and long-standing problem in econometrics and a variety of other fields. Recently, there

has been renewed interest in sequential statistical design problems, where the researcher can adapt the

treatment assignment and data-collection rules in light of prior data. Some applications of adaptively

randomized experiments in economics and related fields include Schwartz, Bradlow, and Fader (2017)

and Caria, Gordon, Kasy, Quinn, Shami, and Teytelboym (2020).

Sequential statistical decision problems can be more complex than conventional static statistical de-

sign and inference problems, and introduce a number of complications. For example, if treatment arms

are randomized adaptively, conventional hypothesis tests that are appropriate for simple randomized

experiments will not be valid, even in large samples. Zhang, Janson, and Murphy (2020) and Hadad,

Hirshberg, Zhan, Wager, and Athey (2021) have highlighted this problem and proposed alternative tests

that are asymptotically correctly sized. However, the asymptotic power properties of these tests, and the

form of optimal tests in these nonstandard settings, remains an open question. More broadly, a general
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approximation theory for statistical decision rules in such settings would facilitate analysis of a wider

range of possible statistical decision problems and procedures.

We provide such a framework here, for multi-stage settings where data arrive in stages (or batches) and

choices can be made after each stage is realized. Stage-wise or batched adaptive experiments are some-

times termed group-sequential randomized experiments in the biostatistics literature, and are called

multi-armed batched bandits in the bandit algorithm literature.1

Our results are based on, and extend, classic asymptotic representation theorems in Le Cam’s limits of

experiments theory. The standard asymptotic representation theorem applies to a static decision setting,

where the full sample of data is realized and can be used to make an inference (such as a hypothesis test

or a point estimator). In those static settings, the representation theorem yields an approximation to the

original statistical problem by a simpler one, which in turn provides a useful foundation for asymptotic

power analysis of tests, optimal estimation theory, and other statistical decision problems such as the

choice of a statistical treatment rule. Hirano and Porter (2020) review some applications of this type of

asymptotic approximation in economics, but note that there are very few available results for sequential

decision problems. In this paper, we show that the limiting behavior of statistical procedures in sequen-

tial and adaptive problems can be characterized to a similar degree as in the static case. In particular,

a single limiting decision rule represents the asymptotic distributions of a decision rule in the original

problem under every local parameter. However, our representation is constructed not as a single limit

experiment, but rather as a limiting data environment, or limit bandit, that reflects the sequential in-

formational restrictions of the original decision problem, and the interaction between the choice of the

adaptive sampling rules and the data generated through the decision process.

Our work is closely related to recent, powerful approximation results for multi-armed bandits obtained

by Wager and Xu (2021), Fan and Glynn (2021), and Adusumilli (2022). Those papers, like ours, use local

parametrizations in the spirit of Hirano and Porter (2009) such that the the optimal treatment arm cannot

be perfectly determined in limit. Wager and Xu (2021) and Fan and Glynn (2021) obtain continuous-time

approximations for a number of specific bandit algorithms such as Thompson sampling, under specific

distributional assumptions for the original data. Adusumilli (2022) builds on these results to solve for

an approximately optimal continuous-time bandit algorithm, by obtaining a limiting notion of Bayes

1For general introductions to the modern literature on bandit problems, see Bubeck and Cesa-Bianchi (2012) and Lattimore
and Szepesvári (2020).
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risk. In contrast to these papers, which allow the arm allocations to change at every new observation,

we consider a batched setting where adjustments can only occur at a fixed, discrete set of times. How-

ever, we consider a wider range of underlying data-generating processes—essentially any parametric

specification satisfying local asymptotic normality. The model may have arm-specific parameters and

parameters shared across arms, and we do not require that the full parameter vector be point-identified

by the experiment. Furthermore, our representation covers the asymptotic distributions generated by

any adaptive allocation rules and any statistics calculated from the adaptively generated data, provided

that such limits exist under every local parameter. This includes dynamic rules that cannot be expressed

through single-prior Bayesian updating, so they may be used to study dynamic decision problems under

various “robust” criteria such as variational preferences.2

In the next section, we discuss some examples of sequential statistical decision problems in economics

and other fields, which are difficult to fully analyze except in special cases. These examples motivate

the large-sample distributional approximations that we will develop in this paper. We also briefly review

the classic limits of experiments theory for non-sequential decision problems. Section 3 then develops

extensions of the asymptotic representation theorem for locally asymptotically normal parametric statis-

tical models to sequential settings, where a finite number of decisions are made at different times based

on different subsets of the full sample of data. In this first set of results, the information sets available are

exogenous, in the sense that they are not influenced by prior choices made by the decision-maker. Sec-

tion 4 contains our most general result. It considers the case where choices made by the decision-maker

at one stage can affect what is observed in later stages, and other actions can be taken at every stage.

For this setup, we obtain an asymptotic representation through a limiting Gaussian bandit environment.

We illustrate how our “limit bandit” framework can be used for local asymptotic power analysis for data

obtained from batched bandit experiments.

2 Motivation and Background

We begin by introducing some stylized examples that motivate our approach and illustrate the poten-

tial scope of our projected results. We then briefly review the classical, nonsequential local asymptotic

2See Chamberlain (2020) for a survey of econometric applications of robust dynamic decision theory.
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analysis tools which we will build on and extend.

2.1 Examples of Sequential Problems

In the first example below, we consider a setting with exogenous, sequential arrival of data. The sec-

ond example illustrates the additional complications that can arise when the sampling design is chosen

adaptively as data arrives.

Example 1: Sequential Estimation, Forecasting, and Policy Choice

Consider a sequence of decisions that must be made on the basis of gradually arriving information.

For example, one may be interested in estimating a parameter, forecasting some quantity, or choosing

among some set of policies, with the opportunity to revise the choice as additional data observations be-

come available. Moreover, in empirical analysis of economic time series, it is common to base inference

on a restricted window of time periods, to avoid issues that could arise from model instability or struc-

tural breaks. There is a large literature in econometric time series on estimation, forecasting, and testing

using rolling and recursive windows, and on window selection. Many such problems can be cast as se-

quential decision problems, with multiple decision points that have corresponding information sets.

A simple example of such a problem is a sequential estimation problem with rolling or recursive win-

dows, and adjustment costs. Suppose we wish to estimate a scalar parameter θ on the basis of some ob-

servations t = 1, . . . ,T . We have windows {t 1, . . . , t 1}, {t 2, . . . , t 2}, . . . , {t K , . . . , t K } which may be overlapping,

with associated estimators S1,S2, . . . ,SK . Suppose that we measure the performance of the estimates by

compound squared error loss, with a penalty for adjustments. Then, in the case of K = 2, we can write

the loss function as

L(θ, s1, s2) = (s1 −θ)2 + (s2 −θ)2 + c(|s1 − s2|),

where c(·) is some (typically convex) cost function. In conventional single-stage estimation problems,

classic results establish the optimality of the maximum likelihood estimator of θ under standard regu-

larity conditions. To investigate optimality for the problem outlined here, an important first step is to

characterize the possible limiting distributions of estimators (S1,S2) in a way that reflects the informa-

tion structure inherent in the setup, while being simple enough to be tractable. Our representation the-

orem in Section 3 provides such a characterization, in a form that facilitates comparisons of the limiting
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distributions of estimators in terms of their asymptotic risk.

Example 2: Inference from Adaptive Randomized Trials

Adaptive randomized trials (as surveyed, for example, in Hu and Rosenberger 2006) and related sequen-

tial methods in statistics have a long intellectual history, but they have gained renewed attention recently

due to their increasing use in medicine, economics, education, and industry. In adaptive experiments,

the treatment randomization probabilities or other aspects of the data collection are modified after col-

lecting the results from initial batches or pilot experiments. These methods have a number of potential

benefits, including improving the precision of measuring certain effects and improving the overall allo-

cation of treatments to patients. The multi-armed bandit model is one framework for designing such

adaptive trials that has been the focus of recent theoretical and applied work, as discussed in Villar, Bow-

den, and Wason (2015).

Classic work on bandit algorithms, such as Lai and Robbins (1985), focus on their long-run allocation im-

plications, typically studied with tools from large-deviations analysis. Recent work on bandits includes

Perchet, Rigollet, Chassang, and Snowberg (2016), Kock and Thyrsgaard (2017), Kock, Preinerstorfer, and

Veliyev (2020), and Kasy and Sautmann (2021). From this perspective, bandit algorithms have consider-

able appeal. Batched bandits, which group observations into batches and revise treatment arm proba-

bilities batchwise, have been a particular focus of recent work due to their practical relevance for clinical

trials and other applications. However, bandits typically induce a type of sample selection that has im-

portant implications for estimation and inference using data from adaptive experiments. A number of

recent papers, including Villar, Bowden, and Wason (2015), Bowden and Trippa (2017), and Shin, Ram-

das, and Rinaldo (2021), point out that sample means and other conventional estimators and associated

tests do not have their usual distributions when applied to data from multi-armed bandits.

Under the null hypothesis that two (or more) treatments are equally effective, standard bandit algorithms

do not converge to deterministic allocations. As a result, conventional test statistics such as the t-test

have non-normal limiting distributions, rendering standard inference methods asymptotically invalid.

However, to date most work on large-sample theory in these problems has focused on large-deviations

analysis or pointwise asymptotic theory, and does not address uniform validity or local power properties

of inference procedures.

5



Zhang, Janson, and Murphy (2020), Hadad, Hirshberg, Zhan, Wager, and Athey (2021), and other au-

thors have proposed a number of alternative testing procedures to address this problem. Most of these

proposed tests reweight observations to counteract the sample selection effect induced by the adaptive

algorithm, thus restoring asymptotic normality under the null hypothesis. While such methods con-

trol asymptotic size, their power properties are not fully understood. Unlike the standard setting where

conventional tests can be shown to have certain optimality properties, little is known about the form of

optimal tests in this setting.

In order to study the power properties of tests in this problem, and to develop optimality results, we need

to characterize the set of feasible limiting power functions of tests under local alternatives. In Section 4,

we develop a novel limit experiment theory that fills in this theoretical gap. In particular, we derive a

local asymptotic power envelope for the problem and compare it to the asymptotic power curve of one

of the leading tests. We then discuss our proposed work to extend such results to more general adaptive

randomized trials and other sequential statistical problems.

2.2 Background: the Asymptotic Representation Theorem

A fundamental tool in asymptotic statistics is the Asymptotic Representation Theorem, which establishes

the approximation of statistical problems by simpler ones, often with a Gaussian form. Representation

theorems and their associated limit experiments were pioneered by Le Cam (1972), Hájek (1970), and

van der Vaart (1991), among others. They form the basis for many results about asymptotic efficiency of

estimators and asymptotic optimality of tests and confidence intervals.

An example of a standard asymptotic representation theorem is as follows. Suppose we have obser-

vations z1, . . . , zn that are i.i.d. from a parametric statistical model, with density p(z|θ) for θ ∈ Θ ⊂ Rm .

Suppose that the model satisfies a standard regularity condition known as differentiability in quadratic

mean (DQM, which we will define formally below in section 3). To analyze asymptotic efficiency, local

power, and asymptotic risk properties of statistical procedures, it is useful to consider their limiting dis-

tributions under alternative, nearby parameter values, rather than at a single fixed parameter value. To

do this, we use local parameter sequences: let θ0 ∈Θ be fixed, and consider alternatives of the form

θn(h) = θ0 + hp
n

, h ∈Rm .
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For example, the maximum likelihood estimator typically can be shown to satisfy

p
n(θ̂−θn(h))

d→ N (0, J−1
0 ),

where the convergence is with respect to the sequence of local parameters θn(h), and J0 is the Fisher

information at θ0.

With this setup, the Asymptotic Representation Theorem characterizes the possible limit distributions of

procedures in the model of interest. The following textbook version of the theorem illustrates the form

of such representations, under a standard smoothness condition given in the next section:

Theorem 0. (Based on van der Vaart, 1998, Theorem 7.10)

Suppose Assumption 1 holds. Let Sn be a sequence of real-valued statistics that possess limit distributions

Lh under every h. Then there exist random variables Z ∼ N (h, J−1
0 ) and U ∼ Unif[0,1] independent of Z ,

and a function T (Z ,U ), such that T (Z ,U ) ∼Lh for every h.

This result indicates that the simple shifted normal model N (h, J−1
0 ) serves as a canonical model, in the

sense that any procedure can be matched asymptotically by a procedure in the normal model. By analyz-

ing this Gaussian “limit experiment,” we can derive performance bounds on the asymptotic properties

of procedures in the original problem, and in some cases we can directly deduce the form of optimal

procedures.

Local asymptotic representation theorems have been developed for many other problems, including in-

finite dimensional models (e.g. van der Vaart, 1991), nonstationary times series (e.g. Jeganathan, 1995),

and nonregular models with parameter-dependent support (e.g. Hirano and Porter, 2003). They have

been used to study inference with weak identification, as in Cattaneo, Crump, and Jansson (2012), Hi-

rano and Porter (2015), Andrews and Armstrong (2017), and Andrews and Mikusheva (2022), and infer-

ence on nonsmooth parameters in partially identified settings, such as Hirano and Porter (2012), Fang

and Santos (2019), and Fang (2016). Local asymptotic methods have also featured in recent work on

sensitivity and robustness, for example in Hansen (2016), Andrews, Gentzkow, and Shapiro (2017), Bon-

homme and Weidner (2022), Christensen and Connault (2019), and Armstrong and Kolesár (2021). For

a more extensive discussion of econometric applications of this type of asymptotic approximation, see

Hirano and Porter (2020).
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However, most of the existing results of this type only apply to single-stage statistical decision problems,

in which the data analyst has access to a complete data set and chooses an action once. With the excep-

tion of results in Le Cam (1986, chap. 13) for a class of optimal stopping problems, limit experiment the-

ory for sequential statistical decision problems is relatively underdeveloped. In the next section, we first

extend the classical Asymptotic Representation Theorem for LAN models to multistage decision prob-

lems with fixed information sets. Then we consider further extensions that allow for adaptive choice of

treatment arm allocations.

3 Asymptotic Representation Theorem with Information Sets

In this section we consider statistical decision problems where there are multiple decision nodes with

different information sets. As we will be taking limits as the sample size increases, we need to model this

information structure in a way that accomodates asymptotic analysis. We do so by mapping the observa-

tion index i = 1, . . . ,n to the interval [0,1], and defining information sets to be subsets of the unit interval.

This infill asymptotic scheme is often used in time series analysis. Here, we do not necessarily have to

interpret the data as time series; they could correspond to different batches in a clinical trial, different

subpopulations in a survey, or as sample “splits” used by certain estimators and inference procedures.

To be concrete, suppose we observe data zi for i = 1, . . . ,n and a pair of real-valued decisions Sn =
(S1,n ,S2,n), with the following information structure. For k = 1,2, let Ik be a subset of the unit inter-

val. The statistic Sk,n uses observations i that satisfy i
n ∈ Ik . So, for example, if I1 = [0, 1

2 ], then S1,n uses

observations i = 1, . . . ,⌊n
2 ⌋. The information sets may be partially overlapping. For example, if there are

two decisions to be made, one after seeing the first half of the data and one made after seeing all of the

data, then we can set I1 = [0, 1
2 ] and I2 = [0,1]. We will be taking limits as n →∞, so that the number of

observations associated with each information set will generally be increasing.

We can decompose I1 ∪ I2 into three disjoint sets:

N1 = I1 ∩ I c
2 , N2 = I2 ∩ I c

1 , N12 = I1 ∩ I2.

Suppose that
#{ i

n ∈N1}
n −→λ1 > 0, and similarly for λ2 and λ12. (Allowing any of λ1, λ2 or λ12 to be zero just

leads to simpler forms of the following results by omitting the corresponding terms from the statements.)
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As before, let zi be i.i.d. with density p(z|θ) for θ ∈ Θ ⊂ Rm . Let θ0 ∈ int(Θ) and suppose that p(z|θ)

satisfies the DQM condition at θ0 with nonsingular Fisher information:

Assumption 1. (a) Differentiability in quadratic mean (DQM): there exists a function s : Z → Rm , the

score function, such that

∫ [
dP 1/2

θ0+h(z)−dP 1/2
θ0

(z)− 1

2
h′ · s(z)dP 1/2

θ0
(z)

]2

= o(∥h∥2) as h → 0;

(b) The Fisher information matrix J0 = Eθ0 [ss′] is nonsingular.

This is a standard condition used to show asymptotic normality of estimators like the maximum likeli-

hood estimator, and more generally to establish the local asymptotic normality (LAN) property.

As in the previous section, we will consider limiting distributions under local sequences of parameters

θn(h) = θ0 + hp
n

, h ∈Rm . (1)

Suppose that, for all h ∈Rm , the vector of statistics Sn converges:

Sn =

S1,n

S2,n

 h
⇝Lh , (2)

where
h
⇝ indicates weak convergence (convergence in distribution) under the sequence of local param-

eters θn(h) as n →∞.

Our first result shows that the classic Asymptotic Representation Theorem can be extended to this setting

with two decision nodes:

Theorem 1. Suppose Assumption 1 holds and the vector Sn = (S1,n ,S2,n) has limit distributions as in

Equation (2). Then we can define random variables


Z1

Z2

Z12

∼ N




h

h

h

 ,


(λ1 J0)−1 0

(λ2 J0)−1

0 (λ12 J0)−1



 ,
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and U ∼ Unif[0,1] independent of Z = (Z1, Z2, Z12), and a vector of functions

T =

T1(Z1, Z12,U )

T2(Z2, Z12,U )


such that, for every h ∈Rm ,

T ∼Lh .

This representation, like the standard version in Theorem 0, shows that essentially any procedure in the

problem of interest is asymptotically equivalent to a procedure in a certain Gaussian limit experiment.

Here, the limit experiment inherits its variance structure from the information structure in the original

problem in a natural way. This in turn will allow us to maintain the informational restrictions on the pro-

cedures Sn when developing large-sample performance bounds and optimality results. The theorem is

not only useful for analyzing estimators and test statistics; it applies more generally to any (real-valued)

action spaces, such as hypothesis tests, point forecasts, multi-stage policy choices, or allocation deci-

sions.

To prove Theorem 1, we extend existing proofs of the Asymptotic Representation Theorem. We work

with likelihood ratio processes, but decompose the likelihood ratios into independent components as-

sociated with the information partition (N1, N2, N12). To construct the matching statistics T1,T2, we need

to show that there exist valid representations that also respect the informational structure. This is com-

plicated by the possibility of partial overlap in the original sets I1, I2, and we accomplish this by employ-

ing a multivariate conditional quantile representation developed recently by Carlier, Chernozhukov, and

Galichon (2016, Theorem 2.1).

The preceding results extend fairly directly to the case where there are any finite number of information

sets. The notation can become cumbersome, but in the case where the information sets are sequentially

nested, the result can be expressed in a slightly more compact manner as follows.

Corollary 2. Let {t1, t2, . . . , tD } satisfy 0 < t1 < t2 < ·· · < tD ≤ 1, and let the information sets be Id = [0, td ].
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Suppose that the statistics Sn(td ) are adapted to Id and suppose that, for every h ∈Rm :


Sn(t1)

...

Sn(tD )

⇝Lh .

Let

W (t ) = th + J−1/2
0 B(t ), t ∈ [0,1],

where B(t ) is an m-dimensional standard Brownian motion, and let U ∼ Unif[0,1], independently of W (·).

Then there is a collection of functions T1, . . . ,TD such that, for all h,



T1(W (t1),U )

T2(W (t1),W (t2),U )
...

TD (W (t1), . . . ,W (tD ),U )


∼Lh .

Alternatively, let

V (t ) = B(t )− t

tm
B(tm), 0 ≤ t ≤ tm ,

for B(t ) in the construction of W (t ). Then there is a collection of functions T̃1, . . . , T̃D such that for every h,



T̃1(W (t1),U )

T̃2(W (t2),V (t1),V (t2),U )
...

T̃D−1(W (tD−1),V (t1), . . . ,V (tD−1),U )

T̃D (W (tD ),V (t1),V (t2), . . . ,V (tD−1),U )


∼Lh .

Remark: The process V (t ) defined in the statement of the Corollary is a standard Brownian bridge. It

does not depend on h, and is independent of W (tD ). However, W (t ) and V (t ) are dependent for t < tD ,

and their inclusion in the functions T̃d suffices to preserve the joint dependence structure in the laws

Lh . A related construction was used in Hirano and Wright (2017).
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3.1 Example

As a simple illustration of Theorem 1, suppose we divide the sample into two halves

I1 = [0,0.5], I2 = (0.5,1].

The data follow a parametric model with scalar parameter θ ∈Θ⊂R satisfying Assumption 1 with Fisher

information J0. We are interested in producing point estimates of θ based on the two subsamples. Let

the estimators corresponding to information sets I1 and I2 be θ̂1,n and θ̂2,n .

We fix θ0 ∈ int(Θ) and consider the limiting distributions of procedures under local parameter sequences

θ0 +h/
p

n. The objects S1,n and S2,n in Theorem 1 are mappings from data to some action space. They

cannot use knowledge of h, but they can involve the centering θ0, and to apply the Theorem we require

that the vector (S1,n ,S2,n) has limits under every h. A natural choice are the normalized estimators

S1,n =p
n

(
θ̂1,n −θ0

)
S2,n =p

n
(
θ̂2,n −θ0

)

For example if θ̂1,n and θ̂2,n are the maximum likelihood estimators based on information sets I1 and I2,

then under conventional regularity conditions we will have

S1,n

S2,n

 h
⇝N


h

h

 ,

2J−1
0 0

0 2J−1
0


 .

In this case, the subsample MLEs normalized in this way are asymptotically matched by the statistics

T1(Z1) = Z1, T2(Z2) = Z2,

where Z1, Z2 are the normal variables in the limit experiment experiment in Theorem 1. The estimators

T1,T2 have a number of optimality properties. For example, in the problem of estimating h based only

on Z1, the estimator T1 = Z1 is minimum variance unbiased and minmax for squared error loss. Theo-

rem 1 implies that the subsample MLE θ̂1,n can be asserted to have the corresponding local asymptotic

optimality properties.
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We can compare this with the representation that arises from the conventional asymptotic representa-

tion. In Theorem 0, the limit experiment is a single normal Z ∼ N (h, J−1
0 ). The estimator θ̂1,n , or more

precisely, the statistic S1,n , can be represented by

T̃1(Z ,U ) = Z + g (U ) ∼ N (h,2J−1
0 ),

where U is an independent standard uniform and g (·) transforms it into a N (0, J−1
0 ) random variable.

Here U can be intepreted as the information lost by restricting θ̂1,n to only use the first half of the sample.

While Theorem 0 could be applied to our example, it does not incorporate the informational constraints

on the estimators. This can lead to lower bounds that are not informative. For example, in the limit

experiment Z ∼ N (h, J−1
0 ), the estimator T (Z ) = Z is unbiased and has variance J−1

0 , but under the in-

formational constraint that an estimator uses only a subset I1 (or I2) of the data, this variance cannot be

attained.

4 Asymptotic Representations for Adaptive Experiments and Batched Ban-

dits

The results in Section 3 cover cases where the information sets are fixed, in the sense that they do not

depend on the unknown parameters, nor on the realization of the data. While this can apply to a number

of interesting applications, including sequential estimation and forecasting problems, and some multi-

stage policy and treatment assignment problems, it does not directly handle settings where sampling

may be adapted in light of current data, and other situations where there is feedback from initial actions

of the decision-maker to later revelation of information. Specifically, in adaptive batched randomized

experiments, results from earlier batches are used to determine the experimental allocations in later

batches. This makes the information from later batches random, and endogenous with respect to the

overall experimental frame.

In this section, we develop a new asymptotic representation for adaptive experiments. Our setup covers

group-sequential randomized experiments, where treatment arm probabilities can be modified in later

waves based on realized data from earlier waves. Such settings are also called multi-armed batched ban-
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dits. The setup can handle settings with more than two arms, and where parameters and even the form of

the data may be batch- and arm-specific. We provide an asymptotic representation for a joint collection

of statistical decision rules applied at various stages of the experiment, and the choice of the adaptive

treatment assignment rules which affect the information gained from later batches. In this representa-

tion, a limiting Gaussian bandit environment concisely expresses all attainable limit distributions from

any choice of statistics and dynamic allocation rules that satisfy certain convergence conditions.

4.1 Intuition in a Single-Armed Bandit Setting

In this subsection we give a heuristic overview of our main findings in a simplified setting, with only a

single treatment arm and two batches or waves. We will give a formal result, in a more general setting,

in the next subsection. Focusing on a simpler case will let us preview the main result and highlight key

steps in its proof with somewhat simpler notation.

There will be two batches of data, b = 1,2. Let the observations from batch b be denoted zb,i , where

zb,i are i.i.d. across batches and across individuals with density pθ(z) and support Z , where θ is the

parameter. In batch 1, we observe n observations: z1,1, . . . , z1,n . After observing the batch 1 data, we can

choose the size of batch 2 as

n2 = ⌊nλ⌋, λ ∈ [0, λ̄],

where 0 < λ̄<∞. Note that λ= 1 implies that n2 = n, in which case the batches would be of equal size.

The decision ruleΛn maps the batch 1 data into a choice for λ:

Λn : Z n → [
0, λ̄

]
.

Then, the data for batch 2 are realized with (random) sample size Λn , and a real-valued statistic S2,n is

calculated using both batches of data. The statistic S2,n could be a test statistic, for example, or a point

estimator of the parameter θ.

Our goal is to characterize the attainable limit distributions for the pair (Λn ,S2,n). This is complicated by

the fact that the sample size of batch 2 is random and depends on batch 1. One immediate implication

is that the statistic S2,n must in fact be a collection of statistics indexed by the batch 2 sample size. We

14



express this through a stochatic process notation:

S̃2,n(λ) : Z n ×Z ⌊nλ⌋ →R, λ ∈ [0, λ̄].

Here S̃2,n(λ) indicates the statistical decision rule to be applied if the second-batch sample size is ⌊nλ⌋.

This notation suppresses the inputs z1,1, . . . of the function S̃2,n(λ)(z1,1, . . .). The “realized” end-of-sample

statistic is the randomly stopped process S2,n = S̃2,n(Λn).

Our goal is to characterize the possible limiting distributions of bothΛn and S2,n . As in Section 3, we will

consider weak limits under local parameter sequences θn(h) = θ0 +h/
p

n, and assume that the underly-

ing statistical model satisfies the differentiability in quadratic mean (DQM) condition with nonsingular

Fisher information matrix J . Suppose that the pair of decision rules converges jointly under every value

of h: (
Λn ,S2,n

) h
⇝ (Λ,S2) .

The task is to find a parsimonious specification of a data environment, and a pair of decision rules

adapted to that environment whose distributions match those of (Λ,S2) under every h.

It will be useful to work with the likelihood ratio processes for the data under θn(h) vs. θ0. For batch 1,

the likelihood ratio process takes the usual form

ℓ1,n(h) =
n∏

i=1

pθn (h)(z1,i )

pθ0 (z1,i )
.

For batch 2, it will again be convenient to introduce a process notation with respect to λ:

ℓ2,n(h,λ) =
⌊nλ⌋∏
i=1

pθn (h)(z2,i )

pθ0 (z2,i )
.

Under θ0, a standard argument shows that the pair of likelihood ratio processes converges jointly under

θ0: for every h,

{
ℓ1,n(h),ℓ2,n(h, ·)} θ0⇝

{
exp

(
h′∆1 − 1

2
h′ Jh

)
,exp

(
h′∆2(·)− (·)

2
h′ Jh

)}
,

where ∆1 ∼ N (0, J ), and ∆2(·) is a Gaussian process independent of ∆1, where ∆2(·) has independent
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increments with ∆2(λ) ∼ N (0,λJ ). In particular, ∆2(λ̄) corresponds to the limiting likelihood ratio for

batch 2 in the case where all of the potential data are realized. The limits of the likelihood ratios can be

shown to match the likelihood ratios that would obtain in the statistical model of observing a single draw

for a shifted multivariate normal Z1 ∼ N (h, J−1), and a single realization of the shifted Gaussian process

W2(λ) =λh + J−1B(λ), where B(λ) is a k-dimensional standard Brownian motion independent of Z1.

The full likelihood ratio ℓ2,n(h, λ̄) for batch 2, and its limiting counterpart above, corresponds to a latent,

maximally informative potential data set. Depending on the form of Λn , the tail portion of this process

may be discarded, but working with the likelihood ratios in this form allows us to handle any choice for

Λn and apply asymptotic change-of-measures arguments to obtain limiting distributions under alterna-

tive local parameters.

Next we construct representations for the limits ofΛn and S2,n . Under θ0 we have joint weak convergence

(
Λn ,S2,n

) θ0⇝
(
Λ0,S0

2

)
,

where we use the “0” superscript to highlight that the limits are under h = 0. To represent Λn , we expect

that its limit distribution will be independent of the second batch, so we consider its conditional distri-

bution given only ∆1. Let qΛ0 (u|δ1) be the u-conditional quantile of Λ0 given ∆1 = δ1, where u ∈ [0,1].

Let U1 ∼ Unif[0,1] independently of ∆1, and let QΛ0 = qΛ0 (U1|∆1). Then

(QΛ0 ,∆1) ∼ (Λ0,∆1),

so we have constructed a statistic that matches Λ0. This step mirrors the argument used in Theorem 1

for fixed information sets.

Matching the limit of S2,n is more delicate, because it is restricted to use only the observed portion of

the potential data in batch 2, which in turn depends on the realization of Λn . In the limit, the likelihood

ratio associated with the realized data in batch 2 corresponds to a randomly stopped portion of the pro-

cess ∆2(·), with stopping time Λ0. We represent S2,n by taking the conditional distribution of S0
2 given

∆1, ∆2(Λ0), and Λ0. Using qS0
2
(u|·) to denote the quantile function of this conditional distribution, we

construct

QS0
2
(U2|∆1,∆2(QΛ0 ),QΛ0 ),
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where U2 is another independent standard uniform random variable. Due to the various conditional

independencies (for example, of the increments of ∆2(·)), this can be shown to give a suitable represen-

tation, in the sense that (
∆1,∆2(λ̄),QΛ0 ,QS0

2

)
∼ (
∆1,∆2(λ̄),Λ0,S0

2

)
.

At this point, we have constructed a representation of the limit of Λn and S2,n with the desired form

under h = 0. The representation is constructed jointly with the full potential likelihood ratios for the two

batches, which is key for the remainder of the argument.

The final step is to show that the same construction matches the limit distributions under alternative

local parameter values, when we change ∆1 and ∆2 to their shifted counterparts Z1 and W2 in the con-

structions of QΛ0 and QS0
2
. To do this, we can appeal to Le Cam’s third lemma (van der Vaart, 1998, The-

orem 6.6), which provides an asymptotic change-of-measures formula to obtain the limit distributions

under local alternatives. The formula uses the limits of the likelihood ratios, which depend on ∆1 and

∆2. However, the realized likelihood ratio for batch 2 will depend on the ruleΛn , whose limit distribution

will change if we vary h. As a result, it is difficult to directly apply Le Cam’s third lemma in this adaptive

sampling setting. Instead, we use the full or potential likelihood ratio∆2(λ̄). This has a well defined limit

under every h that does not depend on the choice of the adaptive rule Λn . Moreover, the statistics QΛ0

and QS0
2

were constructed relative to the full potential likelihood ratios. This device allows us to apply Le

Cam’s third lemma, and with some work, verify that our constructions do indeed have the correct limit

distributions under every value of the local parameter.

This sketch of an argument has resulted in the following representations for the decision rules. First,

for Λn , its limits correspond to a statistic TΛ(Z1,U1) = qΛ0 (U1|Z1), where Z1 ∼ N (h, J−1) and U1 is an

independent uniform random variable. Next, the limit of S2,n , can be represented as a function of Z1,

TΛ, another independent uniform, and the stopped process W2(TΛ). This stopped process is equivalent

to observing a normal with mean h and variance J−1/TΛ. We can therefore represent the limit of S2,n

alternatively as a function of Z1, Z2,U1,U2, where Z2 ∼ N (h, J−1/TΛ). The dependence of Z2 on the rule

Λmakes this representation somewhat more complex than the usual form of a limit experiment, such as

those we have expressed in Section 3.3 Here, Z1 has a fixed distribution (for every h), but the distribution

3However, Theorem 1 is not a special case of Theorem 3 below, because the earlier theorem also accomodates cases where
the information sets of statistics are partially overlapping rather than sequentially nested.
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of Z2 will depend onΛ. This interaction between the decision rule and the data is a special case of a ban-

dit environment, so we can view this result as providing a “limiting bandit” rather than a conventional

limit experiment.

4.2 Multi-armed Batched Bandits

Building on the intuition above, we now consider multi-armed batched bandit settings where, at each

stage, the decision-maker can choose the arm probabilities for the next stage, and carry out other statis-

tical inferences based on the data realized from all prior batches. We will allow the form and underlying

distributions of the data to vary across batches, although an important special case is the standard sta-

tionary bandit in which the potential outcome distributions remain the same over time.

We assume there are K treatment arms denoted k = 0, . . . ,K −1, and B batches b = 1, . . . ,B . Here B and K

are both finite and fixed in advance, but we can allow the adaptive sampling scheme to eventually rule

out certain arms or stop sampling early.

In every batch b and observation index i there are potential outcomes zb,i (k), which are random vari-

ables over i with marginal densities p(b)
θ,k (·) on some support Z (b)

k . We allow the distributions, and the

supports of the variables, to differ across batches. The parameter θ is a joint parameter of dimension m,

characterizing all of the batch/arm distributions. In addition to the usual potential outcomes, we can

handle covariates within this setup by defining, for example, zb,i (k) = (yb,i (k), xb,i ) where xb,i are covari-

ates that are not “affected” by the choice of treatment arm. The variables contained in xb,i could also

differ across batches. We assume that the variables zb,i (0), . . . , zb,i (K −1) are independent across batches

b and individuals i while allowing for arbitrary dependence across arms. With this setup and at most

one observed arm for each observation, the sampling distributions of any decision rules, and the real-

ized likelihood functions, only depend on the marginal distributions of the potential outcomes specified

by the densities p(b)
θ,k (·).

Batch b = 1 has sample size n. The relative number of observations from each arm in batch 1 are deter-

mined by λ1 = (λ1,0, . . . ,λ1,K ) where 0 = λ1,0 ≤ λ1,1 ≤ ·· · ≤ λ1,K−1 ≤ λ1,K = 1, with the interpretation that

observations ⌊nλ1,k⌋+1, . . . ,⌊nλ1,k+1⌋ are assigned to arm k. The allocation λ1 to the arms in batch b = 1

is treated as fixed (nonstochastic).
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Figure 1: Setup and Notation for Batched Bandits

Batch

1
λ1,0 = 0 λ1,2 λ1,3 1

sample size narm 1 arm 2 arm 3

Λ2,n S1,n

2 arm 1 arm 2 arm 3

λ2,0 = 0 λ2,1 λ2,2 λ2,3 λ̄2

Λ3,n S2,n

For batches b = 2, . . . ,B , let 0 < λ̄b <∞ be fixed numbers representing the maximal sample size in batch b

relative to batch 1. For notational convenience, also define λ̄1 = 1. The number of observations (relative

to n) from each arm are determined by λb = (λb,0, . . . ,λb,K ), where

0 =λb,0 ≤λb,1 ≤ ·· · ≤λb,K ≤ λ̄b .

The statistical decision rule will include the choices of arm sizes in batches 2, . . . ,B based on prior realized

data. For each b ∈ {2, . . . ,B}, let

Λ̃b,n (λ1,λ2, . . . ,λb−1)

be a collection of mappings from data (whose domain depends on prior batch/arm sizes λ1, . . . ,λb−1) to

vectors of the form λb . Then the realized batch/arm sizes will be determined recursively through

Λb,n = Λ̃b,n
(
λ1,Λ2,n , . . . ,Λb−1,n

)
.

After each batch is realized, we may also take some other action that depends on data up to that batch.

For b = 1, . . . ,B , let

Sb,n = S̃b,n
(
λ1,Λ2,n , . . . ,Λb,n

)
,

where, as before, S̃b,n represents a collection of functions for each possible set of prior batch/arm sizes,
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indexed by λ1, . . . ,λb . Figure 1 summarizes the notation and the relationships between different compo-

nents of this sequential decision rule. The full collection of sequential decision rules is given by

(
S1,n ,Λ2,n ,S2,n , . . . ,ΛB ,n ,SB ,n

)
.

In the statement of the theorem below, we assume that the underlying parametric models corresponding

to the p(b)
θ,k satisfy differentiability in quadratic mean, as in Assumption 1(a). However, we do not require

their Fisher information matrices J (b)
k to be invertible. We also use the convention that N (0,0) is a point

mass at zero.

Theorem 3. Suppose that Assumption 1(a) (DQM) holds for each p(b)
θ,k at θ0 with Fisher information J (b)

k .

Suppose that, for every h ∈Rm , we have joint weak convergence under θn(h) = θ0 +h/
p

n:

(
S1,n ,Λ2,n ,S2,n , . . . ,ΛB ,n ,SB ,n

) h
⇝ (S1,Λ2,S2, . . . ,ΛB ,SB ) .

Then there exist statistics TS1 ,TΛ2 ,TS2 , . . . ,TΛB ,TSB and random variables Zb = (
Zb,0, . . . , Zb,K−1

)
for b =

1, . . . ,B and U , where:

1. Z1,0, . . . , Z1,K−1 and U are independent with U ∼ Unif[0,1] and

Z1,k ∼ N
(
(λ1,k+1 −λ1,k )J (1)

k h, (λ1,k+1 −λ1,k )J (1)
k

)
.

The statistics TS1 (Z1,U ) and TΛ2 (Z1,U ) are based on the realizations of Z1 and U .

2. For b = 2, . . . ,B, the variables Zb and statistics TSb , TΛb+1 are generated as follows. The distribution

of Zb conditional on Z1, . . . , Zb−1,U , has conditionally independent components

Zb,k | Z1, . . . , Zb−1,U ∼ N
(
(λb,k+1 −λb,k )J (b)

k h, (λb,k+1 −λb,k )J (b)
k

)
,

where (
λb,0, . . . ,λb,K

)= TΛb (Z1, . . . , Zb−1,U ).

The statistics TSb and TΛb+1 (the latter defined only for b = 2, . . . ,B −1) are functions of variables up
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to stage b:

TSb (Z1, . . . , Zb ,U ) , TΛb+1 (Z1, . . . , Zb ,U ) .

The statistics TS1 ,TΛ2 , . . . , in conjunction with this recursive specification for the Z1, . . . , ZB , and U , have

the property that (
TS1 ,TΛ2 ,TS2 , . . . ,TΛB ,TSB

) d= (S1,Λ2,S2, . . . ,ΛB ,SB ) ,

where the equality in distribution holds for every value of h.

Remarks on the Theorem:

At each stage b = 2, . . . ,B , the conditional distribution of the Zb,k depend on TΛb , which in turn depends

on the realizations of the variables in prior batches. This captures the interacting structure of the original

problem, where the rules for adaptively modifying the treatment arm probabilities affects the informa-

tion gained in later stages. The resulting data will be nonstationary in a manner that is determined by the

choice of the allocation rules. The representation given in the theorem has the form of a B-horizon Gaus-

sian bandit environment, where the Gaussian observations have a specific shift form reflecting the local

parameter h and the asymptotic form of the allocation rule. Any decision rules (including the dynamic

rules for selecting treatment probabilities) in the original batched problem that satisfies the convergence

conditions can be represented by some choice of statistics TS1 ,TΛ2 , . . . in this limiting environment.

The matrices J (b)
k , which are Fisher information matrices relative to the full parameter vector θ at the

value θ0, are not required to be invertible in the theorem. This is useful for handling cases where some

components of θ correspond to specific treatment arms (so that observations from a different arm may

not be informative about that sub-component of θ). There may also be some components of θ that are

common across arms, and some components of θ could be nonidentified even with data on all the arms.

The theorem also allows arms to be adaptively assigned zero weight (leading to λb,k+1 −λb,k = 0), and

allows for decision rules that can adaptively stop the experiment early (leading to zero weights for all

arms in later batches). Handling these different possible settings, with possibly different distributions

across both arms and batches, leads to a somewhat complicated notation. In the next subsection, we

show how the result can be specialized to a simpler and more intuitive form for the canonical multi-

armed bandit setting, where each arm has its own sub-parameter.
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4.3 Representation for a Simple Adaptive Experiment

We now illustrate how Theorem 3 can be applied to the baseline case of an adaptive randomized experi-

ment with two treatments arms (treatment vs. control, with K = 2) and two stages (B = 2). Suppose that

the joint parameter θ is separable into arm-specific parameters: θ = (
β′

0,β′
1

)′, where θ ∈Θ=B×B, with

B ⊂Rdβ . Then the local parameter sequences can be written as

θn(h) = θ0 + hp
n
=

β0,0

β0,1

+ 1p
n

h0

h1

 .

Suppose that the average treatment effect τ= AT E depends on the parameters as follows:

τ(θ) = Eθ
[
zb,i (1)− zb,i (0)

]
= Eθ

[
zb,i (1)

]−Eθ
[
zb,i (0)

]
= g (β1)− g (β0).

Assume that θ0 is such that τ(θ0) = g (β0,1)− g (β0,0) = 0, and that g is differentiable with total derivative

ġ so that

τ(θ0 +h/
p

n) ≈ 1p
n

(ġ (β1)′h1 − ġ (β0)′h0) = 1p
n

ġ ′(h1 −h0),

where we assume ġ (β1) = ġ (β0) and use ġ to denote this quantity.

Suppose that each batch has equal size, i.e. λ̄b = 1 for b = 1,2. In the first batch, assume that an equal

number of treated and controls are selected: λ1,1 = 0.5. The treatment allocation in batch 2,Λ2,n , can be

completely characterized by the fraction of controls, so we make the notational simplification that

λ2,1 =Λ2,n .

For k = 0,1, letΣk be the Fisher information matrix for parameterβk atβ0,k based on observations zb,i (k),

assumed i.i.d. within and across batches.

Then, after reducing some of the variables by sufficiency, the limiting bandit environment of Theorem 3
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can be expressed in the following, more intuitive form. At each stage b = 1,2, we observe

Zb =

Zb,0

Zb,1

 | h, Z1, . . . , Zb−1 ∼ N


h0

h1

 ,

 1
λb,1
Σ−1

0 0

0 1
1−λb,1

Σ−1
1


 ,

where λ1,1 = 0.5 and λ2,1 = Λ2(Z1), where Λ2(·) is the limiting representation of the second-stage treat-

ment allocation rule.

The variables Zb,0 and Zb,1 are shifted Gaussians, with means h0 and h1 (the local parameters associated

with arms 0 and 1), and variance scaled by the relative sampling proportions (propensity scores) of the

two arms in that batch. Thus, the asymptotic representation reduces the problem to a two-stage bandit

with a pair of Gaussian observations at each stage. The choice of the adaptive treatment assignment

rules then induces a variance-mixture structure on the two observations in the second stage.

For example, if we employ a Thompson sampling algorithm, the rules Λb,n are determined by calculat-

ing the posterior probability that treatment 0 is better than treatment 1. (Recall that in our notation,

λb,1 = Λb,n is the fraction of individuals in batch b assigned to treatment arm 0.) Under local asymp-

totic normality of the underlying parametric model, and mild conditions on the initial prior for θ, the

posterior after observing the data in batch 1 will be asymptotically equivalent to the posterior in a mul-

tivariate normal model under a flat prior over the local parameter space by the Bernstein-von Mises

theorem. Therefore, in the limit we will have the posterior

h | Z1 ∼ N


Z1,0

Z1,1

 ,

2Σ−1
0 0

0 2Σ−1
1


 .

(The factor of 2 in the variances reflects the fact that there are n/2 controls and n/2 treated observations

in Batch 1.) The limiting version of Thompson sampling rule for batch 2 is then:

Λ2(Z1) = Pr
(
ġ ′h1 < ġ ′h0 | Z1

)=Φ
 ġ ′(Z1,0 −Z1,1)√

2ġ ′(Σ−1
0 +Σ−1

1 )ġ

 ,
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leading to the second stage observation being distributed as

Z2 | h, Z1 ∼ N


h0

h1

 ,

 1
Λ2(Z1)Σ

−1
0 0

0 1
1−Λ2(Z1)Σ

−1
1


 .

If there are additional batches beyond the second, then, for example, the posterior for h after batch 2

would be further updated using the multivariate normal updating rule to determine Λ3, leading to a

scale-mixture form for the variable Z3.

Given a specific adaptive treatment rule, such as the Thompson sampling rule we have illustrated, The-

orem 3 yields the conclusion that any statistical procedure that uses the data generated by the two-stage

experiment, if it has limits, must be asymptotically matched by some rule of the form T2(Z1, Z2,U ) where

the (Z1, Z2) have the normal distributions above, for every local parameter value. However, the theorem

also allows us to characterize the joint choice of adaptive treatment rule and any statistical procedures

based on the realized data: any adaptive treatment rule with limits must be matched by some rule of the

formΛ2(Z1,U ) which in turn generates the Z2 used by the limiting statistic T2(Z1, Z2,U ).

4.4 Application: Asymptotic Power Envelopes for Batched Thompson Sampling

In this subsection, we illustrate how the asymptotic representation can be used to study power properties

of hypothesis tests. To keep the notation and analysis simple, we retain the simple two-arm, two-batch

setup of Section 4.3, and further specialize it to the case where the local parameters h0 and h1 are scalar,

with the average treatment effect being defined as τ= h1 −h0. We also assume that both batches are of

equal size n. Then we can represent the data from the first batch by a bivariate Gaussian vector

Z1 =

Z1,0

Z1,1

∼ N


h0

h1

 ,

2σ2
0 0

0 2σ2
1


 ,

where we have written σ2
j = Σ−1

j for notational simplicity. The Thompson sampling rule for the second

batch is given by:

Λ2(Z1) =Φ

 Z1,0 −Z1,1√
2(σ2

0 +σ2
1)

 .
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Conditional on the first batch, the second batch is represented by:

Z2 =

Z2,0

Z2,1

 | Z1 = z1 ∼ N


h0

h1

 ,

σ2
0/Λ2(z1) 0

0 σ2
1/(1−Λ2(z1))


 .

We are interested in testing the null hypothesis H0 : τ= h1−h0 = 0, taking the adaptive treatment ruleΛ2

as fixed. Suppose that the researcher pools the data from both batches and takes a difference in means

between treated and control observations. The asymptotic analog of the pooled difference-in-means

within our Gaussian bandit environment can be written as

T̂ =
1
2 Z1,1 + (1−Λ2) Z2,1(1

2 + (1−Λ2)
) −

1
2 Z1,0 +Λ2Z2,0(1

2 +Λ2
) ,

where Λ2 =Λ2(Z1). Importantly, due to the randomness in the arm probabilities for batch 2 induced by

the Thompson sampling rule, the null sampling distribution of T̂ will not be normal. Further discus-

sion and intuition for the nonstandard limiting distribution of the naive difference estimator are given in

Hadad, Hirshberg, Zhan, Wager, and Athey (2021) and Zhang, Janson, and Murphy (2020). Those papers

propose alternative testing procedures whose null distributions are asymptotically standard normal, so

that conventional critical values can be used to obtain valid inference. While these new tests control

asymptotic size, it is not clear to what extent these modified procedures sacrifice power to obtain a sim-

ple null distribution.

To investigate power, we consider the test proposed by Zhang, Janson, and Murphy (2020). The basic

idea underlying their approach is to work with the statistics

W1 = Z1,1 −Z1,0, W2 = Z2,1 −Z2,0.

Under the null hypothesis, W1 is normally distributed with zero mean and variance V (W1) = 2(σ2
0 +σ2

1),

while the conditional distribution of W2 given W1 is normal with mean zero and conditional variance

V (W2|Z1) = σ2
0

Λ2(Z1)
+ σ2

1

1−Λ2(Z1)
.
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As a result, the test statistic

ZJM =

 W1√
2(σ2

0 +σ2
1)

+ W2√
σ2

0
Λ2(Z1) +

σ2
1

1−Λ2(Z1)

/p
2,

which is the limiting representation of Zhang, Janson, and Murphy (2020)’s test, has a standard normal

distribution under the null hypothesis.

Note that ZJM depends on the data only through W1 = Z1,1 − Z1,0 and W2 = Z2,1 − Z2,0.4 As a result, the

distribution of ZJM (and hence its power) under general alternatives (h0,h1) only depends on τ= h1−h0.

We can numerically evaluate the power of ZJM (using simulation or numerical integration) and plot it

against τ.

Using the simplifications afforded by the asymptotic representations, we can analyze the local asymp-

totic power properties of the ZJM test and alternative procedures such as the pooled difference-in-means

test T̂ . We consider testing the null hypothesis that τ = 0 against the one-sided alternative τ > 0, at the

5% significance level. We set σ0 = σ1 = 1
2 . Figure 2 shows the local asymptotic power curves of the ZJM

test and the pooled difference-in-means test using a size-corrected critical value. The figure also dis-

plays two power envelopes calculated using the Neyman-Pearson lemma: a “limited” power envelope

for tests based on the two-dimensional statistic (W1,W2); and a power envelope based on the full, four-

dimensional data (Z1, Z2) available in the limiting bandit. (Recall that the ZJM test only uses (W1,W2).)

Figure 2: Local Asymptotic Power Curves under Thompson Sampling

4It is important that the Thompson sampling ruleΛ2(·) depends on the first batch data only through W1.
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The local asymptotic power curve of the ZJM test in Figure 2 is reasonably close to the limited power

envelope for tests based on (W1,W2) for small values of the alternative, with a slight gap for intermediate

values. The pooled difference in means test, however, has higher power uniformly across the space of al-

ternatives, and exceeds the power envelope for tests based on (W1,W2). This suggests that restricting the

test to only use the batchwise differences in means W1 and W2 may entail a nontrivial loss in power. The

pooled difference-in-means test has power very close to the full power envelope. It should be pointed

out that these results hold for a specific choice of the arm-specific variances σ2
0 and σ2

1 and for this spe-

cific scenario with two equally-sized batches. Further work could examine the performance of these tests

under a variety of setups and seek to draw more general recommendations for testing procedures with

robust power properties.

Our representation result also allows us to consider, and compare, alternative choices for the adaptive

treatment assignment rule. Some authors, including Kasy and Sautmann (2021) and Caria, Gordon, Kasy,

Quinn, Shami, and Teytelboym (2020), have suggested modifying the Thompson sampling rule to make

the chosen treatment probabilities closer to equality across arms. Intuitively, bandit algorithms such

as Thompson sampling target in-sample allocative efficiency, at the possible expense of efficiency for

statistical inference about population parameters. Shrinking towards a balanced allocation could result

in better power for tests of hypotheses about treatment effects.

As a simple illustration, we consider a weighted allocation rule

Λ2,c (Z1) = (1− c)Λ2(Z1)+ c(1/2), c ∈ [0,1],

which shrinks the (asymptotic) Thompson sampling rule towards a 50-50 treatment rule. Figure 3 con-

siders the case where c = 0.1. It shows that, even with a fairly mild degree of shrinkage, the differences

between the power functions become smaller, although the relative comparisons retain their orderings.

As with the simulations shown in Figure 2, these results hold for a specific scenario, and warrant further

exploration. The limiting Gaussian bandit representation provides a computationally tractable frame-

work for examining and comparing alternative testing procedures for batched adaptive experimental

designs.
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Figure 3: Weighted Thompson Rule, c = 0.1

5 Conclusion

The representation results we have developed in this paper characterize all attainable limit distributions

of procedures in a rich class of dynamic statistical decision problems where the agent’s actions can in-

clude the choice of the adaptive experimentation rule. They do not require restricting attention to a spe-

cific class of rules, such as Bayes rules or empirical analog (plug-in) rules, and can be combined with any

solution concept such as minmax regret or robust preferences. Decision problems that are intractable

in their original form can be dramatically simplified through these approximations. However, whether

or not the asymptotic approximation of the original problem by a limiting Gaussian bandit is simple

enough to yield an explicit solution will depend on the specific problem at hand. For more complex

problems, it may be useful to first apply our representation theorem, and then use numerical methods

to obtain an approximate solution to the simplified decision problem.

28



References

ADUSUMILLI, K. (2022): “Risk and Optimal Policies in Bandit Experiments,” working paper.

ANDREWS, I., AND T. B. ARMSTRONG (2017): “Unbiased Instrumental Variables Estimation Under Known

First-Stage Sign,” Quantitative Economics, 8(2), 479–503.

ANDREWS, I., M. GENTZKOW, AND J. M. SHAPIRO (2017): “Measuring the Sensitivity of Parameter Esti-

mates to Estimation Moments,” Quarterly Journal of Economics, 132(4), 1553–1592.

ANDREWS, I., AND A. MIKUSHEVA (2022): “Optimal Decision Rules for Weak GMM,” Econometrica, 90(2),

715–748.

ARMSTRONG, T. B., AND M. KOLESÁR (2021): “Sensitivity Analysis Using Approximate Moment Condition

Models,” Quantitative Economics, 12(1), 77–108.

BONHOMME, S., AND M. WEIDNER (2022): “Minimizing Sensitivity to Model Misspecification,” Quanti-

tative Economics, 13(3), 907–954.

BOWDEN, J., AND L. TRIPPA (2017): “Unbiased Estimation for Response Adaptive Clinical Trials,” Statisti-

cal Methods in Medical Research, 26(5), 2376–2388.

BUBECK, S., AND N. CESA-BIANCHI (2012): “Regret Analysis of Stochastic and Nonstochastic Multi-armed

Bandit Problems,” Foundations and Trends in Machine Learning, 5(1), 1–122.

CARIA, A. S., G. GORDON, M. KASY, S. QUINN, S. SHAMI, AND A. TEYTELBOYM (2020): “An Adaptive

Targeted Field Experiment: Job Search Assistance for Refugees in Jordan,” working paper.

CARLIER, G., V. CHERNOZHUKOV, AND A. GALICHON (2016): “Vector Quantile Regression: An Optimal

Transport Approach,” The Annals of Statistics, 44(3), 1165–1192.

CATTANEO, M. D., R. K. CRUMP, AND M. JANSSON (2012): “Optimal Inference for Instrumental Variables

Regression with Non-Gaussian Errors,” Journal of Econometrics, 167(1), 1–15.

CHAMBERLAIN, G. (2020): “Robust Decision Theory and Econometrics,” Annual Review of Economics,

12, 239–271.

29



CHRISTENSEN, T., AND B. CONNAULT (2019): “Counterfactual Sensitivity and Robustness,” forthcoming,

Econometrica.

FAN, L., AND P. W. GLYNN (2021): “Diffusion Approximations for Thompson Sampling,” working paper.

FANG, Z. (2016): “Optimal Plug-in Estimators of Directionally Differentiable Functionals,” working pa-

per.

FANG, Z., AND A. SANTOS (2019): “Inference on Directionally Differentiable Functionals,” The Review of

Economic Studies, 86(1), 377–412.

HADAD, V., D. A. HIRSHBERG, R. ZHAN, S. WAGER, AND S. ATHEY (2021): “Confidence Intervals for Pol-

icy Evaluation in Adaptive Experiments,” Proceedings of the National Academy of Sciences, 118(15),

e2014602118.

HÁJEK, J. (1970): “A Characterization of Limiting Distributions of Regular Estimates,” Zeitschrift fur

Wahrscheinlichkeitstheorie und Verwandte Gebiete, 14, 323–330.

HANSEN, B. E. (2016): “Efficient Shrinkage in Parametric Models,” Journal of Econometrics, 190, 115–132.

HIRANO, K., AND J. R. PORTER (2003): “Asymptotic Efficiency in Parametric Structural Models with

Parameter-Dependent Support,” Econometrica, 71(5), 1307–1338.

(2009): “Asymptotics for Statistical Treatment Rules,” Econometrica, 77(5), 1683–1701.

(2012): “Impossibility Results for Nondifferentiable Functionals,” Econometrica, 80(4), 1769–

1790.

(2015): “Location Properties of Point Estimators in Linear Instrumental Variables and Related

Models,” Econometric Reviews, 34(6-10), 720–733.

(2020): “Asymptotic Analysis of Statistical Decision Rules in Econometrics,” in Handbook of

Econometrics, Volume 7A, ed. by S. N. Durlauf, L. P. Hansen, J. J. Heckman, and R. L. Matzkin. North-

Holland, Amsterdam.

HIRANO, K., AND J. H. WRIGHT (2017): “Forecasting with Model Uncertainty: Representations and Risk

Reduction,” Econometrica, 85(2), 617–643.

30



HU, F., AND W. F. ROSENBERGER (2006): The Theory of Response-Adaptive Randomization in Clinical

Trials. Wiley, New York.

JEGANATHAN, P. (1995): “Some Aspects of Asymptotic Theory With Applications to Time Series Models,”

Econometric Theory, 11, 818–887.

KASY, M., AND A. SAUTMANN (2021): “Adaptive Treatment Assignment in Experiments for Policy Choice,”

Econometrica, 89(1), 113–132.

KOCK, A. B., D. PREINERSTORFER, AND B. VELIYEV (2020): “Functional Sequential Treatment Allocation,”

forthcoming, Journal of the American Statistical Association.

KOCK, A. B., AND M. THYRSGAARD (2017): “Optimal Sequential Treatment Allocation,” working paper.

LAI, T. L., AND H. ROBBINS (1985): “Asymptotically Efficient Adaptive Allocation Rules,” Advances in

Applied Mathematics, 6, 4–22.

LATTIMORE, T., AND C. SZEPESVÁRI (2020): Bandit Algorithms. Cambridge University Press.

LE CAM, L. M. (1972): “Limits of Experiments,” in Proceedings of the Sixth Berkeley Symposium of Math-

ematical Statistics, vol. 1, pp. 245–261.

(1986): Asymptotic Methods in Statistical Theory. Springer-Verlag, New York.

PERCHET, V., P. RIGOLLET, S. CHASSANG, AND E. SNOWBERG (2016): “Batched Bandit Problems,” The

Annals of Statistics, 44(2), 660–681.

SCHWARTZ, E. M., E. T. BRADLOW, AND P. S. FADER (2017): “Customer Acquisition via Display Advertising

Using Multi-Armed Bandit Experiments,” Marketing Science, 36(4), 500–522.

SHIN, J., A. RAMDAS, AND A. RINALDO (2021): “On the Bias, Risk and Consistency of Sample Means in

Multi-armed Bandits,” SIAM Journal on Mathematics of Data Science, 3(4), 1278–1300.

VAN DER VAART, A. W. (1991): “An Asymptotic Representation Theorem,” International Statistical Review,

59, 99–121.

(1998): Asymptotic Statistics. Cambridge University Press, New York.

31



VAN DER VAART, A. W., AND J. A. WELLNER (1996): Weak Convergence and Empirical Processes. Springer-

Verlag, New York.

VILLAR, S., J. BOWDEN, AND J. WASON (2015): “Multi-armed Bandits Models for the Optimal Design of

Clinical Trials: Benefits and Challenges,” Statistical Science, 30(6), 199–215.

WAGER, S., AND K. XU (2021): “Diffusion Asymptotics for Sequential Experiments,” working paper.

ZHANG, K. W., L. JANSON, AND S. A. MURPHY (2020): “Inference for Batched Bandits,” in Advances in

Neural Information Processing Systems, ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and

H. Lin, vol. 33, pp. 9818–9829.

32



Appendices

A Proofs

Proof of Theorem 1:

Consider the vector of likelihood ratios:

{
ℓ1,n(h,h0),ℓ2,n(h,h0),ℓ12,n(h,h0)

}
:=

 ∏
i
n ∈N1

pθn (h)(zi )

pθn (h0)(zi )
,

∏
i
n ∈N2

pθn (h)(zi )

pθn (h0)(zi )
,

∏
i
n ∈N12

pθn (h)(zi )

pθn (h0)(zi )

 .

By the differentiability in quadratic mean condition in Assumption 1 and standard calculations, we have,

for any local parameter h0,

{
ℓ1,n(h,h0),ℓ2,n(h,h0),ℓ12,n(h,h0)

} h0⇝
{

exp

(√
λ1(h −h0)′∆1 − λ1

2
(h −h0)′ J (h −h0)

)
,

exp

(√
λ2(h −h0)′∆2 − λ2

2
(h −h0)′ J (h −h0)

)
,

exp

(√
λ12(h −h0)′∆12 − λ12

2
(h −h0)′ J (h −h0)

)}
,

where ∆1,∆2,∆12 are independent copies of N (0, J ) random vectors. Note that the experiment


Z1

Z2

Z12

∼ N




h

h

h

 ,


(λ1 J )−1 0

(λ2 J )−1

0 (λ12 J )−1



 ,

has the same likelihood ratios as the above limit.

The vectors (S1,n ,S2,n) and (ℓ1,n(h,h0),ℓ2,n(h,h0),ℓ12,n(h,h0)) each converge marginally under h0 = 0.

By Prohorov’s theorem for random vectors in Euclidean spaces (van der Vaart, 1998, Theorem 2.4) these

marginals are uniformly tight, and marginal tightness implies joint convergence along a subsequence.

So, on this subsequence we have

{
S1,n ,S2,n ,ℓ1,n(h,0),ℓ2,n(h,0),ℓ12,n(h,0)

} 0
⇝

{
S1,S2,exp

(√
λ1h′∆1 − λ1

2
h′ Jh

)
,
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exp

(√
λ2h′∆2 − λ2

2
h′ Jh

)
,exp

(√
λ12h′∆12 − λ12

2
h′ Jh

)}
.

Recall that Lh is the joint law of S1,S2 under h. By contiguity and Le Cam’s third lemma, for any Borel

sets B1 and B2,

Lh(B1 ×B2) = E

[
1(S1 ∈ B1)1(S2 ∈ B2)exp

(√
λ1h′∆1 − λ1

2
h′ Jh

)
·exp

(√
λ2h′∆2 − λ2

2
h′ Jh

)
·exp

(√
λ12h′∆12 − λ12

2
h′ Jh

)]
.

Now, consider the joint random vector (S1,S2,∆1,∆2,∆12). These limiting random variables will reflect

their finite sample analogs in the sense that S1 and ∆2 are independent conditional on (∆1,∆12), and S2

and ∆1 are independent conditional on (∆2,∆12). That is,

S1|∆1,∆2,∆12 ∼ S1|∆1,∆12 and S2|∆1,∆2,∆12 ∼ S2|∆2,∆12. (3)

Next we construct the randomized experiments in the limit experiment corresponding to S1,n ,S2,n . We

invoke Theorem 2.1 in Carlier, Chernozhukov, and Galichon (2016), which states that there exists a map

QS1,S2|∆1,∆2,∆12 (u,δ1,δ2,δ12)

with range R2 such that QS1,S2|∆1,∆2,∆12 (U ,δ1,δ2,δ12) has the distribution S1,S2|∆1 = δ1,∆2 = δ2,∆12 = δ12,

where U is an independent standard uniform on the unit square, U ∼U (0,1)2. Let

(S̃1, S̃2) =QS1,S2|∆1,∆2,∆12 (U ,∆1,∆2,∆12).

Then, by construction,

(S̃1, S̃2,∆1,∆2,∆12) ∼ (S1,S2,∆1,∆2,∆12).

Moreover, Carlier, Chernuzhukov, and Galichon’s Theorem 2.1 states that we can choose U such that

(S̃1, S̃2) = (S1,S2) a.s.
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Let us examine what (3) implies about QS1,S2|∆1,∆2,∆12 (·). Use the following notation for each element of

QS1,S2|∆1,∆2,∆12 (·):  S̃1

S̃2

 =

 Q1
S1,S2|∆1,∆2,∆12

(U ,∆1,∆2,∆12)

Q2
S1,S2|∆1,∆2,∆12

(U ,∆1,∆2,∆12)

 .

Then (3) implies that Q1
S1,S2|∆1,∆2,∆12

does not depend on ∆2 and Q2
S1,S2|∆1,∆2,∆12

does not depend on ∆1.

So, with some abuse of notation, we will write

 S̃1

S̃2

 =

 Q1
S1,S2|∆1,∆2,∆12

(U ,∆1,∆12)

Q2
S1,S2|∆1,∆2,∆12

(U ,∆2,∆12)

 .

This simplification is important because we will next construct the random variables with the correct

distribution under any h, and these restrictions on QS1,S2|∆1,∆2,∆12 (·) imply that the constructed random

variables will inherit these conditional independence property for any h.

Recall that, under h = 0, 
√
λ1 J Z1√
λ2 J Z2√
λ12 J Z12

 ∼


∆1

∆2

∆12

 .

Let

 T1

T2

 =

 Q1
S1,S2|∆1,∆2,∆12

(U ,
√
λ1 J Z1,

√
λ12 J Z12)

Q2
S1,S2|∆1,∆2,∆12

(U ,
√
λ2 J Z2,

√
λ12 J Z12)

 .

Finally, we verify that (T1,T2) has the desired distribution for any value of h. For measurable sets B1 and

B2,

Prh(T1 ∈ B1,T2 ∈ B2)

= Prh(Q1
S1,S2|∆1,∆2,∆12

(U ,
√
λ1 J Z1,

√
λ12 J Z12) ∈ B1,Q2

S1,S2|∆1,∆2,∆12
(U ,

√
λ2 J Z2,

√
λ12 J Z12) ∈ B2)

=
∫ ∫ ∫

Pr(Q1
S1,S2|∆1,∆2,∆12

(U ,
√
λ1 J z1,

√
λ12 J z12) ∈ B1,Q2

S1,S2|∆1,∆2,∆12
(U ,

√
λ2 J z2,

√
λ12 J z12) ∈ B2)

· φ(z1|h, (λ1 J )−1)φ(z2|h, (λ2 J )−1)φ(z12|h, (λ12 J )−1)d z1d z2d z12

=
∫ ∫ ∫

Pr(Q1
S1,S2|∆1,∆2,∆12

(U ,
√
λ1 J z1,

√
λ12 J z12) ∈ B1,Q2

S1,S2|∆1,∆2,∆12
(U ,

√
λ2 J z2,

√
λ12 J z12) ∈ B2)
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· φ(z1|h, (λ1 J )−1)

φ(z1|0,(λ1 J )−1)

φ(z2|h, (λ2 J )−1)

φ(z2|0,(λ2 J )−1)

φ(z12|h, (λ12 J )−1)

φ(z12|0,(λ12 J )−1)

· φ(z1|0,(λ1 J )−1)φ(z2|0,(λ2 J )−1)φ(z12|0,(λ12 J )−1)d z1d z2d z12

= E0

[
1{Q1

S1,S2|∆1,∆2,∆12
(U ,

√
λ1 J Z1,

√
λ12 J Z12) ∈ B1,Q2

S1,S2|∆1,∆2,∆12
(U ,

√
λ2 J Z2,

√
λ12 J Z12) ∈ B2}

· exp

(√
λ1h′(

√
λ1 J Z1)− λ1

2
h′ Jh

)
·exp

(√
λ2h′(

√
λ2 J Z2)− λ2

2
h′ Jh

)
· exp

(√
λ12h′(

√
λ12 J Z12)− λ12

2
h′ Jh

)]
= E [1{S1 ∈ B1,S2 ∈ B2}

· exp

(√
λ1h′∆1 − λ1

2
h′ Jh

)
·exp

(√
λ2h′∆2 − λ2

2
h′ Jh

)
· exp

(√
λ12h′∆12 − λ12

2
h′ Jh

)]
= Lh(B1 ×B2).

We conclude that (T1,T2) satisfies the statement of the theorem.

□

Proof of Corollary 2:

First note that the extension of Theorem 1 to D > 2 fixed information sets is straightforward.

For notational ease, set the parameter dimension to be m = 1 and set J0 = 1. The case for general m and

J0 follows with obvious modifications. We are given t1, t2, . . . , tD with 0 < t1 < ·· · < tD ≤ 1, and information

sets Id = [0, td ] for d = 1, . . . ,D , so that

I1 ⊂ I2 ⊂ ·· · ⊂ ID .

The non-overlapping subsets can be written as

I1 = [0, t1],

N2 = I2 \ I1 = (t1, t2],

N3 = I3 \ I2 = (t2, t3],
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and so on. By Theorem 1, a limit experiment can be expressed as

Z =


Z1

...

ZD

∼ N




h
...

h

 ,Ω

 , Ω= diag

{
1

t1
,

1

t2 − t1
, . . . ,

1

tD − tD−1

}
,

with some U ⊥ Z , and there exists a collection of functions T1, . . . ,TD with

T =



T1(Z1,U )

T2(Z1, Z2,U )
...

TD (Z1, . . . , ZD ,U )


∼Lh , ∀h.

First consider the case with D = 2, so the limit experiment can be written as

Z =

Z1

Z2

∼ N


h

h

 ,

 1
t1

0

0 1
t2−t1


 , U ⊥ Z ,

and the corresponding statistics are  T1(Z1,U )

T2(Z1, Z2,U )

∼Lh .

Let B(t ) be a standard Brownian motion on t ∈ [0,1] and let W (t ) = th +B(t ). If we construct

Z̃1 = 1

t1
W (t1),

Z̃2 = 1

t2 − t1
[W (t2)−W (t1)] ,

then (Z̃1, Z̃2) is equal in distribution to (Z1, Z2). Now define

T̃1(w1,u) = T1

(
1

t1
w1,u

)
.

T̃2(w1, w2,u) = T2

(
1

t1
w1,

1

t2 − t1
[w2 −w1],u

)
.
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Then

T̃ =

 T̃1(W (t1),U )

T̃2(W (t1),W (t2),U )

∼ T ∼Lh .

Next, we want to show that we can express T̃2 as a function only of W (t2), U , and some other variable

independent of W (t2). Define

V (t ) = B(t )− t

tD
B(tD ), 0 ≤ t ≤ tD ,

where B(t ) is the Brownian motion in the definition of W (t ). The process V (·) is a Brownian bridge, and

a standard fact is that V (·) is independent of the endpoint B(tD ). This implies that for any t and any h,

V (t ) is independent of W (tD ).

Focusing first on the case with D = 2, from the definition of V (t ) we can write

B(t1) = t1

t2
B(t2)+V (t1),

so that

W (t1) = t1h +B(t1)

= t1h + t1

t2
B(t2)+V (t1)

= t1h + t1

t2
[W (t2)− t2h]+V (t1)

= t1

t2
W (t2)+V (t1).

Next, define

T̂2(w2, v,u) = T̃2

(
t1

t2
w2 + v, w2,u

)
.

Then

T̂2(W (t2),V (t1),U ) = T̃2 (W (t1),W (t2),U ) .

Therefore,  T̃1(W (t1),U )

T̂2(W (t2),V (t1),U )

= T̃ ∼ T ∼Lh .

Note that V (t1) is independent of W (t2), but not of W (t1).
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For D > 2, we can construct the alternative representations in a similar way. For d = 1, . . . ,D , we can

construct copies of the Zd from W (t1) through W (td ) as

Z̃d = 1

td − td−1
[W (td )−W (td−1)] ,

and define T̃1, . . . , T̃D appropriately so that

T̃ =



T̃1(W (t1),U )

T̃2(W (t1),W (t2),U )
...

T̃D (W (t1), . . . ,W (tD ),U )


∼Lh .

To construct the representation in terms of the Brownian bridge, note that for any d = 1, . . . ,D , we have

W (td ) = td h +B(td )

= td

tD
W (tD )+V (td ),

so that

W (tD ) = tD

td
[W (td )−V (td )] .

Now, consider any c < d . We can write

W (tc ) = tc

tD
W (tD )+V (tc )

= tc

tD

tD

td
[W (td )−V (td )]+V (tc ).

Thus, for any 1 < d ≤ D we can reconstruct W (t1), . . . ,W (td ) from W (td ),V (t1), . . . ,V (td ). So we can

construct functions

T̂d (W (td ),V (t1), . . . ,V (td ),U ) = T̃d (W (t1), . . . ,W (td ),U ).

For d = 1, we can set T̂1 = T̃1. For d = D , we have V (tD ) = 0 by construction, so it suffices to know

W (tD ),V (t1), . . . ,V (tD−1) to construct W (t1), . . . ,W (tD ).

□
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Proof of Theorem 3:

The first step will be to characterize the asymptotic behavior of the likelihood ratio process. For each

sample observation, we have both the observed arm data and the “potential” data on unobserved arms.

It will be useful to jointly characterize both the likelihood ratio process corresponding to the observed

data and the “potential” likelihood ratio process corresponding to data from all arms including the un-

observed potential arm data. Without loss of generality, we specify an auxiliary model of unobserved

arm data that will exactly preserve the finite sample behavior of the observed data and maintain the as-

sumptions of the theorem. In the auxiliary model, the marginal distribution of data associated with each

arm, p(b)
θ,k (zb,i (k)), will remain as provided in the supposition of the theorem, and we will additionally

take zb,i (0), . . . , zb,i (K − 1) to be independent (across arms). By construction, both the auxiliary poten-

tial likelihood and the “actual” potential likelihood will generate identical likelihoods for the observable

data. Note that, in the proof to follow, the “potential” likelihood will be a reference to the likelihood of

observed and unobserved data for the auxiliary model.

Given λb = (λb,0, . . . ,λb,K ) for batch b ∈ {1, . . . ,B}, the (observed data) likelihood ratio process of θn(h) =
θ0 +h/

p
n versus θ0 is given by

ℓb,n(h;λb) =
K−1∏
k=0

⌊nλb,k+1⌋∏
i=⌊nλb,k⌋+1

p(b)
θn (h),k (zb,i (k))

p(b)
θ0,k (zb,i (k))

for all h ∈ Rm , and for batch b ∈ {2, . . . ,B}, we take the the auxiliary (unobserved data) likelihood ratio

process of θn(h) = θ0 +h/
p

n versus θ0 to be given by

ℓ−b,n(h;λb) =
K−1∏
k=0

∏
1≤i≤⌊nλb,k⌋

⌊nλb,k+1⌋+1≤i≤⌊nλ̄b⌋

p(b)
θn (h),k (zb,i (k))

p(b)
θ0,k (zb,i (k))

for all h ∈ Rm . Note that, for observation i , this specification imposes independence across arms. Also,

we focus only on batches {2, . . . ,B} where the observed arms are determined adaptively.

Jointly over batches, these likelihood ratio processes form stochastic processes in (λ1, . . . ,λB ):

ℓn(h)(λ1, . . . ,λB ) = (ℓ1,n(h;λ1), . . . ,ℓB ,n(h;λB ))
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and

ℓ−n (h)(λ2, . . . ,λB ) = (ℓ−2,n(h;λ2), . . . ,ℓ−B ,n(h;λB )).

Under the DQM assumption and Donsker’s Theorem for partial-sum processes (e.g. van der Vaart and

Wellner, 1996, Theorem 2.12.6), the pair (ℓn(h),ℓ−n (h)) converges weakly to a tight random element:

(ℓn(h),ℓ−n (h))
θ0⇝ (ℓ0(h),ℓ0−(h)), (4)

where

ℓ0(h)(λ1, . . . ,λB ) (5)

=
(

K−1∏
k=0

exp

[
h′(∆1,k (λ1,k+1)−∆1,k (λ1,k ))− (λ1,k+1 −λ1,k )

2
h′ J (1)

k h

]
, . . . ,

K−1∏
k=0

exp

[
h′(∆B ,k (λB ,k+1)−∆B ,k (λB ,k ))− (λB ,k+1 −λB ,k )

2
h′ J (B)

k h

])
,

ℓ0−(h)(λ2, . . . ,λB ) (6)

=
(

K−1∏
k=0

exp

[
h′[(∆2,k (λ̄2)−∆2,k (λ2,k+1))+ (∆2,k (λ2,k )−∆2,k (λ2,0))]− (λ̄2 −λ2,k+1 +λ2,k )

2
h′ J (2)

k h

]
, . . . ,

K−1∏
k=0

exp

[
h′[(∆B ,k (λ̄B )−∆B ,k (λB ,k+1))+ (∆B ,k (λB ,k )−∆B ,k (λB ,0))]− (λ̄B −λB ,k+1 +λB ,k )

2
h′ J (B)

k h

])
,

and the ∆b,k (·) are Gaussian processes with independent increments such that ∆b,k (t ) ∼ N (0, t J (b)
k ) for

t ≥ 0, with independence across b and k.

Putting together the observed and unobserved likelihood ratios, we can denote the “potential” likelihood

ratio for batch b ∈ {2, . . . ,B} by

ℓ̄b,n(h) =
K−1∏
k=0

⌊nλ̄b⌋∏
i=1

p(b)
θn (h),k (zb,i (k))

p(b)
θ0,k (zb,i (k))

,

and form the joint likelihood over these batches: ℓ̄n(h) = (ℓ̄2,n(h), . . . , ℓ̄B ,n(h)). Note that ℓ̄b,n(h) = ℓb,n(h;λb)·
ℓ−b,n(h;λb), but ℓ̄b,n(h) does not depend on λb . The weak limit of ℓ̄n(h) will be used for Le Cam’s third

lemma below, and this limit follows by (4),

ℓ̄n(h)
θ0⇝ ℓ̄0(h),
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where

ℓ̄0(h) =
(

K−1∏
k=0

exp

[
h′∆2,k (λ̄2)− λ̄2

2
h′ J (2)

k k

]
, . . . ,

K−1∏
k=0

exp

[
h′∆B ,k (λ̄B )− λ̄B

2
h′ J (B)

k h

])
. (7)

For batch 1, λ1 determines the observations from each arm. Let

∆1(λ1) = (
∆1,0(λ1,1)−∆1,0(λ1,0), . . . ,∆1,K−1(λ1,K )−∆1,K−1(λ1,K−1)

)
.

For batches 2, . . . ,B , the scores∆b,k (λ̄b) from (7), which represent the limiting potential information from

batch b and arm k, can be partitioned into “observed” and “unobserved” scores (see (5) and (6)) as de-

termined by (λb,k ,λb,k+1):

∆b(λb) = (
∆b,0(λb,1)−∆b,0(λb,0), . . . ,∆b,K−1(λb,K )−∆b,K−1(λb,K−1)

)
;

∆−
b (λb) = (

∆b,0(λ̄b)−∆b,0(λb,1),∆b,1(λb,1)−∆b,1(λb,0),∆b,1(λ̄b)−∆b,1(λb,2), . . . ,

∆b,K−1(λb,K−1)−∆b,K−1(λb,0),∆b,K−1(λ̄b)−∆b,K−1(λb,K )
)

;

∆̄b = (
∆b,0(λ̄b), . . . ,∆b,K−1(λ̄b)

)
.

Note that, for any λb , ∆b(λb) and ∆−
b (λb) are independent.

By supposition, the statistics Sb,n and Λb,n jointly converge weakly under θ0. For convenience, we use

zero superscripts to denote their limits, and write

(
S1,n ,Λ2,n ,S2,n , . . . ,ΛB ,n ,SB ,n

) θ0⇝
(
S0

1,Λ0
2,S0

2, . . . ,Λ0
B ,S0

B ,
)

.

Prohorov’s Theorem (van der Vaart and Wellner, 1996, Theorem 1.3.9) and auxiliary results (van der Vaart

and Wellner, 1996, Lemmas 1.4.3 and 1.4.4) imply that along a subsequence we have joint convergence

of the statistics and the likelihood ratio processes,

(
S1,n ,Λ2,n ,S2,n , . . . ,ΛB ,n ,SB ,n ,ℓn(h), ℓ̄n(h)

) θ0⇝
(
S0

1,Λ0
2,S0

2, . . . ,Λ0
B ,S0

B ,ℓ0(h), ℓ̄0(h)
)

,

for each h ∈Rm .

Next we construct representations for the weak limit of the statistics under θ0. The constructions will rely
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on conditional vector quantile functions. Given two random vectors Y and X taking values on RdY and

RdX , the conditional vector quantile function of Y given X = x can be defined as a map u 7→ qY |X (u|x)

where u takes values on the RdY unit cube and qY |X (U |x) has the distribution of Y conditional on X = x

when U is uniformly distributed on the RdY unit cube (Carlier, Chernozhukov, and Galichon, 2016).

Our construction proceeds recursively. Let U1, . . . ,UB be independent uniformly distributed random

vectors on the appropriate unit cube that are also independent of
(
∆b,k

)B ,K−1
b=1,k=0.

1(a) Given the conditional vector quantile function q(S0
1,Λ0

2)|∆1(λ1)(u|δ1), define

(QS0
1
,QΛ0

2
) = q(S0

1,Λ0
2)|∆1(λ1)(U1|∆1(λ1)).

Then,

(∆1(λ1),QS0
1
,QΛ0

2
) ∼ (∆1(λ1),S0

1,Λ0
2).

1(b) Note that (∆2,0, . . . ,∆2,K−1) ⊥ (∆1(λ1),QS0
1
,QΛ0

2
) and (∆2,0, . . . ,∆2,K−1) ⊥ (∆1(λ1),S0

1,Λ0
2). Hence, for

the randomly stopped processes, ∆2(QΛ0
2
),∆−

2 (QΛ0
2
),∆2(Λ0

2),∆−
2 (Λ0

2), we have

(∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
)) ∼ (∆1(λ1),S0

1,Λ0
2,∆2(Λ0

2)) and

(∆1(λ1),QS0
1
,QΛ0

2
,∆−

2 (QΛ0
2
)) ∼ (∆1(λ1),S0

1,Λ0
2,∆−

2 (Λ0
2))

Since ∆2(QΛ0
2
) ⊥∆−

2 (QΛ0
2
)|∆1(λ1),QS0

1
,QΛ0

2
and ∆2(Λ0

2) ⊥∆−
2 (Λ0

2)|∆1(λ1),S0
1,Λ0

2, it follows that

(∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
),∆−

2 (QΛ0
2
)) ∼ (∆1(λ1),S0

1,Λ0
2,∆2(Λ0

2),∆−
2 (Λ0

2))

2(a) For b = 2, . . . ,B−1, given (∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
), . . . ,QS0

b−1
,QΛ0

b
,∆b(QΛ0

b
)), we construct (QS0

b
,QΛ0

b+1
)

using the conditional vector quantile function

q(S0
b ,Λ0

b+1)|∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2),...,S0

b−1,Λ0
b ,∆b (Λ0

b )(u|δ1, s1,λ2,δ2, . . . , sb−1,λb ,δb). Define

(QS0
b
,QΛ0

b+1
) =

q(S0
b ,Λ0

b+1)|∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2),...,S0

b−1,Λ0
b ,∆b (Λ0

b )(Ub |∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
), . . . ,QS0

b−1
,QΛ0

b
,∆b(QΛ0

b
)).
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Then,

(∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
), . . . ,QS0

b
,QΛ0

b+1
) ∼ (∆1(λ1),S0

1,Λ0
2,∆2(Λ0

2), . . . ,S0
b ,Λ0

b+1).

For b ≥ 3, note that Ub ⊥ (∆−
2 (QΛ0

2
), . . . ,∆−

b (QΛ0
b
)) |∆1(λ1),QS0

1
,QΛ0

2
,∆2(QΛ0

2
), . . . ,QS0

b−1
,QΛ0

b
,∆b(QΛ0

b
),

and (S0
b ,Λ0

b+1) ⊥ (∆−
2 (Λ0

2), . . . ,∆−
b (Λ0

b)) |∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2), . . .S0

b−1,Λ0
b ,∆b(Λ0

b). So,

(QS0
b
,QΛ0

b+1
) |∆1(λ1),QS0

1
,QΛ0

2
,∆2(QΛ0

2
),∆−

2 (QΛ0
2
), . . . ,QS0

b−1
,QΛ0

b
,∆b(QΛ0

b
),∆−

b (QΛ0
b
)

∼ (QS0
b
,QΛ0

b+1
) |∆1(λ1),QS0

1
,QΛ0

2
,∆2(QΛ0

2
), . . . ,QS0

b−1
,QΛ0

b
,∆b(QΛ0

b
)

∼ (S0
b ,Λ0

b+1) |∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2), . . . ,S0

b−1,Λ0
b ,∆b(Λ0

b)

∼ (S0
b ,Λ0

b+1) |∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2),∆−

2 (Λ0
2), . . . ,S0

b−1,Λ0
b ,∆b(Λ0

b),∆−
b (Λ0

b)

and

(∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
),∆−

2 (QΛ0
2
), . . . ,QS0

b−1
,QΛ0

b
,∆b(QΛ0

b
),∆−

b (QΛ0
b
),QS0

b
,QΛ0

b+1
)

∼ (∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2),∆−

2 (Λ0
2), . . . ,S0

b−1,Λ0
b ,∆b(Λ0

b),∆−
b (Λ0

b),S0
b ,Λ0

b+1)

2(b) Note that (∆b+1,0, . . . ,∆b+1,K−1) ⊥ (∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
),∆−

2 (QΛ0
2
), . . . ,QS0

b
,QΛ0

b+1
) and

(∆b+1,0, . . . ,∆b+1,K−1) ⊥ (∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2),∆−

2 (Λ0
2), . . . ,S0

b ,Λ0
b+1). Hence, for the randomly stopped

processes, ∆b+1(QΛ0
b+1

), ∆−
b+1(QΛ0

b+1
), ∆b+1(Λ0

b+1), ∆−
b+1(Λ0

b+1), we have

(∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
),∆−

2 (QΛ0
2
), . . . ,QS0

b
,QΛ0

b+1
,∆b+1(QΛ0

b+1
))

∼ (∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2),∆−

2 (Λ0
2), . . . ,S0

b ,Λ0
b+1,∆b+1(Λ0

b+1)) and

(∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
),∆−

2 (QΛ0
2
), . . . ,QS0

b
,QΛ0

b+1
,∆−

b+1(QΛ0
b+1

))

∼ (∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2),∆−

2 (Λ0
2), . . . ,S0

b ,Λ0
b+1,∆−

b+1(Λ0
b+1))

Since ∆b+1(QΛ0
b+1

) ⊥∆−
b+1(QΛ0

b+1
)|∆1(λ1),QS0

1
,QΛ0

2
,∆2(QΛ0

2
),∆−

2 (QΛ0
2
), . . . ,QS0

b
,QΛ0

b+1
and

∆b+1(Λ0
b+1) ⊥∆−

b+1(Λ0
b+1)|∆1(λ1),S0

1,Λ0
2,∆2(Λ0

2),∆−
2 (Λ0

2), . . . ,S0
b ,Λ0

b+1, it follows that

(∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
),∆−

2 (QΛ0
2
), . . . ,QS0

b
,QΛ0

b+1
,∆b+1(QΛ0

b+1
),∆−

b+1(QΛ0
b+1

))
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∼ (∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2),∆−

2 (Λ0
2), . . . ,S0

b ,Λ0
b+1,∆b+1(Λ0

b+1),∆−
b+1(Λ0

b+1))

2(c) Iterate Steps 2(a) and 2(b) until b = B −1.

3 For b = B , we construct QS0
B

as (QS0
b
,QΛ0

b+1
) is constructed in Step 2(a). Then, following the argu-

ment in Step 2(a) with QS0
B

and S0
B replacing (QS0

b
,QΛ0

b+1
) and (S0

b ,Λ0
b+1), we obtain

(∆1(λ1),QS0
1
,QΛ0

2
,∆2(QΛ0

2
),∆−

2 (QΛ0
2
), . . . ,QΛ0

B
,∆B (QΛ0

B
),∆−

B (QΛ0
B

),QS0
B

)

∼ (∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2),∆−

2 (Λ0
2), . . . ,Λ0

B ,∆B (Λ0
B ),∆−

B (Λ0
B ),S0

B ).

It follows immediately that

(∆1,0(λ1), . . . ,∆1,K−1(λ1),QS0
1
,QΛ0

2
,∆2,0(λ̄2), . . . ,∆2,K−1(λ̄2), . . . ,QΛ0

B
,∆B ,0(λ̄B ), . . . ,∆B ,K−1(λ̄B ),QS0

B
)

∼ (∆1,0(λ1), . . . ,∆1,K−1(λ1),S0
1,Λ0

2,∆2,0(λ̄2), . . . ,∆2,K−1(λ̄2), . . . ,Λ0
B ,∆B (Λ0

B ),∆B ,0(λ̄B ), . . . ,∆B ,K−1(λ̄B ),S0
B ).

We can now use this result on the θ0 representations in conjunction with Le Cam’s third lemma to ob-

tain an expression for the the limit law of
(
S1,n ,Λ2,n ,S2,n , . . . ,ΛB ,n ,SB ,n

)
under any h in terms of the con-

structed variables. For any Borel sets A1, . . . , AB and C2, . . . ,CB , the limit law of
(
S1,n ,Λ2,n ,S2,n , . . . ,ΛB ,n ,SB ,n

)
under h (denoted Lh), is

Lh(A1 ×C2 × A2 ×·· ·×CB × AB ) (8)

= E

[
1{S0

1 ∈ A1,Λ0
2 ∈C2,S0

2 ∈ A2, . . . ,Λ0
B ∈CB ,S0

B ∈ AB }

K−1∏
k=0

exp

[
h′∆1,k (λ1)− (λ1,k+1 −λ1,k )

2
h′ J (1)

k h

]K−1∏
k=0

exp

[
h′∆2,k (λ̄2)− λ̄2

2
h′ J (2)

k h

]
· · ·

K−1∏
k=0

exp

[
h′∆B ,k (λ̄B )− λ̄B

2
h′ J (B)

k h

]]
= E

[
1{QS0

1
∈ A1,QΛ0

2
∈C2,QS0

2
∈ A2, . . . ,QΛ0

B
∈CB ,QS0

B
∈ AB }

·
K−1∏
k=0

exp

[
h′∆1,k (λ1)− (λ1,k+1 −λ1,k )

2
h′ J (1)

k h

]
·

K−1∏
k=0

exp

[
h′∆2,k (λ̄2)− λ̄2

2
h′ J (2)

k h

]
· · ·

K−1∏
k=0

exp

[
h′∆B ,k (λ̄B )− λ̄B

2
h′ J (B)

k h

]]
.
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We now state a limiting bandit model that will provide the representation under any local parameter h.

Let Wb,k (·) be a Gaussian process with independent increments such that Wb,k (t ) h∼ N (t J (b)
k h, t J (b)

k ), and

let Ub be uniformly distributed on the unit cube as above. Take all the Gaussian processes Wb,k across b

and k and all the uniform random variables Ub across b to be independent. Further, for k = 0, . . . ,K −1,

define for b = 1, . . . ,B ,

Z̃b,k (λb) =Wb,k (λb,k+1)−Wb,k (λb,k )

∼ N
(
(λb,k+1 −λb,k )J (b)

k h, (λb,k+1 −λb,k )J (b)
k

)
,

and for b = 2, . . . ,B ,

Z̃−
b,k (λ1) =Wb,k (λ̄b)−Wb,k (λb,k+1)+Wb,k (λb,k )

∼ N
(
(λ̄b −λb,k+1 +λb,k )J (b)

k h, (λ̄b −λb,k+1 +λb,k )J (b)
k

)
.

1. For batch 1, λ1 is fixed, so we set

Z1,k = Z̃1,k (λ1)

Let Z1 = (Z1,0, . . . , Z1,K−1) and notice that, under h = 0, Z1 ∼ ∆1(λ1). The statistics TS1 (Z1,U1) and

TΛ2 (Z1,U1) are constructed as follows

(TS1 ,TΛ2 ) = q(S0
1,Λ0

2)|∆1(λ1)(U1|Z1).

2. For b = 2, . . . ,B , the variables Zb , Z−
b,k and statistics TSb , TΛb+1 are generated recursively:

Zb,k = Z̃b,k (TΛb )

Z−
b,k = Z̃−

b,k (TΛb )

Z̄b,k = Zb,k +Z−
b,k ∼ N

(
λ̄b J (b)

k h, λ̄b J (b)
k

)
.

Let Zb = (Zb,0, . . . , Zb,K−1), Z̄b = (Z̄b,0, . . . , Z̄b,K−1), and notice that, under h = 0, (Zb , Z̄b) ∼ (∆b(λb),∆̄b).

For b = 2, . . . ,B −1, the statistics TSb (Z1, . . . , Zb ,U1, . . . ,Ub) and TΛb+1 (Z1, . . . , Zb ,U1, . . . ,Ub) are con-
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structed as follows

(TSb ,TΛb+1 ) =

q(S0
b ,Λ0

b+1)|∆1(λ1),S0
1,Λ0

2,∆2(Λ0
2),...,S0

b−1,Λ0
b ,∆b (Λ0

b )(Ub |Z1,TS1 ,TΛ2 , Z2, . . . ,TSb−1 ,TΛb , Zb).

For batch B , the statistic TSB (Z1, . . . , ZB ,U1, . . . ,UB ) is constructed as follows

TSB =

qS0
B |∆1(λ1),S0

1,Λ0
2,∆2(Λ0

2),...,S0
B−1,Λ0

B ,∆B (Λ0
B )(UB |Z1,TS1 ,TΛ2 , Z2, . . . ,TSB−1 ,TΛB , ZB ).

The constructed variables TSb and TΛb use uniformly distributed variables on unit cubes U1, . . . ,UB . This

form differs from the expressions for the corresponding constructed variables in the statement of the

theorem, which include only a single uniform variable, U . Since a single uniform random variable can

be used to construct any finite number of independent uniform variables on unit cubes (e.g. U1, . . . ,UB ),

constructed variables of the form given in the statement of the theorem follow immediately from the

constructed variables provided in this proof.

When h = 0,

(Z1,TS1 ,TΛ2 , Z̄2, . . . ,TSB−1 ,TΛB , Z̄B ,TSB ) ∼ (∆1(λ1),S0
1,Λ0

2,∆̄2, . . . ,S0
B−1,Λ0

B ,∆̄B ,S0
B )

(which will be used below in (13)).

Finally, we verify that the joint distribution (TS1 ,TΛ2 ,TS2 , . . . ,TΛB ,TSB ) matches the limiting distribution

of
(
S1,n ,Λ2,n ,S2,n , . . . ,ΛB ,n ,SB ,n

)
under any h as given in (8).

The following lemma will be used in the argument to follow.

Lemma 1. For any (measurable) function g ,

(a)

Eh
[
g (Z1,U1)

]= E0

[
g (Z1,U1)

K−1∏
k=0

exp

(
h′Z1,k −

(λ1,k+1 −λ1,k )

2
h′ J (1)

k h

)]
;

and
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(b) for b ∈ {2, . . . ,B},

Eh
[
g (Z1, . . . , Zb ,U1, . . . ,Ub) |Z1 = z1, . . . , Zb−1 = zb−1,U1 = u1, . . . ,Ub−1 = ub−1

]
= E0

[
g (Z1, . . . , Zb ,U1, . . . ,Ub)

K−1∏
k=0

exp

(
h′Z̄b,k −

λ̄b

2
h′ J (b)

k h

)
∣∣∣ Z1 = z1, . . . , Zb−1 = zb−1,U1 = u1, . . . ,Ub−1 = ub−1

]
.

Lemma 1(b) is used below in (9), (10), (11), and Lemma 1(a) is used in (12).

Prh(TS1 ∈ A1,TΛ2 ∈C2,TS2 ∈ A2, . . . ,TΛB ∈CB ,TSB ∈ AB )

= Eh[1{TS1 (Z1,U1) ∈ A1}1{TΛ2 (Z1,U1) ∈C2}1{TS2 (Z1, Z2,U1,U2) ∈ A2} · · ·

·1{TΛB (Z1, . . . , ZB−1,U1, . . . ,UB−1) ∈CB }1{TSB (Z1, . . . , ZB ,U1, . . . ,UB ) ∈ AB }]

= Eh[1{TS1 (Z1,U1) ∈ A1}1{TΛ2 (Z1,U1) ∈C2}1{TS2 (Z1, Z2,U1,U2) ∈ A2} · · ·

·1{TΛB (Z1, . . . , ZB−1,U1, . . . ,UB−1) ∈CB }

·Eh(1{TSB (Z1, . . . , ZB ,U1, . . . ,UB ) ∈ AB }|Z1, . . . , ZB−1,U1, . . . ,UB−1) ]

= Eh

[
1{TS1 (Z1,U1) ∈ A1}1{TΛ2 (Z1,U1) ∈C2}1{TS2 (Z1, Z2,U1,U2) ∈ A2} · · ·

·1{TΛB (Z1, . . . , ZB−1,U1, . . . ,UB−1) ∈CB }

·E0

(
1{TSB (Z1, . . . , ZB ,U1, . . . ,UB ) ∈ AB }

K−1∏
k=0

exp

(
h′Z̄B ,k −

λ̄B

2
h′ J (b)

k h

)
∣∣∣ Z1, . . . , ZB−1,U1, . . . ,UB−1

)]
(9)

= Eh

[
1{TS1 (Z1,U1) ∈ A1}1{TΛ2 (Z1,U1) ∈C2}1{TS2 (Z1, Z2,U1,U2) ∈ A2} · · ·

·Eh

(
1{TSB−1 (Z1, . . . , ZB−1,U1, . . . ,UB−1) ∈ AB−1}1{TΛB (Z1, . . . , ZB−1,U1, . . . ,UB−1) ∈CB }

·E0

(
1{TSB (Z1, . . . , ZB ,U1, . . . ,UB ) ∈ AB }

K−1∏
k=0

exp

(
h′Z̄B ,k −

λ̄B

2
h′ J (b)

k h

)
∣∣∣ Z1, . . . , ZB−1,U1, . . . ,UB−1

)∣∣∣ Z1, . . . , ZB−2,U1, . . . ,UB−2

)]
= Eh

[
1{TS1 (Z1,U1) ∈ A1}1{TΛ2 (Z1,U1) ∈C2}1{TS2 (Z1, Z2,U1,U2) ∈ A2} · · ·

·E0

(
1{TSB−1 (Z1, . . . , ZB−1,U1, . . . ,UB−1) ∈ AB−1}1{TΛB (Z1, . . . , ZB−1,U1, . . . ,UB−1) ∈CB }
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·
K−1∏
k=0

exp

(
h′Z̄B−1,k −

λ̄B−1

2
h′ J (B−1)

k h

)
·E0

(
1{TSB (Z1, . . . , ZB ,U1, . . . ,UB ) ∈ AB }

K−1∏
k=0

exp

(
h′Z̄B ,k −

λ̄B

2
h′ J (B)

k h

)
∣∣∣ Z1, . . . , ZB−1,U1, . . . ,UB−1

)∣∣∣ Z1, . . . , ZB−2,U1, . . . ,UB−2

)]
(10)

...

= Eh

[
1{TS1 (Z1,U1) ∈ A1}1{TΛ2 (Z1,U1) ∈C2}

·E0

(
1{TS2 (Z1, Z2,U1,U2) ∈ A2}1{TΛ3 (Z1, Z2,U1,U2) ∈C3} ·

K−1∏
k=0

exp

(
h′Z̄2,k −

λ̄2

2
h′ J (2)

k h

)
· · ·

·E0

(
1{TSB (Z1, . . . , ZB ,U1, . . . ,UB ) ∈ AB }

K−1∏
k=0

exp

(
h′Z̄B ,k −

λ̄B

2
h′ J (B)

k h

)
∣∣∣ Z1, . . . , ZB−1,U1, . . . ,UB−1

)
· · ·

∣∣∣ Z1,U1

)]
(11)

= E0

[
1{TS1 (Z1,U1) ∈ A1}1{TΛ2 (Z1,U1) ∈C2}

K−1∏
k=0

exp

(
h′Z1,k −

(λ1,k+1 −λ1,k )

2
h′ J (1)

k h

)
·E0

(
1{TS2 (Z1, Z2,U1,U2) ∈ A2}1{TΛ3 (Z1, Z2,U1,U2) ∈C3} ·

K−1∏
k=0

exp

(
h′Z̄2,k −

λ̄2

2
h′ J (2)

k h

)
· · ·

·E0

(
1{TSB (Z1, . . . , ZB ,U1, . . . ,UB ) ∈ AB }

K−1∏
k=0

exp

(
h′Z̄B ,k −

λ̄B

2
h′ J (B)

k h

)
∣∣∣ Z1, . . . , ZB−1,U1, . . . ,UB−1

)
· · ·

∣∣∣ Z1,U1

)]
(12)

= E0

[
1{TS1 ∈ A1,TΛ2 ∈C2, · · ·TSB−1 ∈ AB−1,TΛB ∈CB ,TSB ∈ AB }

·
K−1∏
k=0

exp

(
h′Z1,k −

(λ1,k+1 −λ1,k )

2
h′ J (1)

k h

)K−1∏
k=0

exp

(
h′Z̄2,k −

λ̄2

2
h′ J (2)

k h

)
· · ·

K−1∏
k=0

exp

(
h′Z̄B ,k −

λ̄B

2
h′ J (B)

k h

) ]
= E

[
1{QS0

1
∈ A1,QΛ0

2
∈C2,QS0

2
∈ A2, . . . ,QΛ0

B
∈CB ,QS0

B
∈ AB }

K−1∏
k=0

exp

[
h′∆1,k (λ1)− (λ1,k+1 −λ1,k )

2
h′ J (1)

k h

]
·

K−1∏
k=0

exp

[
h′∆2,k (λ̄2)− λ̄2

2
h′ J (2)

k h

]

· · ·
K−1∏
k=0

exp

[
h′∆B ,k (λ̄B )− λ̄B

2
h′ J (B)

k h

]]
(13)

=Lh(A1 ×C2 × A2 ×·· ·×CB × AB ).
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□

Proof of Lemma 1:

We focus on proving part (b). Part (a) follows from equation (14) below with b = 1.

Let λb = TΛb (z1, . . . , zb−1,u1, . . . ,ub−1). And let db denote the dimension of the unit cube support of Ub .

Eh
[
g (Z1, . . . , Zb ,U1, . . . ,Ub) |Z1 = z1, . . . , Zb−1 = zb−1,U1 = u1, . . . ,Ub−1 = ub−1

]
= Eh

[
g (z1, . . . , zb−1, Zb ,u1, . . . ,ub−1,Ub) |Z1 = z1, . . . , Zb−1 = zb−1,U1 = u1, . . . ,Ub−1 = ub−1

]
=

∫
[0,1]db

∫
· · ·

∫
g (z1, . . . , zb−1, zb ,u1, . . . ,ub−1,ub)

·
K−1∏
k=0

φ
(
zb,k | (λb,k+1 −λb,k )J (b)

k h, (λb,k+1 −λb,k )J (b)
k

)
d zb,0 · · ·d zb,K−1dub

=
∫

[0,1]db

∫
· · ·

∫
g (z1, . . . , zb−1, zb ,u1, . . . ,ub−1,ub) ·

K−1∏
k=0

exp

(
h′zb,k −

(λb,k+1 −λb,k )

2
h′ J (b)

k h

)
·

K−1∏
k=0

φ
(
zb,k |0,(λb,k+1 −λb,k )J (b)

k

)
d zb,0 · · ·d zb,K−1dub (14)

=
∫

[0,1]db

∫
· · ·

∫
g (z1, . . . , zb−1, zb ,u1, . . . ,ub−1,ub) ·

K−1∏
k=0

exp

(
h′zb,k −

(λb,k+1 −λb,k )

2
h′ J (b)

k h

)

·
K−1∏
k=0

exp

(
h′z−

b,k −
(λ̄b −λb,k+1 +λb,k )

2
h′ J (b)

k h

)

·
K−1∏
k=0

φ
(
z−

b,k |0,(λ̄b −λb,k+1 +λb,k )J (b)
k

)
·

K−1∏
k=0

φ
(
zb,k |0,(λb,k+1 −λb,k )J (b)

k

)
d z−

b,0 · · ·d z−
b,K−1d zb,0 · · ·d zb,K−1dub

=
∫

[0,1]db

∫
· · ·

∫
g (z1, . . . , zb−1, zb ,u1, . . . ,ub−1,ub) ·

K−1∏
k=0

exp

(
h′(zb,k + z−

b,k )− λ̄b

2
h′ J (b)

k h

)
·

K−1∏
k=0

φ
(
z−

b,k |0,(λ̄b −λb,k+1 +λb,k )J (b)
k

)
·

K−1∏
k=0

φ
(
zb,k |0,(λb,k+1 −λb,k )J (b)

k

)
d z−

b,0 · · ·d z−
b,K−1d zb,0 · · ·d zb,K−1dub

= E0

[
g (Z1, . . . , Zb ,U1, . . . ,Ub)

K−1∏
k=0

exp

(
h′Z̄b,k −

λ̄b

2
h′ J (b)

k h

)
∣∣∣ Z1 = z1, . . . , Zb−1 = zb−1,U1 = u1, . . . ,Ub−1 = ub−1

]
.

□
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