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TESTING NONPARAMETRIC SHAPE RESTRICTIONS

By Tatiana Komarova and Javier Hidalgo
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We describe and examine a test for a general class of shape con-
straints, such as signs of derivatives, U-shape, quasi-convexity, log-
convexity, among others, in a nonparametric framework using partial
sums empirical processes. We show that, after a suitable transfor-
mation, its asymptotic distribution is a functional of the standard
Brownian motion, so that critical values are available. However, due
to the possible poor approximation of the asymptotic critical values
to the finite sample ones, we also describe a valid bootstrap algo-
rithm.

1. INTRODUCTION. Hypothesis testing is one of the most relevant
tasks in empirical work. In this paper, we are interested in a type of testing
where neither the null hypothesis nor the alternative have a specific para-
metric form. This type of hypothesis testing can be denoted as testing for
qualitative or shape restrictions. Examples, widespread in economics and
other disciplines, include monotonicity, convexity/concavity, strong convex-
ity, log-convexity, as well as shapes which switch the pattern, being two
(related) classical examples the U-shape and the quasi-convexity/concavity.

The class of shape constraints we are concerned with is quite broad. One
example is shape constraints that involve some derivatives of m (x), see
(1.1) below, and in particular whether ∂rm (x) /∂xr ≥ 0 (≤ 0). When r = 1
or 2, we have respectively the classical examples of monotonicity or con-
vexity/concavity. A second example involves shapes well examined in the
mathematics literature such as log-convexity/concavity. However, the ap-
plicability of the methodology proposed below goes beyond these examples
and they should be viewed as an illustration of the scope of the approach.
More specifically, in Section 2 we give some specific conditions on the type of
shape constraints we consider and some examples, whereas some additional
examples of shapes of possible interest, such as the quasi-convexity or r- and
ρ- convexity/concavity are contained in the supplementary material.

Although there is an ample literature on testing for shape constraints,
it mostly focuses on monotonicity or convexity. Examples include [9], [35],
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[31], [42], [63], [15], [59], [22], [25], [1], [6], [20], [3]. It is worth noting the
exception in [44], who proposed a consistent test for U-shape.

When looking at the regularity conditions in the latter references, some
of them, such as [6], [25], [42], focus on regression function with Gaussian
white noise model, or on the condition that the explanatory variable are
deterministic, see [3], [6], [22] or [35]. However, with random explanatory
variables, as in [1], [15] and [31], it is assumed either that they are stochastic
independent to the unobserved regression error or that the distribution of
the error is symmetric conditional on the explanatory variable. On the other
hand, other papers do not provide asymptotic limit theory useful for the
purpose of inference or they are tailored to a specific type of shape and their
extensions to more general shape properties do not appear straightforward,
such as [9], [35] or [44]. Due to these (potential) caveats, one of the purposes
of the paper is to examine a testing methodology which is not only applicable
for a wide range of shape properties but (a) able to perform valid statistical
inferences under weak conditions and (b) flexible enough to be able to test
for more than one shape constraint, for instance testing for monotonicity
and log-convexity simultaneously. In addition, our aim is that the proposed
methodology would still be easy to implement. In fact, as we shall see it
only requires the computation of the CUSUM (least squares) of “recursive”
residuals.

The methodology we propose in this paper is related to methods used in
goodness of fit tests, where the null hypothesis is assumed to belong to a
parametric family leaving the alternative nonparametric. To be more precise,
consider the nonparametric regression model

yi = m (xi) + ui,(1.1)

E[ui|xi] = 0,

where xi has bounded support X = : [x, x] and m (·) is smooth. More specific
conditions on the sequences {ui}i∈N and {xi}i∈N will be given in Condition
C1 in Section 3. Our aim is testing whether the regression function m (x)
possesses the shape properties captured by the null hypothesis

(1.2) H0 : m ∈M0,

where the class of interestM0 is a subset of smooth functions from X to R,
say convexity. Following [61] or [5], we might base the testing procedure on
functionals of the partial sums empirical process

(1.3) Kn (x) =
1

n

n∑
i=1

ûiIi (x) , x ∈ [x, x]
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where I (·) is the indicator function, we abbreviate I (xi < x) as Ii (x), and

ûi = yi − m̂B (xi;L) , i = 1, . . . , n,

are the residuals obtained after m (·) has been estimated by some nonpara-
metric estimator m̂B (xi;L), see Section 2 for details.

Unfortunately, after normalization, the limit covariance structure ofKn (x)
depends onM0, making inferences based on Kn (x) very difficult to perform,
if at all possible. Indeed, when M0 is the set of some parametric functions,
say m (x) =: m (x; θ), we have that

Kn (x) =
1

n

n∑
i=1

uiIi (x) +
1

n

n∑
i=1

(
m(xi; θ)−m(xi; θ̂)

)
Ii (x)

is such that
(
Eu2i

)−1/2
n−1/2

∑n
i=1 uiIi (x) converges to the standard Brow-

nian motion whereas the second term normalized by n1/2 converges to a
Gaussian random variable which depends on m(x; θ), and hence on M0.
This was first noticed and shown in [26], and later in a regression model
context by [61]. However, in our scenario, we have that

(1.4) Kn (x) =
1

n

n∑
i=1

uiIi (x) +
1

n

n∑
i=1

(m(xi)− m̂B(xi;L)) Ii (x) ,

where the second term is Op (n−ν), for some ν < 1/2, becoming then the
dominant term in the behaviour of Kn (x). As we describe in Section 3, a
consequence is that the asymptotic distribution of Kn (x) might not be even
Gaussian and difficult to characterize, making inferences very cumbersome.

Due to the possible drawbacks of Kn (x) for the purpose of inference,
we shall proceed by considering a transformation of Kn (x) related to the
CUSUM of recursive residuals proposed by [10]. More specifically, the asymp-
totic behaviour of the transformation becomes a standard Brownian motion,
and as a consequence, testing can be implemented using standard function-
als such as Kolmogorov-Smirnov, Cramér -von-Mises or Anderson-Darling.
As a consequence, a nice feature of the transformation is that its asymptotic
distribution is pivotal, i.e. it is the same regardless of the shape constraint
under consideration.

The remainder of the paper is organized as follows. Section 2 introduces
and motivates the B-splines to estimate our nonparametric regression func-
tion m (x). We then examine how our estimated model captures the shape
property of interest, by relating the different shapes to the coefficients of the
B-splines approximation. In Section 3, we state the regularity conditions,
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and we motivate and describe a pivotal transformation of Kn (x) based on
the CUSUM of recursive residuals. We also describe the local alternatives
and show the consistency of the test. Because the Monte-Carlo experiment
suggests that the asymptotic critical values do not provide a good approx-
imation to the finite sample ones, Section 4 introduces a valid bootstrap
algorithm. Section 5 presents a Monte-Carlo experiment and some empirical
examples, whereas Section 6 concludes with a summary and possible exten-
sions of the methodology. All the proofs, which employ a series of lemmas, are
confined to the supplementary document. The supplementary document also
contains some additional material such as (i) additional simulation results
for our test including its performance when using the asymptotic critical
values, and comparison of its performance to some other tests in the liter-
ature in the context of testing for monotonicity, (ii) motivation for using
B-splines instead of some other sieve-type of estimator, and (iii) additional
examples of shape constraints of interest.

2. NONPARAMETRIC ESTIMATION METHODOLOGY.
A preliminary and key step to provide a test for H0 in (1.2) is to com-

pute a nonparametric estimator of m (x) subject to the constraints imposed
in H0. When testing for the null hypothesis of either monotonicity or con-
vexity, several nonparametric estimators have been considered in the liter-
ature. Early work on isotone/monotone regressions is [11] and [64]. Later
approaches include [29], [52] and [48], [36], [21] and [14], with the first two
papers incorporating isotonization as part of their methods and the last two
papers relying on rearrangement methods. When the null hypothesis is that
of convexity, [40] approach is based on estimating m (·) by least squares
approach. Asymptotic properties for this estimator are established in [37],
[49] and [33], and its global behaviour is examined in [34]. [7] consider an
estimator based on first obtaining unconstrained estimate of the derivative
of the regression function which is isotonized and then integrated.

However, the previous techniques have some drawbacks either because
sometimes are difficult to implement or quite narrow in their scope or they
lack asymptotic theory useful for the purpose of inference. Due to this, we
shall use a different approach based on B-splines and/or penalized B-splines
known as P-splines. There are several reasons why the use of B-splines (P-
splines) is appealing in the context of this paper. One of them is the absence
of a dependence between base splines that are separated by a certain dis-
tance, as listed in the properties of the B-spline basis below. A second mo-
tivation is that B-splines (P-splines) are particularly convenient for testing
properties based on the derivatives of the regression function, as discussed
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TESTING NONPARAMETRIC SHAPE RESTRICTIONS 5

later in this section. A further motivation is the ability to writeM0 in (1.2)
in terms of restrictions on the coefficients of the B-splines approximation
to m (·), and as a consequence the implementation of valid asymptotic the-
ory for the test. We should mention that [57], and later extended by [51],
introduced monotone regression splines (closely related to B-splines) to es-
timate convex/concave function or functions that are, e.g., both monotone
and convex. However one difference of our approach, compared to those in
the aforementioned work, is that we let the number of coefficients of the
B-splines to increase to infinity, and hence the number of constraints. Both
[57] and [51] considered the number of constraints fixed. [63] uses quadratic
B-splines to design a test for monotonicity and cubic B-splines to design a
test for convexity. It allows for an increasing number of knots but its idea and
implementation are different from ours (in particular, it might not be possi-
ble to be extended to general shapes). The comparison of the performance
of the monotonicity test in [63] and our test is given in the supplementary
document.

Let us now describe the B-splines and P-splines in more detail. B-splines
or P-splines are constructed from polynomial pieces joined at some specific
points denoted knots, and whose computation is obtained recursively, see
[17], for any degree of the polynomial. In general, the B-spline basis of
degree q

• takes positive values on the domain spanned by q + 2 adjacent knots,
and is zero otherwise;
• consists of q+1 polynomial pieces each of degree q, and the polynomial

pieces join at q inner knots;
• at the joining points, the (q − 1)th derivatives are continuous;
• except at the boundaries, it overlaps with 2q polynomials pieces of its

neighbours;
• at a given x, only q + 1 B-splines are nonzero.

Suppose that one is interested in approximating the regression function
m (x) in the interval [0, 1], where herewith we shall assume, without loss
of generality, that X = [0, 1]. Then we split the interval [0, 1] into L′ equal
length subintervals with L′+1 knots1, where each subinterval will be covered
with q + 1 B-splines of degree q. The total number of knots needed will be
L′ + 2q + 1 (each boundary point 0, 1 is a knot of multiplicity q + 1) and
the number of B-splines is L = L′ + q. So, denoting the B-splines basis of

1Although one can, of course, choose nonequidistant subintervals, for simplicity we
consider equally spaced knots. One alternative way to locate the knots may based on the
quantiles of the x distribution.
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6 T. KOMAROVA AND J. HIDALGO

degree q by

(2.1) P L (x) =: (p1,L (x; q) , . . . , pL,L (x; q))′ ,

we approximate m (x) by a linear combination of P L (x), that is

(2.2) mB (x;L) =

L∑
`=1

β`p`,L (x; q) ,

and where henceforth we shall denote the knots as {zk}, k = 1−q, . . . 0, 1, ..., L′+
q + 1, where 0 = z1−q = . . . = z1 and 1 = zL

′+1 = . . . = zL
′+q+1.

It is well understood that the choice of the number of knots determines the
trade-off between overfitting and underfitting when there are respectively
too many or too few knots. The main difference between B-splines and
P-splines is that the latter tend to employ a large number of knots but
to avoid oversmoothing they incorporate a penalty function based on the
second difference 42β`, where 4β` = β` − β`−1.

The methodology and applications of constrained B-splines and P-splines
(that is, those computed under certain constraints on the coefficients) are
discussed by many authors, too many to review here. For more detailed dis-
cussions, see, among others, the monographs [17] and [24] for B-splines and
[27], [8] for P-splines. Some literature on shape-preserving splines (for stan-
dard shapes such as monotonicity, convexity, etc.) includes, among others,
[47], [50], [51] and [57].

B-splines possess some properties which turn out to be very useful for the
purpose of testing shape constraints. Among them are

(a)

L∑
`=1

p`,L (x; q) = 1 for all x and q.(2.3)

(b)
∂mB (x;L)

∂x
= m′B (x;L)

=
L−1∑
`=1

q4β`+1

zl+1 − zl+1−q p`+1,L (x; q − 1) .

In particular, (a) indicates that B-splines are a partition of 1. The property
(b) states that the derivative of a B-spline of degree q becomes a B-spline of
degree q− 1. One can derive an expression for the second derivative, and so
on. It is worth signaling that other sieve estimators might be used, see the
survey in [12], and in particular Bernstein polynomials basis as they share
some properties similar to those in (2.3). However, because the Bernstein
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polynomials have an undesirable property of being highly correlated and
having a slow bias convergence, they are not useful for the methodology
proposed below2.

We now describe estimators of m(·) under the null hypothesis, and more
crucially how we can relate the B-spline approximation mB (xi;L) to (1.2).
In particular, because any mB(·;L) can be fully characterized by the vector
β =: (β1, . . . , βL) ∈ RL, a first step will be to examine how we can map
the null hypothesis into a set of constraints on β, captured by some subset
Sq,L ⊂ RL, and denoting its associated constraint B-splines approximation
by

(2.4) MSq,L
=: {mB(·;L) | β = (β1, . . . , βL) ∈ Sq,L} .

We can summarize it in the form of the following condition.

Condition C0. There is a set Sq,L ⊆ RL for any L = L′ + q that satisfies
the following properties:

(a) Sq,L does not depend on the data {xi}i∈Z and thus it is non-stochastic;
(b) The boundary of Sq,L consists of a finite number of surfaces with each

surface being explicitly expressed through a continuously differentiable
function of one of the components in β in terms of other components
of β; that is, each surface forming the boundary can be described by
β` = s(β−`) for some ` with s being continuously differentiable.

(c)

(2.5) H
(
M0,MSq,L

)
→ 0 as L→∞,

where H is the Hausdorff distance in the supremum norm in the space
of continuous functions from X to R.3

What Condition C0 essentially states is that M0 can be captured by
restrictions on the parameters β = {β`}L`=1 which become both necessary
and sufficient as the system of knots becomes increasingly dense in X . The
property of the knot system becoming increasingly dense is implied by the

2A further discussion of our motivation to not use other sieves bases can be found in
the supplementary document.

3That is, if d(m(x),mB(x;L)) =: sup
x∈X
|m(x) −mB(x;L)|, then the Hausdorff distance

is

H
(
M0,MSq,L

)
= max{ sup

m(·)∈M0

inf
mB(·;L)∈MSq,L

d(m(x),mB(x;L)) , sup
mB(·;L)∈MSq,L

inf
m(·)∈M0

d(m(x),mB(x;L))}.
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8 T. KOMAROVA AND J. HIDALGO

requirement (c). In addition, these restrictions on β do not depend on the
available data, which adds to the attractiveness of the approach for imple-
mentation purposes. Part (b) is required for practical purposes – it ensures
that for any finite L the constrained estimation only requires imposing a
finite number of inequality constraints.

The idea is then to test the null hypothesis

(2.6) HB0 : (β1, . . . , βL) ∈ Sq,L

with the suitable choice of Sq,L. Under C0, for fixed L, the test in (2.6)
can be conceptually regarded as the approximation of the original testing
problem in (1.2). However, it is important to stress that as L → ∞, the
knot system becomes dense in X and, thus, the shape property of interest
is satisfied on an increasingly dense set of points in X . In addition, for the
typical shapes given in Example 1 below, i.e. monotonicity or convexity,
those given in (2.6) are equivalent to restrictions in the whole domain X ,
i.e. M0 in (1.2).

To obtain an estimator under the null hypothesis, we consider estimation
under the constraints in (2.6), that is
(2.7)

b̂ =
(
b̂1, . . . , b̂L

)
=: arg min

b1,...,bL
s.t. (b1,b2,...,bL)∈Sq,L

n∑
i=1

(
yi −

L∑
`=1

b`p`,L (xi; q)

)2

,

so that under (1.2)/(2.6), the estimator of m (x) is

(2.8) m̂B (x;L) = b̂′P L (x) .

As an example, suppose that we are interested in testing for nondecreasing
functions. Then, as Example 1 below will indicate, (2.7) becomes

(2.9) b̂ =
(
b̂1, . . . , b̂L

)
=: arg min

b1,...,bL
s.t. b1≤b2≤...≤bL

n∑
i=1

(
yi −

L∑
`=1

b`p`,L (xi; q)

)2

,

which is a quadratic programing problem with linear constraints. When the
constraints are nonlinear, such as those in Example 2 below, the constrained
estimation may be implemented using global optimization techniques.4 A
further discussion of nonlinear constraints based on Example 2 and their
implementation can be found in the supplementary document.

4If the unconstrained least squares estimator is in the interior of Sq,L then, of course,
none of the constraints are binding and the constrained estimation is standard. The com-
putational complications may only happen when some of the constraints are binding.
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As an illustration it is worth describing how we can write (2.8) when some
constraints are binding, say b̂`0 = b̂`0+1 in (2.9). Denote

p̃`,L (x; q) =


p`,L (x; q) ` < `0
p`0,L (x; q) + p`0+1,L (x; q) ` = `0
p`+1,L (x; q) `0 < ` ≤ L− 1

′

.

Then (2.8) can be written as

m̂B (x;L) =

`0−1∑
`=1

b`p̃`,L (xi; q) + b`0 p̃`0,L (xi; q) +

L−1∑
`=`0+1

b`+1p̃`,L (xi; q)

that is, {p̃`,L (x; q)}L−1`=1 is the set of “effective” polynomials used in the
estimated constrained approximation m̂B (x;L). Such a system of “effec-
tive”polynomials can be defined for any situation of binding set constraints.
We will denote this system as P̃ L (x) and further denote

(2.10) P̃ k =: P̃ L (xk) .

It is worth noting that the unconstraint estimator of m (x) is defined as

m̃B (xi;L) = b̃′P i,(2.11)

b̃ =
(
b̃1, . . . , b̃L

)′
=

(
1

n

n∑
k=1

P kP
′
k

)+
1

n

n∑
k=1

P kyk,

where B+ denotes the Moore-Penrose inverse of the matrix B and we ab-
breviate P L (xk) in (2.1) by P k.

We finish this section with two examples of shape constraints. The shapes
in Example 1 pertains to the case where the constraints on the coefficients
of the B-splines approximation are linear, whereas for the set of shapes in
Example 2, these constraints are nonlinear (except for some special cases).
These examples are meant to illustrate the scope of applicability of our test-
ing methodology rather than to give an exhaustive list of potential applica-
tions. Additional examples can be found in the supplementary document.

2.1. EXAMPLES.

Example 1 (Constraints on the derivatives of m (·)).

(2.12) H0 : dr ·m(r) (x) ≥ cr, r ∈ R,
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10 T. KOMAROVA AND J. HIDALGO

where R is a finite subset of N+, dr ∈ {−1, 1} and cr are known constants,
so that (2.12) allows for inequalities for several derivatives simultaneously.
Special cases include testing for (i) monotonicity (r = 1 and c1 = 0), (ii)
convexity/concavity (r = 2 and c2 = 0), (iii) strong λ-convexity (r = 2
and c2 = λ > 0), (iv) monotonicity and concavity simultaneously, etc.

The corresponding set Sq,L associated to (2.12) is

Sq,L =

{
(β1, . . . , βL) | ∀ r ∈ R, ∀ zk, k = 1−q, . . . ,−1, 0, 1, . . . , L′+q+1,

dr ·m(r)
B

(
zk;L

)
≥ cr

}
.

Observe that Sq,L imposes only shape constraints at the knots. However, in
the leading cases when cr = 0, r ∈ R, Sq,L has a more familiar structure
which guarantees that the shape properties are not only valid at the knots but
on the whole domain. E.g., if R = {1} and c1 = 0, then using the property
(b) of B-splines we have that

Sq,L =
{

(β1, . . . , βL) | d1(β`+1 − β`) ≥ 0, ` = 1, . . . , L− 1
}
,

which together with the fact that the B-splines are nonnegative, it guarantees
that the approximation is monotone on the whole domain.

When R = {r}, r > 1, cr = 0, then Sq,L can be defined in a more con-
venient way than above. E.g., if we split the interval [0, 1] into equidistance
subintervals, we can describe Sq,L quite easily as
(2.13)

Sq,L =

{
(β1, . . . , βL) | dr

r∑
k=0

(−1)r−k
(
r

k

)
β`+k ≥ 0, ` = q, . . . , L− q + 1− r

}
.

An even more refined form of Sq,L, which may be beneficial for small L,
would also involve constraints that capture the behaviour of mB (x;L) around
the boundary. These constraints are linear inequalities and are slightly dif-
ferent from those in (2.13) and only involve coefficients corresponding to the
B-splines around the boundaries. Just to give an example, for r = 2, dr = 1
and cr = 0 (i.e. testing for convexity), the additional inequalities around the
boundary are

(q − 1)4βq+1 ≥ q4βq, . . . , 4β3 ≥ 24β2,
(q − 1)4βL−q+1 ≤ q4βL−q+2, . . . , 4βL−1 ≤ 24βL.

These additional constraints together with those in (2.13) for r = 2 and
dr = 1 will ensure the convexity of the approximation on the whole domain.
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As L → ∞, the additional constraints becomes less and less important as
constraints (2.13) essentially capture the convexity property in the whole
domain. However, in finite samples, these constraints around the boundary
can be important to increase the power of the test.

Our second example illustrates shape properties well developed in the
mathematical literature. For that purpose, it is convenient to give the fol-
lowing definition, see [53].

Definition 1 (mean function). A function N : R+×R+ → R+ is called
a mean function if

• (a) N(x1, x2) = N(x2, x1), (b) N(x, x) = x, (c) x1 < N(x1, x2) < x2
whenever x1 < x2 and (d) N(ax1, ax2) = aN(x1, x2) for all a > 0.
• N(x, x) = x
• x1 < N(x1, x2) < x2 whenever x1 < x2
• N(ax1, ax2) = aN(x1, x2) for all a > 0

Examples of mean functions include the arithmetic mean (A), the geo-
metric mean (G), the harmonic mean (H), the logarithmic mean and the
identric mean.

Example 2 (MN -convexity). For any two mean functions M and N ,
the class of MN-convex is defined as5

M0 =

{
φ(·) : φ(·) > 0, ∀x1, x2 ∈ X φ(M(x1, x2)) ≤ N(φ(x1), φ(x2))

}
.

When we have different combinations of arithmetic (A), geometric (G)
and harmonic (H) means, we end up with the following special cases of
MN -convex functions (see e.g. [4]), for instance

1. m is AG-convex if and only if m′(x)
m(x) is increasing

2. m is AH-convex if and only if m′(x)
m2(x)

is increasing

3. m is GG-convex if and only if xm′(x)
m(x) is increasing

4. m is GH-convex if and only if xm′(x)
m2(x)

is increasing

5. m is HG-convex if and only if x2m′(x)
m(x) is increasing

6. m is HH-convex if and only if x2m′(x)
m2(x)

is increasing

7. m is GA-convex if and only if xm′(x) is increasing

5The definition of MN-concavity would reverse the inequalities.
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12 T. KOMAROVA AND J. HIDALGO

8. m is HA-convex if and only if x2m′(x) is increasing.

AG-convexity is known as log-convexity. To illustrate the form of sets Sq,L
consider the case of HG-convexity when we can take

Sq,L =
{

(β1, . . . , βL) | ∀ zk1 < zk2 , k1, k2 ∈ {1− q, . . . , L′ + q + 1},(
zk1
)2
m′B

(
zk1 ;L

)
m2
B (zk1 ;L)

≤
(
zk2
)2
m′B

(
zk2 ;L

)
m2
B (zk2 ;L)

, if β` > 0, ` = 1, . . . , L
}
.

The sets Sq,L for other MN -convex functions are constructed similarly. In
some special cases (such as GA-convexity, HA-convexity, or AA-convexity)
the constraints on β`s will be linear.

We want to emphasize that the properties of B-splines are key for the
testing of these hypotheses to be easily implemented.

3. REGULARITY CONDITIONS AND THE TESTING METHOD-
OLOGY.

We start this section by introducing our regularity conditions.

Condition C1 {(xi, ui)′}i∈Z is a sequence of independent and identically
distributed random vectors, where xi has support on X =: [0, 1] and
its probability density function, fX (x), is bounded away from zero. In
addition, E[ui|xi] = 0, E[u2i |xi] = σ2u, and ui has finite 4th moments.

Condition C2 m (x) is η times continuously differentiable on [0, 1], η ≥ 1,
and ∂ηm (x) /∂xη is Hölder continuous with exponent 0 < α ≤ 1:

|∂ηm (x1) /∂x
η − ∂ηm (x2) /∂x

η| ≤M0|x1 − x2|α,

for some finite positive constant M0.

Condition C3 As n→∞, L satisfies(
L1+η+α

n
+

n

L2(η+α)

)
I (η + α < 2)+

(
L3

n
+

n

L4

)
I (2 ≤ η + α) = o (1).

As it was done in [61], Condition C1 can be weakened to allow for het-
eroscedasticity, e.g. E

[
u2i | x

]
= σ2u (x). However, the latter condition com-

plicates the technical arguments and for expositional simplicity we omit a
detailed analysis of this case. However, in our empirical applications we
present examples with heteroscedastic errors and illustrate how to deal with
them in practice. Condition C2 is a regularity condition on the regression
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TESTING NONPARAMETRIC SHAPE RESTRICTIONS 13

function m (x). In a nutshell, it states that we need slightly more than con-
tinuous differentiability of m(·). It guarantees that the approximation error
or bias

(3.1) m̃ (x) =: mB (x;L)−m (x)

is O(L−η−α), see Theorems 3.1 and 4.1 in [2] or [65], see also [13] and ref-
erences therein. In case of using P-splines we also refer to [16] Theorem 2.
Condition C3 bounds the rate at which L increases to infinity with n.

We now describe the testing methodology in more detail. We shall focus on
the null hypothesis (2.6) which is given in terms of the coefficients β, with the
alternative hypothesis being the negation of the null. So our testing problem
translates into the more familiar testing scenario when the null hypothesis
is given as a set of constraints on the parameters of the model. However
the main and key difference is that the number of such constraints increases
with the sample size.

As we discussed in the introduction, we might employ functionals of (1.3)
for the purpose to test for (2.6), that is if

Kn (x) =
1

n

n∑
i=1

ûiIi (x) , x ∈ [0, 1]

is significantly different than zero, where ûi are the residuals given by

(3.2) ûi = yi − m̂B (xi;L) , i = 1, . . . , n.

Notice that Kn (x) can be interpreted as a LM type of test. Recall that in a
standard regression model the LM test is based on the first order conditions

LMn (L) =
1

n

n∑
i=1

p`,L (xi; q) ûi,

so that we test if the residuals and regressors, p`,L (xi; q), satisfy the orthog-
onality moment condition induced by Condition C1.

Using Conditions C2 and C3, we have that (1.4) is

Kn (x) =
1

n

n∑
i=1

(
ui −

L∑
`=1

(
b̂` − β`

)
p`,L (xi; q)

)
Ii (x)

+
1

n

n∑
i=1

(m(xi)−mB(xi;L)) Ii (x) .
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14 T. KOMAROVA AND J. HIDALGO

Now following Lee and Robinson [46] or Chen and Christensen [13] in a

more general context, we obtain that
∑L

`=1

(
b̂` − β`

)
1
n

∑n
i=1 p`,L (xi; q) =

Op

(
(L/n)1/2

)
, and denoting Pn,` (x; q) =: n−1

∑n
i=1 p`,L (xi; q) Ii (x), we

conclude that(n
L

)1/2
Kn (x) =: −

(n
L

)1/2 L∑
`=1

(
b̂` − β`

)
Pn,` (x; q) (1 + op (1)) .

The last displayed expression suggests that when β is at the boundary of
Sq,L, the asymptotic distribution is not Gaussian, and so to obtain the
asymptotic distribution of Kn (x) for inference purposes appears quite diffi-
cult, if at all possible.

However, Kn (x) can be written as

Kn (x) =
1

n

n∑
i=1

ũiIi (x) + op

(
n−1/2

)
where

(3.3) ũi = ui − P̃
′
i

(
n∑
k=1

P̃ kP̃
′
k

)+ n∑
k=1

P̃ kuk.

and P̃ k is as defined in (2.10) (and, thus, already incorporating all the
binding constraints in the constrained estimation).6

Now ũi in (3.3) has the interpretation of being the least squares residuals
in an artificial regression model with dependent variable ui and a vector
of “effective” polynomials/explanatory variables p̃`,L (xi; q). So, the latter
observation suggests employing the CUSUM of recursive residuals for con-
structing asymptotically pivotal tests, as were proposed by Brown, Durbin
and Evans [10], see also Sen [58]. To that end, it is useful to describe how
to implement the CUSUM of recursive residuals when the restrictions in
Sq,L are linear first, leaving the more general scenario when some of the
constraints are nonlinear for later.

6Clearly,
∑L

`=1

(
b̂` − β`

)
p`,L (xi; q) can also be rewritten in terms of polynomials in

P̃ k only, thus incorporating the binding constraints but for conveying some intuition about
its asymptotic behavior it is convenient for us to leave this term as it is.
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TESTING NONPARAMETRIC SHAPE RESTRICTIONS 15

3.1. ALL THE CONSTRAINTS ON β` ARE LINEAR.
To describe our pivotal transformation, we first recall our notation in (2.1)

and (2.10) when testing for monotonicity,

P k = : P L (xk) , P̃ k =: P̃ L (xk) , where

P L (x) = : (p1 (x) , . . . , pL (x))′ ,

P̃ L (x) = : set of “effective”polynomials in the constrained m̂B (x;L) ,

where for notational simplicity we suppress the reference to q and L in
p`,L (x; q). For example, when the only binding constraint is b̂`0 = b̂`0+1, as
described earlier, we have

P̃ L (xk) =: (p1 (x) , . . . , p`0−1 (x) , p̃`0 (x) , p`0+2 (x) , ..., pL (x)) .

It is obvious that if there were no binding constraints then P L (x) ≡ P̃ L (x).
The use of the “correct” P̃L (x) is crucial for the power of the test. Using
PL (x) without taking into account the binding constraints will make the
test to have only trivial power, see the discussion Section 3.3. However, for
the sake of expositional simplicity, in this section we shall consider the case
of no binding constraints (and, thus, P̃L (x) = PL (x)).7 With this in mind,
for any x ∈ X , let us define

(3.4) Cn (x) =
1

n

n∑
k=1

P kukJk (x) ; An (x) =
1

n

n∑
k=1

P kP
′
kJk (x)

where I (x ≤ xk) =: Jk (x) = 1− Ik (x) and using the abbreviation

(3.5) Cn,i =: Cn (x̃i) ; An,i =: An (x̃i) ,

where x̃i = xi if xi+n
−ς < zk(xi) and = zk(xi) otherwise, with zk(x) denoting

the closest knot zk, k = 2, . . . , L′ + 1, bigger than x and 1/2 < ς < 1. The
motivation to make this “trimming” is because when xi is too close to zk(xi),
the B-spline is close but not equal to zero, which induces some technical
complications in the proof of our main results. However, in small samples
this “trimming” does not appear to be needed, becoming a purely technical
argument.

Then the CUSUM of (forward) recursive least squares is defined as

(3.6) Mn (x) =:
1

n1/2

n∑
i=1

viIi (x)

7When examining the local power of the test in Section 3.3 we shall make explicit the
consideration of binding constraints. An additional discussion of the role of the binding
constraints is outlined in the supplementary document.
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16 T. KOMAROVA AND J. HIDALGO

where

(3.7) vi = ui − P ′iA
+
n,iCn,i.

Observe that because

(3.8)
n∑
i=1

g (xi) =
n∑
i=1

g
(
x(i)
)

,

by well known arguments, and where x(i) is the i-th order statistic of {xi}ni=1,
we might have written (3.6) as

Mn (x) =:
1

n1/2

n∑
i=1

v(i)I(i) (x) ,

where, with P (i) =: PL

(
x(i)
)
,

v(i) = u(i) − P ′(i)A
+
n,(i)Cn,(i)

= u(i) − P ′(i)

(
1

n

n∑
k=i

P (k)P
′
(k)

)+
1

n

n∑
k=i

P (k)u(k).

The latter has the more familiar formulation of CUSUM of recursive least
squares residuals when the dependent variable is now u(i) and the explana-
tory variables are P (i), as proposed and formulated by [10].

Now denoting K1
n (x) =: n−1/2

∑n
i=1 uiIi (x), Mn (x) becomes a linear

transformation of K1
n (x), i.e.

Mn (x) =: n1/2
(
TnK1

n

)
(x) , x ∈ (0, 1) ,

where, for any function g (x) ∈ D [0, 1],

(Tng) (x) = g (x)− 1

n

n∑
i=1

P ′iA
+
n,i

∫ 1

x̃i

P L (z) g (dz) .

(TnKn) (x), which equals in our case
(
TnK1

n

)
(x), has the interpretation of

being the martingale innovation of Kn (x) and the transformation (Tng) (x)
has the limiting version (T g) (x), defined as

(T g) (x) = g (x)−
∫ x

0
P ′L (z)A+

L (z)

(∫ 1

z
P L (w) g (dw)

)
fX (z) dz, x < 1.
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TESTING NONPARAMETRIC SHAPE RESTRICTIONS 17

where

(3.9) AL (x) =

∫ 1

x

(
P L (z)P ′L (z)

)
fX (z) dz.

This type of martingale transformation was proposed by [43] in the standard
goodness of fit testing problem, and later used by [62], [45] or [18].

Finally, it is worth mentioning that in (3.4) we might have employed
Jk (x) = I (x < xk) instead of our definition Jk (x) = I (x ≤ xk). However,
because by definition of B-splines the matrix An,i, and hence AL (xi), might
be singular, if we employed Jk (x) = I (x < xk), then it would not be guar-
anteed that

P ′i − P ′iA
+
n,iAn,i = 0.

On the other hand, Theorem 12.3.4 in [39] yields that the last displayed
equation holds true when Jk (x) = I (x ≤ xk).

Denote U (x) =: σuB (FX (x)), where B (z) is the standard Brownian mo-
tion and FX (x) the distribution function of xi. Then,

Theorem 1. Under Conditions C1− C3, we have that

Mn (x)
weakly⇒ U (x) ; x ∈ [0, 1] .

Unfortunately, we do not observe ui, so that to implement the pivotal
transformation (Tng) (x), we replace vi by v̂i, where v̂i is defined as vi in
(3.7) but where we replace ui by ûi as defined in (3.2), yielding the statistic

(3.10) M̃n (x) =:
1

n1/2

n∑
i=1

v̂iIi (x) .

Theorem 2. Assuming that H0 holds true, under Conditions C1−C3,
we have that

M̃n (x)
weakly⇒ U (x) ; x ∈ [0, 1] .

Denote the estimator of the variance of ui, σ
2
u, by

σ̂2u =
1

n

n∑
i=1

û2i .

Proposition 1. Under Conditions C1− C3, we have that σ̂2u
P→ σ2u.

We then have the following corollary.
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18 T. KOMAROVA AND J. HIDALGO

Corollary 1. Under H0 and assuming Conditions C1 − C3, for any
continuous functional g : R→ R+,

g
(
M̃n (x) /σ̂u

)
d→ g (U (x) /σu) .

Proof. The proof is standard using Theorem 2, Proposition 1 and the
continuous mapping theorem, so it is omitted.

Denoting ñ =: n − L and M̃n (xq) = M̃n,q, where xq = q/n, standard
functionals are the Kolmogorov-Smirnov, Cramér-von-Mises and Anderson-
Darling tests defined respectively as

KSn = sup
q=1,...,ñ

∣∣∣∣∣M̃n,q

σ̂u

∣∣∣∣∣ d→ sup
x∈(0,1)

|B (FX (x))|

CvMn =
1

ñ

ñ∑
q=1

M̃2
n,q

σ̂2u

d→
∫ 1

0
B2 (FX (x)) dx,(3.11)

ADn=
1

ñ

ñ∑
q=1

M̃2
n,q

σ̂2ux
q (1− xq)

d→
∫ 1

0

B2 (FX (x))

FX (x) (1− FX (x))
dx.

3.2. NONLINEAR CONSTRAINTS ON β`.
We turn now our attention to describing the CUSUM of recursive resid-

uals when some constraints describing Sq,L may be non-linear. First, if the
constrained were no binding, the pivotal transformation would be conducted
in the same way as in the previous section. Thus, it suffices to discuss the
case when some of the constraints are binding, i.e. some of the elements in
b̂ are at the boundary of Sq,L.

To that end, we first describe P̃ L (x). The main difference with the lin-
ear scenario is that the constraints described by the boundary of Sq,L are
given by implicit functions. In particular, for the type of shapes in Exam-
ple 2, we have that the boundary is given by implicit functions in the form
H
(
β`0−2, β`0−1, β`0

)
= 0 whose explicit solutions β`0 = h

(
β`0−2, β`0−1

)
are

obtained either analytically or numerically8. Then, if, for instance, we have
only one binding constraint, for the purpose of conducting our (asymptotic)
pivotal transformation, instead of approximating m(·) by the linear function

8Please see the supplementary document for more details on the form of constraints in
Example 2.
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TESTING NONPARAMETRIC SHAPE RESTRICTIONS 19∑L
k=1 βkpk (xi), we consider the approximation given by

(3.12) g
(
xi;β−`0

)
=:

`0−1∑
k=1

βkpk (xi) + h
(
β−`0

)
p`0 (xi) +

L∑
k=`0+1

βkpk (xi) ,

where β−`0 =
(
β`0−2, β`0−1

)
.

Then P̃ L (x) will be given by the vector of first derivatives of g
(
x;β−`0

)
with respect to the parameters. That is

P̃ L (x) =: P̃ L

(
x;β−`0

)
=

∂

∂β−`0
g
(
x;β−`0

)
=:
{
p̃`
(
x;β−`0

)}L
`=1;6=`0 .

It is easy to see that p̃`
(
x;β−`0

)
=: p` (x)+

∂h(β−`0
)

∂β`
p`0 (x), for ` 6= `0. Then,

the CUSUM of recursive residuals becomes

Mn (x) =:
1

n1/2

n∑
i=1

v̂iIi (x) ,

where, with ûi = yi − g
(
xi; β̂−`0

)
,

v̂i = ûi − P̃′i

(
b̂−`0

)
D+
n

(
i; b̂−`0

) n∑
k=1

P̃k

(
b̂−`0

)
ûkJk (x̃i) ,

P̃ i

(
β−`0

)
=: P̃ L

(
xi;β−`0

)
, andDn

(
x;β−`0

)
=
∑n

k=1 P̃k

(
β−`0

)
P̃′k
(
β−`0

)
Jk (x),

and Dn
(
i;β−`0

)
= Dn

(
x̃i;β−`0

)
with x̃i defined in the same way as in Sec-

tion 3.1. Note that by employing p̃`
(
xi;β−`0

)
instead of p` (xi), we have

automatically incorporated our binding restriction in our pivotal transfor-
mation. As when the constraints were linear, we have the following result.

Theorem 3. Assuming that H0 holds true, under Conditions C1−C3,
we have that

M̃n (x)
weakly⇒ U (x) ; x ∈ [0, 1] .

3.3. POWER AND LOCAL ALTERNATIVES.
We now discuss the power and Pitman’s alternative of our tests. For that

purpose, consider the alternative hypothesis

(3.13) H1 ≡ E [y | x] = m (x) ; m (·) 6∈ M0

in a set X1 =: [a1, a2] ⊆ X , which is assumed to be an interval for notational
simplicity. Let’s denote by m̆ (x) the best approximation in M0 to m (x) in
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20 T. KOMAROVA AND J. HIDALGO

the L2-norm, and denote by X2 the set where m̆ (x) belongs to the “bound-
ary” of the null hypothesis. What we mean by “boundary” can be better
described using a couple of examples. WhenM0 is the set of nondecreasing
functions, the “boundary” function is a constant. On the other hand, if we
were interested in testing for convexity, the “boundary” function is a straight
line. It is worth mentioning that the set X2 =: [ă1, ă2], where m̆ (x) belongs
to the “boundary”, does not need to coincide with the set X1. However,
X2 satisfies that X2 ⊇ X1. For instance, if M0 is the set of nondecreasing
functions and

m (x) = xI (x < 1/4)+(1/2− x) I (1/4 ≤ x < 3/4)+(x− 1) I (3/4 ≤ x < 1) ,

it is quite obvious that m̆ (x) = 0 in X = [0, 1]. However X1 = (1/4, 3/4) but
X2 = [0, 1].

Now, it is worth observing that we can rewrite (3.13) as

E [y | x] = m (x) =: m̆ (x) + m̆1 (x) ,

where by construction we can take m̆1 (x) = 0 if x 6∈ X2. In addition, to sim-
plify some notation for any L′ it is convenient to employ the approximation
X2 = [`/L′, L/L′], where indices ` and L are chosen to guarantee the ratios
`/L′ and L/L′ to be closest to ă1 and ă2, respectively. This will yield that
`/L′ → ă1 and L/L′ → ă2.

When the null hypothesis is written in terms of the r-th derivative of
m (x), as in Example 1 with cr = 0, the “boundary” function satisfies that
∂rE [y | x] /∂xr = 0 in X2, i.e. “boundary” function becomes a polynomial
of order less than or equal to r − 1. Regarding the scenarios described in
Example 2, we have that a “boundary” function is a solution to the first
order differential equation given for some constant c by

(i)
xγm′ (x)

m (x)
= c or (ii)

xγm′ (x)

m2 (x)
= c, γ = 0, 1, 2(3.14)

or (iii) xγm′ (x) = c, γ = 1, 2,

depending on the exact shape property under consideration. From here,
standard arguments yield that
(3.15)
m′ (x)

m (x)
=

c

xγ
⇒ logm (x) = c

{
x1 (γ = 0) + log x1 (γ = 1)− 1

x
1 (γ = 2)

}
+b

for (i) and some constant b, whereas for those in (ii) we obtain that
(3.16)
m′ (x)

m2 (x)
=

c

xγ
⇒ 1

m (x)
= −c

{
x1 (γ = 0) + log x1 (γ = 1)− 1

x
1 (γ = 2)

}
+b
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TESTING NONPARAMETRIC SHAPE RESTRICTIONS 21

and for (iii) m (x) = c
{

log x1 (γ = 1)− x−11 (γ = 2)
}

+ b. Those examples
illustrate how to describe the “boundary” functions in a general context.

To fix ideas, we shall explicitly consider the case when M0 is the set
of nondecreasing functions, discussing more general scenarios in Remark 2
below. Suppose that our optimization problem given in (2.9) ended up with
b̂`0 = ... = b̂L0 , so that

m̂ (xi) =
(
b̂1, . . . , b̂`0−1, b̂`0 , b̂L0+1, ..., b̂L

)
P̃i,

=

`0−1∑
k=1

b̂kpk (x) + b̂`0

L0∑
k=`0

pk (x) +
L∑

k=L0+1

b̂kpk (x) ,(3.17)

where ûi = yi − m̂ (xi) with P̃L (w) in (2.10) being

(3.18) P̃L (w) = (p1 (w) , ..., p`0−1 (w) , p̃`0 (w) , pL0+1 (w) , ..., pL (w)) .

Observe that due to the properties of the B-splines, we have that p̃`0 (x) =∑L0
k=`0

pk (x) is equal to 1 when x ∈
[
`0
L′ ,

L0−q
L′

]
.

It worth observing that, as mentioned above, in this case we have that
mB (x;L) in (2.4) becomes

(3.19) m̆B (x;L) =

`−1∑
k=1

βkpk (x) + β`

L∑
k=`

pk (x) +
L∑

k=L+1

βkpk (x)

so that

(3.20) ṖL (x) =
(
p1 (x) , ..., p`−1 (x) , ṗ` (x) , pL+1 (x) , ..., pL (x)

)
,

and where similarly as above, ṗ` (x) =
∑L

k=`
pk (x) is equal to 1 when x ∈ X ′2

with X ′2 =
[
`
L′ ,

L−q
L′

]
. The latter implies that we can consider `0/L

′ and

L0/L
′ as estimators of `/L′ and L/L′ respectively, which we will show in the

proof of Proposition 2 below to be consistent. That is,

(3.21)

∣∣∣∣`0 − `L′

∣∣∣∣+

∣∣∣∣L0 − L
L′

∣∣∣∣ = op (1) .

Define

LL (x) =

∫
[0;x]∩X ′2

{
m̆1 (v)− Ṗ′L (v) Ã+

L (v)

∫
[v;1]∩X ′2

ṖL (w) m̆1 (w) fX (w) dw

}
fX (v) dv,
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22 T. KOMAROVA AND J. HIDALGO

which is different from zero in X ′2. Indeed, because fX (x) > 0, we have that
LL (x) =: 0 a.e. on X ′2 iff for v a.e. on X ′2

(3.22) m̆1 (v)− Ṗ′L (v) Ã+
L (v)

∫
[v;1]∩X ′2

ṖL (w) m̆1 (w) fX (w) dw =: 0.

But the latter means that m̆1 (x) belongs to the space span by ṖL (w).
However, the latter is ruled out since m̆1 (x) 6∈ M0 in X ′2 and any linear
combination of ṖL (w) is a constant function in X ′2 and hence belonging
to M0. We shall remark that ṖL (w) depends on M0, via the boundary
component of m̆ (x).

Proposition 2. Assuming Conditions C1 − C3 , under H1 in (3.13),
we have that

(3.23) M̃n (x)− n1/2LL (x)
weakly⇒ U (x) + V (x) , x ∈ [0, 1] ,

where V (x) is a non-degenerate random variable.

The first consequence of Proposition 2 is that our tests would reject H0

with probability 1 as n increases to infinity. Indeed, this is the case as L (x) is
a nonzero function in X ′2, so that for any continuous functional g : X →R+,
we have that by standard arguments,

1/g
(
M̃n (x)

)
P→ 0.

Next, we examine the Pitman’s alternatives for which the test has non-
trivial power. For that purpose, consider the Pitman’s alternatives

Ha ≡ E [yi | xi] =: m̆ (x) + n
−1/2
1 m̆1 (x) ,

where m̆ (x) and m̆1 (x) satisfy respectively the same conditions as above.
Then, Proposition 2 yields that

M̃n (x)− LL (x)
weakly⇒ U (x) + V (x) , x ∈ [0, 1] .

Remark 1. It is important to remark that if P̃L (w) = PL (w), then
(3.22) would indeed be op (1) regardless whether m (x) ∈ M0 or not. The

consequence would be that a test based on M̃n (x) given in (3.10) would
have no power. So for the test to have power it is crucial that we employ
P̃L (w) when performing the pivotal transformation in (3.6) or (3.10).9

9See some additional discussion in the supplement document.
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Remark 2. (i) We have seen that when testing for monotonicity, the
“ boundary” function is a constant and the associated set of “effective” poly-
nomials ṖL (w) was given in (3.20), whereas the corresponding approxima-
tion MSq,L

becomes mB (x;L) given in (3.19). Observe that when x ∈ X ′2 =[
`
L′ ,

L−q
L′

]
our approximation function is a constant.

Suppose now that M0 denotes the set of convex functions. As we men-
tioned above, the “ boundary” function becomes a straight line or in terms of
Sq,L, we have that the coefficients β`, ` = `, ..., L, satisfy β`−2β`−1+β`−2 =
0 or β` = β` +

(
`− `

) (
β`+1 − β`

)
. Thus, after standard algebra, the re-

strictions on the coefficients β` yield that the associated set of “effective”
polynomials ṖL (w) now becomes

ṖL (w) =
(
p1 (w) , ..., p`−1 (w) , ṗ` (w) , ṗ`+1 (w) , pL+1 (w) , ..., pL (w)

)
with ṗ` (w) =: p` (w)−

∑L
`=`+2

(
`− `− 1

)
p` (w) and ṗ`+1 (w) =: p`+1 (w) +∑L

`=`+2

(
`− `

)
p` (w). The last displayed expression yields that MSq,L

, i.e.
(3.19), becomes now

m̆B (x;L) =
`−1∑
k=1

βkpk (x) + β`ṗ` (x) + β`+1ṗ`+1 (x) +
L∑

k=L+1

βkpk (x) .

Notice that in this case when x ∈ X ′2 our approximation function is a straight
line. The latter comes from the observation that the properties given in (2.3)
implies that with equidistant knots when x ∈ X ′2, we have that

∂m̆B (x;L)

∂x
=

L−1∑
`=1

q4β`+1

zl+1 − zl+1−q p`+1,L (x; q − 1)

= L′
(
4β`+1

) L−1∑
`=1

p`+1,L (x; q − 1)

because 4β`+1 is a constant when ` ≤ ` ≤ L. From here we conclude because∑L−1
`=1 p`+1,L (x; q − 1) = 1 when x ∈ X ′2. Of course, as neither ` nor L are

known, the values would be replaced by `0 and L0 satisfying (3.21).
General cases in Example 1 can be handled similarly, that is testing of the

sign of the r-th derivative. This follows from the observation that when we
impose the null hypothesis, the approximation mB (x;L) of m (x), that is

(3.24) Msq,L =: {mB(·;L) | β = (β1, . . . , βL) ∈ Sq,L} ,
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24 T. KOMAROVA AND J. HIDALGO

becomes a polynomial of degree less than or equal to r−1 in X2, which is the
boundary function and where the coefficients β`, ` = `+ 1, ..., L+ 1, satisfy
4rβ`+r = 0.

(ii) When the null hypothesis is nonlinear in parameters, as those cases
given in Example 2, we make use of the fact that a “ boundary” function
takes the form of one of the solutions given in (3.15) or (3.16) say. For
instance, when testing for log-convexity, the “ boundary” function becomes
∆ (w) = exp (b+ aw), and our approximation mB (x;L) in (3.24) becomes

m̆B (x;L) =

`−1∑
k=1

βkpk (x) + exp (b+ ax) I
(
x ∈ X ′2

)
+

L∑
k=L−q

βkpk (x) ,

whereas now the associated set of “effective polynomials” ṖL (w) would be

ṖL (x) =
(
p1 (x) , ..., p`−1 (x) , ṗ` (x) , pL−q (x) , ..., pL (x)

)
,

ṗ` (x) = : exp (b+ ax) (1, x) I
(
x ∈ X ′2

)
since ṗ` (x) = ∂ exp (b+ ax) /∂ (b, a). Of course, neither ` nor L are known,
so as we argued in the proof of Proposition 2, they will be replaced by pre-
liminary “estimates” `0 and L0. We can see that this approach is a natural
extension when the interest was, say, to test for monotonicity. Indeed, in
this case we have that (3.19) can be written as

m̆B (x;L) =

`−1∑
k=1

βkpk (x) + β`I
(
x ∈ X ′2

)
+

L∑
k=L−q

βkpk (x)

with βk = β` for ` = L − q, ..., L and because
∑L

k=`
pk (x) is equal to 1

when x ∈ X ′2 =
[
`
L′ ,

L−q
L′

]
.

4. BOOTSTRAP ALGORITHM. One of our motivations to intro-
duce a bootstrap algorithm for our test(s) is that although it is pivotal, our
Monte Carlo experiment suggests that they suffer from small sample biases.
When the asymptotic distribution does not provide a good approximation
to the finite sample one, a standard approach to improve its performance is
to employ bootstrap algorithms, as they provide small sample refinements.
In fact, our Monte Carlo simulation does suggest that the bootstrap, to
be described below, does indeed give a better finite sample approximation.
The notation for the bootstrap is as usual and we shall implement the fast
algorithm of WARP by [30] in the Monte Carlo experiment.

The bootstrap is based on the following 3 STEPS.
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STEP 1 Compute the unconstrained residuals

ũi = yi − m̃B (xi;L) , i = 1, ..., n

with m̃B (xi;L) as defined in (2.11).

STEP 2 Obtain a random sample of size n from the empirical distribution
of
{
ũi − 1

n

∑n
i=1 ũi

}n
i=1

. Denote such a sample as {u∗i }
n
i=1 and compute

the bootstrap analogue of the regression model using m̂B (xi;L), that
is

(4.1) y∗i = m̂B (xi;L) + u∗i , i = 1, ..., n.

STEP 3 Compute the bootstrap analogue of M̃n (x) as

M̃∗n (x) =:
1

n1/2

n∑
i=1

v̂∗i Ii (x)

where

v̂∗i = û∗i − P ′iA
+
n,iC

∗
n,i; C∗n,i =: C∗n,i (x̃i) =

1

n

n∑
k=1

P kû
∗
kJk (x̃i)

with û∗i = y∗i − P ′iA
+
n (0)C∗n (0), i = 1, ..., n.

Theorem 4. Under Conditions C1− C3, we have that for any contin-
uous function g : R→ R+, (in probability),

g
(
M̃∗n (x)

)
d⇒ g (U (x)) .

Finally, we can replace û∗i by y∗i in the computation of M̃∗n (x). That is,

Corollary 2. Under Conditions C1− C3, we have that

M̃∗n (x)− ˜̃M∗n (x) = 0,

where

˜̃M∗n (x) =:
1

n1/2

n∑
i=1

(
y∗i − P ′iA

+
n,i

1

n

n∑
k=1

P ky
∗
kJk (xi)

)
Ii (x) .

The proof of Corollary 2 is immediate by Lemma 1 in the supplementary
document and therefore is omitted.

imsart-aos ver. 2014/10/16 file: NonparametricShape5_AoS2021_Tatiana_JA_Feb9.tex date: February 18, 2022



26 T. KOMAROVA AND J. HIDALGO

5. MONTE CARLO EXPERIMENTS AND EMPIRICAL EX-
AMPLES.

5.1. MONTE CARLO EXPERIMENTS.
In this section we present the results of several computational experi-

ments. All the results in this section are given for cubic splines with different
number of knots. We present the results for B-splines as well as for P-splines
with penalties on the second differences of coefficients. The penalty param-
eter is chosen by cross-validation in the unconstrained estimation described
in [27]. In the tables, “KS” refers to the Kolmogorov-Smirnov test statis-
tic, “CvM ” refers to the Cramér-von Mises test statistic and “AD” to the
Anderson-Darling integral test statistic. All three test statistics are based on
a Brownian bridge. L′+1 denotes the number of equidistant knots (including
the boundary points) on the interval of interest. For example, when L′ = 6
and the interval is [0, 1], we consider knots 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1. In the
implementation of P-splines in simulations, every simulation draw will give
a different cross-validation parameter. In our simulation results for each L′

we use a modal value of these cross-validation parameters.
In all the scenarios below

X ∼ U [0, 1], U ∼ N (0, σ2), U ⊥ X.

In Scenarios 1, 3-5 the interval of interest is [0, 1] whereas in Scenario 2 of
U-shape we consider individually intervals [0, s0] and [s0, 1] with s0 being
the switch point.

In the WARP bootstrap implementation, the demeaned residuals and x
are drawn independently. Rejection rates are for 2000 simulations. In all the
tables with Monte Carlo testing results N denotes the number of observa-
tions in each simulation and σ stands for the standard deviation in the error
distribution.

Even though B-splines and P-splines deliver asymptotically equivalent
results, the evidence from Monte Carlo experiments in Scenarios 3 and 4
suggests that in a finite sample the use of P-splines gives a better power of
the test and also leads to a more stable power across different L (equiva-
lently, L′). For this reason, we are inclined to recommend using P-splines in
practice.

The supplementary document contains additional results. In particular,
it shows the performance of our test using asymptotic critical values. The
results support our proposal to use bootstrap critical values in practice. The
supplement also gives testing results for sample sizes N = 100 and N = 200.
In addition, in the supplement we compare our test to those in [35], [31]
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Setting Method B-splines P-splines
10% 5% 10% 5%

L′ = 6 KS bootstrap 0.113 0.054 0.101 0.05
N = 1000 CvM bootstrap 0.1035 0.0475 0.1005 0.044
σ = 0.25 AD bootstrap 0.1065 0.054 0.104 0.052

L′ = 9 KS bootstrap 0.102 0.044 0.119 0.052
N = 1000 CvM bootstrap 0.101 0.048 0.11 0.0455
σ = 0.25 AD bootstrap 0.0985 0.042 0.1045 0.048

L′ = 14 KS bootstrap 0.0945 0.043 0.105 0.0555
N = 1000 CvM bootstrap 0.098 0.0425 0.0955 0.045
σ = 0.25 AD bootstrap 0.093 0.043 0.096 0.049

L′ = 19 KS bootstrap 0.089 0.0485 0.101 0.058
N = 1000 CvM bootstrap 0.105 0.0555 0.1025 0.0495
σ = 0.25 AD bootstrap 0.1085 0.0545 0.1065 0.049

Table 1
Tests for monotonically increasing regression function in Scenario 1a.

and [63] when testing for monotonicity. Regarding the power of the test in
Scenarios 3 and 4, we find that when using P-splines, our test has a superior
performance to them for small noise to signal ratios and performs at least
as well as these alternative tests for small noise to signal ratios (when power
is very close to 1). In particular, this further supports our recommendation
of using P-splines in practice.

Scenario 1 (test for monotonicity). We consider the following regression
functions defined on [0, 1]:

m (x) = x
13
4 , (Scenario 1a)

m (x) = −(x− 0.5)2 · 1(x < 0.5) + (x− 0.5)2 · 1(x ≥ 0.5), (Scenario 1b)

Functions in Scenarios 1a and 1b have different degrees of smoothness. In
Scenario 1a, the function is twice continuously differentiable and its second
derivative is Hölder continuous with the exponent 1

4 whereas in Scenario 1b
the function is smooth and its first derivative is Lipschitz. The results are
summarized in Tables 1 and 2.

Since it may be of interest to explore the cases of various regularities of
m()̇, in the supplement we consider two additional Scenarios 1c and 1d. In
Scenario 1c, m(·) is smooth but its derivative is not Hölder continuous. In
Scenario 1d, m(·) is infinitely differentiable.

Scenario 2 (test for U-shape). The regression function is defined as

m(x) = 10 (log(1 + x)− 0.33)2 .
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Setting Method B-splines P-splines
10% 5% 10% 5%

L′ = 6 KS bootstrap 0.097 0.0525 0.1065 0.053
N = 1000 CvM bootstrap 0.1005 0.0515 0.0975 0.0445
σ = 0.25 AD bootstrap 0.0975 0.058 0.096 0.045

L′ = 9 KS bootstrap 0.1055 0.0515 0.096 0.0425
N = 1000 CvM bootstrap 0.099 0.0505 0.0995 0.041
σ = 0.25 AD bootstrap 0.094 0.0445 0.099 0.0465

L′ = 14 KS bootstrap 0.0925 0.048 0.092 0.044
N = 1000 CvM bootstrap 0.0885 0.046 0.0925 0.049
σ = 0.25 AD bootstrap 0.0875 0.0465 0.0965 0.0425

L′ = 19 KS bootstrap 0.093 0.04 0.098 0.042
N = 1000 CvM bootstrap 0.0915 0.049 0.098 0.0475
σ = 0.25 AD bootstrap 0.0885 0.043 0.1005 0.0465

Table 2
Tests for monotonically increasing regression function in Scenario 1b.

Continuously joined Smoothly joined

Setting Method B-splines P-splines B-splines P-splines
10% 5% 10% 5% 10% 5% 10% 5%

L′ = 4 KS 0.0935 0.048 0.113 0.051 0.098 0.062 0.1105 0.055
N = 1000 CvM 0.106 0.046 0.1 0.0515 0.101 0.0575 0.1005 0.05
σ = 0.25 AD 0.107 0.048 0.098 0.055 0.1015 0.0615 0.094 0.0505

L′ = 6 KS 0.1105 0.0555 0.112 0.051 0.107 0.0575 0.0935 0.0495
N = 1000 CvM 0.101 0.0585 0.099 0.0525 0.1 0.0575 0.0955 0.048
σ = 0.25 AD 0.1015 0.0565 0.098 0.047 0.1055 0.055 0.0965 0.0485

Table 3
Tests for U-shape with the switch at s0 = e0.33 − 1 in Scenario 2. L′ + 1 denotes

the number of equidistant knots on each subinterval [0, s0] and [s0, 1] .

The graph of this function is U-shaped with the switch point at s0 = e0.33−1.
In simulations s0 is taken to be known.

The results are summarized in Table 3. We use two different B-splines –
one on [0, s0] and the other on [s0, 1]. We analyze the properties of the testing
procedure in two approaches. In the first approach additional restrictions are
imposed for the two B-splines to be joined continuously at s0, and in the
second approach these two B-splines are joined smoothly at s0 (see details
in Example 2).

Scenario 3 (analysis of power of the test). Take the regression function

m(x) = 10(x− 0.5)3 − exp(−100(x− 0.25)2)) · I(x < 0.5)

+ (0.1(x− 0.5)− exp(−100(x− 0.25)2)) · I(x >= 0.5).
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and depicted in Figure 1. As expected, the power of the test depends on the
variance of the error. The results are summarized in Table 4.

Fig 1. Plot of the regression function in Scenario 3.

The power of monotonicity tests based on this regression function is con-
sidered in [31] and a similar regression function is considered in [35]. Note
that [31] considers smaller sample sizes and also smaller standard deviation
of noise with σ = 0.1.

Scenario 4 (analysis of power of the test). The regression function

m(x) = x+ 0.415 exp(−ax2), a > 0.

and depicted in Figure 2. The left-hand side graph in Figure 2 is for the
case a = 50 and the right-hand side graph in Figure 2. In the latter case
the non-monotonicity dip is smaller. These situations are considered to be
challenging for monotonicity tests as these functions are somewhat close to
the set of monotone functions (in any conventional metric). As expected,
the power of the test depends on the value of parameter a and also depends
on the variance of the error. The results are summarized in Table 5.

The power of monotonicity tests based on this regression function is ex-
amined in [31] and a similar regression function was considered in [9]. Note
that [31] uses smaller sample sizes and also only a = 50 and σ = 0.1 to
analyze power implications.

Scenario 5 (test for log-convexity). We take the following regression
function:

m (x) = exp(x2), x ∈ [0, 1] .

The results are summarized in Table 6. In this case, the results for P-splines
are the same as for B-splines as the cross-validation criterion indicated 0 as
the optimal penalty parameter in the overwhelming majority of simulations.
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Setting Method B-splines P-splines
10% 5% 10% 5%

L′ = 6 KS bootstrap 1 0.998 1 0.9885
N = 1000 CvM bootstrap 0.9155 0.7335 0.9975 0.9895
σ = 0.5 AD bootstrap 0.985 0.9375 0.9995 0.998

L′ = 9 KS bootstrap 0.93 0.823 0.999 0.998
N = 1000 CvM bootstrap 0.862 0.766 0.998 0.9935
σ = 0.5 AD bootstrap 0.9195 0.8085 0.9985 0.9935

L′ = 12 KS bootstrap 0.864 0.8175 0.996 0.9885
N = 1000 CvM bootstrap 0.8505 0.7895 0.989 0.9725
σ = 0.5 AD bootstrap 0.8655 0.799 0.9885 0.974

L′ = 19 KS bootstrap 0.639 0.5375 0.9815 0.9515
N = 1000 CvM bootstrap 0.5295 0.395 0.9435 0.8795
σ = 0.5 AD bootstrap 0.571 0.428 0.9445 0.892

L′ = 6 KS bootstrap 1 1 1 1
N = 1000 CvM bootstrap 1 1 1 1
σ = 0.25 AD bootstrap 1 1 1 1

L′ = 9 KS bootstrap 1 1 1 1
N = 1000 CvM bootstrap 1 1 1 1
σ = 0.25 AD bootstrap 1 1 1 1

L′ = 12 KS bootstrap 0.9995 0.9995 1 1
N = 1000 CvM bootstrap 0.996 0.9945 1 1
σ = 0.25 AD bootstrap 1 0.996 1 1

L′ = 19 KS bootstrap 0.996 0.986 1 1
N = 1000 CvM bootstrap 0.9155 0.836 1 1
σ = 0.25 AD bootstrap 0.955 0.891 1 1

Table 4
Tests for monotonicity in Scenario 3.
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a = 50 a = 20

Setting Method B-splines P-splines B-splines P-splines
10% 5% 10% 5% 10% 5% 10% 5%

L′ = 6 KS 0.382 0.2425 0.575 0.423 0.25 0.139 0.338 0.216
N = 1000 CvM 0.3385 0.2245 0.5165 0.384 0.2465 0.1335 0.311 0.212
AD σ = 0.5 AD 0.434 0.228 0.6015 0.457 0.2475 0.1395 0.3355 0.221

L′ = 9 KS 0.381 0.2545 0.572 0.4655 0.2 0.124 0.3405 0.221
N = 1000 CvM 0.363 0.2355 0.536 0.3915 0.2055 0.132 0.3385 0.206
σ = 0.5 AD 0.4735 0.3165 0.6095 0.4555 0.228 0.145 0.348 0.206

L′ = 12 KS 0.3975 0.27 0.5995 0.4745 0.22 0.1375 0.343 0.2185
N = 1000 CvM 0.3905 0.2565 0.5545 0.4075 0.2335 0.152 0.3215 0.2065
σ = 0.5 AD 0.486 0.3505 0.614 0.5035 0.2525 0.1625 0.3415 0.2195

L′ = 19 KS 0.4045 0.284 0.5905 0.476 0.2185 0.1235 0.3455 0.2265
N = 1000 CvM 0.418 0.308 0.5525 0.414 0.232 0.145 0.318 0.1995
σ = 0.5 AD 0.497 0.37 0.6125 0.4915 0.2485 0.155 0.341 0.2205

L′ = 6 KS 0.9 0.8405 0.986 0.9625 0.5795 0.4605 0.756 0.6415
N = 1000 CvM 0.8295 0.7025 0.9615 0.913 0.5895 0.4195 0.741 0.626
σ = 0.25 AD 0.939 0.854 0.9835 0.9665 0.608 0.4505 0.7275 0.6295

L′ = 9 KS 0.919 0.8385 0.986 0.9685 0.484 0.3355 0.6805 0.5645
N = 1000 CvM 0.8355 0.7275 0.966 0.911 0.46 0.347 0.6495 0.5065
σ = 0.25 AD 0.937 0.8695 0.99 0.9615 0.4995 0.374 0.6655 0.512

L′ = 12 KS 0.9235 0.842 0.9865 0.9705 0.461 0.334 0.6785 0.5585
N = 1000 CvM 0.863 0.756 0.97 0.9325 0.436 0.318 0.6525 0.4965
σ = 0.25 AD 0.951 0.8895 0.9865 0.9705 0.492 0.3575 0.658 0.517

L′ = 19 KS 0.925 0.8505 0.9865 0.974 0.4835 0.3505 0.698 0.585
N = 1000 CvM 0.8835 0.802 0.9745 0.9355 0.4595 0.345 0.6625 0.495
σ = 0.25 AD 0.941 0.8985 0.987 0.9695 0.486 0.3665 0.666 0.5105

L′ = 6 KS 1 1 1 1 1 0.998 1 1
N = 1000 CvM 1 1 1 1 0.9985 0.9965 1 1
σ = 0.1 AD 1 1 1 1 0.9995 0.9975 1 1

L′ = 9 KS 1 1 1 1 0.9935 0.9875 1 1
N = 1000 CvM 1 1 1 1 0.9915 0.9825 1 0.9955
σ = 0.1 AD 1 1 1 1 0.9915 0.9865 1 0.997

L′ = 12 KS 1 1 1 1 0.968 0.9535 0.9995 0.998
N = 1000 CvM 1 1 1 1 0.9539 0.932 0.9975 0.995
σ = 0.1 AD 1 1 1 1 0.969 0.951 0.998 0.997

L′ = 19 KS 1 1 1 1 0.973 0.9515 0.9995 0.9995
N = 1000 CvM 1 1 1 1 0.9525 0.9285 0.9985 0.9955
σ = 0.1 AD 1 1 1 1 0.966 0..948 0.999 0.997

Table 5
Tests for monotonicity in Scenario 4.
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Fig 2. Plot of the regression function in Scenario 4. The left-hand side graph is for
a = 50 and the right-hand side graph is for a = 20.

Setting Method B-splines
10% 5%

L′ = 6 KS bootstrap 0.1045 0.0535
N = 1000 CvM bootstrap 0.1015 0.054
σ = 0.25 AD bootstrap 0.1015 0.0495

L′ = 9 KS bootstrap 0.098 0.0435
N = 1000 CvM bootstrap 0.1 0.0445
σ = 0.25 AD bootstrap 0.1 0.048

L′ = 12 KS bootstrap 0.1135 0.053
N = 1000 CvM bootstrap 0.0935 0.0465
σ = 0.25 AD bootstrap 0.095 0.0495

Table 6
Tests for log-convexity in Scenario 5.

5.2. APPLICATIONS.
1. US presidential elections Here we use data on the US 2016 presiden-
tial elections across different counties. We consider counties that have both
urban and rural populations and analyze the effect of rural population on
votes received by Donald J. Trump.

Figure 3 is a scatter plot of the percentage of the rural population and the
share of votes received by Donald J. Trump with the fitted curve obtained
using cubic B-splines with L′+1 = 13 uniform knots in the range of values of
the percentage of the rural population (the minimum value of the percentage
is 3.13 ·10−4 and the maximum value is ). The fitted curve is obtained under
the monotonicity restriction.

We conduct the tests for a) monotonicity and b) monotonicity and con-
cavity simultaneously. In order to correct for heteroscedasticity of the errors,
we estimate the scedastic function σ̂2(x) using residuals obtained in the un-
constrained estimation using cubic B-splines with the same set of knots.
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Fig 3. US presidential election data for N = 2, 397 counties that have both urban
and rural population. Plot of the percentage of the rural population and share of
votes received by Donald J. Trump and the constrained (under monotonicity) fit by
cubic B-splines with L′ + 1 = 13 uniform knots in the domain of the percentage of
the rural population.

The scedastic function σ̂2(x) is estimated by regressing the logarithm of
the squared unconstrained residuals on a linear combination of first-order
B-splines with L′ + 1 uniform knots in the domain of the percentage of the
rural population.

We then consider the constrained residuals divided by σ̂(x) when calculat-
ing KS, CvM and AD test statistics and unconstrained residuals divided by
σ̂(x) when drawing bootstrap samples. After a bootstrap sample of resid-
uals is drawn, we multiply each residual by the corresponding σ̂(x) when
generating a bootstrap sample of observations of the dependent variable.

We implement the testing procedure by conducting the pivotal CUSUM
transformation from the left end of the support (in the theoretical descrip-
tion throughout the paper we implemented it from the right end of the
support) as based on the visual analysis the violations of monotonicity or
concavity are more likely to happen at the right end. In the case of P -splines,
we use the same B-spline basis, take the second-order penalty and choose
the penalization constant using the ordinary cross-validation criterion as
in Eilers and Marx (1996). The penalty enters unconstrained optimization
problems as well as constrained ones.

Tables 7-8 present results of our testing by showing the test statistics
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B-splines P-splines
Setting Method Test statistic Bootstrap c.v. Test statistic Bootstrap c.v.

10% 5% 10% 5%

L′ = 12 KS 0.7350 1.1484 1.2673 0.8854 0.7991 0.8878
CvM 0.0456 0.2848 0.3782 0.1596 0.1153 0.1515
AD 0.3170 1.4965 2.0232 0.9466 0.7556 0.9932

L′ = 18 KS 0.7970 1.0856 1.2018 0.8072 0.7710 0.8529
CvM 0.0615 0.2586 0.3479 0.1285 0.1060 0.1405
AD 0.3919 1.4242 1.7918 0.7605 0.7060 0.9298

L′ = 24 KS 0.8210 1.1213 1.2619 0.7177 0.7551 0.8413
CvM 0.1474 0.2847 0.3858 0.1102 0.1012 0.1331
AD 0.7839 1.5422 2.0622 0.6630 0.683 0.9107

Table 7
US presidential elections data. Test statistics and bootstrap critical values under
the null hypothesis of monotonicity of the regression function. Bootstrap critical

values are from 1000 bootstrap replications.

and also bootstrap critical values using both B-splines and P-splines for
several L′. As we can see from Table 7, we do not reject monotonicity at
the 5% level even though testing using P-splines supports monotonicity less
confidently. As for the test for monotonicity and concavity together, even
though the approach with B-splines does not reject it at the 5% level the
approach with P-splines does. Even though asymptotically B-splines and P-
splines deliver equivalent results, as discussed previously, in a finite sample
P-splines deliver a better power of the test (as well as lead to the power
that is more stable with regard to the choice of L). We therefore rely on
the conclusion delivered by P-splines and, thus, reject that the regression
function is both monotone and concave at the 5% level.

2. Energy consumption in the Southern region of Russia.
The data are on daily energy consumption (in MWh) and average daily

temperature (in Celsius) in the Southern region of Russia in the period from
February 1, 2016 till January 31, 2018. The data have been downloaded
from the official website of System Operator of the Unified Energy System
of Russia.10

We provide tests for U-shape with a switch at 17.6◦ and convexity us-
ing the approaches outlined in the previous section. In order to correct for
heteroscedasticity of the errors, we estimate the scedastic function σ̂2(x)
using residuals obtained in the unconstrained estimation using B-splines
(or P-splines, respectively). The scedastic function is estimated using cubic

10http://so-ups.ru/
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B-splines P-splines
Setting Method Test statistic Bootstrap c.v. Test statistic Bootstrap c.v.

10% 5% 10% 5%

L′ = 12 KS 0.7496 1.0721 1.1815 1.2258 0.9341 1.02
CvM 0.0609 0.2385 0.3094 0.3853 0.1676 0.2167
AD 0.7695 1.3467 1.6553 2.1236 1.0527 1.3136

L′ = 18 KS 0.8901 1.1475 1.2652 1.089 0.9194 0.9846
CvM 0.1630 0.2161 0.2915 0.2789 0.1597 0.1967
AD 1.3998 1.2201 1.5434 1.661 1.0078 1.2151

L′ = 24 KS 0.9658 1.0483 1.1524 1.0376 0.9217 0.9869
CvM 0.1687 0.2245 0.2982 0.2911 0.1521 0.1935
AD 1.2835 1.3051 1.6117 1.7665 0.9532 1.1633

Table 8
US presidential elections data. Test statistics and bootstrap critical values under

the null hypothesis of monotonicity and concavity of the regression function.
Bootstrap critical values are from 1000 bootstrap replications.

B-splines with 6 uniform knots and in the form of

σ2(x) =

(
8∑

k=1

ckpk (x; 8)

)2

.

Figure 4 gives scatter plots of the data together with fitted curves obtained
under the U-shape constraint with the switch at s0 = 17.6◦. This constraint
fit is obtained in accordance with the technique in the previous section.
Namely, we consider individual B-spline fits on intervals [x, s0] and [s0, x],
where x and x are respectively lowest and highest values of the temperature
in the sample. On each interval we use L′ + 1 = 5 uniform knots. The left-
hand side figure only imposes the continuity of the fitted curve at the switch
point, whereas the right-hand side figure imposes continuous differentiability.

Tables 9-11 present results of our testing. Namely, Table 9 shows test
statistics for the null hypothesis of U-shaped regression function and also
bootstrap critical values using both B-splines and P-splines in case when
two B-spline curves are joined at the switch point in a continuous way. Table
10 presents analogous results for the null hypothesis of U-shaped regression
function when two B-spline curves are joined at the switch point in a con-
tinuously differentiable way. Table 11 gives results for the null hypothesis of
convexity. In all the cases our pivotal transformation is conducted from the
right end of the support. The bootstrap critical values are obtained on the
basis of 400 bootstrap replications. As we can see, the null hypothesis of a
U-shaped relationship with the switch point at 17.6◦ is not rejected at the
5% level by any type of the test, whereas convexity is rejected.
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B-splines P-splines
Test statistic Bootstrap critical value Test statistic Bootstrap critical value

Method 10% 5% 1% 10% 5% 1%

KS 0.6204 1.0997 1.2139 1.4053 0.2482 0.5898 0.6199 0.7207
CvM 0.0698 0.3098 0.4048 0.5885 0.0038 0.0434 0.0498 0.0621
AD 0.5119 1.6541 2.1098 2.925 0.0647 0.397 0.4312 0.5324

Table 9
Energy consumption data. Test statistics and bootstrap critical values under the
null hypothesis of U-shaped regression function with the switch as 17.6◦. Two
B-spline curves are joined continuously at the switch point. Bootstrap critical

values are from 400 bootstrap replications.

B-splines P-splines
Test statistic Bootstrap critical value Test statistic Bootstrap critical value

Method 10% 5% 1% 10% 5% 1%

KS 0.8481 1.023 1.1749 1.407 0.505 0.6143 0.6524 0.7747
CvM 0.1472 0.2211 0.3247 0.5553 0.0469 0.0476 0.0542 0.0752
AD 0.9114 1.3676 1.8002 2.9199 0.2878 0.3713 0.4151 0.5547

Table 10
Energy consumption data. Test statistics and bootstrap critical values under the
null hypothesis of U-shaped regression function with the switch as 17.6◦. Two

B-spline curves are joined smoothly at the switch point. Bootstrap critical values
are from 400 bootstrap replications.

B-splines P-splines
Test statistic Bootstrap critical value Test statistic Bootstrap critical value

Method 10% 5% 1% 10% 5% 1%

KS 2.9812 1.1537 1.2652 1.5579 3.4626 0.5478 0.6891 1.0121
CvM 2.7713 0.3327 0.4389 0.71 3.2622 0.0402 0.0716 0.2076
AD 14.361 1.823 2.3809 3.856 17.23 0.3332 0.484 1.2158

Table 11
Energy consumption data. Test statistics and bootstrap critical values under the

null hypothesis of convexity of the regression function. Bootstrap critical values are
from 400 bootstrap replications.
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Fig 4. Energy consumption data. Plot of temperature and energy consumption and
the constrained fit (under U-shape with the switch at 17.6◦) using cubic B-spline
with 5 uniform knots on each subinterval of temperature values. On the left-hand
side the fitted curve is continuous at the switch point. On the right-hand side the
fitted curve is continuously differentiable at the switch point.

6. CONCLUSION.
This paper proposes a methodology for testing a wide range of shape prop-

erties of a regression function. The methodology relies on applying a pivotal
transformation to the partial sums empirical process in a nonparametric
setting where B-splines or P-splines have been used to approximate the
functional space under the null hypothesis. We establish that the proposed
pivotal transformation eliminates the effect of nonparametric estimation and
results in asymptotically pivotal testing. To the best of our knowledge, this
paper is the first implementation of the pivotal transformation in a nonpara-
metric setting.

In our main examples we considered shape constraints that can be written
as inequality constraints on the coefficients of the approximating regression
splines. The generality of our procedure allows to test several shape proper-
ties simultaneously. The implementation is especially easy when the inequal-
ity constraints are linear, which is the case for shape properties expressed
as linear inequality constraints on the derivatives.
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[38] Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric
regression fits, The Annals of Statistics, 21, 1926-1947.

[39] Harville, D.A. (2008). Matrix Algebra from a Statistician’s Perspective. Springer-
Verlag.

[40] Hildreth, C. (1954). Point estimates of ordinates of concave functions, Journal of
American Statistical Association, 49, 598-619.

[41] Hong, Y. and White, H. (1995). Consistent Specification Testing via Nonparamet-
ric Series Regression, Econometrica, 63, 1133-1160.

[42] Juditsky, A. and Nemirovski, A. (2002). On nonparametric tests of positiv-
ity/monotonicity/convexity, The Annals of Statistics, 30, 498-527.

[43] Khmaladze, E.V. (1981). Martingale approach to the theory of goodness of fit tests,
Theory Probability and its Applications, 26, 240-257.

[44] Kostyshak, S. (2017). Non-Parametric Testing of U-Shaped Relationships. Working
paper, University of Florida.

[45] Koul, H.L. and Stute, W. (1999). Nonparametric model checks for time series,
The Annals of Statistics, 27, 204-237.

[46] Lee, Y., and Robinson, P.M. (2016). Series estimation under cross-sectional de-
pendence, Journal of Econometrics, 190, 1-17.

[47] Li, W., Naik, D. and Swetits, J. (1996). A data smoothing technique for piecewise
convex/concave curves, SIAM Journal on Scientific Computing, 17, 517-537.

[48] Mammen, E. (1991a). Estimating a Smooth Monotone Regression Function, The
Annals of Statistics, 19, 724-740.

[49] Mammen, E. (1991b). Nonparametric regression under qualitative smoothness as-
sumptions, The Annals of Statistics, 19, 741-759.

[50] Mammen, E. and Thomas-Agnan, C. (1999). Smoothing splines and shape restric-

imsart-aos ver. 2014/10/16 file: NonparametricShape5_AoS2021_Tatiana_JA_Feb9.tex date: February 18, 2022



40 T. KOMAROVA AND J. HIDALGO

tions, Scandinavian Journal of Statistics, 26, 239-252.
[51] Meyer, M.C. (2008). Inference using shape-restricted regression splines, The Annals

of Applied Statistics, 2, 1013-1033.
[52] Mukerjee, H. (1988). Monotone nonparametric regression, The Annals of Statistics,

16, 741-750.
[53] Niculescu, C.P. (2003). Convexity according to means, Mathematical Inequalities

and Applications, 6, 571-579.
[54] Nikabadze, A. and Stute, W. (1997). Model checks under random censorship,

Statistics & Probability Letters, 32, 249-259.
[55] O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems (with

Discussion), Statistical Science, 1, 505-527.
[56] O’Sullivan, F. (1988). Nonparametric estimation of relative risk using splines and

crossvalidation, SIAM Journal on Scientific and Statistical Computing, 9(3), 531-542
[57] Ramsay, J.O. (1988). Monotone regression splines in action, Statistical Science, 3(4),

425-461.
[58] Sen, P.K. (1982). Invariance principles for recursive residuals, The Annals of Statis-

tics, 10, 307-312.
[59] Schlee, W. (1982). Nonparametric Tests of the Monotony and Convexity of Regres-

sion, in Nonparametric Statistical Inference. Amsterdam: North-Holland.
[60] Stephens, M.A. (1992). Introduction to Kolmogorov (1933). On the empirical deter-

mination of a distribution function. Breakthroughs in Statistics, Volume II. Methodol-
ogy and Distribution (Samuel Kotz and Norman L. Johnson., eds.), Springer-Verlag,
New York, 93-105.

[61] Stute, W. (1997). Nonparametric model checks for regression, The Annals of Statis-
tics, 25, 613-641.

[62] Stute, W., Thies, S. and Zhu, L.-X. (1998b). Model checks for regression: An
innovation process approach, The Annals of Statistics, 26, 1916-1934.

[63] Wang, J.C. and Meyer, M.C. (2011). Testing the monotonicity or convexity of a
function using regression splines, The Canadian Journal of Statistics, 39 (1), 89-107.

[64] Wright, F.T. (1981). The Asymptotic Behaviour of Monotone Regression Esti-
mates, The Annals of Statistics, 2, 443-448.

[65] Zhou, S., Shen, X. and D.A. Wolfe (1998). Local Asymptotics for Regression
Splines and Confidence Regions, The Annals of Statistics, 26, 1760-1782.

Economics Department
London School of Economics and Political Science
Houghton Street
London WC2A 2AE
U.K. E-mail: t.komarova@lse.ac.uk

Economics Department
London School of Economics and Political Science
Houghton Street
London WC2A 2AE
U.K. E-mail: f.j.hidalgo@lse.ac.uk

imsart-aos ver. 2014/10/16 file: NonparametricShape5_AoS2021_Tatiana_JA_Feb9.tex date: February 18, 2022

mailto:t.komarova@lse.ac.uk
mailto:f.j.hidalgo@lse.ac.uk

	INTRODUCTION
	NONPARAMETRIC ESTIMATION METHODOLOGY
	EXAMPLES

	REGULARITY CONDITIONS AND THE TESTING METHODOLOGY
	ALL THE CONSTRAINTS ON 0=x"010C ARE LINEAR
	NONLINEAR CONSTRAINTS ON 0=x"010C
	POWER AND LOCAL ALTERNATIVES

	BOOTSTRAP ALGORITHM
	MONTE CARLO EXPERIMENTS AND EMPIRICAL EXAMPLES
	MONTE CARLO EXPERIMENTS
	APPLICATIONS

	CONCLUSION
	References
	Author's addresses

