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Abstract

This article investigates the estimation and inference of quantile impulse response functions.

We propose a new estimation method using the idea of local projections by Jordà (2005). We

establish consistency and asymptotic normality of the estimator, thereby enabling asymptotic

inference. We also consider the confidence interval construction based on the stationary boot-

strap and prove its consistency. Confirmatory simulation results and empirical practices on

Value-at-Risk dynamics are provided.
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1 Introduction

Quantile methods have attracted increasing attention in economics and finance. Unlike the tradi-

tional mean-based analysis, quantile analysis enables researchers to study heterogeneous effects of

independent variables on different quantiles of an outcome distribution. The effect of a shock asso-

ciated with tail events or tail co-dependence among financial variables is important for risk analysis.

Recent developments in time series quantile analysis include the quantilogram analysis by Linton

and Whang (2007), Han et al. (2016) and Lee et al. (2019), CoVaR of Adrian and Brunnermeier

(2016), the conditional autoregressive value at risk (CAViaR) of Engle and Manganelli (2004), and

the quantile autoregression (QAR) of Koenker and Xiao (2006), to name a few. See also Baruník

and Kley (2019), Davis and Mikosch (2009) and Li et al. (2015) for measuring quantile dependence

and tail dependence.

Impulse response function (IRF) analysis has been a standard tool in macroeconomics and

finance since the seminal paper by Sims (1980). In a variety of multivariate models, IRFs provide

a comprehensive picture of shock-response mechanisms. Many vector autoregressive (VAR) studies

have developed identification, estimation and econometric inference of IRFs.
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In this article, we study the quantile impulse response function (QIRF) that can measure the

effect of a shock on the response variables at different quantiles. Since a shock to one financial

institution can propagate to other financial institutions or to the market, a proper tool would be

a version of VAR models. However, the impulse response can be substantially different between

downside and upside risks to the market. One unit of the market-wide shock would also have

different implications for major financial institutions in good or bad times. The QIRF can capture

these heterogeneous dynamic responses across different economic conditions, hence is a useful tool

for the risk analysis conditional on the market information.

We propose a new easy-to-use QIRF estimation using the idea of local projections by Jordà

(2005). We show that the QIRF estimation based on our method effectively describes the true

QIRF, hence accommodating dynamic analysis of Value-at-Risk (VaR). We also provide valid

econometric inferential tools based on both asymptotics and the stationary bootstrap (Politis and

Romano, 1994). The bootstrap consistency in this framework is provided, which is of its own in-

terest. Simulation evidence shows that both asymptotic and bootstrap confidence intervals have

proper coverage probabilities. However, for relatively longer horizons, the bootstrap confidence in-

terval works better because the bootstrap method avoids the estimation of a density-like nuisance

parameter. In the quantile regression literature, estimation of this parameter has been diffi cult

especially at tails.

Closely related to this paper is White, Kim, and Manganelli (2015, WKM henceforth), who

proposed a so-called pseudo-QIRF. However, the pseudo-QIRF typically underestimates the effect of

a shock on quantiles, since the dynamic evolution of volatility is not accounted for in its construction.

We also choose to use the VAR for VaR model as WKM that directly estimates conditional quantile,

instead of fully specifying the DGP, and adopt the idea of direct forecasting for multi-step prediction

of conditional quantile. We confirm via simulations that the local projection QIRF estimation

effectively approximates the true quantile responses, outperforming the pseudo-QIRF.

In the empirical application, we consider the stock return series of 61 US financial institutions

and, using the local projection QIRF, examine a dynamic reaction of each financial institution’s

1% and 5% VaR when there is a shock to the market. Following Acharya et al. (2017), we

categorize 61 financial institutions into the following four sectors; Depositories, Other, Insurance

and Broker-Dealers. The sectoral averages of QIRFs for 1% VaR show that the average response of

Broker-Dealers tends to be the largest up to three weeks, whereas that of Depositories becomes the

smallest after about two weeks. Moreover, the local projection QIRFs generally exhibit substantial

fluctuations, whereas the pseudo-QIRFs monotonically converge to zero. For example, the average

response of Broker-Dealers for 1% VaR reaches its maximum in two weeks instead of gradually

decreasing.

Recently, there has been much attention on dynamic quantile analysis in economics litera-

ture. Chavleishvili and Manganelli (2019), Kim et al. (2019), and Montes-Rojas (2019)1 consider

1Montes-Rojas (2019) investigated some benefits of local projections in his vector autoregressive quantile (VARQ)
models.
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QIRF based on their own multivariate quantile regression models with macroeconomic and financial

variables. Moreover, the Growth-at-Risk (GaR) approach developed by IMF (2017) links current

financial conditions to quantiles of future growth outcomes. Even though the current paper mainly

focuses on financial return data and their VaR dynamics, this approach could be modified to ac-

commodate macroeconomic time series, see Jung and Lee (2019). Please also see Loria et al. (2019)

for related but different macroeconomics applications of QIRFs.

A recent statistical literature has also explored the idea of mutivariate conditional quantiles.

See, e.g., Kong and Mizera (2012), Hallin et al. (2010), Paindaveine and Šiman (2011), and Carlier

et al. (2016). Since there is no consensue on how to define multivariate quantiles, they propose new

interesting definitions using a directional vector or optimal transport. In this paper, we construct

multivariate quantiles by stacking the univariate conditional quantiles following WKM.

In Section 2, we introduce the definition and estimation of QIRF. In Section 3, we explore some

prototypical financial volatility models, and study QIRFs of the models. In particular, we provide

some intuition why the local projection can effectively estimate QIRFs of financial return data.

Section 4 derives the asymptotic properties of QIRF estimators, and provides the asymptotic and

bootstrap inferential methods. In Section 5, we evaluate the performance by a set of Monte Carlo

simulations. Section 6 provides empirical applications to Value-at-Risk dynamics of financial time

series, and Section 7 concludes.

2 QIRF Definition and Estimation

In this section, we introduce the definition of QIRF and propose a new method to estimate it.

We first briefly explain the generalized impulse response function and the local projections in the

literature of VAR models because these are closely related to our method. In VAR models, impulse

responses are typically defined as the change in yt+s = (y1t+s, y2t+s, ..., ynt+s)
> caused by a shock

at time t, which can be derived by the Wold decomposition. Alternatively, impulse responses can

be defined as the difference between the forecast of yt+s with a shock at time t and that without

a shock at time t, which is the generalized impulse response function by Koop et al. (1996);

IRF (s) := E
[
yt+s|ut = δ0;Ft−1

]
− E [yt+s|ut = 0;Ft−1]

where ut is the vector of reduced-form errors. Similarly, we define the QIRF as the difference

between the forecast of conditional quantile with a shock at time t and that without a shock.

In estimating QIRF, we adopt the idea of direct forecasting to obtain multi-step ahead forecasts

of the conditional quantile, which is similar to the local projections by Jordà (2005). Given a VAR(p)

model, Jordà (2005) denotes the collection of the following regressions

yt+s = c(s) + B
(s)
1 yt + B

(s)
2 yt−1 + · · ·+ B(s)

p yt−p+1 + u
(s)
t+s, for s = 1, 2, · · · , S (1)
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as local projections, from which the impulse responses are estimated by

ÎRF
(s)

= B̂
(s)
1 δ0.

Local projections are linear approximations and correspond to direct forecasting. For multi-step

ahead forecasting, the direct forecasting procedure is known to be robust to model misspecification.

We consider the following set-up to describe quantiles of multiple variables. Given the natural

filtration {Ft}∞t=−∞ and τ j ∈ (0, 1), qit (τ j) represents the conditional τ j quantile of a time series yit
for i = 1, 2, ..., n such that P (yit ≤ qit (τ j) |Ft−1) = τ j . qit (τ j) is Ft−1-measurable, and depends on

the quantile level τ j determined by the researcher. It should be noted that we can choose a different

quantile level τ j for each yit with qit (τ j) for implementation. However, to make the presentation

concise, we consider a single τ for all i’s, suppressing qit (τ) = qit throughout the paper.

We let yit be a demeaned returns series of an asset or a portfolio. While it can be a more

general time series, we focus on financial time series and expect that our method could be useful

for risk management in financial markets. There has been needs to analyze the dynamic response

of the VaR, i.e., conditional quantile, of yit when there is a shock to the market or another asset.

The only available method has been the pseudo-QIRF by WKM, which was recently adopted by

Bouri et al. (2018), Chuliá et al. (2017), Peng and Zeng (2019), Shen (2018), and Wen et al.

(2019) among others. However, as WKM acknowledge, the pseudo-QIRF is based on the restrictive

assumption that a shock at time t affects only yt without generating any change in future values of

yt. Consequently, the pseudo-QIRF underestimates the impact of a shock. See Section 3.2 for more

details. This paper tries to overcome such a limitation. Our approach is based on the framework

of WKM and, more specifically, we adopt the VAR for VaR model and the same shock formulation

as in WKM.

The following definition of QIRF measures the impact of a shock on conditional quantile dy-

namics of financial time series.

Definition 2.1 Let yt = (y1t, y2t, ..., ynt)
> and qt = (q1t, q2t, ..., qnt)

>. We define the quantile

impulse response function (QIRF) as

QIRF (s) := E
[
qt+s|yt = δ0;Ft−1

]
− E [qt+s|yt = 0;Ft−1] (2)

= Et
[
qt+s|yt = δ0

]
− Et [qt+s|yt = 0] .

Remark 2.1 The QIRF measures the change in qt+s caused by a shock. Here, δ0 represents a

shock at time t, and we let yt = 0 in the absence of the shock. Given that our main application

is to investigate VaR dynamics of financial asset returns, we consider the difference between the

conditional quantiles under these two scenarios: yt = δ0 and yt = 0. The case of yt = 0 con-

siders the benchmark of asset return being centered around zero. The wide consensus on (near-)

martingale difference assumption on asset returns yt (conditional mean being zero) makes this for-

mulation empirically relevant. This shock formulation for the QIRF construction is the same as
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that for WKM’s pseudo-QIRF construction. We explain the reason why we do not impose a shock

to innovations in Section 3.1 (see Equation (7) and (8) below).

Remark 2.2 There is another difference between the QIRF and the conventional IRF. Unlike the
conventional IRF, the QIRF does not assume innovations between t + 1 and t + s to be zero. If

yit is a demeaned GARCH type process such that yit = σitεit and εit+1, · · · , εit+s are assumed to
be zero, yit+1, · · · , yit+s are restricted to be zero and the s-step ahead volatility forecast (Et[σt+s])
becomes smaller accordingly.2 Since the s-step ahead forecast of conditional quantile is also similarly

affected, we do not assume innovations between t+ 1 and t+ s to be zero and the QIRF is defined

as the change in the forecast of (Ft+s−1-measurable) conditional quantile qt+s attributable to an

initial shock at time t.

The definition of QIRF (s) in (2) shows that calculating quantile impulse responses is related to

multi-step prediction of conditional quantile. We choose to use the VAR for VaR model that directly

estimates conditional quantile, instead of fully specifying the whole distribution, and adopt the idea

of direct forecasting for multi-step prediction. When one estimates the VaR of financial time series

using a GARCH-type model, a typical approach is to fully specify the conditional variance and the

distribution of innovations. For this parametric approach, there is inevitably a possibility of model

misspecification. Instead of full specification of DGP, one can alternatively model the conditional

quantile directly as the CAViaR model by Engle and Manganelli (2004). The CAViaR approach is

known to perform well in estimating and forecasting the VaR of financial time series, and the VAR

for VaR model is its multivariate extension, which is described as

qt = c + A|yt−1|+ Bqt−1.

By repetitive substitutions, it can be expressed as

qt = C + A |yt−1|+ BA |yt−2|+ B2A |yt−3|+ · · · ,

where C = c + Bc + B2c + · · · . By applying the idea of local projections by Jordà (2005), we can
consider

qt+s = C(s) + A(s) |yt|+ B(s)A(s) |yt−1|+ (B(s))2A(s) |yt−2|+ · · · for s = 1, 2, · · · , S, (3)

similarly as in (1), and use the estimate of A(s) to estimate QIRF.

Based on this idea, we propose to estimate QIRF (s) as the following:

Q̂IRF
(s)

= Â(s)|δ0|, (4)
2For example, consider a univariate TS-GARCH(1,1) model in Section 3.1:

yt = σtεt, σt = ω + α|yt−1|+ βσt−1, εt
iid∼ (0, 1).

Under the model, the forecast of σt+s is Et[σt+s] = ω + Et[α|εt+s−1| + β]Et[σt+s−1]. However, Et[σt+s] with an
innovation turned off (εt+s−1 = 0) is smaller than that: ω + βEt[σt+s−1].
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where Â(s) is the estimate of A(s) from

qt = c(s) + A(s)|yt−s|+ B(s)qt−1, for s = 1, 2, ..., S. (5)

Remark 2.3 It should be noted that (5) leads to (3) by repetitive substitutions. We interpret (5) as
a conditional quantile version of local projections. Our local projection method effectively captures

quantile responses to a shock, as will be explained in Section 3.3.

Remark 2.4 In the VAR for VaR model by WKM, the past returns have a symmetric effect on

the VaR. Hence, we assume the conditional quantile as a function of |yt−s|, so the QIRF depends
on |δ0|. In the presence of an asymmetric effect of the past returns on the VaR, we can adjust the
VAR for VaR model accordingly, as shown in Engle and Manganelli (2004), and the QIRF local

projection may employ different response coeffi cients for positive and negative realizations of yt−s.

3 Heuristics on QIRF and Its Estimator

In financial time series modeling, the volatility dynamics are of primary importance. Thus we study

the relationship between volatility and quantiles in our QIRF framework. Even though QIRF and

local projection estimation in Section 2 do not require a specific DGP or a model, we explore QIRFs

of a few popular volatility models in this section. In particular, we investigate some prototypical

GARCH-type models. To illustrate the idea, we first investigate a univariate GARCH model, and

then discuss a multivariate case.

3.1 QIRF of GARCH Models

We first consider a simple univariate TS-GARCH(1,1) model of Taylor (1986) and Schwert (1989)3:

yt = εtσt, σt = ω + α|yt−1|+ βσt−1, εt
iid∼ (0, 1).

Since σt = ω + (α|εt−1|+ β)σt−1, for s ≥ 1, iterating this equation yields4

σt+s = ω +

s−1∑
j=1

[ j∏
k=1

(
α|εt+s−k|+ β

)]
ω +

[ s−1∏
k=1

(
α|εt+s−k|+ β

)]
(α|yt|+ βσt).

3By using the TS-GARCH model rather than the classical model σ2t = ω + αy2t−1 + βσ2t−1 of Bollerslev (1986),
the conditional quantile qt becomes a linear function of |yt−1| and σt−1, providing intuitive analytical expressions of
the QIRF.

4 In this paper, we assign 0 or 1 to the following summation and product notations for notational simplicity. When
the upper bound of summation is less than the lower bound of summation, we let the value of the summation be 0.
When the upper bound of the product is less than the lower bound of the product, we let the value of the product
be 1. For example,

∑0
j=1[ · ] = 0 and

∏0
k=1[ · ] = 1.
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Note that qt = F−1
ε (τ)σt where F−1

ε is the inverse CDF of εt. Hence qt+s is expressed as

qt+s = F−1
ε (τ)

[
ω+

s−1∑
j=1

[ j∏
k=1

(
α|εt+s−k|+β

)]
ω+
[ s−1∏
k=1

(
α|εt+s−k|+β

)]
α|yt|

]
+
[ s−1∏
k=1

(
α|εt+s−k|+β

)]
βqt.

The change in qt+s attributable to a shock yt = δ0 is then

F−1
ε (τ)

[ s−1∏
k=1

(
α|εt+s−k|+ β

)]
α|δ0|. (6)

The above expression illustrates the response of quantiles driven by the evolution of volatility.

In GARCH models, the effect of a shock on volatility is transmitted via two channels, (i) the feed-

through channel and (ii) the volatility-persistence channel. We can clearly see these channels by

rewriting the dynamics of volatility as

σt+1 = ω + α
(
|yt| − Et[|yt|]

)
+
(
αEt[|εt|] + β

)
σt.

The coeffi cient α measures the effect of a mean-zero volatility variation, |yt| − Et[|yt|], on the
next period’s volatility. The coeffi cient of autoregressive term, αEt[|εt|] + β, measures volatility

persistence.5 Because the response of qt+s to a shock yt = δ0 arises from these two channels,

the quantile response can be decomposed into the scale, volatility-persistence and feed-through

components:

F−1
ε (τ)︸ ︷︷ ︸
scale

[ s−1∏
k=1

(
α|εt+s−k|+ β

)]
︸ ︷︷ ︸

volatility-persistence

× α|δ0|.︸ ︷︷ ︸
feed-through

Therefore, the QIRF of TS-GARCH(1,1) model, the conditional expectation of (6), accommodates

the proper two channels of the shock transmission mechanism:

QIRF (s) := Et
[
qt+s|yt = δ0

]
− Et [qt+s|yt = 0] = F−1

ε (τ)
(
αE[|εt|] + β

)s−1
α|δ0|. (7)

This example also explains the shock formulation in the QIRF definition. To employ εt as

the shock, the QIRF could be defined as Et
[
qt+s|εt = δ0

]
− Et [qt+s|εt = 0]. Under this definition,

however, the measurement of QIRF is infeasible. Since

Et
[
qt+s|εt = δ0

]
− Et [qt+s|εt = 0] = F−1

ε (τ)
[ s−1∏
k=1

(
α|εt+s−k|+ β

)]
α|δ0|σt, (8)

this definition employs a Ft−1-measurable σt, for which a specific DGP is needed in practice. We

therefore use the QIRF definition (2).

5See Chapter 12 of Campbell, Lo and MacKinlay (1997) for details about GARCH models.
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We can extend the discussion to a multivariate case, which is a DGP example of WKM.6

Adopting from their paper (p.173)7:

yt = etΣt,[
e1t

e2t

]
iid∼
([

0

0

]
,

[
1 ρ

ρ 1

])
,

Σt = ω +α|yt−1|+ βΣt−1,

where yt = (y1t, y2t)
>, |yt| = (|y1t|, |y2t|)>, Σt = (σ1t, σ2t)

>, ω = (ω1, ω2)>,α =

[
α11 α12

α21 α22

]
, β =[

β11 β12

β21 β22

]
, et =

[
e1t 0

0 e2t

]
.

The marginal distributions of eit, for i = 1, 2, are identical for simplicity. The change in

qt+s = (q1t+2, q2t+2)> attributable to a shock yt = δ0 is

F−1
e (τ)

[ s−1∏
k=1

(
α|et+s−k|+ β

)]
α| δ0|,

where F−1
e is the inverse CDF of eit and |et| =

[
|e1t| 0

0 |e2t|

]
. The QIRF is then:

QIRF (s) := Et
[
qt+s|yt = δ0

]
− Et [qt+s|yt = 0] = F−1

e (τ)
(
αE
[
|et|
]

+ β
)s−1

α|δ0|. (9)

3.2 Comparison to WKM’s Pseudo-QIRF

WKM introduce a so-called pseudo-QIRF. Following their definition, the analytical expression of

the pseudo-QIRF in GARCH models is

pseudo-QIRF (s) = F−1
e (τ)βs−1α|δ0|,

whereas the true QIRF is (9). Thus pseudo-QIRF estimates the persistence of volatility to be β

whereas the true persistence is αE
[
|et|
]

+ β.

WKM define the pseudo-QIRF as the difference between the conditional quantiles from the

following two time paths.

{ ... , yt−2, yt−1, ỹt = δ0, yt+1 yt+2 yt+3 ... }

{ ... , yt−2, yt−1, yt = 0, yt+1 yt+2 yt+3 ... }

6The QIRF of a bivariate TS-GARCH(p,q) is discussed in detail in Appendix A.1.1.
7We assume structural shocks, (ε1t, ε2t)>, can be derived by applying the Cholesky decomposition to reduced form

shocks. That is, [
e1t
e2t

]
=

[
1 0

ρ
√
1− ρ2

] [
ε1t
ε2t

]
and

[
ε1t
ε2t

]
iid∼
([

0
0

]
,

[
1 0
0 1

])
.
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At time t, one of the time paths is hit by a shock (δ0), but the other is not. Since the DGP is

not fully specified, they assume the shock does not change yt+s for s≥1 so the two time paths are

identical except at time t. This scenario neglects the dynamic evolution in the second moment, as

they acknowledge (p.173 of WKM). Consequently, the pseudo-QIRF underestimates the magnitude

of the true QIRF, which is well illustrated in the simulation Section 5.

Compared to the pseudo-QIRF, our QIRF measures a more comprehensive effect. It accounts

for the effect of a shock not only on the current return (yt), but also on subsequent returns (yt+s).

Thus, it takes into account the evolution of moments such as volatility. Without fully specifying

DGP, the QIRF is well approximated via the local projection.

3.3 Local Projection Estimation of QIRF in GARCH Models

As we can see from (7) and (9), QIRF estimation involves the expectation of an absolute value of

the latent innovations. This estimation procedure is not trivial even with a specific multivariate

DGP. In this section, we study the logic behind QIRF estimation by local projection and illustrate

why the method can effectively estimate the QIRF.8

After some algebra, σt+s in the univariate TS-GARCH(1,1) is written as a function of |yt| and
σt+s−1 for s ≥ 2,

σt+s = ω +
s−1∑
j=1

[ j∏
k=1

(
α|εt+s−k|+ β

)]
ω −

(
α|εt+s−1|+ β

)
β

α|εt|+ β

[
ω +

s−1∑
j=2

[ j∏
k=2

(α|εt+s−k|+ β)
]
ω

]

+
[ s−1∏
k=1

(
α|εt+s−k|+ β

)]
α|yt|+

(
α|εt+s−1|+ β

)
β

α|εt|+ β
σt+s−1.

(10)

In the above expression, σt+s(= ω + α|yt+s−1| + βσt+s−1) is a function of |yt| and σt+s−1. Ac-

cordingly, the expression includes innovations between t and t+ s−1, and they have the same

functional form (i.e., {α|εp|+ β}t+s−1
p=t ). We use the following approximation to deliver the logic of

local projection QIRF estimation.

Assume both σt+s−1 and yt are given but {|εp|}t+s−1
p=t are random. Define Xt := α|εt| + β.

From (10), we can find a function g(·) such that σt+s = g(Xt, ..., Xt+s−1); thus, yt+s = εt+s ·
g(Xt, ..., Xt+s−1). Let µX = E[Xt] = αE[|εt|] + β and ḡ = g(µX , ..., µX), then

Pr
(
yt+s ≤ F−1

ε (τ) · ḡ
)

= Pr

(
εt+s ≤

F−1
ε (τ) · ḡ

g(Xt, ..., Xt+s−1)

)
=

∫
· · ·
∫
Fε

( F−1
ε (τ) · ḡ

g(Xt, ..., Xt+s−1)

)
dF|εt| · · · dF|εt+s−1|

= E
[
Fε

( F−1
ε (τ) · ḡ

g(Xt, ..., Xt+s−1)

)]
.

Using the first-order approximation of Fε
(

F−1ε (τ)·ḡ
g(Xt,...,Xt+s−1)

)
evaluated at the mean effect of innova-

8Details of the derivation for the univariate and bivariate models are in Appendix A.1.2 and A.1.3, respectively.

9



tions (Xt = ... = Xt+s−1 = µX), we can show

Pr
(
yt+s ≤ F−1

ε (τ) · ḡ
)
≈ τ .

That is, the τ -quantile of yt+s approximates F−1
ε (τ) · g(µX , ..., µX). Applying the approximation

yields

qt+s ≈ F−1
ε (τ)

[
ω +

s−1∑
j=1

µjXω − β
[
ω +

s−1∑
j=2

µj−1
X ω

]]
+ F−1

ε (τ)µs−1
X α|yt|+ βqt+s−1, for s ≥ 2.

Thus, â(s) of the following CAViaR model

qt = c(s) + a(s)|yt−s|+ b(s)qt−1, for s = 1, 2, ..., S.

effectively estimates F−1
ε (τ)µs−1

X α. From (7), QIRF (s) can be estimated as

Q̂IRF
(s)

= â(s)|δ0|.

The similar approximation for a bivariate case leads to

Q̂IRF
(s)

= Â(s)|δ0|,

where Â(s) is an estimator for A(s) from the following model,

qt = c(s) + A(s)|yt−s|+ B(s)qt−1, for s = 1, 2, ..., S.

The above estimation shares the local projection idea of Jordà (2005), who estimates the mean

IRF. We therefore naturally label our procedure as local projection QIRF estimation as given in

(5).

4 Asymptotic Theory and Stationary Bootstrap

In this section, we provide valid econometric inferential tools for the QIRF estimation. We first

derive the asymptotic distribution of the local projection QIRF estimator that can be used to

construct an asymptotic confidence interval (CI) with the estimated nuisance parameters. Second,

we propose a stationary bootstrap based CI from Politis and Romano (1994), and confirm the

bootstrap consistency. The proofs in this section are relegated to the Technical Appendix.

4.1 Assumptions

We adopt the assumptions from WKM and Engle and Manganelli (2004) but also combine them

with those from Han et al. (2016) and Goncalves and de Jong (2003). In particular, we relax the
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moment condition using the L2-NED condition from Goncalves and de Jong (2003) for Section 4.3.

Hereafter in this section, we generalize the number of outcome variables to be n and allow quantiles

of interest to differ across the variables.

Assumption 4.1 The sequence {yt} is stationary and strong mixing on the complete probability
space (Ω,F , P0), where Ω is the sample space, F is a suitably chosen σ-field, and P0 is the probability

measure providing a complete description of the stochastic behavior for the sequence of {yt}.

Remark 4.1 A prototypical DGP from Section 3 is

yt = etΣt,

Σt = ω +α|yt−1|+ βΣt−1,

where yt = (y1t, y2t, ..., ynt)
>, |yt| = (|y1t|, |y2t|, ..., |ynt|)>, Σt = (σ1t, σ2t, ..., σnt)

> and et =

diag(e1t, e2t, ..., ent) is an iid random matrix. et is absolutely continuous with respect to the Lebesgue

measure on Rn. If (i) the largest eigenvalue in the absolute value of the matrix β is less than 1 and
(ii) E‖α|et| + β‖s < 1 for some integer s ≥ 1 where ‖A‖ denotes some matrix norm such as the

sup-norm defined as ‖A‖ = sup‖x‖=1 ‖Ax‖, then stationarity and strong mixing in Assumption 4.1
is satisfied. Moreover, if E‖et‖s <∞ then E‖yt‖s <∞.9

For i = 1, 2, ..., n, Fit(y) = Pr[yit ≤ y|Ft−1] denotes the conditional distribution function of yit
given Ft−1 and fit(y) denotes its density function. The corresponding conditional quantile function

is defined as qit(τ i) = inf{y : Fit(y) ≥ τ i} for τ i ∈ (0, 1), i = 1, 2, ..., n. Define τ = (τ1, τ2, .., τn)>

and qt(τ ) =
(
q1t(τ1), q2t(τ2), ..., , qnt(τn)

)>.
Assumption 4.2 (1) {yit} is continuously distributed such that for each ω ∈ Ω, Fit(ω, ·) and
fit(ω, ·) are continuous on R, i = 1, 2, ..., n, t = 1, 2, ..., T. (2) For the given 0 < τ i < 1, we

suppose the followings: (a) for each i, t and ω, fit(ω, qit(τ i)) > 0; (b) there exists a real vector

γ(s)(τ ) = vec
( [

c
(s)
τ A

(s)
τ B

(s)
τ

] )
such that for each t and s

qt(τ ) = c
(s)
τ + A

(s)
τ |yt−s|+ B

(s)
τ qt−1(τ ), s = 1, 2, ..., S.

(3) There exists (a) a finite positive constant f0 such that for each i, t, ω ∈ Ω and each y ∈ R,
fit(ω, y) ≤ f0 <∞; (b) a finite positive constant L0 such that for each i, t, ω ∈ Ω and each x, y ∈ R,
|fit(ω, x)− fit(ω, y)| ≤ L0|x− y|.

Let d := n+ 2n2 be the number of parameters in γ(s)(τ ).

Assumption 4.3 (1) Let A be a compact subset of Rd. For i = 1, 2, ..., n, we suppose the followings:

9See Proposition 3, 4, and 5 of Carrasco and Chen (2002) for details.
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(a) the sequence of functions {q0
it : Ω × A → R} is such that for each t and each γ(s) ∈ A,

q0
it(·,γ(s)) is Ft−1-measurable; (b) for each t and each ω ∈ Ω, q0

it(ω, ·) is continuous on A; (c) for
each i and t, q0

it(·,γ(s)) is specified as

q0
t (·,γ(s)) =

(
q0

1t(·,γ(s)), q0
2t(·,γ(s)), ..., q0

nt(·,γ(s))
)>

= c(s) + A(s)|yt−s|+ B(s)q0
t−1(·,γ(s)), s = 1, 2, ..., S.

where γ(s) = vec
( [

c(s) A(s) B(s)
] )
. (2) For each t and each ω ∈ Ω, q0

t (ω, ·) is twice continu-
ously differentiable on A.

Define δit
(
γ(s),γ(s)(τ )

)
= q0

it(·,γ(s))−q0
it

(
·,γ(s)(τ )

)
and use the norm ‖γ(s)‖ := maxl=1,2,...,d |γ(s)

l |
where γ(s) = (γ

(s)
1 , γ

(s)
2 , ..., γ

(s)
d )>.

Assumption 4.4 (1) There exists (a) γ(s)(τ ) ∈ A such that for all i and t, q0
it

(
·,γ(s)(τ )

)
= qit(τ i);

(b) a non-empty index set l ⊂ {1, 2, ..., n} such that for each ε > 0, there exists δε > 0 such that for

all γ(s) ∈ A with ‖γ(s) − γ(s)(τ )‖ > ε,

Pr
[
∪i∈l

{∣∣δit(γ(s),γ(s)(τ )
)∣∣ > δε

}]
> 0.

(2) γ(s)(τ ) ∈ int(A), where int (·) signifies the interior points of a given set.

Assumption 4.5 Define

D0t := max
i=1,2,...,n

sup
γ(s)∈A

∣∣q0
it(·,γ(s))

∣∣,
D1t := max

i=1,2,...,n

max
j=1,2,...,d

sup
γ(s)∈A

∣∣∣∣( ∂

∂γ
(s)
j

)
q0
it(·,γ(s))

∣∣∣∣,
D2t := max

i=1,2,...,n

max
j=1,2,...,d

max
h=1,2,...,d

sup
γ(s)∈A

∣∣∣∣( ∂2

∂γ
(s)
j ∂γ

(s)
h

)
q0
it(·,γ(s))

∣∣∣∣.
(1) For i = 1, 2, ..., n, E|yit|r+δ < ∞ for some r > 2, and δ > 0. (2) E[D0t] < ∞. (3)

E[D3
1t] <∞. (4) E[D2t] <∞ and E[D1tD2t] <∞.

Define

Q
(s)
τ =

n∑
i=1

E
[
fuit(0)∇q0

it

(
·,γ(s)(τ )

)
∇>q0

it

(
·,γ(s)(τ )

)]
,

V
(s)
τ = E

[
ξ

(s)
t

(
γ(s)(τ )

)(
ξ

(s)
t

(
γ(s)(τ )

))>]
,

ξ
(s)
t (γ(s)) =

n∑
i=1

∇q0
it(·,γ(s))ψτ i

(
yit − q0

it(·,γ(s))
)
,
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where uit = yit − qit(τ i), ψτ i(u) = τ i − 1[u < 0], fuit is the density function of uit conditional on

Ft−1, and ∇q0
it(·,γ(s)) is the gradient of q0

it(·,γ(s)) with respect to γ(s).

Assumption 4.6 (1) Q
(s)
τ is positive definite. (2) V

(s)
τ is positive definite.

4.2 Asymptotic Theory for Local Projection QIRF Estimator

We estimate γ(s) by the following minimization problem

γ̂(s)(τ ) = arg min
γ(s)

1

T

T∑
t=1

n∑
i=1

ρτ i
(
yit − q0

it(·, γ(s))
)
, (11)

where q0
it(·, γ(s)) is defined in Assumption 4.3(1) and ρτ i(u) = u(τ i − 1[u < 0]).

We can show that γ̂(s)(τ ) is a consistent estimator satisfying a central limit theorem.

Lemma 4.1 Suppose that Assumptions 4.1, 4.2(1, 2), 4.3(1), 4.4(1) and 4.5(1, 2) hold. Then,

γ̂(s)(τ )
p−→ γ(s)(τ ).

Lemma 4.2 Suppose that Assumptions 4.1 - 4.6 hold. Then,

√
T
(
γ̂(s)(τ )− γ(s)(τ )

)
=
(
Q

(s)
τ

)−1
H

(s)
T + op(1), (12)

where H
(s)
T = 1√

T

∑T
t=1 ξ

(s)
t

(
γ(s)(τ )

)
. The asymptotic distribution of the estimator γ̂(s)(τ ) is given

by: √
T
(
γ̂(s)(τ )− γ(s)(τ )

)
d−→ N

(
0,
(
Q

(s)
τ

)−1
V

(s)
τ

(
Q

(s)
τ

)−1
)
. (13)

From Section 3.3, we approximate the QIRF at horizon s, QIRF (s), by A(s)|δ0| via the local
projection. The QIRF local projection estimator Q̂IRF

(s)
in (4) is a linear function of γ̂(s)(τ ), so

the following theorem holds.

Theorem 4.1 Suppose that Assumptions 4.1 - 4.6 hold. Then,

√
T
(
Â(s)|δ0| −A(s)|δ0|

)
= G

(
Q

(s)
τ

)−1
H

(s)
T + op(1),

where G =
[
0 |δ0|′ 01×n

]
⊗ In×n, and the asymptotic distribution of Q̂IRF

(s)
is given by:

√
T
(
Â(s)|δ0| −A(s)|δ0|

) d−→ N
(
0,G

(
Q

(s)
τ

)−1
V

(s)
τ

(
Q

(s)
τ

)−1
G>
)
.

Remark 4.2 To construct the asymptotic confidence interval for Q̂IRF
(s)
, we use the following
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consistent estimator for V
(s)
τ and Q

(s)
τ following WKM,

V̂
(s)
τ =

1

T

T∑
t=1

ξ̂
(s)

t (ξ̂
(s)

t )>,

ξ̂
(s)

t =
n∑
i=1

∇q0
it

(
·, γ̂(s)(τ )

)
ψτ i(ε̂it),

ε̂it = yit − q0
it

(
·, γ̂(s)(τ )

)
,

Q̂
(s)
τ =

1

2ĉTT

n∑
i=1

T∑
t=1

1[|̂εit| ≤ ĉT ]∇q0
it

(
·, γ̂(s)(τ )

)(
∇q0

it

(
·, γ̂(s)(τ )

))>
.

4.3 Stationary Bootstrap Inference

The accurate estimation of Q
(s)
τ in Theorem 4.1 can be challenging because of the nuisance pa-

rameter estimation, especially at tail quantiles where the number of observation is scarce. This

diffi culty has been well known in the quantile regression literature; see Koenker (1994, 2005) for

instance. As a result, the performance of the asymptotic confidence intervals for Q̂IRF
(s)
may

not be satisfactory. In this section, we avoid the nuisance parameter estimation by providing a

stationary bootstrap confidence interval by Politis and Romano (1994) and its validity.

We draw a sequence of iid random block lengths {Li}i∈N that has the following geometric
distribution:

Pr(Li = x) = p(1− p)x−1, 0 < p < 1.

A sequence of iid random variables {Ki}i∈N has the discrete uniform distribution on {1, ..., T},
where {Li}i∈N and {Ki}i∈N are independent. We build blocks BKi,Li = {yt}Ki+Li−1

t=Ki
of length

Li starting with the Ki-th observation.10 The stationary bootstrap generates bootstrap samples

{y∗t }Tt=1 by taking the first T observations from a sequence of blocks {BKi,Li}i∈N. The following
assumption from Goncalves and de Jong (2003) ensures the validity of the stationary bootstrap.

Assumption 4.7 (1) For some r>2 and δ>0 chosen as in Assumptions 4.5(1), (a) yit (i=1,...,n)

is L2+δ-NED on {Vt} with NED coeffi cient vk of size −1, i.e. vk ≡ supi,tE| yit − Et+kt−k [yit] |2 → 0

as k →∞, and vk = O(k−1−ε) for some ε > 0; (b) {Vt} is an α-mixing sequence with α(k) of size

− (2+δ)(r+δ)
(r−2) . (2) p = pT → 0 and Tp2

T →∞ as T →∞.

Let {y∗t = (y∗1t, y
∗
2t, ..., , y

∗
nt)
>}Tt=1 denote the stationary bootstrap sample. The local projection

estimator with the stationary bootstrap sample solves the following minimization problem:

γ̂(s)∗(τ ) = arg min
γ(s)

1

T

T∑
t=1

n∑
i=1

ρτ i
(
y∗it − q0∗

it (·, γ(s))
)
,

10 In resampling, the first observation y1 is treated as the observation following the last observation yT . That is,
for t > T , yt is set to be yt−T .
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where q0∗
it (·, γ(s)) is defined as

q0∗
t (·,γ(s)) =

(
q0∗

1t (·,γ(s)), q0∗
2t (·,γ(s)), ..., q0∗

nt(·,γ(s))
)>

= c(s) + A(s)|y∗t−s|+ B(s)q0∗
t−1(·,γ(s)), s = 1, 2, ..., S.

The asymptotic distribution of γ̂(s)∗(τ ) and Q̂IRF
(s)∗

= Â(s)∗|δ0| can be derived with the similar
argument from Section 4.2, and the proofs can be found in the Technical Appendix.

Lemma 4.3 Suppose that Assumptions 4.1 - 4.7 hold . Then,

√
T
(
γ̂(s)∗(τ )− γ(s)(τ )

)
=
(
Q(s)
τ

)−1
H

(s)∗
T + op(1),

where H
(s)∗
T = 1√

T

∑T
t=1 ξ

(s)∗
t

(
γ(s)(τ )

)
, ξ(s)∗

t (γ(s)) =
∑n

i=1∇q0∗
it (·,γ(s))ψτ i

(
y0∗
it − q0∗

it (·,γ(s))
)
and

∇q0∗
it (·,γ(s)) is the gradient of q0∗

it (·,γ(s)) with respect to γ(s).

Lemma 4.4 Suppose that Assumptions 4.1 - 4.7 hold. Then,

√
T
(

Â(s)∗|δ0| −A(s)|δ0|
)

= G
(
Q

(s)
τ

)−1
H

(s)∗
T + op(1).

Define B
(s)∗
T := H

(s)∗
T −H

(s)
T . Conditional on the original sample, we obtain the convergence in

distribution as in the following lemma.

Lemma 4.5 Suppose that Assumptions 4.1 - 4.7 hold. Then,

B
(s)∗
T

d−→ N
(
0,V(s)

τ

)
,

conditional on the original sample, for almost every sequence.

We now obtain the asymptotic distribution of the bootstrapped QIRF estimator, confirming

the stationary bootstrap consistency.

Theorem 4.2 Suppose that Assumptions 4.1 - 4.7 hold. Then, in the sense of weak convergence
conditional on the sample,

√
T
(

Â(s)∗|δ0| − Â(s)|δ0|
) ∗−→ N

(
0,G

(
Q(s)
τ

)−1
V(s)
τ

(
Q(s)
τ

)−1
G>
)
.

Remark 4.3 To construct the 100 · (1 − α)% confidence interval for Q̂IRF
(s)
, (i) we draw B

number of bootstrap samples, and (ii) for each bootstrap sample and a given s = 1, ..., S, we obtain

Â(s)∗. Then, (iii) using B number of local projection estimator Â(s)∗, 100 · (1 − α
2 ) and 100 · (α2 )

empirical quantiles of Â(s)∗|δ0| provide the lower and upper bounds of the 100 · (1−α)% confidence

interval of Q̂IRF
(s)
.
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5 Monte Carlo Simulations

We conduct several simulation studies to examine whether our local projection method provides

reasonable approximations for true QIRFs and also investigate whether the two inferential proce-

dures are valid in finite samples. First, we experiment with the bivariate TS-GARCH DGPs as in

WKM and compare the local projection QIRF with the pseudo-QIRF by WKM. Specifically, we

consider the following three DGPs.

DGP 1: [
y1t

y2t

]
=

[
σ1te1t

σ2te2t

]
,[

σ1t

σ2t

]
=

[
0.02

0.02

]
+

[
0.09 0.02

0.07 0.09

][
|y1t−1|
|y2t−1|

]
+

[
0.89 0.01

0.06 0.85

][
σ1t−1

σ2t−1

]
,

for [
e1t

e2t

]
=

[
1 0

ρ
√

1− ρ2

][
ε1t

ε2t

]
,

where ε1t and ε2t are mutually independent and εit
iid∼ N (0, 1).

DGP 2: DGP 1 with
εit

iid∼ (5/3)−
1
2 × t5.

DGP 3:[
y1t

y2t

]
=

[
σ1te1t

σ2te2t

]
,[

σ1t

σ2t

]
=

[
0.02

0.02

]
+

[
0.05 0.01

0.03 0.04

][
|y1t−1|
|y2t−1|

]
+

[
0.05 0.01

0.03 0.04

][
|y1t−2|
|y2t−2|

]
+

[
0.89 0.01

0.06 0.85

][
σ1t−1

σ2t−1

]
,

for e1t and e2t in DGP 1.

For the parameter values in DGP 1 and DGP 2, we use the average estimates of 61 bivariate

models for 5% VaR given in Table 4. The details of these estimates are explained in the next

section. Here y1t and y2t correspond to a market return and an individual financial institution’s

stock return, respectively. The correlation ρ is set to be either 0 or 0.5. If ρ = 0, e1t and e2t are

mutually independent. If ρ 6= 0, it is assumed that a shock to the market has a contemporaneous

effect on the return of the individual financial institution, whereas the institution’s specific shock

has only a lagged effect on the market. We also consider DGP 3 particularly to investigate whether

the local projection QIRF is robust to model misspecification. We can analytically calculate the

true QIRF in each DGP and use it for comparison.

We generate data with sample size 4, 000 after removing the first 200 observations to get rid

of the initial value effect. For each DGP, we estimate the model given in (5) for the 5% quantile.
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For the QIRF, we assume that y1t is hit by a negative shock with the magnitude of twice its

unconditional standard deviation σ1 and adopt a standard Cholesky decomposition as in WKM,

which means δ0 = L×(−2, 0)′ where a lower triangular matrix L is from the Cholesky decomposition

of cov(y1t, y2t). The QIRFs are presented with horizons up to 30 and the number of repetition is

1, 000 for each DGP.

Figure 1 provides the simulation results, where each figure provides a true QIRF, an average

local projection QIRF and an average pseudo-QIRF. Since the results for ρ = 0 are similar, we

report only those for ρ = 0.5. It should be noted that the local projection QIRF is identical to

the pseudo-QIRF for horizon s = 1, whereas they are different for horizon s > 1. In particular,

the QIRF for longer horizons is of our interest. First of all, it is obvious that our local projection

QIRF successfully approximates the true QIRF in each case, but the pseudo-QIRF does not. In

Figures 1(B) and 1(D), the true QIRF decreases as the horizon increases, which means that the

response of q2t gets larger in absolute value as the horizon increases. Figures 1(B) and 1(D) show

that the local projection QIRF successfully approximates the true QIRF. However, it is shown that

the pseudo-QIRF monotonically converges to zero and gets further away from the true QIRF as

the horizon increases.

Second, Figures 1(E) and 1(F) show that the local projection QIRF still well approximates the

true QIRF even under model misspecification. Although the DGP 3 is a TS-GARCH(1,2) model,

the local projection QIRF is based on the estimation of a TS-GARCH(1,1) model. Under DGP

3, the local projection QIRF is close to the true QIRF for longer horizons even if it is not that

close for horizon s = 1. This implies that the local projection QIRF is robust to misspecification

for longer horizons. On the other hand, the pseudo-QIRF is quite different from the true QIRF.

Next, we examine the validity of the two inferential procedures explained in the previous section.

We consider the DGP 1 given above and adopt the same shock for QIRFs. For each data generated,

we obtain two 95% CIs of the local projection QIRF. One is the asymptotic CI and the other is

the stationary bootstrap CI based on 1, 000 bootstrapped replicates. The tuning parameter p is set

to be 0.002. We count whether each CI includes the true QIRF for a given horizon. We consider

only four horizons, s = 1, 10, 20, and 30, because of the computational burden. We repeat this

procedure 1, 000 times and calculate the effective coverage rates of two 95% CIs.

Table 1 reports the effective coverage rates. For shorter horizons s = 1 or 10, both asymptotic

and bootstrap CIs exhibit similar coverage rates, between 0.90 and 0.94. However, for longer

horizons s = 20 or 30, the coverage rate of the bootstrap CI is very close to 0.95, ranging between

0.94 and 0.96, whereas the coverage rate of the asymptotic CI is between 0.81 and 0.87. These results

show that although both asymptotic and bootstrap CIs are valid inferential tools for relatively short

horizons, the bootstrap CI is better for longer horizons.
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6 Applications to Value-at-Risk Dynamics

What happens to each financial institution’s VaR if the market crashes? This question is typically

considered in a stress test of financial institutions, whereas the following question is also of interest.

What happens to the market’s VaR if a financial institution’s stock return crashes? This is typically

considered in an analysis of systemic risk of financial institutions. We use the QIRF to address these

issues and examine a dynamic reaction of each financial institution’s VaR when there is a shock

to the market and a dynamic reaction of the market’s VaR when there is a shock to a particular

financial institution.

We use the CRSP market value weighted index return as the market index return and, at first,

consider stock returns of three individual financial institutions: JP Morgan Chase (JPM), Morgan

Stanley (MS), and AIG. We use daily observations from 24 Feb. 1993 to 29 Jun. 2018 with sample

size 6,385.11 We let y1t and y2t be the return series of the market and each financial institution,

respectively, and first estimate the VAR for VaR model by WKM, which is the model given in (5)

for s = 1. Table 2 reports the estimation results of the model for 5% VaR, where the quantiles

of the market return and each financial institution’s return are set to be 0.05. The autoregressive

coeffi cients b11 and b22 are estimated to be mostly high (between 0.88 and 0.98), which indicate that

the VaR processes are persistent. More importantly, some of the off-diagonal coeffi cients of the A(1)

or B(1) matrices are significantly different from zero. The joint null hypothesis that all off-diagonal

coeffi cients of the matrices A(1) and B(1) are equal to zero is rejected at the 1% significance level

for all three cases. For JPM and MS, the estimates of a21 and b21 are relatively large in absolute

value whereas a12 is close to zero. For AIG, the estimates of a12 and b12 are very close to zero.

Table 3 reports the estimation results of the model for 1% VaR, where the quantiles of the market

return and each financial institution’s return are set to be 0.01. The results are in general similar

to those in Table 2 but there are a few differences. First, for 1% VaR, the joint null hypothesis that

all off-diagonal coeffi cients of the matrices A(1) and B(1) are equal to zero is rejected for JPM and

AIG but is not rejected for MS, for whom all off-diagonal coeffi cients of the A(1) or B(1) matrices

are insignificant. Second, for 1% VaR of JPM, the estimates of a21 and b21 are larger in absolute

value (-0.44 and -0.26, respectively) than those for 5% VaR (-0.18 and -0.14), which indicates that

the effect of the market is larger for 1% VaR than for 5% VaR. For MS, the estimate of a21 for 1%

VaR is also larger in absolute value (-0.37) than that for 5% VaR (-0.27) even if it is insignificant.

Next, we conduct a quantile impulse response analysis using the local projection method. Fig-

ures 2 and 3 provide the QIRFs of three individual financial institutions to a two standard deviation

shock to the market index for 5% VaR and 1% VaR, respectively. As in WKM, the identification

of the market shock relies on a Cholesky decomposition, which implicitly assumes that shocks to

the market can contemporaneously affect each individual financial institution whereas shocks to

the financial institution can affect the market only with a lag. In each figure, the horizontal axis

indicates the time (expressed in days) and the vertical axis measures the change in the VaR of

11The stock return series are obtained from CRSP and Yahoo Finance. The stock return series of Morgan Stanley
are available from 24 Feb. 1993.
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the individual financial institution (expressed in percentage returns) as a reaction to the market

shock. The solid line in each figure represents the local projection QIRF. The shaded area in each

figure is the 95% confidence interval based on 1,000 bootstrapped replicates, for which we adopt the

stationary bootstrap procedure explained in Section 4.3, and the tuning parameter p is chosen to

be 0.002.12 For comparison, we also provide the pseudo-QIRFs (dashed lines) with 95% confidence

intervals (dotted lines).

In Figures 2 and 3, most importantly, the local projection QIRFs exhibit a non-monotonic trend.

For example, in Figures 2(A) and 3(A), the local projection QIRFs of JPM exhibit the lowest value

at horizon s = 10 and, in Figures 3(B), the local projection QIRF of MS reaches its minimum at

horizon s = 16. That is, the reaction to the market shock reaches its maximum in two weeks for

JPM’s 5% and 1% VaRs and about three weeks for MS’s 1% VaR. This feature is clearly different

from the pseudo-QIRF. The pseudo-QIRFs monotonically converge to zero by construction, as is

shown in Section 5. In Figures 2(A) and 3(A), the confidence intervals of the local projection QIRF

at horizon s = 10 do not include the confidence intervals of the pseudo-QIRFs, which indicates that

the local projection QIRFs are statistically different from the pseudo-QIRFs at horizon s = 10.

When we compare the QIRFs for 5% VaR with those for 1% VaR, the maximums in absolute

value are larger for 1% VaR than for 5% VaR. It is not surprising that the reaction of 1% VaR

is much larger than that of 5% VaR. For JPM, the market shock produces a 0.83% increase for

5% VaR and a 1.93% increase for 1% VaR at horizon s = 10. For MS, the maximum reaction is a

1.23% increase for 5% VaR at horizon s = 2 and a 2.81% increase for 1% VaR at horizon s = 16.

For AIG, the market shock produces a 1.20% increase for 5% VaR and a 3.04% increase for 1%

VaR at horizon s = 2.

Now we consider a situation where a shock is given to each financial institution instead of the

market and investigate how the market VaR reacts in each case. Figures 4 and 5 provide the

QIRFs of the market for 5% VaR and 1% VaR, respectively, when there is a ‘5% decrease shock’to

each individual financial institution, which means that the stock return of each financial institution

decreases by 5%. Since the value of two standard deviations is different for each institution’s return,

we instead impose the same shock to each institution to compare the responses of the market VaR.

The QIRFs of the market to the shock to individual financial institutions are in general smaller

in absolute value than the QIRFs of individual institutions to the market shock. This could be

partly due to the identification assumption that an individual institution’s shock has only a lagged

effect on the market, whereas a shock to the market has a contemporaneous effect on individual

institutions, as mentioned in WKM.

In Figures 4 and 5, the confidence intervals of the QIRF by local projection mostly include zero,

12 In the stationary bootstrap, 1/p represents an average block length and p = 0.002 means the average block
length is 500 in our application. When we choose p, we first tried the selection rule suggested by Politis and White
(2004) and later corrected in Patton et al. (2009). However, the chosen average block length 1/p was too small and
bootstrapped samples did not properly exhibit quantile dependence as the original samples did. We tried various
tuning parameters, which showed that it would be desirable to have a large enough average block length in order for
bootstrapped samples to exhibit as much of quantile dependence as the original samples did. We leave more rigorous
investigation on this issue as future work.
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which implies that the reaction of the market VaR is mostly insignificant. Nevertheless, the local

projection QIRFs exhibit more substantial fluctuations with larger magnitudes than the pseudo-

QIRFs. For example, when there is a shock to JPM or MS, the QIRF by local projection shows

that the reaction of the 1% market VaR reaches its maximum (about −1%) at horizon s = 20,

whereas the pseudo-QIRF is close to zero as shown in Figures 5(A) and 5(B). Meanwhile, when

there is a shock to AIG, the response of the market VaR is the smallest. It is interesting to compare

this result with that in Figures 2 and 3, where the response of AIG to a shock to the market is the

largest at horizon s = 1.

The three financial institutions we consider belong to different financial sectors. JPM, MS

and AIG belong to the Depositories group, the Broker-Dealers group and the Insurance group,

respectively. In Figures 2 and 3, the minimums of the QIRFs of JPM are higher than those of MS

or AIG, which implies that the reaction of JPM’s VaR is the smallest. On the other hands, in Figures

4 and 5, the reaction of the market VaR is the smallest when there is a shock to AIG. One may

ask whether these individual institutions’results could be generalized into sectoral characteristics.

We examine this issue below.

Acharya et al. (2017) considered financial institutions in the U.S. that had a market cap in excess

of 5 billion USD as of the end of June 2007 and categorized them into the following four groups:

Depositories, Broker-Dealers, Insurance, and a group called Other, consisting of non-depository

institutions, real estate, and so on. Following their categorization, we collect stock return series of

individual financial institutions. Considering data availability, our analysis includes a total of 61

financial institutions13 from 3 Jan. 2000 to 29 Jun. 2018 with sample size 4,653.14

Table 4 reports the summary statistics of the coeffi cient estimates of the 61 bivariate VAR

for VaR models. Whereas the averages of a12 and b12 are close to zero, those of a21 and b21

quite different from zero. This implies that while the market VaR is marginally affected by each

individual financial institution’s return and VaR, individual institutions’VaRs are substantially

influenced by the market’s return and VaR. The cross-sectional standard deviation, minimum, and

maximum also show that the estimates are heterogeneous.

Figure 6 provides the sectoral averages of the QIRFs to a two standard deviation shock to the

market return for 5% VaR and 1% VaR, respectively. Figure 6(A1) is based on the local projection

method for 5% VaR. In general, the average response of Broker-Dealers is the largest across the

horizon, and the average response of Depositories becomes the smallest after about two weeks.

In other words, when there is a shock to the market, the 5% VaR of Broker-Dealers increases by

the largest amount across the horizon and that of Depositories does by the smallest amount after

about two weeks. If the Broker-Dealers group tends to be involved in more risky investments than

is the Depositories group, this result could reflect it. Figure 6(A2) is based on the local projection

for 1% VaR. Similarly, the average response of Depositories becomes the smallest after about two

13The details are provided in Appendix C.
14 If we stick to the same sample period from Feb. 1993, there are 51 companies whose stock return series are

available. In that case, Goldman Sachs will be missing and there will be only four institutions in the Broker-Dealer
group. Therefore, we instead consider the samples from Jan. 2000 and use 61 institutions.
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weeks. The response of Broker-Dealers is more or less the largest up to three weeks, but Insurance

shows the largest reaction at some horizons in about three weeks. Meanwhile, Figures 6(B1) and

6(B2) are based on the pseudo-QIRFs and the sectoral averages are quite close to each other even

if it is relatively obvious that the response of Broker-Dealers is the largest for 5% VaR. Unlike our

result, WKM’s result (Fig. 3) shows that Insurance exhibits the largest quantile impulse response

at horizon s = 1, apparently because the firms, categories, and sample period in their analysis are

different from ours.

Next, we consider the response of the market when there is a 5% decrease shock to each indi-

vidual financial institution as in Figures 4 and 5. Figure 7 provides the sectoral averages of the

QIRFs of the market. Figure 7(A1) is for 5% VaR and it is not that any particular group exhibits

a distinct feature. Figure 7(A2) is for 1% VaR and the average response of the 1% market VaR is

the largest at horizon s = 10 and s = 20 for Broker-Dealers.

7 Conclusion

This paper studies the quantile impulse response function (QIRF) estimation, asymptotic theory,

and statistical inference. The major application is for the financial market data whose stochastic

property is largely determined by the persistent volatility dynamics. We provide a simple estimation

method based on local projections, and valid inferential tools from asymptotics and stationary

bootstrap. An extensive set of financial asset return data and their Value-at-Risk dynamics are

examined to emphasize the benefit of the new local projection QIRF estimation and inferential

methods.

An interesting future research agenda is how to apply this developed tool to a macroeconomic

data set, whose stochastic property is substantially different from that of financial market data.

Some recent studies by Chavleishvili and Manganelli (2019), Kim, Lee and Mizen (2019) and

Montes-Rojas (2019) investigate this avenue using different approaches. We plan to extend the

applicability of the current method to a macroeconomic environment, where the impulse response

analysis has been the most popular.
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A Technical Appendix

A.1 Derivations in Section 3

A.1.1 QIRF of a Bivariate TS-GARCH(p,q)

The underlying model is

yt = etΣt,[
e1t

e2t

]
iid∼
([

0

0

]
,

[
1 ρ

ρ 1

])
,

Σt = ω +

q∑
i=1

αi|yt−i|+
p∑
i=1

βiΣt−i.

Arranging terms and multiplying F−1
e (τ), qt+s is expressed as

qt+s = F−1
e (τ)ω + F−1

e (τ)

q∑
i=1

αi

[
|yt+s−i| − Et[|yt+s−i|]

]
+

q∑
i=1

αiEt[|et+s−i|]qt+s−i +

p∑
i=1

βiqt+s−i.

For s = 1, the impact of shock yt = δ0 on qt+1 is

QIRF (1) = F−1
e (τ)α1|δ0|.

For s = 2, the impact of shock yt = δ0 on qt+2 comes from two channels. The shock has an impact

of F−1(τ)α2|δ0| via the feed-through channel, and an impact of (α1|et+1| + β1)QIRF (1) via the

volatility-persistence channel. Thus,

QIRF (2) = F−1(τ)α2|δ0|+ (α1E[|et|] + β1)QIRF (1).

In the same way, we can derive QIRF (s) for s > 2,

In general forms, QIRF (s) can be expressed as the following depending on p and q:

(i) When p = q

QIRF (s) =


F−1
e (τ)α1|δ0|, for s = 1,

F−1
e (τ)αs|δ0|+

∑s−1
i=1

[(
αiE

[
|et|
]

+ βi
)
QIRF (s−i)

]
, for 2 ≤ s ≤ p,∑p

i=1

[(
αiE

[
|et|
]

+ βi
)
QIRF (s−i)

]
, for s ≥ p+ 1.
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(ii) When p < q

QIRF (s) =



F−1
e (τ)α1|δ0|, for s = 1,

F−1
e (τ)αs|δ0|+

∑s−1
i=1

[(
αiE

[
|et|
]

+ βi
)
QIRF (s−i)

]
, for 2 ≤ s ≤ p+ 1,

F−1
e (τ)αs|δ0|+

∑s−1
i=p+1

[
αiE

[
|et|
]
QIRF (s−i)

]
+
∑p

i=1

[(
αiE

[
|et|
]

+ βi
)
QIRF (s−i)

]
, for p+ 2 ≤ s ≤ q,∑q

i=p+1

[
αiE

[
|et|
]
QIRF (s−i)

]
+
∑p

i=1

[(
αiE

[
|et|
]

+ βi
)
QIRF (s−i)

]
, for s ≥ q + 1.

(iii) When p > q

QIRF (s) =



F−1
e (τ)α1|δ0|, for s = 1,

F−1
e (τ)αs|δ0|+

∑s−1
i=1

[(
αiE

[
|et|
]

+ βi
)
QIRF (s−i)

]
, for 2 ≤ s ≤ q,∑s−1

i=q+1

[
βiQIRF

(s−i)
]

+
∑q

i=1

[(
αiE

[
|et|
]

+ βi
)
QIRF (s−i)

]
, for q + 1 ≤ s ≤ p+ 1,∑p

i=q+1

[
βiQIRF

(s−i)
]

+
∑q

i=1

[(
αiE

[
|et|
]

+ βi
)
QIRF (s−i)

]
, for s ≥ p+ 2.

A.1.2 Local Projection for Univariate TS-GARCH(1,1)

We have

σt+s = ω +
s−1∑
j=1

[ j∏
k=1

(
α|εt+s−k|+ β

)]
ω +

s−1∏
k=1

(
α|εt+s−k|+ β

)
α|yt|+

s−1∏
k=1

(
α|εt+s−k|+ β

)
βσt,

for s ≥ 2. With σt = ω + (α|εt−1|+ β)σt−1, σt+s−1 is expressed as

σt+s−1 = ω +
s−1∑
j=2

[ j∏
k=2

(α|εt+s−k|+ β)
]
ω +

[ s∏
k=2

(α|εt+s−k|+ β)
]
σt,

which yields

σt =
[ s∏
k=2

(α|εt+s−k|+ β)
]−1
[
σt+s−1 − ω −

s−1∑
j=2

[ j∏
k=2

(α|εt+s−k|+ β)
]
ω

]
.
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Then σt+s can be rewritten as

σt+s = ω +
s−1∑
j=1

[ j∏
k=1

(
α|εt+s−k|+ β

)]
ω −

(
α|εt+s−1|+ β

)
β

α|εt|+ β

[
ω +

s−1∑
j=2

[ j∏
k=2

(α|εt+s−k|+ β)
]
ω

]

+
[ s−1∏
k=1

(
α|εt+s−k|+ β

)]
α|yt|+

(
α|εt+s−1|+ β

)
β

α|εt|+ β
σt+s−1.

Assume both σt+s−1 and yt are given but {|εp|}t+s−1
p=t are random. Define Xt := α|εt| + β.

From the above expression, we can find function g(·) such that σt+s = g(Xt, ..., Xt+s−1), thus

yt+s = εt+s · g(Xt, ..., Xt+s−1). Let µX = E[Xt] = αE[|εt|] + β and ḡ = g(µX , ..., µX), then

Pr
(
yt+s ≤ F−1

ε (τ) · ḡ
)

= Pr

(
εt+s ≤

F−1
ε (τ) · ḡ

g(Xt, ..., Xt+s−1)

)
=

∫
· · ·
∫
Fε

( F−1
ε (τ) · ḡ

g(Xt, ..., Xt+s−1)

)
dF|εt| · · · dF|εt+s−1|

= E
[
Fε

( F−1
ε (τ) · ḡ

g(Xt, ..., Xt+s−1)

)]
.

The first-order approximation of H(Xt, ..., Xt+s−1) := Fε

(
F−1ε (τ)·ḡ

g(Xt,...,Xt+s−1)

)
at the mean effect of

innovations (Xt = ... = Xt+s−1 = µX) is

H(Xt, ..., Xt+s−1) ≈ H(µX , ..., µX) +
t+s−1∑
p=t

∂H

∂Xp
(µX , ..., µX)(Xp − µX)

= Fε

(
F−1
ε (τ)

)
+
t+s−1∑
p=t

∂H

∂Xp
(µX , ..., µX)(|εp| − E[|εt|])α (14)

Higher order terms are especially negligible when α is small because the l-th order terms has a

factor αl. In financial data, α is empirically known to be small enough that αl is negligible for

l ≥ 2.15 Thus, taking expectations on both sides of (14) yields the following approximation:

Pr
(
yt+s ≤ F−1

ε (τ) · ḡ
)
≈ τ .

That is, the τ -quantile of yt+s approximates F−1
ε (τ) · g(µX , ..., µX).

15 Empirical evidence suggests that α is small, but β is large for financial returns because the major swing of
volatility is attributable to the volatility-persistence channel. In GARCH models, the estimate for α is typically less
than 0.1, and the estimate for β is larger than 0.9. For instance, Martin et al. (2013) estimate the GARCH(1,1)
model for FTSE, DOW and NIKKEI, and their estimates of (α, β) are (0.08, 0.91), (0.05, 0.94) and (0.09, 0.90),
respectively. For TS-GARCH(1,1) model given in Section 3.1, the estimates of (α, β) are (0.08, 0.92), (0.06, 0.95)
and (0.09, 0.92), respectively.
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i. Application of the Approximation to QIRF(2)

qt+2 ≈ F−1
ε (τ) · g(µX , ..., µX) = F−1

ε (τ)
[
ω + µXω − µXβµ−1

X ω + µXα|yt|+ µXβµ
−1
X σt+1

]
= F−1

ε (τ)(ω + µXω − βω) + F−1
ε (τ)µXα|yt|+ βqt+1, (15)

where

g(Xt, Xt+1) = ω +Xt+1ω −Xt+1βX
−1
t ω +Xt+1α|yt|+Xt+1βX

−1
t σt+1.

F−1
ε (τ)µXα, the coeffi cient of |yt| in (15), multiplied by |δ0| is consistent with QIRF (2).

QIRF (2) = F−1(τ) (αE[|εt|] + β)︸ ︷︷ ︸
=µX

α|δ0|.

ii. Application of the Approximation to QIRF(s) for s ≥ 3

qt+s ≈ F−1
ε (τ) · g(µX , ..., µX)

= F−1
ε (τ)

[
ω +

s−1∑
j=1

µjXω − µXβµ
−1
X

[
ω +

s−1∑
j=2

µj−1
X ω

]
+ µs−1

X α|yt|+ µXβµ
−1
X σt+s−1

]

= F−1
ε (τ)

[
ω +

s−1∑
j=1

µjXω − β
[
ω +

s−1∑
j=2

µj−1
X ω

]]
+ F−1

ε (τ)µs−1
X α|yt|+ βqt+s−1, (16)

where

g(Xt, ..., Xt+s−1) = ω +
s−1∑
j=1

( j∏
k=1

Xt+s−k
)
ω −Xt+s−1βX

−1
t

[
ω +

s−1∑
j=2

( j∏
k=2

Xt+s−k
)
ω

]

+
( s−1∏
k=1

Xt+s−k
)
α|yt|+Xt+s−1βX

−1
t σt+s−1.

F−1
ε (τ)ks−1α, the coeffi cient of |yt| in (16), multiplied by |δ0| is consistent with QIRF (s).

QIRF (s) = F−1(τ) (αE[|εt|] + β)s−1︸ ︷︷ ︸
=µs−1X

α|δ0|.

As a result, QIRF (s) can be effectively constructed as

Q̂IRF
(s)

= â(s)|δ0|,

where â(s) is the estimate for a(s) of the following slightly adjusted CAViaR model

qt = c(s) + a(s)|yt−s|+ b(s)qt−1, for s = 1, 2, ..., S.
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A.1.3 Local Projection for Bivariate TS-GARCH(1,1)

With yt = etΣt and Σt = ω +α|yt−1|+ βΣt−1 we have

Σt+s = ω +

s−1∑
j=1

[ j∏
k=1

(
α|et+s−k|+ β

)]
ω +

[ s−1∏
k=1

(
α|et+s−k|+ β

)]
(α|yt|+ βΣt). (17)

Since the dynamics of Σt can be rewritten as Σt = ω + (α|et−1|+ β)Σt−1, Σt+s−1 is expressed as

Σt+s−1 = ω +

s−1∑
j=2

[ j∏
k=2

( α|et+s−k|+ β)
]
ω +

[ s∏
k=2

(α|et+s−k|+ β)
]
Σt,

which yields

Σt =
[ s∏
k=2

(α|et+s−k|+ β)
]−1
[
Σt+s−1 − ω −

s−1∑
j=2

[ j∏
k=2

( α|et+s−k|+ β)
]
ω

]
. (18)

Combining (17) and (18), Σt+s for s ≥ 2 can be rewritten as

Σt+s = ω +
s−1∑
j=1

[ j∏
k=1

(
α|et+s−k|+ β

)]
ω

−
[ s−1∏
k=1

(
α|et+s−k|+ β

)]
β
[ s∏
k=2

(α|et+s−k|+ β)
]−1
[
ω +

s−1∑
j=2

[ j∏
k=2

(α|et+s−k|+ β)
]
ω

]

+
[ s−1∏
k=1

(
α|et+s−k|+ β

)]
α|yt|+

[ s−1∏
k=1

(
α|et+s−k|+ β

)]
β
[ s∏
k=2

(α|et+s−k|+ β)
]−1

Σt+s−1.

(19)

Like the univariate case, Σt+s(= ω +α|yt+s−1|+ βΣt+s−1) is a function of |yt| and Σt+s−1 in the

above expression. Accordingly, the expression includes innovations between t and t + s − 1, and

they have the same functional form (i.e., {α|ep|+ β}t+s−1
p=t ).

Assume both Σt+s−1 and yt are given but {|ep|}t+sp=t are random. Using vec operator which

stacks the columns of a matrix, define Xt = (X1t, X2t, X3t, X4t) = vec
(
α|et|+ β

)>
. From (19), we

can find function g(·) such that

Σt+s =

[
σ1t+s

σ2t+s

]
= g(Xt, ...,Xt+s−1) =

[
g1(Xt, ...,Xt+s−1)

g2(Xt, ...,Xt+s−1)

]
,

thus yit+s = eit+s · gi(Xt, ...,Xt+s−1) for i = 1, 2. Let µX = (µX1 , µX2 , µX3 , µX4) = E[Xt] and
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ḡ = (ḡ1, ḡ2)> = g(µX, ...,µX). For i = 1, 2, we have

Pr
(
yit+s ≤ F−1

e (τ) · ḡi
)

= Pr

(
eit+s ≤

F−1
e (τ) · ḡi

gi(Xt, ...,Xt+s−1)

)
=

∫ ∫
· · ·
∫ ∫

Fe

( F−1
e (τ) · ḡi

gi(Xt, ...,Xt+s−1)

)
dF|e1t|dF|e2t| · · · dF|e1t+s−1|dF|e2t+s−1|

= E
[
Fe

( F−1
e (τ) · ḡi

gi(Xt, ...,Xt+s−1)

)]
.

Let H(Xt, ...,Xt+s−1) = Fe

(
F−1e (τ)·ḡi

gi(Xt,...,Xt+s−1)

)
. As H(Xt, ...,Xt+s−1) can be expressed as a func-

tion ofX1t, ..., X4t, X1t+1, ..., X4t+1, ......, X1t+s−1, ..., X4t+s−1, define H̃(X1t, ..., X4t+s−1) = H(Xt, ...,Xt+s−1).

Then, the first-order approximation of H(Xt, ...,Xt+s−1) at the mean effect of innovations (Xt =

... = Xt+s−1 = µX) is

H(Xt, ...,Xt+s−1)

≈ H(µX, ...,µX) +
t+s−1∑
p=t

4∑
n=1

∂H̃

∂Xnp
(µX1 , ..., µX4)(Xnp − µXn)

= Fe

(
F−1
e (τ)

)
+
t+s−1∑
p=t

4∑
n=1

∂H̃

∂Xnp
(µX1 , ..., µX4)(|ẽnp| − E[|ẽnt|])α̃n (20)

where

ẽnt =



e1t, for n = 1,

e1t, for n = 2,

e2t, for n = 3,

e2t, for n = 4,

, α̃n =



α11, for n = 1,

α21, for n = 2,

α12, for n = 3,

α22, for n = 4.

Higher order terms are especially negligible under small-valued elements of α. In financial data,

elements of α is empirically known to be small enough (less than 0.1) that
∏l
j=1 α̃nj is negligible

for l ≥ 2. Thus, taking expectations on both sides of (20) yields the following approximation:

Pr
(
yit+s ≤ F−1

e (τ) · ḡi
)
≈ τ . (21)

That is, the τ -quantile of yit+s approximates F−1
e (τ) · gi(µX1 , ..., µX4).

i. Application of the Approximation to QIRF(2)
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With (19) and (21),

qt+2 =

[
q1t+2

q2t+2

]
≈ F−1

e (τ)ḡ = F−1
e (τ)

[
ω + µXω − µXβµ−1

X ω + µXα|yt|+ µXβµ−1
X Σt+1

]
= F−1

e (τ)
[
ω + µXω − µXβµ−1

X ω
]

+ F−1
e µXα|yt|+ µXβµ−1

X qt+1,

(22)

where

g(Xt,Xt+1) = ω + Xt+1ω −Xt+1βX−1
t ω + Xt+1α|yt|+ Xt+1βX−1

t Σt+1.

F−1
e µXα, the coeffi cient of |yt| in (22), post-multiplied by |δ0| is consistent with QIRF (2).

QIRF (2) = F−1
e (τ) (αE[|et|] + β)︸ ︷︷ ︸

=µX

α|δ0|.

ii. Application of the Approximation to QIRF(s) for s ≥ 3

With (19) and (21),

qt+s =

[
q1t+s

q2t+s

]
≈ F−1

e (τ)g(µX, ...,µX)

= F−1
e (τ)

[
ω +

s−1∑
j=1

µjXω − µ
s−1
X β

[
µs−1
X

]−1[
ω +

s−1∑
j=2

µj−1
X ω

]

+ µs−1
X α|yt|+ µs−1

X β
[
µs−1
X

]−1
Σt+s−1

]

= F−1
e (τ)

[
ω +

s−1∑
j=1

µjXω − µ
s−1
X β

[
µs−1
X

]−1[
ω +

s−1∑
j=2

µj−1
X ω

]]

+ F−1
e (τ)µs−1

X α|yt|+ µs−1
X β

[
µs−1
X

]−1
qt+s−1, (23)

where

g(Xt, ...,Xt+s−1) = ω +

s−1∑
j=1

[ j∏
k=1

Xt+s−k
]
ω −

[ s−1∏
k=1

Xt+s−k
]
β
[ s∏
k=2

Xt+s−k
]−1
[
ω +

s−1∑
j=2

[ j∏
k=2

Xt+s−k
]
ω

]

+
[ s−1∏
k=1

Xt+s−k
]
α|yt|+

[ s−1∏
k=1

Xt+s−k
]
β
[ s∏
k=2

Xt+s−k
]−1

Σt+s−1.
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F−1
e (τ)µs−1

X α, the coeffi cient of |yt| in (23), post-multiplied by |δ0| is consistent withQIRF (s):

QIRF (s) = F−1
e (τ) (αE[|et|] + β)s−1︸ ︷︷ ︸

=µs−1X

α|δ0|.

Thus, QIRF (s) can be effectively obtained as

Q̂IRF
(s)

= Â(s)|δ0|,

where Â(s) is the estimate for A(s) of the following model

qt = c(s) + A(s)|yt−s|+ B(s)qt−1, for s = 1, 2, ..., S.

A.2 Proofs of Theorems and Lemmas in Section 4

The Proofs for theorems and lemmas in Section 4 adopt and extend from Engle and Manganelli

(2004) and WKM.

Proof of Lemma 4.1. We can prove the lemma by verifying the conditions of Corollary 5.11 of

White (1994). Assumption 4.1 and 4.3(1) ensure White’s Assumption 2.1 and 5.1, respectively. By

rewriting the linear program γ̂(s)(τ ) solves as

γ̂(s)(τ ) = arg min
γ(s)∈A

1

T

T∑
t=1

[ n∑
i=1

ρτ i
(
yit − q0

it(·,γ(s))
)]

= arg max
γ(s)∈A

1

T

T∑
t=1

φ
(
Yt,qt(·,γ(s))

)
,

where φ
(
Yt,qt(·,γ(s))

)
= −

∑n
i=1 ρτ i

(
yit− q0

it(·, γ(s))
)
, White’s Assumption 5.4 is obviously satis-

fied.

Next, we verify White’s Assumption 3.1. We have

∣∣φ(Yt,qt(·,γ(s))
)∣∣ ≤ n∑

i=1

∣∣∣(yit − q0
it(·, γ(s))

)(
τ i − 1

[
yit − q0

it(·,γ(s)) ≤ 0
])∣∣∣

≤
n∑
i=1

(∣∣yit∣∣+
∣∣q0
it(·,γ(s))

∣∣)
≤

n∑
i=1

∣∣yit∣∣+ nD0t,

where the last inequality comes from Assumption 4.5. By Assumption 4.5(1, 2), E
[∣∣φ(Yt,qt(·,γ(s))

)∣∣]
is dominated ensuringWhite’s Assumption 3.1(a). Since q0

it(·, γ(s)) is continuous in γ(s), φ
(
Yt,qt(·,γ(s))

)
is continuous, thus its expected value is also continuous (ensuring White’s Assumption 3.1(b)). As-

sumption 4.1 and 4.3(1) ensure stationary and strong mixing (ensuring White’s Assumption 3.1(c)).
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White’s Assumption 3.2 remains to be verified, which is the condition that γ(s)(τ ) is the unique

maximizer of E
[
φ
(
Yt,qt(·,γ(s))

)]
. Consider γ(s) 6= γ(s)(τ ) such that ‖γ(s) − γ(s)(τ )‖ > ε, and

define

∆it(γ
(s)) := ρτ i

(
yit − q0

it(·,γ(s))
)
− ρτ i

(
yit − q0

it

(
·,γ(s)(τ )

)
.

It will suffi ce to show that E
[∑n

i=1 ∆it(γ
(s))
]
> 0. With δit

(
γ(s),γ(s)(τ )

)
= q0

it(·,γ(s))−q0
it

(
·,γ(s)(τ )

)
and uit = yit − qit(τ i), we have the following equation by Assumption 4.2(2.b) and 4.4(1);

∆it(γ
(s)) =

(
yit − q0

it(·,γ(s))
)(
τ i − 1[yit < q0

it(·,γ(s))]
)
−
(
yit − q0

it

(
·,γ(s)(τ )

))(
τ i − 1

[
yit < q0

it

(
·,γ(s)(τ )

)])
=
(
uit − δit

(
γ(s),γ(s)(τ )

))(
τ i − 1

[
uit < δit

(
γ(s),γ(s)(τ )

)])
− uit

(
τ i − 1[uit < 0]

)
= uit

(
1[uit < 0]− 1

[
uit < δit

(
γ(s),γ(s)(τ )

)])
− δit

(
γ(s),γ(s)(τ )

)(
τ i − 1

[
uit < δit

(
γ(s),γ(s)(τ )

)])
.

Since E
[
1[uit < 0]|Ωt

]
= τ i, taking the conditional expectation yields

E[∆it(γ
(s))|Ωt] = 1

[
δit
(
γ(s),γ(s)(τ )

)
< 0
] ∫ 0

δit

(
γ(s),γ(s)(τ )

) (v − δit(γ(s),γ(s)(τ )
))
fuit(v)dv

+ 1
[
δit
(
γ(s),γ(s)(τ )

)
> 0
] ∫ δit

(
γ(s),γ(s)(τ )

)
0

(
− v + δit

(
γ(s),γ(s)(τ )

))
fuit(v)dv.

Reasoning following Powell (1984), Assumption 4.2(1, 2.a) implies there exists some h > 0 such

that fuit(v) > h whenever |v| < h. Hence, for any k suffi ciently small such that 0 < k < h, we have

E
[
∆it(γ

(s))|Ωt

]
≥ 1
[
δit
(
γ(s),γ(s)(τ )

)
< −k

] ∫ 0

−k
(v + k)fuit(v)dv

+ 1
[
δit
(
γ(s),γ(s)(τ )

)
> k

] ∫ k

0
(−v + k)fuit(v)dv

≥ 1
[
δit
(
γ(s),γ(s)(τ )

)
< −k

] ∫ 0

−k
[(v + k)h]dv

+ 1
[
δit
(
γ(s),γ(s)(τ )

)
> k

] ∫ k

0
[(−v + k)h]dv

=
1

2
hk21

[∣∣δit(γ(s),γ(s)(τ )
)∣∣ > k

]
.

Thus, taking the unconditional expectation yields

E
[ n∑
i=1

∆it(γ
(s))
]
≥ 1

2
hk2E

[ n∑
i=1

1
[∣∣δit(γ(s),γ(s)(τ )

)∣∣ > k
]]

=
1

2
hk2

n∑
i=1

Pr
[∣∣δit(γ(s),γ(s)(τ )

)∣∣ > k
]

≥ 1

2
hk2Pr

[
∪
i∈l

{∣∣δit(γ(s),γ(s)(τ )
)∣∣ > k

}]
> 0,
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where the last inequality follows from Assumption 4.4(1.b).

Proof of Lemma 4.2. The proof builds on Huber’s (1967) theorem 3 as in Engle and Man-

ganelli(2004) and WKM.

Step 1: Show the conditions for Huber’s theorem hold. Assumptions (N-1) and (N-4) are obvi-

ously satisfied. We show

1√
T

T∑
t=1

n∑
i=1

∇q̂it(τ i)ψτ i
(
yit − q̂it(τ i)

)
= op(1), (24)

where
(
q̂1t(τ1), q̂2t(τ2), ..., , q̂nt(τn)

)>
= q0

t

(
γ̂(s)(τ )

)
. The existence of ∇q̂it(τ i) is ensured by As-

sumption 4.3(2). Let ei be the d × 1 unit vector with the i-th element equal to one and the rest

zero, and define

Kl(c) :=
1√
T

T∑
t=1

n∑
i=1

ρτ i
(
yit − q0

it(·, γ̂(s)(τ ) + cel)
)
,

for any real number c. By (11), Kl(c) is minimized at c = 0. Let Hl(c) be the derivative of Kl(c)

with respect to c from the right:

Hl(c) := − 1√
T

T∑
t=1

n∑
i=1

∇lq0
it(·, γ̂(s)(τ ) + cel)ψτ i

(
yit − q0

it(·, γ̂(s)(τ ) + cel)
)
,

where ∇lq0
it(·, γ̂

(s)(τ ) + cel) is the l-th element of ∇q0
it(·, γ̂

(s)(τ ) + cel). Since Kl(c) is continuous

in c and achieves its minimum at c = 0, for any ε > 0

|Hl(0)| ≤ Hl(ε)−Hl(−ε)

=
1√
T

T∑
t=1

n∑
i=1

[
−∇lq0

it(·, γ̂(s)(τ ) + εel)ψτ i
(
yit − q0

it(·, γ̂(s)(τ ) + εel)
)

+∇lq0
it(·, γ̂(s)(τ )− εel)ψτ i

(
yit − q0

it(·, γ̂(s)(τ )− εel)
)]

=
1√
T

T∑
t=1

n∑
i=1

[
τ i
(
∇lq0

it(·, γ̂(s)(τ )− εel)−∇lq0
it(·, γ̂(s)(τ ) + εel)

)
+∇lq0

it(·, γ̂(s)(τ ) + εel)1
[
yit < q0

it(·, γ̂(s)(τ ) + εel)
]

−∇lq0
it(·, γ̂(s)(τ )− εel)1

[
yit < q0

it(·, γ̂(s)(τ )− εel)
]]
.

Taking the limit for ε→ 0 yields

|Hl(0)| ≤ 1√
T

T∑
t=1

n∑
i=1

∣∣∇lq0
it

(
·, γ̂(s)(τ )

)∣∣1[yit − q0
it

(
·, γ̂(s)(τ )

)
= 0
]
.

By Lemma A.1 of Ruppert and Carroll (1980), with probability one there exists no vector γ(s) such
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that yit = q0
it

(
·,γ(s)

)
. Hence, 1

[
yit − q0

it

(
·, γ̂(s)(τ )

)
= 0

]
= op(1) for any given t and i. Therefore,

|Hl(0)| p−→ 0. Since Hl(0) is the l-th element of 1√
T

∑T
t=1

[∑n
i=1∇q̂it(τ i)ψτ i

(
yit − q̂it(τ i)

)]
, the

claim in (24) is proven.

For each γ(s) ∈ A, let us define the d× 1 vector

λ(γ(s)) :=

n∑
i=1

E
[
∇q0

it(·,γ(s))ψτ i
(
yit − q0

it(·,γ(s))
)]
.

For Assumption (N-2), we show λ
(
γ(s)(τ )

)
= 0 from the followings:

λ
(
γ(s)(τ )

)
=

n∑
i=1

E
[
E
[
∇q0

it(·,γ(s)(τ ))ψτ i

(
yit − q0

it

(
·,γ(s)(τ )

))
|Ft−1

]]
=

n∑
i=1

E
[
∇q0

it(·,γ(s)(τ ))E
[
ψτ i

(
yit − q0

it

(
·,γ(s)(τ )

))
|Ft−1

]]
=

n∑
i=1

E
[
∇q0

it(·,γ(s)(τ ))E
[
τ i − 1[yit < q0

it

(
·,γ(s)(τ )

)
]|Ft−1

]]
= 0.

λ(γ(s)) can be rewritten as

λ(γ(s)) =

n∑
i=1

E
[
∇q0

it(·,γ(s))

∫ 0

δit

(
γ(s),γ(s)(τ )

) fuit(v)dv
]
,

where δit
(
γ(s),γ(s)(τ )

)
= q0

it

(
·,γ(s)

)
− q0

it

(
·,γ(s)(τ )

)
, uit = yit − qit(τ i) and fuit(v) = d

dvFit

(
v +

q0
it

(
·,γ(s)(τ )

))
represents the conditional density of uit with respect to Lebesgue measure. As-

sumption 4.3(2), 4.4(1) and 4.5(3) ensure the existence and finiteness of the above expression. The

differentiability and domination conditions provided by Assumption 4.3(2) and 4.5(4) ensure the

continuous differentiability of λ(γ(s)) on A:

∇λ(γ(s)) :=

n∑
i=1

E
[
∇
[
∇>q0

it(·,γ(s))

∫ 0

δit

(
γ(s),γ(s)(τ )

) fuit(v)dv
]]
.

Let Ql(γ(s)) be the gradient of the l-th element of λ(γ(s)) with respect to γ(s). Since γ(s)(τ ) is

interior to A by Assumption 4.4(2), the mean value theorem applies to each element of λ(γ(s))

yielding

λ(γ(s)) = Q0(γ(s) − γ(s)(τ )), (25)

for γ(s) in a convex compact neighborhood of γ(s)(τ ), where Q0 is an d× d matrix with 1× d rows
Ql(γ̄

(s)
(l) ) = ∇>λ(γ̄

(s)
(l) ), γ̄(s)

(l) is a mean value (different for each l) lying on the segment connecting

γ(s) and γ(s)(τ ) with l = 1, 2, .., d.
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Next, we show

λ(γ(s)) = −Q
(s)
τ

(
γ(s) − γ(s)(τ )

)
+O(‖γ(s) − γ(s)(τ )‖2), (26)

for Assumption (N-3)(i). The chain rule and an application of Leibniz rule to
∫ 0

δit

(
γ(s),γ(s)(τ )

) fuit(v)dv

then give

Ql(γ
(s)) = Al(γ

(s))−Bl(γ(s)),

where

Al(γ
(s)) :=

n∑
i=1

E
[
∇l∇>q0

it(·,γ(s))

∫ 0

δit

(
γ(s),γ(s)(τ )

) fuit(v)dv
]
,

Bl(γ
(s)) :=

n∑
i=1

E
[
fuit

(
δit
(
γ(s),γ(s)(τ )

))
∇lq0

it(·,γ(s))∇>q0
it(·,γ(s))

]
.

By Assumption 4.2(3) and 4.5, we have

‖Al(γ(s))‖ ≤
n∑
i=1

E
[
D2t

∣∣∣ ∫ 0

δit

(
γ(s),γ(s)(τ )

) f0dv
∣∣∣] ≤ n∑

i=1

E
[
D2tf0

∣∣∣δit(γ(s),γ(s)(τ )
)∣∣∣].

Application of the mean value theorem to the last line and Assumption 4.5(4) yield

‖Al(γ(s))‖ ≤
n∑
i=1

E
[
D2tf0D1t‖γ(s) − γ(s)(τ )‖

]
= O(‖γ(s) − γ(s)(τ )‖).

Let us define Q∗l :=
∑n

i=1E
[
fuit(0)∇lq0

it

(
·,γ(s)(τ )

)
∇>q0

it

(
·,γ(s)(τ )

)]
. By Assumption 4.2(3), 4.5(3,

4) and application of the mean value theorem, we have

‖Bl(γ(s))−Q∗l ‖ =
∥∥∥ n∑
i=1

E
[
fuit

(
δit
(
γ(s),γ(s)(τ )

))
∇lq0

it(·,γ(s))∇>q0
it(·,γ(s))

− fuit
(
δit
(
γ(s),γ(s)(τ )

))
∇lq0

it(·,γ(s))∇>q0
it(·,γ(s)(τ ))

+ fuit

(
δit
(
γ(s),γ(s)(τ )

))
∇lq0

it(·,γ(s))∇>q0
it(·,γ(s)(τ ))

− fuit
(
δit
(
γ(s),γ(s)(τ )

))
∇lq0

it(·,γ(s)(τ ))∇>q0
it(·,γ(s)(τ ))

+ fuit

(
δit
(
γ(s),γ(s)(τ )

))
∇lq0

it(·,γ(s)(τ ))∇>q0
it(·,γ(s)(τ ))

− fuit(0)∇lq0
it

(
·,γ(s)(τ )

)
∇>q0

it

(
·,γ(s)(τ )

)]∥∥∥
≤

n∑
i=1

E
[
2f0D1tD2t‖γ(s) − γ(s)(τ )‖+ L0D

3
1t‖γ(s) − γ(s)(τ )‖

]
= O(‖γ(s) − γ(s)(τ )‖).
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Hence, we have

Q0 = −Q
(s)
τ +O(‖γ(s) − γ(s)(τ )‖), (27)

where

Q
(s)
τ =

n∑
i=1

E
[
fuit(0)∇q0

it

(
·,γ(s)(τ )

)
∇>q0

it

(
·,γ(s)(τ )

)]
.

Combining (25) and (27) yields (26). With (26), the condition that Q
(s)
τ is positive-definite in

Assumption 4.6(1) is suffi cient for Assumption (N-3)(i).

Next, we define

ut(γ
(s), δ) := sup

{β:‖β−γ(s)‖≤δ}
‖ξ(s)
t (β)− ξ(s)

t (γ(s))‖.

For Assumption (N-3)(ii), we have that for the given small δ > 0

ut(γ
(s), δ) ≤ sup

{β:‖β−γ(s)‖≤δ}

n∑
i=1

‖∇q0
it(·,β)ψτ i

(
yit − q0

it(·,β)
)
−∇q0

it(·,γ(s))ψτ i
(
yit − q0

it(·,γ(s))
)
‖

= sup
{β:‖β−γ(s)‖≤δ}

n∑
i=1

‖∇q0
it(·,β)ψτ i

(
yit − q0

it(·,β)
)
−∇q0

it(·,γ(s))ψτ i
(
yit − q0

it(·,β)
)

+∇q0
it(·,γ(s))ψτ i

(
yit − q0

it(·,β)
)
−∇q0

it(·,γ(s))ψτ i
(
yit − q0

it(·,γ(s))
)
‖

≤
n∑
i=1

sup
{β:‖β−γ(s)‖≤δ}

‖∇q0
it(·,β)−∇q0

it(·,γ(s))‖ sup
{β:‖β−γ(s)‖≤δ}

‖ψτ i
(
yit − q0

it(·,β)
)
‖

+

n∑
i=1

sup
{β:‖β−γ(s)‖≤δ}

‖∇q0
it(·,γ(s))‖ sup

{β:‖β−γ(s)‖≤δ}
‖ψτ i

(
yit − q0

it(·,γ(s))
)
− ψτ i

(
yit − q0

it(·,β)
)
‖.

Using (i) ‖ψτ i
(
yit−q0

it(·,β)
)
‖ ≤ 1, (ii) the mean value theorem applied to ∇q0

it(·,β) and ∇q0
it(·,γ(s))

and (iii) Assumption 4.5, we have

n∑
i=1

sup
{β:‖β−γ(s)‖≤δ}

‖∇q0
it(·,β)−∇q0

it(·,γ(s))‖ sup
{β:‖β−γ(s)‖≤δ}

‖ψτ i
(
yit − q0

it(·,β)
)
‖ ≤ nD2tδ. (28)

Using (i) ‖ψτ i
(
yit− q0

it(·,γ(s))
)
−ψτ i

(
yit− q0

it(·,β)
)
‖ ≤ 1

[
|yit− q0

it(·,γ(s))| < |q0
it(·,β)− q0

it(·,γ(s))|
]
,

(ii) the mean value theorem applied to q0
it(·,β) and q0

it(·,γ(s)) and (iii) Assumption 4.5, we have

n∑
i=1

sup
{β:‖β−γ(s)‖≤δ}

‖∇q0
it(·,γ(s))‖ sup

{β:‖β−γ(s)‖≤δ}
‖ψτ i

(
yit − q0

it(·,γ(s))
)
− ψτ i

(
yit − q0

it(·,β)
)
‖

≤ D1t

n∑
i=1

1
[
|yit − q0

it(·,γ(s))| < D1tδ
]
. (29)
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Combining (28) and (29) yields

ut(γ
(s), δ) ≤ nD2tδ +D1t

n∑
i=1

1
[
|yit − q0

it(·,γ(s))| < D1tδ
]
. (30)

By Assumption 4.2(3.a) and 4.5(3, 4), we have E[ut(γ
(s), δ)] ≤ nE[D2t]δ + 2nE[D2

1t]f0δ. Hence,

Assumption (N-3)(ii) holds for b = nE[D2t] + 2nE[D2
1t]f0, d = δ and d0 = 2δ.

For Assumption (N-3)(iii), we have

ut(γ
(s), δ) ≤ sup

{β:‖β−γ(s)‖≤δ}

n∑
i=1

‖∇q0
it(·,β)ψτ i

(
yit − q0

it(·,β)
)
−∇q0

it(·,γ(s))ψτ i
(
yit − q0

it(·,γ(s))
)
‖

≤
n∑
i=1

[
sup

{β:‖β−γ(s)‖≤δ}
‖∇q0

it(·,β)ψτ i
(
yit − q0

it(·,β)
)
‖

+ sup
{β:‖β−γ(s)‖≤δ}

‖∇q0
it(·,γ(s))ψτ i

(
yit − q0

it(·,γ(s))
)
‖
]

≤ 2nD1t.

Combining the last inequality with (30) yields

ut(γ
(s), δ)2 ≤ 2n2D1tD2tδ + 2nD2

1t

n∑
i=1

1
[
|yit − q0

it(·,γ(s))| < D1tδ
]
.

In a similar way that Assumption (N-3)(ii) was verified, it can be shown that E[ut(γ
(s), δ)2] ≤

2n2E[D1tD2t]δ + 4n2E[D3
1t]f0δ. Given Assumption 4.5(3, 4), Assumption (N-3)(iii) holds for c =

2n2E[D1tD2t] + 4n2E[D3
1t]f0, d = δ and d0 = 2δ.

Step 2: Apply Huber’s theorem. As a result of the above, we apply Huber’s theorem:

√
Tλ(γ̂(s)(τ )) + H

(s)
T = op(1). (31)

Consistency of γ̂(s)(τ ) and application of Slutsky’s theorem to (26) yields

λ
(
γ̂(s)(τ )

)
= −Q

(s)
τ

(
γ̂(s)(τ )− γ(s)(τ )

)
+ op(1).

Combining the above equation with (31), we have

Q
(s)
τ

√
T
(
γ̂(s)(τ )− γ(s)(τ )

)
=

1√
T

T∑
t=1

ξ
(s)
t

(
γ(s)(τ )

)
+ op(1),

or (12).

Step 3: Apply the central limit theorem. ξ(s)
t

(
γ(s)(τ )

)
is Ft-measurable. Thus, {ξ(s)

t

(
γ(s)(τ )

)
,
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Ft−1} is a stationary strong mixing martingale difference sequence (MDS) since

E
[
ξ

(s)
t

(
γ(s)(τ )

)
| Ft−1

]
= E

[ n∑
i=1

∇q0
it

(
·,γ(s)(τ )

)
ψτ i

(
yit − q0

it

(
·,γ(s)(τ )

))
| Ft−1

]
=

n∑
i=1

∇q0
it

(
·,γ(s)(τ )

)
E
[
ψτ i(uit) | Ft−1

]
= 0.

By the ergodic theorem, 1
T

∑T
t=1 ξ

(s)
t

(
γ(s)(τ )

)(
ξ

(s)
t

(
γ(s)(τ )

))> p−→ V
(s)
τ . Assumption 4.5(3)

ensures V
(s)
τ is finite and Assumption 4.6(2) ensures V

(s)
τ is positive definite. Therefore, application

of the MDS central limit theorem (Theorem 5.24 of White, 2001) to (12) yields (13).

Proof of Theorem 4.1. Since A
(s)
τ |δ0| = Gγ

(s)
τ , it follows by Lemma 4.2 that

√
T
(
Â(s)|δ0| −A(s)|δ0|

)
=
√
T
(
Gγ̂(s)(τ )−Gγ(s)(τ )

)
= G

(
Q

(s)
τ

)−1
H

(s)
T + op(1).

Applying the MDS central limit theorem yields the asymptotic distribution.

Proof of Lemma 4.5. We use the Cramer-Wold device. For some l ∈ Rd, let v∗t = l>ξ
(s)∗
t

(
γ(s)(τ )

)
and vt = l>ξ

(s)
t

(
γ(s)(τ )

)
. Then, we can write

l>B
(s)∗
T =

1√
T

T∑
t=1

(v∗t − vt).

The original time-series is a stationary sequence satisfying the strong mixing condition in Assump-

tion 4.1, and a measurable functions of mixing processes involving finite lagged variables satisfies

the same mixing condition. Thus, {vt}t∈N is a stationary time-series satisfying Assumption 4.1.
By Theorems 1 and 2 of Goncalves and de Jong (2003), the bootstrap estimate of the variance

convergences to σ2
l = l>V

(s)
τ in probability, and we obtain the distribution convergence conditional

on the original sample. The limiting distribution of B
(s)∗
T is obtained by applying the MDS central

limit theorem as in the proof of Lemma 4.2.

Proof of Theorem 4.2. By Theorem 4.1 and Lemma 4.4, we have

√
T
(

Â(s)∗|δ0| − Â(s)|δ0|
)

= G
(
Q(s)
τ

)−1(
H

(s)∗
T −H

(s)
T

)
+ op(1).

By Lemma 4.5

H
(s)∗
T −H

(s)
T = B

(s)∗
T

d−→ N
(
0,V(s)

τ

)
,

conditional on the original sample, for almost every sequence. By the continuous mapping theorem

and Slutsky’s theorem, we obtain the desired result.
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B Tables and Figures

Table 1. Simulation results: Coverage rates

Horizon s = 1 s = 10 s = 20 s = 30

Response of q1t

Asymptotic CI 0.93 0.91 0.87 0.83

Bootstrap CI 0.92 0.94 0.95 0.96

Response of q2t

Asymptotic CI 0.92 0.90 0.87 0.81

Bootstrap CI 0.91 0.93 0.95 0.94

Note: The table reports coverage rates of asymptotic confidence intervals and stationary bootstrap

confidence intervals.

37



Table 2. Estimation results of VAR for 5% VaR

JPM

c1 a11 a12 b11 b12

-0.03 ∗∗∗ -0.14 ∗∗∗ -0.03 ∗∗ 0.88 ∗∗∗ 0.00

(0.01) (0.02) (0.01) (0.04) (0.02)

c2 a21 a22 b21 b22

-0.05 ∗∗∗ -0.18 ∗∗∗ -0.06 ∗∗∗ -0.14 ∗∗ 0.98 ∗∗∗

(0.02) (0.04) (0.02) (0.06) (0.03)

MS

c1 a11 a12 b11 b12

-0.03 ∗∗ -0.15 ∗∗∗ -0.03 ∗∗ 0.90 ∗∗∗ -0.01

(0.01) (0.04) (0.01) (0.03) (0.01)

c2 a21 a22 b21 b22

-0.04 ∗ -0.27 ∗∗∗ -0.11 ∗∗∗ -0.15 ∗∗ 0.95 ∗∗∗

(0.02) (0.07) (0.03) (0.06) (0.02)

AIG

c1 a11 a12 b11 b12

-0.03 ∗∗∗ -0.13 ∗∗∗ -0.01 ∗∗∗ 0.90 ∗∗∗ 0.00 ∗

(0.01) (0.03) (0.00) (0.02) (0.00)

c2 a21 a22 b21 b22

0.00 -0.02 -0.25 ∗∗ 0.00 0.88 ∗∗∗

(0.05) (0.12) (0.11) (0.08) (0.04)

Note: The coeffi cients correspond to the VAR for VaR model, which is the model given in (5) for s = 1.

ci, aij , bij are the elements of c(1), A(1), B(1), respectively. The quantiles for market and each financial

institution are set to be 0.05. Estimated coeffi cients are in the first row. Standard errors are reported in

parentheses. Asterisks indicate coeffi cient significance at the ∗ 10%, ∗∗ 5% and ∗∗∗ 1% level.
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Table 3. Estimation results of VAR for 1% VaR

JPM

c1 a11 a12 b11 b12

-0.12 ∗∗∗ -0.23 ∗∗∗ -0.03 0.87 ∗∗∗ 0.00

(0.04) (0.05) (0.04) (0.04) (0.01)

c2 a21 a22 b21 b22

-0.22 ∗∗ -0.44 ∗∗∗ -0.09 -0.26 ∗∗ 0.99 ∗∗∗

(0.10) (0.11) (0.10) (0.11) (0.02)

MS

c1 a11 a12 b11 b12

-0.07 ∗∗ -0.21 ∗∗ -0.04 0.92 ∗∗∗ -0.02

(0.03) (0.10) (0.06) (0.04) (0.03)

c2 a21 a22 b21 b22

-0.14 ∗ -0.37 -0.24 -0.10 0.90
∗∗∗

(0.08) (0.42) (0.25) (0.12) (0.09)

AIG

c1 a11 a12 b11 b12

-0.10 ∗∗∗ -0.19 ∗∗ -0.02 ∗∗∗ 0.89 ∗∗∗ 0.00

(0.04) (0.08) (0.00) (0.04) (0.00)

c2 a21 a22 b21 b22

-0.06 0.00 -0.77 ∗∗∗ 0.05 0.77 ∗∗∗

(0.20) (0.55) (0.21) (0.20) (0.08)

Note: The quantiles for market and each financial institution are set to be 0.01. Same as Table 2.
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Table 4. Summary statistics of the full cross section of coefficients

5% VaR

c1 a11 a12 b11 b12

average -0.03 -0.15 -0.03 0.89 0.01

std. dev. 0.01 0.02 0.02 0.04 0.03

min -0.07 -0.21 -0.07 0.77 -0.04

max 0.00 -0.07 0.02 0.95 0.16

c2 a21 a22 b21 b22

average -0.03 -0.11 -0.14 0.06 0.85

std. dev. 0.10 0.08 0.08 0.46 0.26

min -0.21 -0.28 -0.34 -0.27 -0.65

max 0.44 0.13 -0.01 2.83 1.06

1% VaR

c1 a11 a12 b11 b12

average -0.11 -0.21 -0.03 0.86 0.01

std. dev. 0.04 0.06 0.03 0.07 0.05

min -0.22 -0.34 -0.12 0.55 -0.08

max 0.00 -0.04 0.03 1.00 0.20

c2 a21 a22 b21 b22

average -0.03 -0.18 -0.30 0.22 0.75

std. dev. 0.29 0.23 0.19 0.57 0.30

min -0.54 -0.67 -1.00 -0.29 -0.44

max 1.30 0.38 0.06 2.49 1.00

Note: The table reports the summary statistics of the coeffi cient estimates of the 61 bivariate models.

Same as Table 2.

40



Figure 1. Simulation results of quantile impulse response

(a) Response of q1t for DGP1 (b) Response of q2t for DGP1
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(c) Response of q1t for DGP2 (d) Response of q2t for DGP2
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(e) Response of q1t for DGP3 (f) Response of q2t for DGP3
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Note: Each figure presents a (analytically obtained) true QIRF, a local projection QIRF and a pseudo-

QIRF for a given DGP. The local projection QIRF and pseudo-QIRF are averages based on 1,000 repetitions.
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Figure 2. Quantile impulse response of each financial institution for 5% VaR

(a) Response of JPM (b) Response of MS
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(c) Response of AIG
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Note: The figures present QIRFs of individual financial institutions when there is a shock to the market.

Blue solid lines are QIRFs from the local projection and shaded areas are their 95% confidence intervals

based on the stationary bootstrap procedure. Red dashed lines are pseudo-QIRFs and dotted lines are their

95% confidence intervals.
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Figure 3. Quantile impulse response of each financial institutions for 1% VaR

(a) Response of JPM (b) Response of MS
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Note: Same as Figure 2.
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Figure 4. [Systemic risk] Quantile impulse response of market for 5% VaR

(a) Response to JPM (b) Response to MS
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Note: The figures present QIRFs of the market when there is a shock to each individual financial

institution. Same as Figure 2.
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Figure 5. [Systemic risk] Quantile impulse response of market for 1% VaR

(a) Response to JPM (b) Response to MS
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(c) Response to AIG
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Note: The figures present QIRFs of the market when there is a shock to each individual financial

institution. Same as Figure 2.
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Figure 6. Sectoral averages of quantile impulse responses

(A1) Local projection for 5% VaR (B1) Pseudo for 5% VaR
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(A2) Local projection for 1% VaR (B2) Pseudo for 1% VaR
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Note: The figures present sectoral averages of the QIRFs of individual financial institutions when there

is a shock to the market. Black dashdot line is for depositories. Red dotted line is for other. Green dashed

line is for insurance. Blue solid line is for broker-dealers.
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Figure 7. [Systemic risk] Sectoral averages of quantile impulse responses of

market

(A1) Local projection for 5% VaR (B1) Pseudo for 5% VaR
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(A2) Local projection for 1% VaR (B2) Pseudo for 1% VaR
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Note: The figures present sectoral averages of the QIRFs of the market when there is a shock to each

individual financial institution. Black dashdot line is for depositories. Red dotted line is for other. Green

dashed line is for insurance. Blue solid line is for broker-dealers.
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C List of Financial Institutions

This appendix contains the names of the U.S. financial institutions used in the analysis. As in

Acharya et al. (2017), we consider financial institutions in the U.S. that had a market cap in

excess of 5 billion USD as of end of June 2007 and categorize them into the following four groups:

Depositories, Broker-Dealers, Insurance and a group called Other consisting of non-depository

institutions, real estate, and so on. Considering data availability from 3 Jan. 2000 to 29 Jun. 2018,

our analysis includes total 61 financial institutions. As in Acharya et al. (2017), we put Goldman

Sachs in the group of Broker-Dealers. See Appendix B in Acharya et al. (2017) for more details.

The list of institutions’names and tickers is given below.

Depositories: 20 companies, 2-digit SIC code=60: 1. BANK OF AMERICA CORP (BAC), 2.

BB&T CORP (BBT), 3. BANK NEW YORK INC (BK), 4. CITIGROUP INC (C), 5. COM-

ERICA INC (CMA), 6. HUNTINGTON BANCSHARES INC (HBAN), 7. JPMORGAN CHASE

& CO (JPM), 8. KEYCORP NEW (KEY), 9. M&T BANK CORP (MTB), 10. NORTHERN

TRUST CORP (NTRS), 11. NEW YORK COMMUNITY BANCORP INC (NYB), 12. PEO-

PLES UNITED FINANCIAL INC (PBCT), 13. PNC FINANCIAL SERVICIES GRP INC (PNC),

14. REGIONS FINANCIAL CORP NEW (RF), 15. SYNOVUS FINANCIAL CORP (SNV), 16.

SUNTRUST BANKS INC (STI), 17. STATE STREET CORP (STT), 18. US BANCORP DEL

(USB), 19. WELLS FARGO&CO NEW (WFC), 20. ZIONS BANCORP (ZION)

Other: Non-depository institutions etc: 13 companies, 2-digit SIC code=61, 62 (except 6211), 65,
67: 1. TD AMERITRADE HOLDING, CORP (AMTD), 2. AMERICAN EXPRESS CO (AXP),

3. FRANKLIN RESOURCES INC (BEN), 4. BLACKROCK INC (BLK), 5. CAPITAL ONE

FINANCIAL CORP (COF), 6. EATON VANCE CORP (EV), 7. FIFTH THRID BANCORP

(FITB), 8. FEDERAL HOME LOAN MORTGAGE CORP (FRE), 9. LEGG MASON INC (LM),

10. LEUCADIA NATIONAL CORP (LUK), 11. SEI INVESTMENTS COMPANY (SEIC), 12.

SLM CORP (SLM), 13. UNION PACIFIC CORP (UNP)

Insurance: 23 companies, SIC code=63 and 64: 1. AETNA INC NEW (AET), 2. AFLAC INC

(AFL), 3. AMERICAN INTERNATIONAL GROUP INC (AIG), 4. ALLSTATE CORP (ALL),

5. AON CORP (AOC), 6. BERKLEY WR CORP (BER), 7. BERKSHIRE HATHAWAY INC

DEL(A) (BRK), 8. BERKSHIRE HATHAWAY INC DEL(B) (BRK), 9. CHUBB CORP (CB),

10. CIGNA CORP (CI), 11. CINCINNATI FINANCIAL CORP (CINF), 12. CNA FINANCIAL

CORP (CNA), 13. HARTFORD FINANCIAL SVCS GROUP IN (HIG), 14. HUMANA INC

(HUM), 15. LOEWS CORP1 (L), 16. LICOLN NATIONAL CORP IN (LNC), 17. MBIA INC

(MBI), 18. MARSH & MCLENNAN COS INC (MMC), 19. PROGRESSIVE CORP OH (PGR),

20. TRAVELERS COMPANIES INC (STA), 21. TORCHMARK CORP (TMK), 22. UNITED-

HEALTH GROUP INC (UNH), 23. UNUM GROUP (UNM)

Broker-Dealers: 5 companies, 4-digit SIC code=6211: 1. E TRADE FINANCIAL CORP
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(ETFC), 2. GOLDMAN SACHS GROUP INC (GS), 3. MORGAN STANLEY DEAN WIT-

TER & CO (MS), 4. SCHWAB CHARLES CORP NEW (SCHW), 5. T ROWE PRICE GROUP

INC (TROW)
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