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Abstract

We study security-bid auctions in which bidders compete for an asset by bidding

with securities whose payments are contingent on the asset’s realized value and can

covertly acquire information at some cost before participating in an auction. We first

consider auctions with ordered securities in which the seller restricts the security design

to an ordered set and uses a first- or second-price auction. We show that steeper secu-

rities give agents lower marginal returns to information and may yield lower revenues.

We then study linear mechanisms in which payments linearly depend on the asset’s re-

alized value. We show that the revenue-maximizing linear mechanism assigns the asset

efficiently. The winner pays in cash if their expected values are above a threshold and

pays in stock if their expected values are below the threshold. The threshold decreases

as the marginal cost of acquiring additional information increases. This result implies

that stock payments are associated with lower merge synergies and lower information

acquisition costs. We empirically test the implications and find consistent results.
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1 Introduction

In most of the literature on auctions, two important assumptions are made. First, the

amount of information possessed by agents is fixed exogenously. Second, the payment by an

agent depends only on his report and not on his realized value. However, in many important

settings, these assumptions do not apply. For example, in the sale of financial or business

assets, buyers perform due diligence to investigate the quality and compatibility of the assets

before submitting offers. Another example is the auctions for offshore oil and gas leases in

the U.S., in which companies conduct seismic surveys to collect information about the tracts

offered for sale before participating in the auctions. In these examples, information held by

agents is not only endogenous, but also costly to acquire. In the sale of a business asset, the

legal and accounting costs of performing due diligence often amount to millions of dollars

(see Quint and Hendricks (2013) and Bergemann et al. (2009)). Similarly, in the example

of U.S. auctions for offshore oil and gas leases (see Haile et al. (2010)), 3-D seismic surveys

have been used in 80% of wells drilled in Gulf of Mexico by 1996, and it cost $100, 000 to

examine a 50 square mile 3-D seismic survey in 2000.

Moreover, in these examples, the ex-post values of the assets are contractible, and the

payments by agents can depend on their ex-post payoffs. For example, when selling a

company to an acquirer or soliciting venture capital, equity and other securities are commonly

used. In the auctions for offshore oil and gas leases in the U.S., the winner’s payment to the

government is a bonus plus a fraction of revenues from any oil or gas extracted.

Earlier studies have established that auctions using cash bids can affect the incentives for

agents to acquire information (see, e.g., Stegeman (1996) and Persico (2000)). Surprisingly,

few studies have considered auctions using security bids with information acquisition. To

the best of my knowledge, the only paper that has studied this question is Gaier et al. (2005)

who show that in the pure common value setting, share auctions give agents lower incentives

to gather information than cash auctions. In this paper, we study security-bid auctions in

the independent private value setting. The feasible set of securities admit many standard
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sets of securities, including cash and equities.

We consider first auctions with ordered securities. In these auctions, the seller restricts

the security design to an ordered set and uses a first- or second-price auction. We show that

for either first- or second-price auction, steeper securities give agents lower marginal return

to information, and all securities give agents lower marginal return to information than cash.

This paper is closely related to DeMarzo et al. (2005), who also study security-bid auc-

tions. They show that, when the information possessed by agents is exogenous, steeper

securities yield higher revenues and all security-bid auctions yield higher revenues than cash

auctions. However, this result may not hold with costly information acquisition. The seller’s

expected revenue is given by the difference between the expected surplus and the information

rents accruing to the agents. On the one hand, steeper securities yield lower information

rents given the accuracy of information. On the other hand, steeper securities lead to less

accurate information, reducing the expected surplus, as the allocation becomes less efficient

ex-post. As a result, steeper securities may yield lower revenues and security-bid auctions

may yield lower revenues than cash auctions as the agents acquire less accurate information.

The above analysis shows that security design can affect the seller’s revenue in two

opposed ways. A natural question arises: what is the revenue-maximizing security design

with costly information acquisition? To address this question, we study linear mechanisms

in which the payment by an agent linearly depends on his ex-post payoff. In other words,

an agent pays in all cash, all stock, or a mixture of the two. We characterize the revenue-

maximizing linear mechanism. The optimal linear mechanism allocates the asset efficiently

conditional on the private information ex-post. An agent pays if and only if he wins. The

winner pays in cash if their expected values are above a threshold and pays in stock if their

expected values are below the threshold. The threshold decreases as the marginal cost of

acquiring additional information increases.

Intuitively, stock payment reduces the information rent accrued to the agents, but it also

reduces the incentive for the agents to acquire information. The optimal payment method

3



needs to balance this trade-off. Roughly speaking, increasing the share of stock payments for

low type and high type have a similar impact on the agents’ incentives to acquire information,

yet any information rent received by low type must also be received by high type. Therefore,

the optimal mechanism prescribes a stock payment for low type and a cash payment for

high type. The optimal threshold decreases to provide agents stronger incentives towards

information acquisition as it becomes marginally more costly to acquire information.

As an application, our results provide a new theoretical explanation for the choice of

payment methods in mergers and acquisitions based on information acquisition. Our model

predicts that the use of stock bids negatively associates with merge synergies. We empirically

test this prediction using the Securities Data Company (SDC) Platinum’s merge and acqui-

sition data. Consistent with the model prediction, we find that deals paid entirely in stock

have lower synergy values, measured by take-over premiums or abnormal returns around

announcement dates, than the other merge deals. More importantly, our model predicts

that stock payments are more likely than cash payments when it is easier for the bidder to

acquire information about the seller. To explore this information-based implication, we use

geographical proximity and recent seasoned equity offering of sellers as proxies of bidders’

information about sellers. Consistent with the model prediction, we find all information

proxies associate positively with stock payments.

The rest of this paper is organized as follows. Section 1.1 discusses related work. Section 2

presents the model. Section 3 studies auctions with ordered securities and compares security

designs in terms of agents’ incentives to acquire information and the seller’s revenue. Section

4 characterizes the revenue-maximizing linear mechanism. Section 5 contains the empirical

analysis.

1.1 Other related literature

Standard or efficient auctions using cash bids. First, this paper is related to the literature

that studies information acquisition in cash mechanisms. Earlier contributions focus on the
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commonly used auction formats using cash bids. Matthews (1984a) focuses on first-price

auctions with pure common values. Stegeman (1996) finds that both first-price and second-

price auctions lead to the same efficient incentive for information acquisition when agents

have independent private values. In contrast, Persico (2000) finds that agents have stronger

incentives to acquire information under the first-price auction than under the second-price

auction when their values are affiliated.

More recently, Bergemann and Välimäki (2002) and Bergemann et al. (2009) study the

incentives for agents to collect information in ex-post efficient mechanisms. Li (2019) studies

the ex ante efficient mechanisms taking information costs into consideration. Different from

the above papers, this paper studies information acquisition in auctions using security bids

as opposed to cash bids and focuses on the comparison between security designs rather than

auction formats.

Revenue-maximizing cash mechanisms. This paper is also related to the literature that

studies the revenue-maximizing cash mechanisms with costly information acquisition. The

mostly closely related paper is Shi (2012) who considers a similar model but focuses on

cash mechanisms. He finds that the optimal monopoly price is always below the standard

monopoly price to encourage information acquisition. In contrast to Shi (2012), the allocation

is ex-post efficient in the optimal linear mechanism, and the seller encourages information

acquisition through the choice of payment methods.

Crémer et al. (2009) characterize the optimal mechanism when agents face binary infor-

mation decisions and the seller can control their access to information. They find that the

seller can completely overcome the agents’ incentive problems and extract full surplus. Levin

and Smith (1994), Ye (2004) and Lu and Ye (2018) model the information cost as an entry

cost so that agents’ information decisions are observable. In this paper, as in Shi (2012),

agents have a continuum of information choices, and their information choices are also their

private information.

Contingent mechanisms. This paper is broadly related to the literature that studies con-
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tingent mechanisms (among them Hansen (1985) and DeMarzo et al. (2005)). Che and Kim

(2010) add to the analysis of DeMarzo et al. (2005) a caveat – that a higher return requires

a higher cost. They find that steeper securities are more vulnerable to adverse selection,

and may yield lower expected revenue, than flatter ones. Sogo et al. (2016) extend DeMarzo

et al. (2005) to a setting in which it is costly to participate in the security-bid auction and

potential bidders know their private valuations when deciding whether to enter. They find

that auctions with steeper securities also attract more entry, further enhancing the revenues

from such auctions. Liu and Bernhardt (2019) study the revenue-maximizing equity auctions

when bidder’s valuations and opportunity costs are private information. In the above papers,

the private information held by agents is assumed to be exogenous. By contrast, this paper

studies the environments in which agents can covertly acquire information at some cost.

Payment method in takeover auctions. Finally, this paper is related to the literature on

the payment method choice in corporate takeovers.

Eckbo et al. (1990) and Fishman (1989) explore the role of two-sided asymmetric infor-

mation in the acquirer’s choice of payment method. Eckbo et al. (1990) identify a separating

equilibrium in which the value of the acquirer is revealed by their choice of payment method.

The empirical results of Eckbo et al. (1990) are consistent with their theoretical implication:

the average announcement-month bidder abnormal returns are on average highest in all-cash

offers, lowest in all-stock offers, and with mixed cash-stock offers in between. In Fishman

(1989), there is more than one potential bidder and a cash bid serves to preempt potential

competition from rival bidders. Thus, in equilibrium bidders with positive information make

cash bids, while bidders with less positive information make bids with payment in the debt

security.

Gorbenko and Malenko (2018) study the link between financially constraints on the side

of bidders and its decision on whether to bid in cash or in stock. They show that the use

of cash as means of payment is positively associated with synergies and the acquirer’s gains

from the deal and negatively associated with financial constraints.
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In Shleifer and Vishny (2003) and Rhodes-Kropf and Viswanathan (2004), the payment

method choice is driven by stock market misvaluation or bidder opportunism. Intuitively,

if the bidder stock is overvalued, the acquirer will be tempted to use stock as the payment

method to capitalize on this overvaluation. The bidder opportunism hypothesis implies that

it is less likely the bidder will succeed in paying the target with overpriced bidder stock when

the target is better informed about the bidder. Eckbo et al. (2018) test this hypothesis by

estimating the probability that the deal is paid in stock as a function of empirical proxies

indicating how well informed the target is about the bidder. They find that the likelihood

that the deal is paid in stock increases in the target information proxies, rejecting the bidder

opportunism hypothesis.

2 Model

There are n agents, indexed by i ∈ {1, · · · , n}, who compete for an asset. The value of

the asset to agent i is θi, which is unknown to all agents or to the seller initially. Each agent

has a quasi-liner utility. If agent i receives the asset with probability qi ∈ [0, 1] and pays

si ∈ R, then his ex-post payoff is qiθi − si. The seller’s reservation value is zero.

Initially, agents know only {θi} are independently drawn from a common cumulative

distribution F with support Θ := [θ, θ] ⊂ R+. The distribution F has a continuous and

positive density function f . Agent i can covertly acquire a signal xi ∈ R regarding θi by

choosing a joint distribution of (θi, xi) from a family of joint distributions {G(θi, xi;αi)},

indexed by their accuracy αi ∈ A := [α, α]. For each α ∈ A, we also refer to G(·, ·;α) as

an information structure. For all α ∈ A, G(·, ·;α) admits the same marginal distribution

of θ as the prior, and has a continuous and positive density function g. Assume, without

loss of generality, that the marginal distribution of x follows a uniform distribution on [0, 1].

We slightly abuse notation by using θ and x to denote both the random variables and their

realizations. For all α ∈ A, θ and x are strictly affiliated:
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Definition 1 (Milgrom and Weber (1982)) For all α ∈ A, the two random variables θ

and x are strictly affiliated: for all θ′ > θ and x′ > x,

g(θ′, x′;α)g(θ, x;α) > g(θ′, x;α)g(θ, x′;α). (1)

By Lemma 4 in the appendix, (θ, x) satisfies the strict monotone likelihood ratio property,

i.e., g(x|θ′;α)/g(x|θ;α) is strictly increasing in x if θ′ > θ. This means that the private signal

xi is “good news” about the asset value θi.

A signal with higher α is more accurate (in the sense defined shortly). Let C(α) denote

the cost of acquiring a signal with accuracy α. As is standard in the literature, we assume

that C is non-negative, non-decreasing, continuously differentiable and convex.

2.1 Timing

The game proceeds in the following way. The seller announces a mechanism. After

observing the mechanism, the agents simultaneously make their information choices, {αi},

and observe their realized signals, {xi}. Then, the agents simultaneously decide whether

to participate in the mechanism. All participating agents submit their bids or report their

private information. Finally, an outcome is realized.

The payoff structure, the timing of the game, the information technology and the prior

distribution are common knowledge.

2.2 Contingent mechanisms

In this paper, we focus on the case that {θi} are contractible and on contingent mech-

anisms in which agent i’s payment can be contingent on his true type θi, i.e., a security.

A security can be described by a function s(θ). A security s(θ) is a cash payment if it is

independent of θ. We make the following monotonicity assumption on the set of feasible

securities which includes cash as a special case.
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Definition 2 The function s(θ) is a feasible security if both s(θ) and θ − s(θ) are non-

decreasing.

Monotonicity ensures that the equilibrium outcome is efficient. It is also satisfied by

almost all securities used in practice. For example, the feasible set of securities admit the

following standard sets of securities:

• Equity: The seller receives some fraction r ∈ [0, 1] of the future cash flow θ. Then, the

seller gets s(θ) = rθ and the buyer gets θ − s(θ) = (1− r)θ.

• Debt: The seller is promised a face value d ≥ θ, secured by the asset. Then, the seller

gets s(θ) = min{d, θ} and the buyer gets θ − s(θ) = max{θ − d, 0}.

• Convertible debt: The seller is promised a face value d ≥ θ, secured by the asset, or a

fraction r ∈ [0, 1] of θ. Then, the seller gets s(θ) = max{min{d, θ}, rθ} and the buyer

gets θ − s(θ) = min{max{θ − d, 0}, (1− r)θ}.

• Levered equity: The seller receives a fraction r ∈ [0, 1] of θ after the face value d ≥ θ

is paid. Then, the seller gets s(θ) = rmax{θ − d, 0} and the buyer gets θ − s(θ) =

(1− r) max{θ − d, 0}+ min{θ, d}.

• Call option: The seller receives a call of the firm at the strike price k. Then, the seller

gets s(θ) = max{θ − k, 0} and the buyer gets θ − s(θ) = min{k, θ}.

If we think of the asset as the “rights to a project” as in DeMarzo et al. (2005), and the

winner must make an initial investment X > θ in order to generate a future cash follow θ,

then a security defined in DeMarzo et al. (2005) satisfies S(θ) = s(θ)−X. If both s(θ) and

θ − s(θ) are non-decreasing, then S(θ) and θ − S(θ) are also non-decreasing. In addition,

DeMarzo et al. (2005) assume that 0 ≤ S(θ) ≤ θ (or equivalently X ≤ s(θ) ≤ θ+X), which

rules out any negative cash payments. DeMarzo et al. (2005) interpret s(θ) ≤ θ + X as a

limited liability constraint for the buyer and s(θ) ≥ X as a limited liability constraint for the

seller. They show that this constraint can arise if the initial investment X is not verifiable.
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In this paper, we focus on two classes of contingent mechanisms: (i) standard first- and

second-price auctions with ordered securities and (ii) mechanisms in which the payment is

a linear security.

3 Auctions with ordered securities

In this section, we focus on security-bid auctions. In a security-bid auction, the seller

restricts the bids to a well-ordered set of securities, and uses a standard auction format,

such as a first- or second-price auction, to allocate the asset and determine the payment.

Without restrictions on the set of admissible securities, ranking different securities is hard

and will depend upon the seller’s belief. We impose the following requirements on the set of

admissible bids as in DeMarzo et al. (2005):

Definition 3 The function s(σ, θ) for σ ∈ [σ0, σ1] defines an ordered set of securities if:

1. s(σ, ·) is a feasible security.

2. For all α ∈ A and x ∈ [0, 1], E[sσ(σ, θ)|x;α] > 0.

3. θ − s(σ0, θ) ≥ 0 and θ − s(σ1, θ) ≤ 0.

We also use S := {s(σ, ·)}σ∈[σ0,σ1] to denote an ordered set of securities. The second

condition in Definition 3 says that for any information structure and any realized signal,

the seller’s expected revenue, E[s(σ, θ)|x;α], is strictly increasing in σ. Thus, a higher σ

corresponds to a higher bid. The third condition ensures that the range of bids is sufficiently

large so that every agents earn a non-negative payoff by bidding the lowest bid and no agent

earns a positive payoff by bidding the highest bid. Examples of ordered sets of securities

include sets of cash payments, (levered) equity and (convertible) debt indexed by equity

share or face value, and call options indexed by strike price.

Given an ordered set of securities, it is natural to generalize the standard first- and

second-price auctions using cash bids to our setting using security bids:
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First-price auction: Each agent submits a security. The agent who submitted the

highest security (highest σ) wins and pays according to his security. Ties are randomly

broken.

Second-price auction: Each agent submits a security. The agent who submitted the

highest security (highest σ) wins and pays the second highest security (second highest σ).

Ties are randomly broken.

For tractability, we restrict our attention to symmetric equilibria in which all agents make

the same information choice, i.e., αi = α for all i.

3.1 Equilibrium with exogenous information

Consider first the situation in which each agent’s private information is fixed and sym-

metric: αi = α for all i. We make the following assumption on the feasible sets of securities

to rule out a solution as in Crémer (1987).

Assumption 1 The identity function χ(θ) ≡ θ /∈ S .

Theoretically, if χ ∈ S , then it is an equilibrium in the first- and second-price auctions

that all agents bid χ irrespective of their realized signals and get 0. This trivializes the

information acquisition problem. Assumption 1 is typically made in the security design

literature. It is weaker than the assumptions made by DeMarzo et al. (2005), who assume

that X ≤ s(θ) ≤ θ +X for some X > θ. To see this, note that s(θ) ≥ X > θ, which implies

that χ /∈ S .

By the standard argument we have the following characterization of the equilibrium in a

second-price security-bid auction.

Lemma 1 Suppose Assumption 1 holds. Given αi = α for all i, the unique equilibrium

in weakly undominated strategies in the second-price security-bid auction is for agent i who

receives signal xi = x to submit a security σ(x;α) such that E[θ − s(σ(x;α), θ)|x;α] = 0.

Furthermore, σ(x;α) is strictly increasing in x.
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Suppose that σ(x;α) is agent i’s strategy in a symmetric equilibrium in the first-price

security-bid auction, and σ(x;α) is differentiable and strictly increasing in x. Then,

x ∈ arg max
x′

G(x′|α)n−1E [θ − s(σ(x′;α), θ)|x;α] .

Hence, σ must satisfy

σx(x;α) =
(n− 1)g(x|α)E[θ − s(σ(x;α), θ)|x;α]

G(x|α)E[sσ(σ(x;α), θ)|x;α]
, (2)

with the boundary condition that E[θ − s(σ(0;α), θ)|0;α] = 0. Clearly, σx(x;α) > 0. Sup-

pose, in addition, that the ordered set of securities and the information structures satisfy

the following assumption, the above first-order condition is also sufficient for optimality.

Assumption 2 For all α ∈ A and all (σ, x) such that E[θ − s(σ, θ)|x;α] > 0,

∂2

∂x∂σ
logE[θ − s(σ, θ)|x;α] > 0.

This assumption is standard in the auction literature. For example, it is also used in

Maskin and Riley (1984) and DeMarzo et al. (2005) to ensure the existence and uniqueness

of the symmetric equilibrium in a first-price auction. Under Assumption 2, we have the

following characterization of the symmetric equilibrium in the first-price security-bid auction:

Lemma 2 Suppose Assumptions 1 and 2 hold. Given αi = α for all i, there exists a unique

symmetric equilibrium in the first-price security-bid auction. It is the unique solution to the

differentiale equation (2) with the boundary condition E[θ − s(σ(0;α), θ)|0;α] = 0. Further-

more, σ(x;α) is strictly increasing and differentiable in x.

3.2 Information acquisition

Consider now an agent’s information acquisition problem prior to an auction when his

opponents would choose accuracy α and play the symmetric equilibrium strategy as if all
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agents had accuracy α. The payoff of agent i from choosing accuracy η is

R(η;α) :=

∫ 1

0

[
max

σ̂∈[σ0,σ1]

∫
Θ

u(θi, σ̂)dG(θi|xi; η)

]
dG(xi|η),

where u(θi, σ̂) denote agent i’s expected payoff when his true type is θi and he bids σ̂ ∈

[σ0, σ1], which depends on the auction formats. In the second-price auction,

u(θi, σ̂) =

∫ σ−1(σ̂;α)

0

[θi − s(σ(zi;α), θi)] dGn−1(zi|α),

where σ(·;α) is given by Lemma 1 and σ−1(·;α) denotes its inverse function. In the first-price

auction,

u(θi, σ̂) = [θi − s(σ̂, θi)]Gn−1(σ−1(σ̂;α)|α),

where σ(·;α) is given by Lemma 2 and σ−1(·;α) denotes its inverse function. Then, agent

i’s information acquisition problem is

max
η
R(η;α)− C(η).

For later use, we define the marginal return from increasing accuracy when all agents have

accuracy α as

MR(α) :=
∂

∂η
R(η;α)

∣∣∣∣
η=α

.

3.2.1 Information order

Before proceeding, we first define the notion of informativeness used to rank the accuracy

of different signals.

Definition 4 (Lehmann (1988)) G(·, ·;α) is more accurate than G(·, ·; η) if

Tα,η(x|θ) := G−1(G(x|θ; η)|θ;α)
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is non-decreasing in θ, for every x.

Accuracy, which weakens Blackwell’s sufficiency condition (Blackwell et al. (1951)), was

first proposed by Lehmann (1988). To better understand the notion of accuracy, note that

if x is distributed according to G(·|θ; η), then Tα,η(x|θ) is distributed according to G(·|θ;α).

That is, we can obtain a more accurate signal by subjecting the less accurate signal to the

Tα,η(·|θ) transformation. Since Tα,η(x|θ) is non-decreasing in θ, the new signal obtained via

the transformation is higher (or lower) if θ is higher (or lower). In other words, the new

signal is more correlated with v than the original one. Persico (2000) shows that all decision

makers with single-crossing preferences prefer one signal G(·, ·;α) over another G(·, ·; η) for

all priors if and only if G(·, ·;α) is more accurate than G(·, ·; η). Throughout Section 3, we

assume that the information structures are ordered by accuracy:

Assumption 3 α′ > α implies that G(·, ·;α′) is more accurate than G(·, ·;α).

3.3 Ranking security designs

We show that an agent’s marginal return to information depends upon the steepness of

the securities. To do so, we follow DeMarzo et al. (2005) and define the notion of steepness

by how securities cross each other. A function H is said to be steeper than a function J if

H crosses J from below only once. As in DeMarzo et al. (2005), we say one security s1 is

steeper than another security s2 if the payment to the seller s(θ) is steeper under the first

security, or equivalently, the payoff to the agent θ − s(θ) is flatter under the first security.

More formally,

Definition 5 (Karamardian and Schaible (1990)) A function H(z) is quasi-monotone

if z′ > z and H(z) > 0 imply H(z′) ≥ 0.

Definition 6 An ordered set of securities S 1 is steeper than an ordered set of securities

S 2 if for all s1 ∈ S 1 and s2 ∈ S 2, s1 − s2 is quasi-monotone.
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This definition of steepness is slightly different from that in DeMarzo et al. (2005). In

DeMarzo et al. (2005), the information structure is exogenous. For fixed α, they say S 1 is

steeper than S 2 if for all s1 ∈ S 1 and s2 ∈ S 2, E[s1(θ)|x, α] = E[s2(θ)|x;α] implies that

∂E[s1(θ)|x;α]/∂x > ∂E[s2(θ)|x;α]/∂x. The following lemma shows that our definition of

steepness is an adaption of DeMarzo et al. (2005) to the setting with endogenous information:

Lemma 3 Suppose s1 − s2 is quasi-monotone and x′ > x. Then, for all α ∈ A,

E[s1(θ)|x;α] = E[s2(θ)|x;α] implies that E[s1(θ)|x′;α] ≥ E[s2(θ)|x′;α].

Why is steepness related to the marginal return to information? Consider first a second-

price security-bid auction. Agent i’s expected utility when his true type is θi and he observes

xi is

u(θi, σ(xi;α)) =

∫ xi

0

[θi − s(σ(zi;α), θi)] dGn−1(zi|α),

where σ is such that E[θ − s(σ(x;α), θ)|x;α] = 0 by Lemma 1. If the agent knows θi, he

would choose a security σ∗ such that s(σ∗, θi) = θi to maximize his utility. Recall that a more

accurate signal can be obtained by subjecting the less accurate signal to the transformation

yi = Tα,η(xi|θi). Since Tα,η(xi|θi) is non-decreasing in θi, yi would be larger (or smaller) than

xi if θi is high (or low). Thus, for each θi, the security σ(yi;α) is closer than σ(xi;α) to

σ∗. That is, an increase in signal accuracy increases agent i’s payoff. How much the payoff

increases, however, depends on how steeply u(θi, σ(xi;α)) changes as xi moves towards θi,

which is measured by ∂u(θi, σ(xi;α))/∂xi. Suppose the ordered set of securities S 1 is steeper

than S 2. Let u1(θi, σ
1(xi;α)) and u2(θi, σ

2(xi;α)) denote agent i’s expected utilities from

the second-price auctions using S 1 and S 2, respectively. Then,

∂

∂xi

[
u2(θi, σ

2(xi;α))− u1(θi, σ
1(xi;α))

]
=
[
s1(σ1(xi;α), θi)− s2(σ2(xi;α), θi)

]
(n− 1)Gn−2(xi|α)g(xi|α),

which is quasi-monotone in θi since S 1 is steeper than S 2. Thus, u2(θi, σ
2(xi;α)) is more
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sensitive than u1(θi, σ
1(xi;α)) to changes in signal xi. This leads to the following main result:

Proposition 1 Suppose Assumptions 1 and 3 hold, and the ordered set of securities S 1

is steeper than S 2. For second-price security-bid auctions, an agent’s marginal return to

information in a symmetric equilibrium is lower using S 1 than using S 2.

We now turn our attention to first-price security-bid auctions. In this case, an additional

assumption is required to compare different sets of securities:

Definition 7 An ordered set of securities S is convex if it is equal to its convex hull.

Proposition 2 Suppose Assumptions 1-3 hold, the ordered set of securities S 1 and S 2 are

convex, and S 1 is steeper than S 2. For first-price security-bid auctions, an agent’s marginal

return to information in a symmetric equilibrium is lower using S 1 than using S 2.

DeMarzo et al. (2005) show that when information available to agents is exogenous,

security-bid auctions using steeper set of securities yield higher revenues. Intuitively, given a

steeper set of securities, a higher type will pay more even with the same bid, which reduces

the information rent captured by the winner and therefore benefits the seller. However, as

we argued earlier, security-bid auctions using steeper set of securities provide less incentives

for agents to acquire information. The accuracy of information affects the seller’s revenue

in two opposite ways. On the one hand, less accurate information reduces the efficiency

of the auction and thus the seller’s revenue. On the other hand, less accurate information

reduces the information rent accrued to the agents which increases the seller’s revenue. Thus,

when the first effect dominates, the revenue ranking might be reversed when information is

endogenous. This is illustrated by the following example.

Example 1 Assume for simplicity that θ = 0. Consider an ordered set of securities s(r, θ),

indexed by r ∈ [0, 1], where s(r, θ) = rθ + X for some X > 0. Consider the second-price

security-bid auction in which each agent submits a share r; the agent submitting the highest
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r wins; and the winner pays according to the second highest r. Given αi = α for all i, in

the unique weakly undomitated equilibrium, agent i submits r(xi) = 1−X/E[θ|xi;α], which

is strictly increasing in xi. Let vi := E[θ|xi;αi] denote agent i’s expected value and H(vi;αi)

denote its distribution. Let vi := maxj 6=i vj denote the highest expected value among all

agents except for agent i. Then, agent i’s information acquisition problem is

max
αi

∫
Θ

∫
Θ

max

{
X

vi
vi −X, 0

}
dH(vi;αi)dH

n−1(vi;α)− C(αi).

The seller’s revenue from this auction is

πS(α) := E
[
V(n)

(
1− X

V(n−1)

)
+X

∣∣∣∣αi = α ∀i
]
,

where V(n) denotes the highest vi and V(n−1) denotes the second highest vi.

Compare this with a second-price cash-bid auction, in which agent i submits vi in equi-

librium. Then, agent i’s information acquisition problem is

max
αi

∫
Θ

∫
Θ

max
{
vi − vi, 0

}
dH(vi;αi)dH

n−1(vi;α)− C(αi).

The seller’s revenue from this auction is

πC(α) := E
[
V(n−1)

∣∣αi = α ∀i
]
.

Given α, for almost all realization of v,

V(n)

(
1− X

V(n−1)

)
+X − V(n−1) = (V(n) − V(n−1))

(
1− X

V(n−1)

)
> 0.

Hence, πS(α) > πC(α). However, since

max
{
vi − vi, 0

}
−max

{
X

vi
vi −X, 0

}
= max

{(
1− X

vi

)
(vi − vi), 0

}
, (3)
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is non-decreasing in vi and strictly increasing in vi when vi > vi, it follows from the argu-

ments in Bergemann and Välimäki (2002) that MRC(α) > MRS(α). When X → 0, πS(α)

converges to the full surplus, while the value of information to agent i goes to zero. Let αS

(or αC) denote the information choice in a symmetric equilibrium in the security-bid auc-

tion (or the cash-bid auction). Then, limX→0 π
S(αS(X)) = E[θi]. If n > 3 and H(·;α) is

unimodal and symmetric, πC(α) = E[V(n−1)|α] ≥ H−1((n − 1)/n;α) > E[θi] for all α and

X. Thus, πS(αS) < πC(αC) for X > 0 sufficiently small (i.e., the revenue ranking between

security-bid and cash-bid auctions are reversed).

The same result holds for first-price auctions with a slightly more complex analysis.

4 Linear mechanisms

Security design affects the seller’s revenue in two ways. First, as shown in DeMarzo

et al. (2005), given the amount of information acquired by agents, security design affects the

seller’s revenue by affecting the competitiveness of the auction. Second, Section 3 shows that

security design affects the seller’s revenue by affecting the incentives for agents to acquire

information. A natural question arises: what is the revenue-maximizing security design with

endogenous information? For tractability, we restrict our attention to mechanisms in which

the payment is a linear security, i.e., cash, equity or a mixture of the two.

The private information of each agent i is two-dimensional, including the accuracy of his

information αi ∈ A and the realized signal xi ∈ [0, 1]. A linear contract for agent i consists

of a royalty rule ri : [0, 1]n ×An → [0, 1] and a transfer rule ti : [0, 1]n ×An → R. A (direct)

linear mechanism is a triple (q, r, t), consisting of an allocation rule qi : [0, 1]n×An → [0, 1]

and a linear contract (ri, ti) for each agent i. The ex-post payoff of agent i with true type θi

from such a linear mechanism is

qi(x,α)(1− ri(x,α))θi − ti(x,α),
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where (x,α) is the profile of reported private information. The fact that ri(x,α) ∈ [0, 1]

ensures that the payment is a feasible security satisfying the monotonicity assumption. A

special case of the linear mechanism is the standard cash mechanism in which ri(·) ≡ 0.

Remember that the private information of an agent is two-dimensional, which suggests

that the design problem is multi-dimensional and could potentially be very complicated.

However, when the payments are linear, agent i’s expected valuation of the asset, vi(xi, αi) :=

E[θi|xi;αi], completely captures the dependence of his payoff on the two-dimensional private

information:

Eθi [qi(x,α)(1− ri(x,α))θi − ti(x,α)|xi;αi] = qi(x,α)(1− ri(x,α))vi(xi, αi)− ti(x,α).

Furthermore, the seller cannot screen the two pieces of information separately. Hence, with-

out loss of generality, we can focus on linear mechanisms in which agents report their expected

values directly.

For ease of notation, we use vi to denote vi(xi, αi) and v := (v1, . . . , vn) to denote a vec-

tor of expected values. Then, a linear mechanism can be written as {qi(v), ri(v), ti(v)}ni=1,

where qi(v) is agent i’s probability of winning the asset when the vector of reports is v, and

(ri(v), ti(v)) specifies agent i’s corresponding linear payment. For later use, let H(v|α) de-

note the cumulative distribution function of vi, and h(v|α) denote the corresponding density

function.

Given a mechanism (q, r, t), let α∗ := (α∗1, . . . , α
∗
n) denote the equilibrium vector of

information choices. Then, agent i’s interim probability of winning the asset is

Qi(vi) := Ev−i [qi(vi, v−i)|α∗−i], (4)

where α∗−i are his opponents’ information choices. If agent i’s true expected value is vi and
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he reports v̂i, his interim payoff is

Ui(vi, v̂i) := Ev−i
[
qi(v̂i, v−i) (1− ri(v̂i, v−i)) vi − ti(v̂i, v−i)|α∗−i

]
.

Let Ti(vi) := Ev−i
[
ti(vi, v−i)|α∗−i

]
denote agent i’s interim cash payment. If Qi(vi) 6= 0, let

Ri(vi) := Ev−i
[
qi(vi, v−i)ri(vi, v−i)|α∗−i

]
/Qi(vi); otherwise let Ri(vi) := 0. By construction,

Ri ∈ [0, 1]. Note that if Qi(vi) = 0, then qi(vi, v−i) = 0 for almost all v−i and therefore

Ev−i
[
qi(vi, v−i)ri(vi, v−i)|α∗−i

]
= 0. Hence, Q(vi)R(vi) = Ev−i

[
qi(vi, v−i)ri(vi, v−i)|α∗−i

]
for

all vi. Hence, agent i’s interim payoff is

Ui(vi, v̂i) = Qi(v̂i) [1−Ri(v̂i)] vi − Ti(v̂i).

Note that Qi, Ti, Ri and Ui also depends on α∗−i. Here, we suppress the dependence for ease

of notation.

We focus on linear mechanisms satisfying the following properties. First, a mechanism is

(interim) individually rational (IR) if

Ui(vi) := U(vi, vi) ≥ 0 for all vi. (IR)

(IR) ensures that all agents are willing to participate in the mechanism. Second, a mechanism

is Bayesian incentive compatible (IC) if

Ui(vi) ≥ U(vi, v̂i) for all vi, v̂i. (IC)

(IC) ensures that truth-telling is a Bayes-Nash equilibrium. Lastly, with costly information

acquisition, a mechanism also needs to satisfy the information acquisition constraint (IA):

20



no agent has an incentive to deviate from his equilibrium choice α∗i :

α∗i ∈ argmax
αi

E
[
Ui(vi)|αi, αj = α∗j ∀j 6= i

]
− C(αi). (IA)

The seller’s problem, denoted by (P), is to choose a linear mechanism (q, r, t) and a

vector of recommendations of information choices α∗ to maximize her expected revenue:

max
α∗,(q,r,t)

Ev

[∑
i

(viqi(v)ri(v) + ti(v))

∣∣∣∣∣αi = α∗i ∀i

]
, (P)

subject to (IC), (IR), (IA) and the feasibility constraint (F):

0 ≤ qi(v) ≤ 1,
∑
i

qi(v) ≤ 1, ∀v ∈ [θ, θ]n. (F)

For tractability, we restrict our attention to mechanisms that treat all agents symmetri-

cally as well as symmetric equilibria in which all agents make the same information choice

(i.e., α∗i = α∗ for all i).1 Note that when a mechanism is symmetric, the corresponding Qi,

Ri, Ti and Ui are independent of i. From here on, we drop the subscript i from Q, R, T , U ,

v and α whenever the meaning is clear.

The seller’s problem is challenging because of the presence of the nonstandard constraint

(IA), which prevents us from solving the problem directly. To overcome this difficulty, we

focus on reduced-form auctions. Formally, q implements Q, and Q is the reduced form of q

if q satisfies (4) and (F). Q is implementable if q exists implementing Q.

By the standard argument, (IC) holds if and only if

Q(v) [1−R(v)] is non-decreasing, (MON)

1 The formal definition of symmetric mechanisms can be found in appendix.
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U is absolutely continuous and satisfies the following envelope condition:

U(v) = U(v(0, α)) +

∫ v

v(0,α)

Q(ν) [1−R(ν)] dν.

Thus, (IR) holds if and only if U(v(0, α)) ≥ 0.

We now turn to the information acquisition problem. Since (IA) is difficult to work

with directly, we follow the first-order approach and relax the seller’s problem by replacing

the (IA) constraint with a one-sided first-order necessary condition. As will become clear

later, if we ignore (IA), then the optimal mechanism leaves agents no incentive to acquire

information. Hence, we hypothesize that to ensure that (IA), it suffices to ensue that no

agent has incentive to acquire less accurate signals than recommended. Suppose agent i

chooses αi and all the other agents choose α∗, then by the envelope condition, his expected

payoff is

Evi [Ui(vi)|αi, αj = α∗]−C(αi) = Ui(v(0, αi))+

∫ v(1,αi)

v(0,αi)

[1−H(vi|αi)]Q(vi) [1−R(vi)] dvi−C(αi).

If agent i does not gain by deviating to αi < α∗, then α∗ satisfies the following one-sided

first-order necessary condition:

∫ v(x,α∗)

v(0,α∗)

−Hαi(vi|α∗)Q(vi) [1−R(vi)] dvi ≥ C ′(α∗), . (IA′)

Subsequently, we first relax the seller’s problem by replacing (IA) with (IA′) and then show

that (IA′) holds with equality when α∗ is feasible. We follow the first-order approach and

relax the seller’s problem by replacing the (IA) constraint with (IA′). The first-order ap-

proach is valid if the second-order condition of the agents’ optimization problem is satisfied.

Later on, we provide sufficient conditions for the first-order approach to be valid.

One important prior result we use is the necessary and sufficient condition that char-
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acterizes the set of interim allocation rules implementable by symmetric mechanisms.2 By

Theorem 1 in Matthews (1984b), any implementable Q satisfies the following necessary con-

dition:

Y (v) :=

∫ θ

v

[
H(z|α∗)n−1 −Q(z)

]
h(z|α∗)dz ≥ 0, ∀v ∈ [θ, θ]. (F′)

The above condition says that the probability of assigning the object to an agent whose

posterior mean is above v must not exceed the probability that an agent whose posterior mean

is above v exists. If Q is nondecreasing, Theorem 1 in Matthews (1984b) proves that this

condition is also sufficient. Unlike the mechanism design problem with only cash payments,

(IC) no longer ensures that Q is nondecreasing. In what follows, we relax the seller’s problem

even more by replacing (F) with (F′), and then show that the optimal Q is non-increasing.

Note that in equilibrium, the support of posterior means is V := [v(0, α∗), v(1, α∗)] ⊂ [θ, θ].

Therefore, (F′) imposes no restriction on Q outside V .

Finally, using the envelope condition, the seller’s expected revenue can be written as

∫ v(1,α)

v(0,α)

[Q(v)R(v)v + T (v)] dH(v|α∗)

=

∫ v(1,α)

v(0,α)

[
v − 1−H(v|α∗)

h(v|α∗)
(1−R(v))

]
Q(v)dH(v|α∗)− U(v(0, α)).

Clearly, it is optimal to set U(v(0, α)) = 0.

Then, the seller’s relaxed problem (P ′) can be written as the following reduced-form

problem:

max
α∗,Q,R

∫ v(1,α∗)

v(0,α∗)

[
v − 1−H(v|α∗)

h(v|α∗)
(1−R(v))

]
Q(v)dH(v|α∗), (P ′)

subject to (MON), (IA′) and (F′).

Remark 1 If αi = α∗ is exogenous given, as Crémer (1987) points out, full surplus extrac-

tion can be achieved by letting ri(·) ≡ 1, ti(·) ≡ 0, and the allocation rule be ex-post efficient:

2See Maskin and Riley (1984), Matthews (1984b), Border (1991) and Che et al. (2013).
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for all v and all i,

qi(v) =

 1 if vi > maxj 6=i vj,

0 otherwise.

This mechanism is no longer optimal if agents need to acquire information at some cost since

it leaves agents no incentive to acquire information.

4.1 Optimal linear mechanism for fixed information choice

As is customary, we focus on the seller’s relaxed problem that implements a given infor-

mation choice α∗, denoted by (P-α∗):

max
Q,R

∫ v(1,α∗)

v(0,α∗)

[
v − 1−H(v|α∗)

h(v|α∗)
(1−R(v))

]
Q(v)dH(v|α∗), (P-α∗)

subject to (MON), (IA′) and (F′). The solution to (P-α∗) will provide us rich insights into

the properties of optimal mechanisms. To ease our exposition, from here on, we impose the

following regularity condition on the distribution of conditional expectations:

Assumption 4 (Monotone hazard rate)

1−H(v|α∗)
h(v|α∗)

is non-increasing in v for all α∗.

We consider a different information order from that in Section 3.

Assumption 5 (Supermodularity) The information structures are supermodular or-

dered, i.e., v(·, ·) is supermodular: for all x, x′ ∈ (0, 1), x > x′ and α > α′,

v(x, α)− v(x′, α) ≥ v(x, α′)− v(x′, α′).

The notion of “supermodular precision” was introduced by Ganuza and Penalva (2010),

and it orders different information structures based on their impacts on the distribution
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of conditional expectations. Roughly speaking, if an information structure is more super-

modular precise than another, then it leads to a more dispersed distribution of conditional

expectations. By contrast, accuracy orders different information structures based on their

value to decision makers with single-crossing preferences. We consider supermodular ordered

information structures in the section for two reasons. First, since agent i’s payoff in a linear

mechanism is completely determined by his conditional expectation vi(xi, αi), it is natural

to consider supermodular ordered information structures. Second, not all linear mechanisms

can be implemented by a first- or second-price auction with ordered securities, and the agents

do not necessarily have single-crossing preferences under linear mechanisms.

The following two commonly used information models in the literature are supermodular

ordered.3

Example 2 (Linear experiments) Consider the following information structures, which

are called “truth-or-noise” in Lewis and Sappington (1994), Johnson and Myatt (2006) and

Shi (2012). Agent i can obtain a costly signal yi, which is equal to agent i’s true type θi with

probability αi ∈ [0, 1] and is an independent draw from F with probability 1 − αi. Define

a new signal as xi := F (yi). Because the marginal distribution of yi is F , the marginal

distribution of the transformed signal is uniform on [0, 1]. The posterior mean of an agent

who chooses α and receives x is v(x, α) = αF−1(x) + (1 − α)µ. It is easy to verify that for

all x, x′ ∈ (0, 1), x > x′ and α > α′,

[v(x, α)− v(x′, α)]− [v(x, α′)− v(x′, α′)] = (α− α′)
(
F−1(x)− F−1(x′)

)
> 0.

Hence, the information structures are supermodular ordered.

Example 3 (Normal experiments) Let {θi} be independently distributed with a normal

distribution: θi
iid∼ N (µ, 1/β) and β > 0. Agent i can obtain a costly signal yi = θi+εi, where

εi
iid∼ N (0, 1/αi) and αi > 0. Define a new signal as xi := Φ

(√
βαi(yi − µ)/

√
β + αi

)
, where

3See, for example, Ganuza and Penalva (2010) and Shi (2012).
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Φ is the CDF of the standard normal distribution. Because the marginal distribution of yi

is also normal with yi ∼ N (µ, (β + αi)/βαi), the marginal distribution of the transformed

signal is uniform on [0, 1]. The posterior mean of an agent who chooses α and receives x is

v(x, α) = µ+

√
αΦ−1(x)√
β(α + β)

.

It is easy to verify that for all x, x′ ∈ (0, 1) and x > x′,

v(x, α)− v(x′, α) =

√
α√

β(α + β)

(
Φ−1(x)− Φ−1(x′)

)
> 0,

which is strictly increasing in α. Hence, the information structures are supermodular ordered.

Ganuza and Penalva (2010) show that supermodular precision and accuracy are consis-

tent, but neither is stronger than the other. Any two information structures ordered in terms

of accuracy will be equally ordered in terms of supermodular precision if they can be ordered

based on the latter notion. However, the order can be lost. Similarly, the order based on

supermoduler precision can be lost, but not reversed, in terms of accuracy.

Shi (2012) and Li (2019) adopt the supermodular assumption for some of their results.

By a similar argument to that of Lemma 1 in Li (2019), Assumption 5 holds if and only if

−Hα(v|α∗)
h(v|α∗)

is non-decreasing in v for all α∗.

Let v̂ := inf{v : −Hα(v|α∗) > 0} ∈ (v(0, α∗), v(1, α∗)). To ensure that α∗ is feasible, assume

∫ v(1,α∗)

v̂

−Hα(v|α∗)H(v|α∗)n−1dv ≤ C ′(α∗),

where the left-hand side is an agent’s maximum marginal benefit from choosing α∗ under

any symmetric mechanism. To exclude trivialties, assume C ′(α∗) > 0.

We now provide an informal argument to derive the optimal solution. If we ignore (MON),
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we can use the following Lagrangian relaxation to get an intuition for the optimal solution:

L :=

∫ v(1,α∗)

v(0,α∗)

[
v +

(
−1−H(v|α∗)

h(v|α∗)
− λ∗Hα(v|α∗)

h(v|α∗)

)
(1−R(v))

]
Q(v)h(v|α∗)dv.

We can choose R and Q to maximize L pointwise: let R(v) = 0 if −1−H(v|α∗)
h(v|α∗) −λ

∗Hα(v|α∗)
h(v|α∗) > 0

and R(v) = 1 otherwise; let Q(v) = H(v|α∗)n−1 if max
{
v, v − 1−H(v|α∗)

h(v|α∗) − λ
∗Hα(v|α∗)
h(v|α∗)

}
> 0

and Q(v) = 0 otherwise. Under Assumptions 4 and 5, the corresponding Q (1−R) is non-

decreasing and (MON) holds. In addition, Q is non-decreasing, and therefore (F′) is also a

sufficient condition for Q to be implementable. This leads to the following result:

Proposition 3 Suppose Assumptions 4 and 5 hold. The optimal linear mechanism that

implements α∗ satisfies

1. The allocation rule is ex-post efficient:

qi(v) =

 1 if vi > maxj 6=i vj,

0 otherwise.

2. Agent i pays if and only if he wins, and there exists v∗ such that the payment satisfies

 ri(v) = 0, ti(v) = v∗ if vi > v∗,

ri(v) = 1, ti(v) = 0 if vi < v∗.

In addition, (IA′) holds with equality.

In contrast to the optimal cash mechanism, the optimal linear mechanism is ex-post

efficient. Furthermore, the winner pays in cash when their expected values are high and

pays in equity or stock when their expected values are low. Intuitively, a high royalty rate

reduces the information rent accrued to the agents, but it also reduces the incentive for the

agents to acquire information. The optimal payment method needs to balance this trade-off.
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Roughly speaking, increasing the royalty rate for low type and high type have a similar

impact on the agents’ incentives to acquire information, yet any information rent received

by low type must also be received by high type. Therefore, the optimal payment method

specifies a high royalty rate for low type and a low royalty rate for high type.

Corollary 1 Suppose Assumptions 4 and 5 hold. The optimal threshold v∗ decreases as the

marginal cost from increasing information precision C ′(α∗) increases.

Corollary 1 implies that as it becomes marginally less costly to acquire more information,

the winner is more likely to pay in stock.

5 Empirical implications and evidence

Our results provide a theoretical explanation for the choice of payment method in mergers

and acquisitions. Proposition 3 predicts that the use of stock bids associates negatively with

synergy measures, such as takeover premiums, abnormal returns of sellers, and combined

abnormal returns of buyers and sellers. Takeover premiums reflect the takeover synergy

from the buyers’ perspectives, while abnormal target returns and combined abnormal returns

reflect synergy values from the market perspective. Therefore, our first set of tests focuses

on how merge synergies affect payment methods.

Implication 1 Stock payments are more likely than cash payments when premiums in

takeovers or abnormal returns surrounding takeover announcements are low.

Although this empirical fact is well-known in the merge and acquisition literature (Eckbo

et al., 2020), we provide a novel mechanism that complements the existing studies. We also

verify it in our sample with public targets.

The second set of tests emphasizes the role of costly information acquisition in takeovers.

Corollary 1 predicts that stock payments are more likely when it is less difficult for bidders

to acquire information about potential synergies. Since bidders are well informed about

28



their fundamentals, we condition the tests on how difficult it is for bidders to acquire sellers’

information.

Implication 2 Stock payments are more likely than cash payments when it is easier for the

bidder to acquire information about the seller.

We examine this information-based implication by exploring the proxies of bidders’ in-

formation about sellers, including geographical proximity and recent target seasoned equity

offerings.

5.1 Data and summary statistics

The merge and acquisition data is from the Securities Data Company (SDC) Platinum.

We include merge deals for U.S. public targets by U.S. public acquirers from 1977 to 2020. We

require that deal values are above $1 million and that acquirers are non-financial firms. We

have 5467 deals after these filterings, including both successful and unsuccessful deals. We

further exclude 377 deals with unknown payment methods and 196 deals with discretionary

payment methods. The final sample includes 4894 deals.

We then match the data set with stock data from the Center for Research in Security

Price (CRSP) to compute buyers’ and sellers’ 3-day abnormal returns around announcement

dates. We use a 200-day window with 120 minimum valid returns before the announcement

dates to compute three different benchmarks: the market portfolio, CAPM, and the Fama-

French three-factor model. We can link 4051 deals to sellers’ abnormal returns and 3750

deals to both sellers’ and buyers’ abnormal returns. We also match the data with firm

fundamentals from Compustat.

Table 1 lists the variables and their definitions. We winsorize variables at 1% and 99%

of their distributions, and Table 3 presents the summary statistics. Cash and stock are the

two most popular payment methods. On average, stock accounts for 45% of the payments,

and cash accounts for another 42%. Moreover, 36% and 38% deals in our sample have all-
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cash and all-stock payments, respectively. Hereafter, we classify merge deals into all-cash,

all-stock, and mixed payments.

We use three proxies for merge synergies: Takeover Premium, Target CAR, and Com-

bined CAR. We calculate the Takeover Premium as the offer to target stock price premium

four weeks before the announcement. The average Takeover Premium is 54.35%. The average

3-day cumulative abnormal return for targets (Target CAR) is about 21%, and the combined

3-day cumulative abnormal return (Combined CAR), calculated as the weighted average of

buyers’ and sellers’ abnormal returns by the market capitalizations, has a mean of 2%. We

consider three benchmarks in constructing the returns: market portfolio, CAPM, and the

Fama-French three-factor model. All three generate similar average abnormal returns.

Our empirical proxies for information asymmetry include Local Deal, Target Urban,

and Target Recent SEO. The first two variables capture geographic proximity and location.

Local Deal is a dummy variable indicating that the acquirer and target distance is less than

30 miles. Target Urban is a dummy variable indicating that the target is within 15 miles

of the center of one of the ten largest metropolitan areas. Our results are also robust to

other cutoff distances. We also use recent seasoned equity offering (SEO) by the target to

capture information disclosure before the merge negotiation. Target Recent SEO is a dummy

variable indicating that the target made an equity offering during the 18 months preceding

the announcement.

We choose these variables on information asymmetry following Eckbo et al. (2018), who

use them to proxy for the information quality. We argue that these variables can reflect in-

formation quality precisely because they represent information acquisition costs. We further

focus on how costly acquirers can acquire information about targets, instead of the targets’

information about acquirers as in Eckbo et al. (2018). Since Eckbo et al. (2018) find that

targets’ information about acquirers matters for payment methods, we also add Acquirer

Urban and Acquirer Recent SEO, two proxies for targets’ information about acquirers, in
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our analysis.4

We also use Travel Time, instead of geographical distance, as a direct proxy for infor-

mation asymmetry. Following Giroud (2013), we assume that travelers optimally choose the

route and means of transportation. We fisrt use ZIP codes to identify the location of firms’

headquarters. Then, to calculate the travel time by car, we use the Open Source Routing

Machine and Open-Sourced Maps following Huber and Rust (2016). Third, we calculate the

fastest airline route between two firms by summing up: (1) the travel time taken by car from

an acquirer’s headquarter to its nearby airport, (2) the duration of the flight and layover

time since 1990, and (3) the travel time taken by car from the airport near target’s head-

quarter to the target’s headquarter. Finally, we use the shortest time by car or by airplane

to construct the Travel Time variable.

We then control capital structure variables of both buyers and sellers from Compustat,

including Total Assets, Leverage, Market-to-book Ratio, R&D, and Tangibility. We also fol-

lowing Eckbo et al. (2018) by including the Herfindahl-Hirschman Index (HHI) representing

industrial competition and Competition from Private Buyers that reflects external pressure

to pay in cash.

5.2 Synergy values and payment methods

Implication 1 states that payments are more likely in stock when synergy values are

low. As a first look, Figure 1 plots the histograms of synergy values for deals with different

payment methods. The upper panel uses Takeover Premium as the synergy measure, and

the lower one plots the distributions of Combined CAR. Both panels consistently show that

deals paid entirely in stock have lower synergy values than deals paid entirely in cash. The

4We exclude Recent Acquirer and Industry Complementarity, the other two information proxies used in
Eckbo et al. (2018) because we find them less appealing for our analysis. First, we find that the sign of
association between payment methods and Recent Acquirer depends on whether the previous merge’s target
is public or private. There might be opposing effects behind this proxy. Moreover, there are much fewer
targets than acquirers who acquired another firm preceding the takeover. Second, the effect of Industry
Complementarity becomes insignificant once we add both industry and time fixed effects. We provide a
more detailed discussion of these two proxies in Appendix C.
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pattern remains similar when we contrast deals paid entirely in stock against the other deals.

We formally test the prediction with the following empirical specification:

Payment Methodi = β0 + β1 Synergy Valuei + β2 Controlsi + εi. (5)

We consider both the fraction of stock in payments and the discrete choice of payment method

(all-stock, mixed, or all-cash) as the dependent variables. We control for both bidders’ and

sellers’ capital structures with one-year lag, including total assets, leverage, market-to-book

ratio, R&D expense, and asset tangibility, as well as proxies for competition and external

pressure to pay in cash. We also include year fixed effects and bidder and seller industry

fixed effects to control unobserved firm characteristics and aggregate shocks.

Table 4 presents the regression results. Column 1 regresses the fraction of stock against

the Takeover Premium. A one within-group standard deviation increase (48.2) in the

Takeover Premium decreases the fraction of stock payments by 3.5 percentage points. The ef-

fect is statistically significant and about 0.1 within-group standard variation of the fraction of

stock (0.40). Columns 2 through 4 use targets’ 3-day cumulative abnormal return around an-

nouncement dates as the dependent variable. We calculate abnormal returns based on three

benchmarks: the market portfolio, CAPM, or the Fama-French three-factor model. Con-

sistently across three specifications, a one within-group standard deviation increase (23.1)

in the abnormal returns leads to a 7.0 percentage points decrease in stock payments. We

next consider Combined CAR in columns 5 through 7. The effect of Combined CAR on

payment methods is economically more substantial. One within-group standard deviation

increase (7.3) in the combined abnormal returns decreases the fraction of stock payments by

9.5 percentage points.

Given that one-third of the sample is all-stock payments and another one-third is all-

cash payments, one concern arises that the linear regression model may not be adequate to

account for the discrete outcome. Thus, we conduct logit regressions and multinomial probit
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regressions with the same set of variables and fixed effects to alleviate this concern.

Columns 1 and 2 of Table 5 examines the payments entirely in stock versus other pay-

ments in logit regressions. We find the same significant effects of synergy values on payment

methods. We further confirm this result by exploiting the multinomial probit estimation

of choice between all-cash, all-stock, and mixed payments in Columns 3 through 6. The

Target CAR and Combined CAR coefficients remain significant and similar to those in the

logit regressions. Furthermore, although we only show regressions with CAR based on the

Fama-French three-factor benchmark, the results are robust to the other two benchmarks.

Overall, we find strong evidence to support Implication 1. The effect of merge synergies

on payment method is robust to various regression models and different proxies of merge

synergies. Meanwhile, the control variables’ coefficients reveal that stock payments associate

positively with targets’ total assets but negatively with acquirers’ total assets. Intuitively,

it is difficult for smaller acquirers relative to targets to raise enough cash. Thus, they may

have to rely on stock payments in the transaction. Moreover, all-stock payments are more

likely for acquirers and targets with lower leverages and higher market-to-book ratios. It

is likely because levered acquirers tend to use stocks to reduce excess leverage (Harford

et al., 2009), and acquirers with higher market-to-book ratios tend to use over-valued stocks

(Rhodes-Kropf et al., 2005). The coefficients of the leverage and the market-to-book ratio

of targets are significant as well. Finally, we find positive effects of acquirer R&D expenses

and tangible assets on stock payment, but no significant effect of target R&D expenses and

tangible assets, HHI, nor Competition from Private Buyers.

5.3 Costly information acquisition and payment methods

This subsection investigates Implication 2 by relating proxies for how easily acquirers can

learn about targets to payment methods. We use the following empirical specification:

Payment Methodi = β0 + β1 Information Costi + β2 Controlsi + εi, (6)

33



where we consider both the fraction of stock in payments and the discrete choice of payment

method (all-stock, mixed, or all-cash) as the dependent variable. We add HHI and Compe-

tition from Private Buyers to control competition and external pressure to pay in cash. We

also include bidders’ and sellers’ capital structure variables, year fixed effects, and industry

fixed effects to control firm characteristics and aggregate shocks in some specifications.

We first include Local Deal,Target Urban, and Target Recent SEO as proxies of the infor-

mation acquisition cost. Column 1 of Table 6 presents coefficients from a linear regression for

a fraction of stock in payment. All three proxies associate positively with stock payments. A

one standard deviation increase of the variables leads to 5.2, 1.7, and 2.2 percentage points

increases in the fraction of stock in payments, respectively. Reverse causality is not likely

to be a concern here. Although targets may indeed strategically issue stocks and increase

investment before merger deals, whether the deal is local or whether the target headquarter

is near city centers is not subject to potential merger deals or payment methods.

In column 2, we address the concern that firm characteristics may drive our results. We

control for both bidder and seller capital structures with one-year lag, including total assets,

leverage, market-to-book ratio, R&D expense, and asset tangibility, as well as the year fixed

effects and both bidder and seller industry fixed effects. Although Target Urban becomes

insignificant, we find a similar result for Local Deal and Target Recent SEO. Also, the effects

of capital structure variables are consistent with what we find in Section 5.2.

Multinomial probit regressions of choice between all-cash, all-stock, and mixed payments

give consistent results. Columns 3 through 6 of Table 6 report the regression results with

and without capital structure controls and year and industry fixed effects. The results are

consistent with those from the linear regression models. In particular, when we add capital

structure variables and fixed effects in columns 5 and 6, we find all three proxies for acquirers’

information cost are significant for comparing all-stock payments against all-cash payments.

Also, as we expected, the comparisons between mixed payments and all-cash payments are

less salient. We present the average marginal effects of all three payment methods in Table
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8. All three information proxies reduce the probability of all-cash payments significantly and

have positive effect on the probability of all-stock payments.

We then use Travel Time as the information proxy following (Giroud, 2013). It is a

more direct measure of ease of acquiring information than geographical distance. Since the

correlation between Travel Time and Local Deal is -0.71, we exclude Local Deal in the second

set of results. We reproduce the results of Table 6 in Table 7. The linear regressions show

that an increase of travel time by one hour leads to 0.8 to 1.5 percentage points increase

in the fraction of stock in payments. Table 8 shows the average marginal effects from the

multinomial probit regressions. One-hour additional travel time increases the probability of

all-cash payment by 1.0 to 1.6 percent and has small but negative effect on the probability

of all-stock payment.

Given that Eckbo et al. (2018) show that the targets’ information matters for payment

methods, would the targets’ information quality of acquirers contaminate our results? To

alleviate this concern, we include two proxies for how easily targets can learn about acquirers.

Consistent with Eckbo et al. (2018), we find a positive and significant coefficient on Acquirer

Recent SEO with our sample. Eckbo et al. (2018) show a non-significant effect of Acquirer

Urban and argue that other proxies may absorb its effect. We also find it either not significant

or significantly negative across specifications in Table 6.5

Notably, the coefficients of interest, Local Deal, Target Urban, and Target Recent SEO,

are significant even after adding these two proxies. Moreover, the effect of Target Urban

status on payment methods is more robust relative to the Acquirer Urban status. Thus,

how easily acquirers can obtain information about targets seems to be equally crucial, if not

more, to explain payment methods, which indicates the prominent role of our mechanism.

5Local Deal represents information acquisition cost in both directions, while Urban status and Recent
SEO only represent information acquisition cost in one direction.
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Figures and Tables

Figure 1: Frequencies of Synergy Values

This figure presents frequencies of two synergy measures for different payment methods. The upper panel

uses offer to target stock price premium four weeks prior to announcement as the synergy measure, and the

lower panel uses combined 3-day cumulative abnormal return around announcement with the Fama-French

three factors model as the benchmark. Combined abnormal returns are computed as the weighted average

of buyer and seller returns, using the market capitalization as the weight. Grey bars represent frequencies

of synergy values of all-cash payments. Unfilled bars represent frequencies of synergy values of all-stock

payments. I restrict the premium to be less than 200% and the CAR to be within 1st-99th percentiles to

remove outliers.
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Table 1: Variable Definitions

Payment Methods

All Stock All-stock payment (consideration structure = shares), Securities Data Company
(SDC).

All Cash All-cash payment (consideration structure = casho), SDC.
Mixed Consideration structure = hybrid or other, SDC.
Fraction of Stock Fraction of stock in the payment, SDC.
Fraction of Cash Fraction of cash in the payment, SDC.

Synergy

Takeover Premium Offer Price to Target Stock Price Premium 4 Week Prior to Announcement.
Target CAR(-1,+1) Three-day target cumulative abnormal returns calculated using market portfolio,

CAPM, or the Fama-French three factors as benchmarks, Center for Research in
Security Prices (CRSP).

Combined
CAR(-1,+1)

Three-day combined cumulative abnormal returns (average of buyer and seller
returns, weighted by the market capitalizations) calculated using market
portfolio, CAPM, or the Fama-French three factors as benchmarks, CRSP.

Information

Local Deal Dummy = 1 if the bidder and target are located within 30 miles. Firm location
data are from the zip codes in SDC.

Urban Status Dummy = 1 if a firm is located within 15 miles of one of the ten largest
metropolitan areas (New York City, Los Angeles, California, Chicago, Illinois,
Washington, DC, San Francisco, California, Philadelphia, Pennsylvania, Boston,
Massachusetts, Detroit, Michigan, Dallas, Texas, and Houston, Texas).

Recent SEO Dummy = 1 if a firm issued stock within 18 months prior to the bid, SDC.
Travel Time The shortest time (in hours) by car or by airplane from the bidder to the target

(Giroud, 2013). Firm location data are from the zip codes in SDC.

Firm capital structure

Total Assets Natural log of total assets, Compustat.
Leverage Total debt/total assets, Compustat.
M/B Market-to-book equity ratio, Compustat.
R&D Research and development expense/total assets, Compustat.
Asset Tangibility Property, plant, and equipment/total assets, Compustat.

Competition, and external pressure to pay in cash

HHI HerfindahlHirschman Index of the bidders FF49 industry and year, Compustat.
Competition from
Private Buyers

Fraction of all merger bids in the targets Fama and French 49 (FF49) industry
and year in which the bidder is private, SDC.
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Table 2: Summary Statistics

This table presents summary statistics for the deal-level data used in the analysis. The sample consists of
4894 merger bids for U.S. public targets by U.S. public acquirers from 1977 to 2020. We require that the
deal values are above $1 million and that acquirers are non-financial firms. All variables are defined in Table
1.

count mean sd p10 p25 p50 p75 p90
All Stock 4894 0.36 0.48 0.00 0.00 0.00 1.00 1.00
All Cash 4894 0.38 0.49 0.00 0.00 0.00 1.00 1.00
Mixed Payment 4894 0.25 0.43 0.00 0.00 0.00 1.00 1.00
Fraction of Stock 4894 0.45 0.46 0.00 0.00 0.32 1.00 1.00
Fraction of Cash 4894 0.42 0.46 0.00 0.00 0.07 1.00 1.00
Takeover Premium 3808 46.73 50.30 0.80 18.43 37.15 62.75 101.88
Target CAR 4051 21.73 24.41 -2.43 5.46 17.26 32.77 52.11
Target CAR CAPM 4051 21.60 24.50 -2.74 5.24 17.08 32.67 52.23
Target CAR FF3 4051 21.60 24.50 -2.75 5.22 17.15 32.73 52.08
Combined CAR 3750 2.06 7.60 -6.25 -1.73 1.34 5.53 11.64
Combined CAR CAPM 3750 1.91 7.59 -6.35 -1.93 1.25 5.36 11.30
Combined CAR FF3 3750 1.92 7.58 -6.23 -1.84 1.26 5.25 11.28
Local Deal 4894 0.16 0.37 0.00 0.00 0.00 0.00 1.00
Travel Time 3766 4.18 2.51 0.31 2.77 4.23 5.92 7.65
Target Urban 4894 0.19 0.39 0.00 0.00 0.00 0.00 1.00
Target Recent SEO 4894 0.18 0.38 0.00 0.00 0.00 0.00 1.00
Acquirer Urban 4894 0.22 0.41 0.00 0.00 0.00 0.00 1.00
Acquirer Recent SEO 4894 0.27 0.44 0.00 0.00 0.00 1.00 1.00
Target Total Assets 3810 5.21 1.88 2.91 3.87 5.00 6.39 7.80
Target Leverage 3795 0.49 0.25 0.17 0.29 0.49 0.66 0.80
Target M/B 3729 2.78 3.88 0.66 1.12 1.84 3.17 5.87
Target R&D 4894 0.05 0.11 0.00 0.00 0.00 0.06 0.17
Target Tangibility 3801 0.27 0.24 0.04 0.08 0.19 0.41 0.66
Acquirer Total Assets 4368 6.85 2.26 3.85 5.31 6.95 8.38 9.82
Acquirer Leverage 4359 0.51 0.22 0.21 0.37 0.52 0.65 0.78
Acquirer M/B 4271 3.84 4.99 0.92 1.47 2.49 4.25 7.80
Acquirer R&D 4894 0.04 0.07 0.00 0.00 0.00 0.05 0.12
Acquirer Tangibility 4359 0.28 0.23 0.05 0.10 0.21 0.42 0.66
HHI 4894 0.07 0.06 0.02 0.03 0.05 0.09 0.14
Competition from Private Buyers 4894 0.19 0.14 0.00 0.09 0.17 0.27 0.39
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Table 3: Summary Statistics

This table presents summary statistics for the deal-level data used in the analysis. The sample consists of
4894 merger bids for U.S. public targets by U.S. public acquirers from 1977 to 2020. We require that the
deal values are above $1 million and that acquirers are non-financial firms. All variables are defined in Table
1.

count mean sd p10 p25 p50 p75 p90
All Stock 4894 0.36 0.48 0.00 0.00 0.00 1.00 1.00
All Cash 4894 0.38 0.49 0.00 0.00 0.00 1.00 1.00
Mixed Payment 4894 0.25 0.43 0.00 0.00 0.00 1.00 1.00
Fraction of Stock 4894 0.45 0.46 0.00 0.00 0.32 1.00 1.00
Fraction of Cash 4894 0.42 0.46 0.00 0.00 0.07 1.00 1.00
Takeover Premium 3808 46.73 50.30 0.80 18.43 37.15 62.75 101.88
Target CAR 4005 21.89 24.56 -2.35 5.62 17.37 32.92 52.32
Target CAR CAPM 4005 21.81 24.62 -2.53 5.48 17.38 32.88 52.56
Target CAR FF3 4005 21.80 24.62 -2.57 5.44 17.32 32.96 52.74
CAR market A 4267 -0.72 8.34 -10.01 -4.66 -0.61 2.76 7.74
CAR CAPM A 4267 -0.89 8.32 -10.18 -4.76 -0.71 2.58 7.66
CAR ff3 A 4267 -0.90 8.28 -10.11 -4.75 -0.70 2.47 7.56
Combined CAR 3676 2.05 7.60 -6.24 -1.69 1.37 5.50 11.62
Combined CAR CAPM 3676 1.92 7.59 -6.38 -1.88 1.27 5.28 11.35
Combined CAR FF3 3676 1.92 7.58 -6.22 -1.79 1.28 5.25 11.23
CAR market shareA 3676 -1.35 90.93 -0.95 0.00 0.57 1.11 2.11
CAR CAPM shareA 3676 0.28 65.15 -0.79 0.04 0.63 1.12 1.98
CAR ff3 shareA 3676 0.59 9.62 -0.76 0.07 0.69 1.10 1.87
Local Deal 4894 0.16 0.37 0.00 0.00 0.00 0.00 1.00
Target Recent SEO 4894 0.18 0.38 0.00 0.00 0.00 0.00 1.00
Target Recent Bond Issuance 4894 0.08 0.27 0.00 0.00 0.00 0.00 0.00
Acquirer Board Experience (2-digit SICCD) 3083 0.70 0.46 0.00 0.00 1.00 1.00 1.00
Acquirer Board Experience (3-digit SICCD) 3083 0.55 0.50 0.00 0.00 1.00 1.00 1.00
Acquirer Board Experience (4-digit SICCD) 3083 0.33 0.47 0.00 0.00 0.00 1.00 1.00
Acquirer Recent SEO 4894 0.27 0.44 0.00 0.00 0.00 1.00 1.00
Target Total Assets 3831 5.22 1.90 2.90 3.85 5.01 6.39 7.82
Target Leverage 3816 0.49 0.25 0.17 0.29 0.49 0.66 0.81
Target M/B 3751 2.78 3.87 0.66 1.12 1.85 3.18 5.85
Target R&D 3831 0.07 0.12 0.00 0.00 0.00 0.09 0.20
Target Tangibility 3821 0.27 0.24 0.04 0.08 0.19 0.41 0.66
Acquirer Total Assets 4365 6.84 2.25 3.85 5.30 6.95 8.38 9.81
Acquirer Leverage 4356 0.51 0.22 0.21 0.37 0.53 0.65 0.78
Acquirer M/B 4267 3.87 5.29 0.92 1.46 2.48 4.25 7.77
Acquirer R&D 4365 0.04 0.07 0.00 0.00 0.00 0.06 0.13
Acquirer Tangibility 4357 0.28 0.23 0.05 0.10 0.21 0.42 0.66
HHI 4894 0.07 0.06 0.02 0.03 0.05 0.09 0.14
Competition from Private Buyers 4894 0.24 0.11 0.13 0.16 0.23 0.31 0.38
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Table 4: Synergy Values and Payment Methods

This table presents coefficients from regressions relating the fraction of stock in payment to takeover synergies.
The specification in column 1 uses offer to target stock price premium four weeks before the announcement
as the synergy measure. The specification in Columns 2-4 uses Targets’ 3-day cumulative abnormal return
around the announcement. The specification in Columns 5-7 uses the combined 3-day cumulative abnormal
return around announcement as the synergy value. We calculate abnormal returns with three benchmarks:
the market portfolio, CAPM, and the Fama-French three-factor model. Controls include bidder and seller
capital structure variables, Competition from Private Buyers, and HHI. All variables are defined in Table 1.
Industry dummies indicate the 2-digit SIC industry. Robust standard errors are in parentheses. *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) (4) (5) (6) (7)
Premium CAR3 CAR3 CAR3 CAR3 CAR3 CAR3

Takeover Premium -0.001∗∗∗

(0.000)
Target CAR -0.003∗∗∗

(0.000)
Target CAR CAPM -0.003∗∗∗

(0.000)
Target CAR FF3 -0.003∗∗∗

(0.000)
Combined CAR -0.012∗∗∗

(0.001)
Combined CAR CAPM -0.013∗∗∗

(0.001)
Combined CAR FF3 -0.013∗∗∗

(0.001)
Competition from Private Buyers -0.012 -0.053 -0.053 -0.054 -0.019 -0.019 -0.020

(0.058) (0.051) (0.051) (0.051) (0.052) (0.052) (0.052)
HHI 0.173 0.258∗ 0.257∗ 0.258∗ 0.211 0.217 0.224

(0.173) (0.151) (0.151) (0.151) (0.154) (0.154) (0.154)
Target Total Assets 0.051∗∗∗ 0.036∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.052∗∗∗ 0.052∗∗∗ 0.052∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Target Leverage -0.087∗∗ -0.126∗∗∗ -0.126∗∗∗ -0.126∗∗∗ -0.144∗∗∗ -0.143∗∗∗ -0.143∗∗∗

(0.037) (0.034) (0.034) (0.034) (0.036) (0.036) (0.036)
Target M/B 0.011∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Target R&D 0.070 0.107 0.109 0.110 0.080 0.084 0.082

(0.092) (0.087) (0.087) (0.087) (0.086) (0.086) (0.086)
Target Tangibility -0.053 -0.036 -0.037 -0.037 -0.011 -0.010 -0.011

(0.060) (0.053) (0.053) (0.053) (0.054) (0.054) (0.054)
Acquirer Total Assets -0.064∗∗∗ -0.055∗∗∗ -0.055∗∗∗ -0.055∗∗∗ -0.074∗∗∗ -0.074∗∗∗ -0.074∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
Acquirer Leverage -0.086∗ -0.092∗∗ -0.091∗∗ -0.089∗∗ -0.036 -0.035 -0.031

(0.045) (0.042) (0.042) (0.042) (0.043) (0.043) (0.043)
Acquirer M/B 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.004∗∗ 0.004∗∗ 0.004∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Acquirer R&D 0.599∗∗∗ 0.517∗∗∗ 0.518∗∗∗ 0.518∗∗∗ 0.519∗∗∗ 0.514∗∗∗ 0.520∗∗∗

(0.144) (0.142) (0.142) (0.143) (0.139) (0.139) (0.139)
Acquirer Tangibility 0.174∗∗∗ 0.203∗∗∗ 0.204∗∗∗ 0.205∗∗∗ 0.180∗∗∗ 0.179∗∗∗ 0.184∗∗∗

(0.062) (0.054) (0.054) (0.054) (0.056) (0.056) (0.055)
Constant 0.641∗∗∗ 0.672∗∗∗ 0.670∗∗∗ 0.669∗∗∗ 0.661∗∗∗ 0.658∗∗∗ 0.657∗∗∗

(0.050) (0.045) (0.045) (0.045) (0.045) (0.045) (0.045)

Observations 2808 3154 3154 3154 3041 3041 3041
Adjusted R2 0.263 0.307 0.307 0.306 0.323 0.325 0.325
Year FE Yes Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes Yes
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Table 5: Robustness: Synergy Values and Payment Methods

This table presents coefficients from regressions relating payment methods to takeover synergies. Columns
1-2 reports the coefficient estimates from logit regressions for the all-stock dummy. Columns 3-6 reports the
multinomial probit regressions for the choice of payment method, where the outcomes are all-stock, mixed,
and all-cash (baseline) deals. The controls include bidder and seller capital structures, Competition from
Private Buyers, and HHI. All variables are defined in Table 1. Industry dummies indicate the 2-digit SIC
industry. Robust standard errors are in parentheses. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% level, respectively.

(1) (2) (3) (4)

All Stock All Stock payment payment

All Stock All Stock 2 3 2 3

Target CAR FF3 -0.016∗∗∗ -0.017∗∗∗ -0.012∗∗∗

(0.002) (0.002) (0.002)

Combined CAR FF3 -0.063∗∗∗ -0.072∗∗∗ -0.052∗∗∗

(0.007) (0.006) (0.006)

Competition from Private Buyers -0.443 -0.192 -0.324 -0.253 -0.048 -0.120

(0.370) (0.380) (0.339) (0.330) (0.346) (0.334)

HHI 0.268 0.144 0.799 1.854∗∗ 0.659 1.560∗

(0.952) (0.996) (0.878) (0.926) (0.906) (0.930)

Target Total Assets 0.078∗∗ 0.153∗∗∗ 0.230∗∗∗ 0.383∗∗∗ 0.325∗∗∗ 0.455∗∗∗

(0.037) (0.039) (0.035) (0.037) (0.036) (0.039)

Target Leverage -1.181∗∗∗ -1.274∗∗∗ -0.686∗∗∗ 0.307 -0.765∗∗∗ 0.280

(0.242) (0.251) (0.202) (0.198) (0.217) (0.212)

Target M/B 0.044∗∗∗ 0.062∗∗∗ 0.048∗∗∗ 0.041∗∗∗ 0.064∗∗∗ 0.048∗∗∗

(0.014) (0.014) (0.012) (0.013) (0.013) (0.013)

Target R&D 0.397 0.257 0.391 0.132 0.184 0.050

(0.526) (0.535) (0.485) (0.522) (0.489) (0.535)

Target Tangibility -0.210 -0.110 -0.307 -0.091 -0.188 0.081

(0.344) (0.359) (0.318) (0.325) (0.328) (0.339)

Acquirer Total Assets -0.224∗∗∗ -0.315∗∗∗ -0.318∗∗∗ -0.355∗∗∗ -0.437∗∗∗ -0.452∗∗∗

(0.032) (0.034) (0.029) (0.032) (0.031) (0.034)

Acquirer Leverage -0.737∗∗∗ -0.594∗∗ -0.445∗ 0.122 -0.168 0.369

(0.261) (0.283) (0.235) (0.238) (0.255) (0.255)

Acquirer M/B 0.042∗∗∗ 0.036∗∗∗ 0.024∗∗ -0.016 0.017 -0.023∗

(0.011) (0.012) (0.010) (0.011) (0.011) (0.012)

Acquirer R&D 1.870∗∗ 1.981∗∗ 3.295∗∗∗ 3.213∗∗∗ 3.955∗∗∗ 3.829∗∗∗

(0.865) (0.899) (0.891) (0.940) (0.862) (0.907)

Acquirer Tangibility 0.613∗ 0.507 0.925∗∗∗ 0.648∗∗ 0.919∗∗∗ 0.718∗∗

(0.353) (0.367) (0.334) (0.328) (0.345) (0.348)

Observations 3130 2989 2815 2711

Pseudo R2

Year FE Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes

Log likelihood -1557.206 -1479.171 -2279.139 -2163.026
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Table 6: Information Acquisition and Payment Methods

This table presents coefficients from regressions relating payment methods to information acquisition.
Columns 1-2 reports the coefficient estimates from linear regressions for the fraction of stock in takeover
payments. Columns 3-6 reports the multinomial probit regressions for the choice of payment method, where
the outcomes are all-stock, mixed, and all-cash (baseline) bids. The controls include bidder and seller capital
structures, Competition from Private Buyers, and HHI. All variables are defined in Table 1. Industry dum-
mies indicate the 2-digit SIC industry. Robust standard errors are in parentheses. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% level, respectively.

Linear regression Multinomial probit regression

Fraction of stock All-stock Mixed All-stock Mixed
(1) (2) (3) (4) (5) (6)

Local Deal 0.141∗∗∗ 0.079∗∗∗ 0.513∗∗∗ 0.306∗∗∗ 0.345∗∗∗ 0.122
(0.018) (0.020) (0.075) (0.079) (0.113) (0.120)

Target Urban 0.043∗∗ 0.016 0.168∗∗ 0.237∗∗∗ 0.226∗∗ 0.134
(0.017) (0.019) (0.072) (0.074) (0.111) (0.112)

Target Recent SEO 0.059∗∗∗ 0.078∗∗∗ 0.200∗∗∗ 0.188∗∗ 0.392∗∗∗ 0.222∗∗

(0.017) (0.017) (0.072) (0.075) (0.105) (0.109)
Acquirer Urban -0.077∗∗∗ -0.014 -0.235∗∗∗ 0.097 -0.157 -0.042

(0.016) (0.018) (0.068) (0.069) (0.108) (0.107)
Acquirer Recent SEO 0.110∗∗∗ 0.061∗∗∗ 0.467∗∗∗ 0.416∗∗∗ 0.340∗∗∗ 0.347∗∗∗

(0.015) (0.016) (0.062) (0.065) (0.092) (0.095)
Competition from Private Buyers -0.215∗∗∗ -0.054 -0.851∗∗∗ -0.321 -0.368 -0.234

(0.044) (0.051) (0.188) (0.202) (0.329) (0.320)
HHI -0.157 0.230 0.119 -1.082∗∗ 0.481 1.662∗

(0.112) (0.153) (0.442) (0.491) (0.885) (0.923)
Target Total Assets 0.042∗∗∗ 0.256∗∗∗ 0.422∗∗∗

(0.005) (0.034) (0.035)
Target Leverage -0.112∗∗∗ -0.584∗∗∗ 0.327∗

(0.033) (0.196) (0.188)
Target M/B 0.010∗∗∗ 0.054∗∗∗ 0.046∗∗∗

(0.002) (0.012) (0.012)
Target R&D 0.040 0.219 0.120

(0.085) (0.460) (0.502)
Target Tangibility -0.025 -0.297 -0.070

(0.052) (0.306) (0.318)
Acquirer Total Assets -0.062∗∗∗ -0.339∗∗∗ -0.365∗∗∗

(0.005) (0.028) (0.031)
Acquirer Leverage -0.071∗ -0.372∗ 0.082

(0.040) (0.225) (0.228)
Acquirer M/B 0.004∗∗ 0.017∗ -0.018∗

(0.002) (0.009) (0.010)
Acquirer R&D 0.514∗∗∗ 3.063∗∗∗ 3.031∗∗∗

(0.138) (0.847) (0.894)
Acquirer Tangibility 0.172∗∗∗ 0.653∗∗ 0.456

(0.053) (0.319) (0.318)

Observations 4894 3321 4894 2963
Adjusted R2 / Log likelihood 0.020 0.295 -5202.988 -2433.014
Year FE No Yes No Yes
Acquirer Industry FE No Yes No Yes
Target Industry FE No Yes No Yes
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Table 7: Travel Time and Payment Methods

This table presents coefficients from regressions relating payment methods to information acquisition.
Columns 1-2 reports the coefficient estimates from linear regressions for the fraction of stock in takeover
payments. Columns 3-6 reports the multinomial probit regressions for the choice of payment method, where
the outcomes are all-stock, mixed, and all-cash (baseline) bids. The controls include bidder and seller capital
structures, Competition from Private Buyers, and HHI. All variables are defined in Table 1. Industry dum-
mies indicate the 2-digit SIC industry. Robust standard errors are in parentheses. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% level, respectively.

Linear regression Multinomial probit regression

Fraction of stock All-stock Mixed All-stock Mixed
(1) (2) (3) (4) (5) (6)

Travel Time -0.015∗∗∗ -0.008∗∗ -0.059∗∗∗ -0.068∗∗∗ -0.043∗∗ -0.030
(0.003) (0.003) (0.013) (0.013) (0.019) (0.020)

Target Urban 0.049∗∗ 0.021 0.239∗∗∗ 0.297∗∗∗ 0.279∗∗ 0.108
(0.019) (0.022) (0.082) (0.085) (0.127) (0.129)

Target Recent SEO 0.068∗∗∗ 0.093∗∗∗ 0.242∗∗∗ 0.177∗∗ 0.422∗∗∗ 0.213∗

(0.019) (0.020) (0.081) (0.086) (0.122) (0.124)
Acquirer Urban -0.047∗∗ -0.008 -0.211∗∗∗ 0.058 -0.059 -0.029

(0.018) (0.022) (0.080) (0.081) (0.127) (0.125)
Acquirer Recent SEO 0.139∗∗∗ 0.081∗∗∗ 0.572∗∗∗ 0.526∗∗∗ 0.481∗∗∗ 0.528∗∗∗

(0.016) (0.019) (0.071) (0.075) (0.107) (0.109)
Competition from Private Buyers -0.238∗∗∗ -0.072 -0.899∗∗∗ -0.372 -0.596 -0.288

(0.052) (0.063) (0.219) (0.237) (0.390) (0.373)
HHI 0.039 0.154 0.097 -1.283∗∗ -0.222 1.348

(0.133) (0.192) (0.537) (0.619) (1.087) (1.115)
Target Total Assets 0.059∗∗∗ 0.363∗∗∗ 0.491∗∗∗

(0.007) (0.041) (0.042)
Target Leverage -0.106∗∗∗ -0.721∗∗∗ 0.253

(0.038) (0.228) (0.208)
Target M/B 0.010∗∗∗ 0.054∗∗∗ 0.044∗∗∗

(0.002) (0.014) (0.013)
Target R&D 0.100 0.688 0.677

(0.089) (0.503) (0.539)
Target Tangibility -0.058 -0.346 0.052

(0.063) (0.360) (0.372)
Acquirer Total Assets -0.073∗∗∗ -0.411∗∗∗ -0.404∗∗∗

(0.006) (0.034) (0.037)
Acquirer Leverage -0.029 -0.202 0.196

(0.046) (0.255) (0.253)
Acquirer M/B 0.003∗∗ 0.017 -0.017

(0.002) (0.010) (0.011)
Acquirer R&D 0.479∗∗∗ 2.830∗∗∗ 2.971∗∗∗

(0.146) (0.927) (0.973)
Acquirer Tangibility 0.090 0.485 0.365

(0.067) (0.390) (0.392)

Observations 3766 2540 3766 2357
Adjusted R2 / Log likelihood 0.036 0.277 -3982.571 -1899.674
Year FE No Yes No Yes
Acquirer Industry FE No Yes No Yes
Target Industry FE No Yes No Yes
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Table 8: Marginal Effects of Multinomial Probit Regressions

This table presents marginal effects of information proxies from multinomial probit regressions in Tables 6
and 7. The controls include bidder and seller capital structures, Competition from Private Buyers, and HHI.
All variables are defined in Table 1. Industry dummies indicate the 2-digit SIC industry. Robust standard
errors are in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level,
respectively.

Panel A: without capital structure variables or fixed effects

All-cash All-stock Mixed All-cash All-stock Mixed

(1) (2) (3) (4) (5) (6)

Local Deal -0.107∗∗∗ 0.111∗∗∗ -0.004
(0.019) (0.018) (0.017)

Travel Time 0.016∗∗∗ -0.002 -0.014∗∗∗

(0.002) (0.003) (0.002)
Target Urban -0.046∗∗ 0.021 0.024 -0.079∗∗∗ 0.044∗∗ 0.035∗

(0.018) (0.018) (0.016) (0.020) (0.020) (0.018)
Target Recent SEO -0.041∗∗ 0.037∗∗ 0.004 -0.064∗∗∗ 0.058∗∗∗ 0.005

(0.018) (0.017) (0.016) (0.020) (0.020) (0.018)
Acquirer Urban 0.040∗∗ -0.075∗∗∗ 0.034∗∗ 0.023 -0.054∗∗∗ 0.030∗

(0.016) (0.017) (0.015) (0.019) (0.020) (0.017)
Acquirer Recent SEO -0.109∗∗∗ 0.086∗∗∗ 0.023∗ -0.160∗∗∗ 0.110∗∗∗ 0.050∗∗∗

(0.015) (0.015) (0.014) (0.017) (0.017) (0.015)

Observations 4894 4894 4894 3766 3766 3766

Panel B: with capital structure variables and fixed effects

Local Deal -0.054∗∗ 0.063∗∗∗ -0.010
(0.022) (0.021) (0.020)

Travel Time 0.008∗∗ -0.006∗ -0.002
(0.004) (0.003) (0.003)

Target Urban -0.040∗ 0.036∗ 0.004 -0.042∗ 0.048∗∗ -0.006
(0.021) (0.021) (0.019) (0.024) (0.023) (0.022)

Target Recent SEO -0.069∗∗∗ 0.064∗∗∗ 0.005 -0.069∗∗∗ 0.069∗∗∗ -0.000
(0.020) (0.020) (0.018) (0.023) (0.022) (0.021)

Acquirer Urban 0.023 -0.030 0.007 0.010 -0.010 0.000
(0.020) (0.021) (0.018) (0.023) (0.023) (0.021)

Acquirer Recent SEO -0.075∗∗∗ 0.040∗∗ 0.035∗∗ -0.106∗∗∗ 0.050∗∗∗ 0.056∗∗∗

(0.018) (0.017) (0.016) (0.020) (0.019) (0.018)

Observations 2963 2963 2963 2357 2357 2357
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A Omitted proofs in Section 3

Lemma 4 (Milgrom and Weber (1982)) The following three conditions are equivalent:

1. The random variables θ and x are strictly affiliated.

2. (strict monotone likelihood ratio property) g(x|θ′;α)
g(x|θ;α)

is strictly increasing in x if θ′ > θ.

3. g(θ|x′;α)
g(θ|x;α)

is strictly increasing in θ if x′ > x.

Lemma 5 For every α ∈ A, the following two statements are true.

1. E[s(θ)|x, α] is strictly increasing in x if x and θ are strictly affiliated, and s(θ) is

non-decreasing and non-constant.

2. E[θ− s(θ)|x, α] is strictly increasing in x if x and θ are strictly affiliated, and θ− s(θ)

is non-decreasing and non-constant.

Proof. For all x′ > x,

[s(θ)|x′, α]− E[s(θ)|x, α] =

∫ θ

θ

s(θ) [g(θ|x′;α)− g(θ|x;α)] dθ > 0, (7)

since s(θ) is non-decreasing and non-constant, g(θ|x′;α)/g(θ|x;α) is strictly increasing, and∫ θ
θ

(g(θ|x′;α)− g(θ|x;α))dθ = 0. Hence, E[s(θ)|x, α] is strictly increasing in x.

Similarly, E[θ − s(θ)|x, α] is strictly increasing in x if x and θ are strictly affiliated, and

θ − s(θ) is non-decreasing and non-constant.

Proof of Lemma 1. Fix α. For ease of notation, we use σ(x) to denote σ(x;α) in this

proof. By assumption there exists a unique σ(x) such that

E[θ − s(σ(x), θ)|x;α] = 0. (8)

Clearly, submitting σ(x) when xi = x is the unique undominated strategy for agent i.

Next, we argue that σ(x) is strictly increasing in x. Let x′ > x. Suppose to the contrary
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that σ(x′) ≤ σ(x). Then, E [θ − s(σ(x′), θ)|x;α] ≥ E [θ − s(σ(x), θ)|x;α]. Since χ /∈ S ,

θ − s(σ(x′), θ) and θ − s(σ(x), θ) are non-constant. By Lemma 5,

E[θ − s(σ(x′), θ)|x′;α] > E[θ − s(σ(x′), θ)|x;α] ≥ E[θ − s(σ(x), θ)|x;α] = 0,

a contradiction to (8). Hence, σ(x′) > σ(x).

Proof of Lemma 2. Fix α. For ease of notation, we use σ(x) to denote σ(x;α) in this

proof. Suppose σ∗ is a symmetric equilibrium, and it is strictly increasing and differentiable.

Clearly, E[θ− s(σ∗(0), θ)|0;α] = 0. Let U(x′, x) denote the expected payoff to an agent who

observes x and submits σ∗(x′):

U(x′, x) ≡ G(x′|α)n−1E[θ − s(σ∗(x′), θ)|x;α].

Then,

∂U(x′, x)

∂x′

=(n− 1)G(x′|α)n−2g(x′|α)E[θ − s(σ∗(x′), θ)|x;α]−G(x′|α)n−1E[sσ(σ∗(x′), θ)|x;α]σ∗′(x′)

=G(x′|α)n−1E[sσ(σ∗(x′), θ)|x;α]

{
(n− 1)g(x′|α)

G(x′|α)

E[θ − s(σ∗(x′), θ)|x;α]

E[sσ(σ∗(x′), θ)|x;α]
− σ∗′(x′)

}
.

By Assumption 2, E[θ−s(σ∗(x′),θ)|x;α]
E[sσ(σ∗(x′),θ)|x;α]

is strictly increasing in x. If σ∗ is the solution to the

differential equation (2), then ∂U(x′,x)
∂x′
|x′=x = 0. Furthermore,

∂U(x′, x)

∂x′

 < 0 if x′ > x,

> 0 if x′ < x.

Hence, x′ = x is a global maximizer of U(x′, x). Finally, it is obviously not a profitable

deviation for agents to bid σ /∈ [σ∗(0), σ∗(1)]. This establishes the existence.

Suppose σ∗ is a symmetric equilibrium. To prove uniqueness, we first show that there
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exists no σ such that P(σ∗(x) = σ) > 0. Suppose not, and let x′ > x be two types such

that σ∗(x) = σ∗(x′) = σ. Then, either E[θ − s(σ, θ)|x′;α] > 0 or E[θ − s(σ, θ)|x;α] < 0

since otherwise E[θ − s(σ, θ)|x′;α] = E[θ − s(σ, θ)|x;α] = 0, which is impossible by Lemma

5 and the fact that χ /∈ S . If E[θ − s(σ, θ)|x′;α] > 0, it is a profitable deviation for an

agent with signal x′ to bid σ+ ε for ε > 0 sufficiently small. If E[θ− s(σ, θ)|x;α] < 0, it is a

profitable deviation for an agent with signal x to bid σ0. Hence, there exists no σ such that

P(σ∗(x) = σ) > 0.

Second, σ∗ is strictly increasing. To see this, consider x′ > x. Let σ = σ∗(x), σ′ = σ∗(x′),

p = P(σ∗(x̃) ≤ σ) and p′ = P(σ∗(x̃) ≤ σ′). Suppose p′ < p, which implies σ′ < σ. By the

optimality of σ∗, we have

p′E[θ − s(σ′, θ)|x′;α] ≥ pE[θ − s(σ, θ)|x′;α], (9)

and

pE[θ − s(σ, θ)|x;α] ≥ p′E[θ − s(σ′, θ)|x;α]. (10)

If p′ = 0, then E[θ−s(σ, θ)|x′;α] = E[θ−s(σ, θ)|x;α] = 0 by (9) and (10), which is impossible

by Lemma 5 and the fact that χ /∈ S . Hence, p′ > 0. Clearly, E[θ − s(σ, θ)|x;α] ≥ 0. If

E[θ − s(σ, θ)|x;α] = 0, then E[θ − s(σ′, θ)|x;α] ≤ 0 by inequality (10) and the fact that

p′ > 0, a contradiction to σ′ < σ. Hence, E[θ − s(σ, θ)|x;α] > 0. Dividing (9) by (10) yields

E[θ − s(σ′, θ)|x′;α]

E[θ − s(σ′, θ)|x;α]
≥ E[θ − s(σ, θ)|x′;α]

E[θ − s(σ, θ)|x;α]
. (11)

However, by Assumption 2,

logE[θ−s(σ′, θ)|x′;α]− logE[θ−s(σ′, θ)|x;α] < logE[θ−s(σ, θ)|x′;α]− logE[θ−s(σ, θ)|x;α],
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or equivalently,

E[θ − s(σ′, θ)|x′;α]

E[θ − s(σ′, θ)|x;α]
<

E[θ − s(σ, θ)|x′;α]

E[θ − s(σ, θ)|x;α]
,

which contradicts to (11). Hence p′ ≥ p, i.e., σ∗ is non-decreasing. Combining this and the

fact that there exists no σ such that P(σ∗(x) = σ) > 0, we can conclude that σ∗ is strictly

increasing.

Lastly, we show that σ∗ is differentiable. Clearly, σ∗ is continuous. By the optimality of

σ∗, we have

G(x|α)n−1E[θ − s(σ∗(x), θ)|x;α] ≥ G(x′|α)n−1E[θ − s(σ∗(x′), θ)|x;α],

and

G(x′|α)n−1E[θ − s(σ∗(x′), θ)|x′;α] ≥ G(x|α)n−1E[θ − s(σ∗(x), θ)|x′;α].

By the mean-value theorem, we have

[
G(x|α)n−1 −G(x′|α)n−1

]
E[θ−s(σ∗(x), θ)|x;α] ≥ G(x′|α)n−1E[sσ(σ∗∗, θ)|x;α](σ∗(x)−σ∗(x′)),

and

[
G(x′|α)n−1 −G(x|α)n−1

]
E[θ−s(σ∗(x′), θ)|x′;α] ≥ G(x|α)n−1E[sσ(σ†, θ)|x′;α](σ∗(x′)−σ∗(x)),

where σ∗∗ and σ† are between σ∗(x) and σ∗(x′). Combining the above two inequalities

[G(x′|α)n−1 −G(x|α)n−1]E[θ − s(σ∗(x′), θ)|x′;α]

G(x|α)n−1E[sσ(σ†, θ)|x′;α](x′ − x)
≥ σ∗(x′)− σ∗(x)

x′ − x

≥ [G(x′|α)n−1 −G(x|α)n−1]E[θ − s(σ∗(x), θ)|x;α]

G(x′|α)n−1E[sσ(σ∗∗, θ)|x;α](x′ − x)
.
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Since σ∗ is continuous, the left- and right-most terms of the above inequality converges to

(n− 1)G(x|α)n−2g(x|α)E[θ − s(σ∗(x), θ)|x;α]

G(x|α)n−1E[sσ(σ∗(x), θ)|x;α]

as x′ → x. Hence, σ∗ is differentiable and satisfies (2) everywhere.

Proof of Lemma 3.

E[s1(θ)− s2(θ)|x′;α] =

∫ θ

θ

(s1(θ)− s2(θ))

(
g(θ|x′;α)

g(θ|x;α)
− 1

)
g(θ|x;α)dθ. (12)

Since s1−s2 is quasi-monotone, E[s1(θ)|x;α] = E[s2(θ)|x;α], and g(θ|x′;α)
g(θ|x;α)

is strictly increasing,

by Lemma 1 in Persico (2000), E[s1(θ)− s2(θ)|x′;α] ≥ 0.

Definition 8 A function u(θ, x) has the single crossing property in (σ;x) if for any pair

x′ > x, u(θ, x′)− u(θ, x) is quasi-monotone in θ.

Definition 9 Given two differentiable functions u1(θ, x) and u2(θ, x), we say that u1 is more

risk-sensitive than u2 (and we write u1 � u2) if ∂ [u1(θ, x)− u2(θ, x)] /∂x is quasi-monotone

in θ.

This definition of risk-sensitivity is slightly different from that in Persico (2000), who

says that u1 � u2 if u1 − u2 has the single-crossing property in (x; θ). It is easy to see that

if u1 and u2 are differentiable, then u1 − u2 has the single-crossing property in (x; θ) implies

that ∂[u1(θ, x) − u2(θ, x)]/∂x is quasi-monotone in x. Theorem 2 in Persico (2000) shows

that if u1(θ, σ1(x;α)) � u2(θ, σ2(x;α)), then MR1(α) ≥MR2(α).

Proof of Proposition 1. Fix αi = α for all i. Let zi ≡ maxj 6=i xj denote the highest signal

among all agents except for i, then the marginal distribution of zi is G(zi|α)n−1. Let σm(·;α)

denote the symmetric equilibrium in the second-price auction using S m (m = 1, 2). Agent

i’s expected utility from the second-price auction using S 1 when his true type is θi and he
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observes xi is

u1(θi, σ
1(xi;α)) =

∫ xi

0

[
θi − s1(σ1(zi;α), θi)

]
dGn−1(zi|α),

where σ satisfies (8). A similar expression holds for the second-price auction using S 2.

Thus,

∂

∂xi

[
u2(θi, σ

2(xi;α))− u1(θi, σ
1(xi;α))

]
=
[
s1(σ1(xi;α), θi)− s2(σ2(xi;α), θi)

]
(n− 1)Gn−2(xi|α)g(xi|α),

which is quasi-monotone in θi since S 1 is steeper than S 2. Hence, u2 � u1. The rest of the

proof follows that of Theorem 2 in Persico (2000).

Proof of Proposition 2. Since S m (m = 1, 2) is convex, there exists a non-decreasing

function rm : [σ0, σ1] → [0, 1] such that sm(σ, θi) = (1 − rm(σ))sm(σ0, θi) + rm(σ)sm(σ1, θi).

Let σm(·;α) denote the symmetric equilibrium in the first-price auction using S m (m = 1, 2).

Hence, agent i’s expected utility from the first-price auction using S 1 when his true type is

θi and he observes xi is

u1(θi, σ
1(xi;α)) = Gn−1(xi|α)

[
θi − s1(σ1(xi;α), θi)

]
.

Hence,

∂u1(θi, σ
1(xi;α))

∂xi

=

{
θi −

[
G(xi|α)

(n− 1)g(xi|α)
r1′(σ1)σ1

x + r1(σ1)

] [
s1(σ1, θi)− s1(σ0, θi)

]
− s1(σ0, θi)

}
(n− 1)Gn−2(xi|α)

g(xi|α)

=

{
θi −

E[θ̃i − s1(σ0, θ̃i)|xi;α]

E[s1(σ1, θ̃i)− s1(σ0, θ̃i)|xi;α]

[
s1(σ1, θi)− s1(σ0, θi)

]
− s1(σ0, θi)

}
(n− 1)Gn−2(xi|α)

g(xi|α)
,

where the last line holds by (2). A similar expression holds for the first-price auction using
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S 2. Since sm(σ0, θi) ≤ θi ≤ sm(σ1, θi) for all θi,

E[θ̃i − sm(σ0, θ̃i)|zi;α]

E[sm(σ1, θ̃i)− sm(σ0, θ̃i)|xi;α]
∈ [0, 1].

Therefore, there exists σm∗(xi) such that for all θi ∈ Θ

E[sm(σ1, θ̃i)|xi;α]

E[sm(σ1, θ̃i)− sm(σ0, θ̃i)|xi;α]
[sm(σ1, θi)− sm(σ0, θi)] + sm(σ0, θi) = sm(σm∗(xi), θi).

Thus,

∂

∂xi

[
u2(θi, σ

2(xi;α))− u1(θi, σ
1(xi;α))

]
=
[
s1(σ1∗(xi), θi)− s2(σ2∗(xi), θi)

]
(n− 1)Gn−2(xi|α)g(xi|α),

which is quasi-monotone in θi since S 1 is steeper than S 2. Hence, u2 � u1. The rest of the

proof follows that of Theorem 2 in Persico (2000).

B Omitted proofs in Section 4

Before proceeding, we first define symmetric mechanisms formally. Let σi,j : V n → V n

denote the function that interchanges the ith and the jth coordinates, i.e.,

σi,j(v1, . . . , vn) = (v1, . . . , vi−1, vj, vi+1, . . . , vj−1, vi, vj+1, . . . , vn), ∀(v1, . . . , vn).

A function ϕ := (ϕ1, . . . , ϕn) is symmetric if ϕ is such that ϕ1(σi,j(v)) for all i, j 6= 1 and all

v and ϕi(v) = ϕ1(σ1,i(v)) for all i 6= 1 and all v. A mechanism (q, r, t) is symmetric if its

allocation rule q, royalty rule r and transfer rule t are all symmetric.

Proof of Proposition 3. We first solve the seller’s relaxed problem by ignoring (MON),

and then verify that the optimal solution satisfies (MON).
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For brevity, denote v(0, α∗) by v, v(1, α∗) by v, h(v|α∗) by h(v), H(v|α∗) by H(v) and

Hα(v|α∗) by Hα(v). Let X(v) :=
∫ v
v
Hα(z)Q(z)dz for all v ∈ [v, v]. Then, the seller’s

relaxed problem can be written as a control problem with state variables (X, Y ), and control

variables (Q,R) ∈ [0, 1]2. The evolution of the state variables is governed by

X ′(v) = −Hα(v)Q(v) (1−R(v)) , (13)

Y ′(v) = −[H(v)n−1 −Q(v)]h(v). (14)

To appeal to the optimal control theory, we restrict attention to Q and R that are piecewise

continuous and piecewise continuously differentiable.

We now derive the necessary conditions that an optimal solution of (P-α∗) must satisfy.

The problem (P-α∗) can be summarized as follows:

max
X,Y,Q,R

∫ v

v

[
z − 1−H(z)

h(z)
(1−R(z))

]
Q(z)h(z)dz,

subject to (13), (14),

X(v) = 0, X(w) ≥ C ′(α∗), (15)

Y (v) ≥ 0, Y (v) = 0, (16)

Y (z) ≥ 0. (17)

We say that some property holds virtually everywhere if the property is fulfilled at all z except

for a countable number of z’s. We use the following abbreviation for “virtually everywhere”:

v.e. We define

H(X, Y,Q,R, z) :=λ0

[
z − 1−H(z)

h(z)
(1−R)

]
Qh(z)− λY (z)[H(z)n−1 −Q]h(z)

− λX(z)Hα(z)(1−R)Q for z ∈ [v, v].
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By Theorem 4.3.2 in Seierstad and Sydsæter (1987), we have

Lemma 6 Let (X, Y,Q,R) be an admissible pair that solves (P-α∗). Then there exist a

number λ0, vector functions (λX , λY , λQ), and a nondecreasing function ηY , all having one-

sided limits everywhere, such that the following condition holds:

λ0 = 0 or λ0 = 1, (18)

(λ0, λX(z), λY (z), ηY (v)− ηY (v)) 6= 0, ∀z, (19)

(Q(v), R(v)) maximizes H(X, Y,Q,R, v) for (Q,R) ∈ [0, 1]2, v.e. (20)

ηY is constant in any interval where Y > 0. (21)

ηY is continuous at all v where Y (v) = 0 and Q is discontinuous. (22)

λX is continuous. (23)

λ′X(z) = 0, v.e. (24)

λY (z) + ηY (z) is continuous, (25)

λ′Y (z) + η′Y (z) = 0, v.e. (26)

λX(v) ≥ 0(= 0 if X(v) > C ′(α∗)), (27)

λY (v) ≤ 0(= 0 if Y (v) > 0). (28)

In what follows, we assume that (X, Y,Q,R) is an admissible pair that solves (P-α∗) and

that (X, Y,Q,R, λ0, λX , λY , ηY ) satisfy the conditions in Lemma 6.

Since λX is continuous and λ′X(z) = 0 virtually everywhere, λX(z) is constant in [v, v].

We abuse the notation slightly and denote this constant by λX . Then, (27) is equivalent to

λX ≥ 0(= 0 if X(v) > C ′(α∗)).

Similarly, because λY +ηY is continuous and λ′Y (z)+η′Y (z) = 0 virtually everywhere, λY (z)+

ηY (z) is constant in [v, v]. We can assume without loss of generality that λY (z) + ηY (z) = 0.
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Then, ηY = −λY , and condition (21) is equivalent to

λY (z) is constant in any interval where Y (z) > 0. (29)

Furthermore, ηY is nondecreasing if and only if λY is nonincreasing and λY (v) ≤ 0.

Suppose λ0 = 1. (20) holds if and only if

R(v) =

 1 if − 1−H(v)
h(v)

− λX Hα(v)
h(v)

< 0

0 if − 1−H(v)
h(v)

− λX Hα(v)
h(v)

> 0
, v.e. (30)

and

Q(v)


= 1 if max

{
v, v − 1−H(v)

h(v)
− λX Hα(v)

h(v)

}
+ λY (v) > 0

= 0 if max
{
v, v − 1−H(v)

h(v)
− λX Hα(v)

h(v)

}
+ λY (v) < 0

∈ [0, 1] if max
{
v, v − 1−H(v)

h(v)
− λX Hα(v)

h(v)

}
+ λY (v) = 0

, v.e. (31)

We argue that Y (v) = 0 for all v ∈ [v, v]. Suppose, to the contrary, that Y (v) > 0 in

an interval (v1, v2) with Y (v1) = Y (v2) = 0. Then, λY (v) is constant in (v1, v2). Since∫ v2
v1

[H(v)n−1 −Q(v)]h(v)dv = 0 and max
{
v, v − 1−H(v)

h(v)
− λX Hα(v)

h(v)

}
is strictly increasing in

v, there exists v] ∈ (v1, v2) such that Q(v) = 0 for v ∈ (v1, v]) and Q(v) = 1 for v ∈ (v], v2).

However, this implies that for v ∈ (v], v2),

Y (v) = Y (v2) +

∫ v2

v

[
H(z)n−1 − 1

]
h(z)dz < 0,

a contradiction. Hence, Y (v) = 0 for all v ∈ [v, v]. This implies that Q(v) = H(v)n−1 for all

v ∈ [v, v]. Then, by (31), λY (v) = −max
{
v, v − 1−H(v)

h(v)
− λX Hα(v)

h(v)

}
for all v ∈ [v, v], which

is strictly decreasing.

Suppose λX = 0. Then, R = 1 and therefore, X(v) = 0 < X ′(α∗), a contradiction.
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Hence, λX > 0, which implies that X(v) = C ′(α∗). Let v∗ be such that

− 1−H(v∗)

h(v∗)
− λX

Hα(v∗)

h(v∗)
= 0. (32)

Then, R(v) = 1 if v < v∗ and R(v) = 0 if v > v∗. An agent’s marginal benefit from increasing

accuracy is

X(v) =

∫ v

v∗
−Hα(v)H(v)n−1dv,

which is strictly decreasing in v∗. Since v∗ is strictly decreasing in λX , there exists a unique

λX such that X(v) = C ′(α∗).

Since H is independent of (X, Y ) and Y is linear in Y , by Theorem 4.3.3 of Seierstad

and Sydsæter (1987), the solution found above is optimal. Finally, Q(v)[1 − R(v)] is non-

decreasing.

Suppose λ0 = 0. (20) holds if and only if

R(v) =

 1 if − λX Hα(v)
h(v)

< 0

0 if − λX Hα(v)
h(v)

> 0
, v.e. (33)

and

Q(v)


= 1 if max

{
0,−λX Hα(v)

h(v)

}
+ λY (v) > 0

= 0 if max
{

0,−λX Hα(v)
h(v)

}
+ λY (v) < 0

∈ [0, 1] if max
{

0,−λX Hα(v)
h(v)

}
+ λY (v) = 0

, v.e. (34)

We argue that λX > 0. Suppose, to the contrary, that λX = 0. Then, (19) implies that

λY (v) < 0 since otherwise (λ0, λX(z), λY (z), ηY (v) − ηY (v)) = 0 for all z, a contradiction.

Note that λY is nonincreasing. Let v̂ := inf{v : λY (v) < 0}. Then, λY (v) < 0 for all

v ∈ (v̂, v). Then, Q(v) = 0 for virtually all v ∈ (v̂, v). Hence, Y (v̂) > 0. However, this

implies that there exists ε > 0 such that Y (v) > 0 for all v ∈ (v̂ − ε, v̂), and therefore,

λY (v̂ − ε) = λY (v̂) < 0, a contradiction to the definition of v̂. Hence, λX > 0.

Recall that v̂ = inf{v : −Hα(v) > 0}. Clearly, v∗ > v̂. By a similar argument to that
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in the case of λ0 = 1, we can show that Y (v) = 0 for all v ∈ (v̂, v). This implies that

Q(v) = H(v)n−1 for all v ∈ (v̂, v). By (33), R(v) = 1 if v < v̂ and R(v) = 0 if v > v̂. Hence,

the seller’s revenue is

∫ v̂

v

vQ(v)h(v)dv +

∫ v

v̂

[
v − 1−H(v)

h(v)

]
H(v)n−1h(v)dv

<

∫ v

v

vH(v)n−1h(v)dv +

∫ v

v∗
−1−H(v)

h(v)
H(v)n−1h(v)dv,

where the right-hand side of the inequality is the seller’s revenue obtained when λ0 = 1.

Hence, the pair of (Q,R) found when λ0 = 0 is not an optimal solution.

Proof of Corollary 1. In the proof of Proposition 3, we show that the optimal v∗ ≥ v̂

satisfies that ∫ v(1,α∗)

v∗
−Hα(v|α∗)H(v|α∗)n−1dv = C ′(α∗),

where the left-hand side decreases as v∗ increases. Clearly, if the marginal cost C ′(α∗)

increases, then the optimal threshold v∗ decreases.

B.1 Sufficient conditions for the first-order approach

This section provides sufficient conditions for the first-order approach to be valid. Let

π(αi) := Ui(v(0, αi)) +

∫ v(1,αi)

v(0,αi)

[1−H(vi|αi)]Q(vi) [1−R(vi)] dvi − C(αi).
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denote agent i’s payoff from choosing αi given mechanism (q, t) and αj = α∗ for all j 6= i.

Then, agent i’s marginal payoff from choosing αi is

π′(αi) =U ′(v(0, αi))vαi(0, αi) + [1−H(v(1, αi)|αi)]Q(v(1, αi)) [1−R(v(1, αi))] vα(1, αi)

− [1−H(v(0, αi)|αi)]Q(v(0, αi)) [1−R(v(0, αi))] vαi(0, αi)

+

∫ v(1,αi)

v(0,αi)

−Hαi(vi|αi)Q(vi) [1−R(vi)] dvi − C ′(αi)

=

∫ v(1,αi)

v(0,αi)

−Hαi(vi|αi)Q(vi) [1−R(vi)] dvi − C ′(αi),

where the second equality holds since H(v(1, αi)|αi) = 1, H(v(0, αi)|αi) = 0 and

U ′(v(0, αi)) = Q(v(0, αi)) [1−R(v(0, αi))] by the envelope condition. A sufficient condition

for the first-order approach to be valid is that π′(αi) is strictly decreasing for any imple-

mentable interim allocation rule satisfying (MON). If the support of agent i’s posterior

means, [v(0, αi), v(1, αi)], is invariant in αi, and −Hαi(vi|αi) has the single-crossing property

in (αi; vi), π
′(αi) is strictly decreasing.

The linear and normal experiments do not satisfy the above conditions. In these cases,

we show that the following proposition from Shi (2012) still applies and gives sufficient

conditions for π′′(αi) < 0. A sufficient condition for the first-order approach to be valid is

that π′′(αi) < 0. For the linear experiment, π′′(αi) satisfies

π′′(αi) =

∫ v(1,αi)

v(0,αi)

−∂
2H(vi|αi)
∂α2

i

Q(vi) [1−R(vi)] dvi

−Hαi(v(1, αi)|αi)vαi(1, αi)Q(v(1, αi)) [1−R(v(1, αi))]

+Hαi(v(0, αi)|αi)vαi(0, αi)Q(v(0, αi)) [1−R(v(0, αi))]− C ′′(αi),

≤
∫ v(1,αi)

v(0,αi)

−∂
2H(vi|αi)
∂α2

i

Q(vi) [1−R(vi)] dvi

−Hαi(v(1, αi)|αi)vαi(1, αi)Q(v(1, αi)) [1−R(v(1, αi))]− C ′′(αi),

where the inequality holds because Hαi(v(0, αi)|αi) ≥ 0 and vαi(0, αi) ≤ 0 when the infor-
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mation structures are supermodular ordered. For the normal experiment,

π′′(αi) =

∫ v(1,αi)

v(0,αi)

−∂
2H(vi|αi)
∂α2

i

Q(vi) [1−R(vi)] dvi − C ′′(αi).

Then, the following proposition from Shi (2012) gives sufficient conditions for π′′(αi) < 0 for

the two leading examples.

Proposition 4 (Shi (2012)) The following conditions are sufficient for the first-order ap-

proach:

• In the linear experiments, if αiC
′′(αi) ≥ f

(
θ
)

(θ−µ)2 for all αi, then π′′(αi) < 0 when

either F (θ) is convex, or F (θ) = θb (b > 0) with support [0, 1].

• In the normal experiments, π′′(αi) < 0 if
√
β3/ [α3

i (αi + β)5] < 2
√

2πC ′′(αi) for all αi.

C Additional empirical evidence and tests

In this section, we discuss the two sets of variables on information asymmetry used in

Eckbo et al. (2018) but excluded in our analysis. First, Target Recent M&A is a dummy

variable indicating that the target announced a merger deal as acquirer during the 18 months

preceding the deal. Acquirer Recent M&A is a dummy variable indicating that the acquirer

acquired another firm during the 18 months preceding the deal. Second, Industry Com-

plementarity is a measure used in Fan and Lang (2000), which captures how the bidder

industry and the target industry complement each other. Eckbo et al. (2018) also consider

five alternative measures of industry complementarities or similarities, including Vertical

Relatedness, Same Primary SIC, Overlapping Industries (normalized by either the number

of bidder industries or target industries), and Return Correlation. Table C1 presents details

of how we construct these variables.

Table C2 shows the summary statistics of these variable for our sample. There are two

reasons why we do not use Target Recent M&A in the main analysis. First, different from
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Acquirer Recent M&A, only three percent targets acquired another firm during the 18 months

preceding the announcement dates. This finding is quite intuitive as targets are relatively

smaller and have lower market-to-book ratio than acquirers, yet it means that there is little

variation we can explore. Second, on the contrary to Eckbo et al. (2018), in our sample

Acquirer Recent M&A negatively associates with All Stock payments. We conjecture that

this is because we only include public targets in our sample. We verify this conjecture by

analysing an extended sample with both public and private targets.

We follow Eckbo et al. (2018) to construct this extended sample. Specifically, we include

merger deals for U.S. targets by U.S. public acquirers from 1980 to 2014 in the SDC merge

and acquisition data. We then require that deal size above $10 million and that acquirers are

non-financial firms. This extended sample includes 10,454 deals. The sample size is larger

than that in Eckbo et al. (2018), primarily because we do not match these deals to CRSP

or Compustat, but it is sufficient for our purpose.

What emerges from this investigation is whether the previous deal’s target is public or

private matters for the correlation between Acquirer Recent M&A and payment methods.

We construct two dummy variables to illustrate this point: Acquirer Recent M&A with

Public Target and Acquirer Recent M&A with Non-public Target. By construction, the sum

of these two dummies should equal to Acquirer Recent M&A. Then, we compare their means

of the all-stock and the all-cash subsamples.

As shown in Table C3, we find that although Acquirer Recent M&A with Non-public

Target associates positively with all-stock payments, Acquirer Recent M&A with Public

Target associates negatively with all-stock payments. One possible explanation of this finding

is that recent mergers may contain opposite effects on information asymmetry. On the one

hand, as Eckbo et al. (2018) claim, acquirers may disclose more information in previous

merger deals. On the other hand, previous mergers may also complicate acquirers’ capital

structure and make it more costly for targets to learn about them. Given the opposite effects,

the correlation between Acquirer Recent M&A and payment methods is not clear a priori
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and depends on the sample chosen. Therefore, we exclude Acquirer Recent M&A in our

analysis.

We exclude variables on industrial complementarity in our analysis because targets’ cap-

ital structure variables and fixed effects absorb their effects on payment methods. Table C4

compares regressions relating the fraction of payment in stock to industrial complementarity

variables with and without controls on targets’ capital structure and target industrial and

year fixed effects. In Panel A, we replicate the finding of Eckbo et al. (2018) using our

sample with bidder capital structure variables, HHI, and Competition from Private Buyers

as controls and acquirer industry fixed effects. We indeed find significant effects of indus-

trial complementarities on payment methods. Once we further include target industry fixed

effects, year fixed effects, and controls on targets’ capital structure in Panel B, only Return

Correlation remains significant. This comparison suggests that industrial complementari-

ties may explain the across-group variation in payment methods but not the within-group

variation.

Table C1: Variable Definitions

Information

Target Recent M&A Dummy = 1 if a target acquired another firm within 18 months prior to the
sample bid, SDC.

Acquirer Recent
M&A

Dummy = 1 if an acquirer acquired another firm within 18 months prior to the
sample bid, SDC.

Industry
Complementarity

Based on Fan and Lang (2000), the proxy captures how the bidder industry and
the target industry complement to each other. Joseph Fans website.

Vertical Relatedness Based on Fan and Lang (2000), the proxy captures how much input and output
of the bidder industry is bought from and sold to the target industry. Joseph
Fans website.

Same Primary SIC
Dummy

Dummy = 1 if the bidder primary four-digit SIC is similar to target primary
four-digit SIC, SDC.

Overlapping
Ind./Bidder Ind.

Number of overlapping four-digit SIC codes between the bidder and target scaled
by the number of bidder four-digit SIC codes, SDC.

Overlapping
Ind./Target Ind.

Number of overlapping four-digit SIC codes between the bidder and target scaled
by the number of target four-digit SIC codes, SDC.

Return Correlation Daily stock return correlation between bidder and target. We use
[t− 290 : t− 41] as the estimation window, which covers 250 trading days before
the 40-day run-up period, [t− 40 : t− 1], CRSP.
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Table C2: Summary Statistics for Variables in Table C1

This table presents summary statistics for our sample constructed in Section 5.1. It includes counts, means,
and medians of the full sample (columns 1-3), all-stock deals (columns 4-6), and all-cash deals (Columns
7-9). Column 10 presents the difference in mean between all-stock and all-cash deals, and Column 11 shows
the t-statistics of the difference. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level,
respectively.

Full Sample All-stock All-cash

Count Mean Median Count Mean Median Count Mean Median Mean Diff t-stat

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Target Recent M&A 4894 0.03 0.00 1779 0.04 0.00 1875 0.03 0.00 0.01∗ (1.98)

Acquirer Recent M&A 4894 0.17 0.00 1779 0.15 0.00 1875 0.18 0.00 -0.03∗∗ (-2.60)

Industry 3453 0.64 0.79 1166 0.66 1.00 1369 0.61 0.58 0.05∗∗ (3.18)

Complementarity

Vertical Relateness 3515 0.05 0.01 1181 0.05 0.01 1385 0.04 0.01 0.01∗∗∗ (4.63)

Same Prime SIC 4894 0.36 0.00 1779 0.36 0.00 1875 0.32 0.00 0.04∗∗ (2.68)

Overlapping Ind. 4894 0.19 0.14 1779 0.21 0.17 1875 0.16 0.11 0.05∗∗∗ (6.80)

/Target Ind.

Overlapping Ind. 4894 0.15 0.13 1779 0.16 0.14 1875 0.13 0.10 0.03∗∗∗ (5.81)

/Acquirer Ind.

Return Correlation 3518 0.15 0.11 1223 0.14 0.11 1413 0.15 0.11 -0.00 (-0.45)

Table C3: Summary Statistics for All-stock and All-cash Subsamples

We construct two dummy variables: Acquirer Recent M&A with Public Target and Acquirer Recent M&A
with Non-public Target, to show that the public status of the previous deal’s target matters for the correlation
between Acquirer Recent M&A and payment methods. This table presents their summary statistics for all-
stock deals (Columns 1-3) and all-cash deals (Columns 4-6) in the extended sample constructed in Appendix
C. Column 7 presents the difference in mean between all-stock and all-cash bids, and Column 8 shows the
t-statistics of the difference. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level,
respectively.

All-stock All-cash

Count Mean Median Count Mean Median Mean Diff t-stat

(1) (2) (3) (4) (5) (6) (7) (8)

Acquirer Recent M&A 3449 0.30 0.00 2335 0.29 0.00 0.02 (1.24)

Acquirer Recent M&A w. Public Targets 3449 0.14 0.00 2335 0.18 0.00 -0.04∗∗∗ (-4.46)

Acquirer Recent M&A w. Non-pub. Targets 3449 0.16 0.00 2335 0.10 0.00 0.06∗∗∗ (6.62)
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Table C4: Industrial Complementarities and Payment Methods

This table presents coefficients from regressions relating the fraction of payment in stock to industrial com-
plementarities using our sample constructed in Section 5.1. Both panels include bidder capital structure
variables, HHI, and Competition from Private Buyers as controls and acquirer industry fixed effects. Panel
B also includes target industry fixed effects, year fixed effects, and target capital structure variables in the
regressions, while Panel A does not. All variables are defined in Table 1 or Table C1. Industry dummies in-
dicate the 2-digit SIC industry. Robust standard errors are in parentheses. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% level, respectively.

Panel A: Without Target Industry FE, Year FE, or Target Capital Structure Variables

Fracton of payment in stock

Industry Complementarity 0.062∗∗∗

(0.023)
Vertical Relateness 0.414∗∗∗

(0.148)
Same Prime SIC 0.022

(0.014)
Overlapping Ind./Acquirer Ind. 0.126∗∗∗

(0.047)
Overlapping Ind./Target Ind. 0.081∗∗

(0.032)
Return Correlation 0.070∗∗

(0.032)

Observations 3026 3080 4262 4262 4262 3295
Adjusted R2 0.146 0.147 0.157 0.158 0.158 0.159

Panel B: With Target Industry FE, Year FE, and Target Capital Structure Variables

Fracton of payment in stock

Industry Complementarity -0.010
(0.026)

Vertical Relateness 0.055
(0.149)

Same Prime SIC -0.014
(0.016)

Overlapping Ind./Acquirer Ind. -0.021
(0.055)

Overlapping Ind./Target Ind. -0.011
(0.038)

Return Correlation 0.108∗∗∗

(0.034)

Observations 2359 2396 3321 3321 3321 2901
Adjusted R2 0.281 0.283 0.295 0.295 0.295 0.302
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