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Abstract

A decision rule exhibits the (group) prevalence of truthtelling if it is both (i)

(group) strategy-proof and (ii) for any misreports of preferences leading to an out-

come that differs from the one prescribed at the true preference profile, there al-

ways exists an agent (resp. a group of agents) that would benefit by reverting to

truthtelling. When a decision rule satisfies (ii), we say that it is (group-) resilient.

In general, (group-) resilience implies (group) strategy-proofness. Hence under re-

silience only item (ii) is required for the prevalence of truthtelling. We characterize

both notions of resilience in terms of well-known conditions from the mechanism

design literature. In particular the combination of strategy-proofness and non-

bossiness in welfare is equivalent to group resilience. As such non-bossiness has a

rather unexpected strategic implication. Individual resilience is more demanding

and an extra condition –outcome-rectangular property– is needed for its characteri-

zation. We next provide some mechanism design foundations. Individual resilience

is equivalent to secure implementation (Saijo et al., 2007), and a by-product is

a new characterization of this concept based on and intuitive and easy-to-check

condition. We tie group resilience to a new notion that we call group secure im-

plementation. Importantly, our results show that most of the negative results on

secure implementation uncovered in the literature vanish once coalitional moves are

possible. We examine our findings for several models of interest.

1 Introduction

We introduce a new notion that we call the prevalence of truthtelling. We say that a

decision rule exhibits the (group) prevalence of truthtelling if (i) it is (group) strategy-

proof, and (ii) for any misreports of preferences leading to an outcome that differs from the

one prescribed at the true preference profile, there always exists an agent (resp. a group
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of agents) that would benefit by reverting to truthtelling.1 Item (ii) is a new protective

criterion that deals with situations where agents may end up at a preference misreport.

When a (group) strategy-proof rule is responsive in the sense of (ii), truthtelling is focal

since any misreport can be “signaled” by a simple reversion to truthtelling. If a rule

satisfies the requirement in (ii), we say that it is (group-) resilient. Both notions of

resilience are new and they both imply their counterpart non-manipulation notions, i.e.

resilience implies strategy-proofness, and (when the domain is sufficientlly “large”) group-

resilience implies strategy-proofness. Therefore, item (i) in the prevalence of truthtelling

is in general redundant.

From a practical point of view the prevalence of truthtelling is a desirable robust-

ness requirement. However, from a theoretical perspective, if a decision rule is (group)

strategy-proof, why should one be concerned that some preference misreports lead to out-

comes which differ from the rule under the true preference profile? In the mechanism de-

sign literature, the (dominant strategy) revelation principle asserts that any decision rule

that is implementable by some mechanism must be incentive compatible, i.e. truthtelling

must be one of its direct revelation mechanism (dominant strategy) equilibrium. In that

sense there is no loss of generality in restricting attention to direct mechanisms. A caveat

with this approach is that direct revelation mechanisms typically admit many unwanted

outcomes where some agents misreport their preferences. What happens when agents

lie? We call an unwanted outcome, one that differs from the prescription of the rule at

the true preference profile. There is a recent literature (Cason et al. (2006), Saijo et al.

(2007)) underlining how agents may fail to identify and play their dominant strategies

even if truthtelling is one of them, a feature which questions the salience of truthtelling.

In particular both sets of authors observe that many strategy-proof rules of interest admit

lot of unwanted Nash equilibrium. This features seems problematic as such rules typi-

cally perform poorly in practice, with agents failing to identify their dominant strategies.

If the agents’ behavior is best described as a mixture of dominant strategy and Nash

equilibrium play (as the experimental results of see Cason et al. (2006) seem to suggest),

the latter feature of strategy-proof rules may be of concern. In conjunction with the

insights from Cason et al. (2006), Saijo et al. (2007) introduce the additional protective

criterion of secure implementation which requires full double implementation in dominant

strategies and Nash equilibrium. They identify a new condition, the rectangular property

which together with strategy-proofness is both necessary and sufficient for secure imple-

mentation. Secure implementation puts some additional requirements on strategy-proof

rules. More recently, Li (2016) introduces the new robustness notion of obvious strategy-

proofness.2 Li’s notion is a robustness notion motivated by agents’ cognitive limitations,

arguing that some strategy-proof mechanisms are easier to understand than others.

1Often in the paper, we refer to decision rules simply as rules. This should cause no confusion.
2See also Pycia and Troyan (2016).
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We are not concerned here with complexity or limitations on agents’ part. How-

ever, our approach is yet another try to add some robustness requirement to (group)

strategy-proof rules. Let us go back to the full implementation requirement. Does the

latter requirement improve the salience of truthtelling? In a direct mechanism, the full

implementation requirement imposes that whenever agents end up at a joint lie, there

always exists a profitable deviation to an alternative preference report. Hence the type

of deviations arising from a joint lie are typically unrestricted. In contrast, our robust-

ness requirement is to impose one unique type of profitable deviation: whenever agents

are stuck at a joint lie, there exists a simple deviation in the form of a reversion to

truthtelling. This added robustness should make the truth salient in a direct mechanism.

We believe that among all possible deviations, the reversion to truthtelling is the easiest

to coordinate and least taxing mentally. In that sense, our motivation is also connected

to Li’s. Perhaps importantly at this stage, note that we are not imposing any type of

behavioral departure from the standard pure payoff maximization, e.g. for instance we

do not assume that some agents have a preference for honesty (see for instance Dutta and

Sen (2012) or Saporiti (2014)). The prevalence of truthtelling comes out as a robustness

requirement on rules, not one on agents’ preferences.

We study in turn the two type of resilience conditions. Note that by definition in-

dividual resilience is stronger than group resilience. Indeed for the former requirement

the size of the deviating group is imposed to be one. Our goal is manifold. First, we

identify well-known conditions from the literature which are equivalent to our notions of

resilience. Let us start with its group version. We find that group resilience is equivalent

to the combination of strategy-proofness and non-bossiness in welfare, another well-know

condition. Strategy-proofness only requires that truthtelling be a dominant strategy. In

conjunction with non-bossiness in welfare, it imposes that truthtelling is prevalent and

has therefore a somewhat unexpected strategic interpretation. In addition this equiva-

lence shows that the seemingly very demanding group resilience condition is in fact no

more demanding than requiring a pair of well-known properties which have appeared

regularly in the literature. While strategy-proofness is central in the mechanism design

literature, non-bossiness in welfare is typically used to achieve different objectives, in

particular to provide structure and tractability to classes of rules in axiomatic charac-

terization theorems.3 There are interesting classes of group resilient rules. For instance,

when preferences are strict the large class of trading cycles identified in Pycia and Ünver

(forthcoming), all of which are efficient. In contrast, under efficiency the class of individ-

ual resilient rules contains only priority rules (Fujinaka and Wakayama (2011)). Note that

under strict preferences group-resilience is equivalent to group strategy-proofness, hence

the first requirement in the group prevalence of truthtelling is redundant. When a stock

of a resource is to be divided among agents with single-peaked preferences (Sprumont

3See the excellent survey by Thomson (2016) for a discussion of non-bossiness.
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(1991)), for any fixed path rules (Moulin (1999)), sequential allotment rules (Barbera

et al. (1997)) or more broadly for any efficient rule, group-resilience and group strategy-

proofness are equivalent. Once more the first requirement in the group prevalence of

truthtelling is redundant. In contrast, under efficiency the class of individual resilient

rules contains only variants of priority rules (Bochet and Sakai (2010)). Because the

individual version of resilience imposes that group deviations can only be initiated by

a single agent, strategy-proofness and non-bossiness in welfare are not sufficient for its

characterization. The combination of the latter two with a condition called the outcome

rectangular property (Saijo et al. (2007)) is equivalent to individual resilience. The latter

turns out to be very demanding and the class of rules that satisfy resilience is for sure

narrow as we exemplify in the paper.

Last but not least, our goal is also to provide some mechanism design foundations for

the different resilience notions we have introduced. An important consequence of our ear-

lier results is that individual resilience is equivalent to secure implementation introduced

in Saijo et al. (2007). A direct by-product of that equivalence is a new characterization

of secure implementation in the form of an intuitive and easy-to-check condition. Saijo

et al. identifies the rectangular property as one of the necessary condition for secure

implementation, along with strategy-proofness. The news delivered by secure implemen-

tation is mostly negative (Saijo et al. (2007), Bochet and Sakai (2010), Fujinaka and

Wakayama (2011)). We tie back group resilience to a new implementation concept that

we introduce, group secure implementation. The latter requires double implementation

in dominant strategies and strong Nash equilibrium using direct revelation mechanisms.

A decision rule is group secure implementable if it satisfies both group strategy-proofness

and a condition called the group reversal property. The latter is a weaker requirement

than group resilience as it does not pin down the type of deviations that must occur when

agents misreport. Group strategy-proofness is equivalent to group resilience when pref-

erences are strict, and it is implied by group resilience when the domain is rich, or when

it contains only single-peaked preferences. Hence most of the negative results on secure

implementation disappears once one allows for coalitional moves. In fact, if the domain

of preferences is “large” enough, any group resilient rule is group secure implementable.

Our findings on the group prevalence of truthtelling are particularly interesting in

environments in which agents communicate during or prior to submitting their reports.

Indeed pre-play communication is usually not prohibited in many applications. For in-

stance, many cities in the US allocate students to schools using some centralized allo-

cation mechanism. Here, students or parents can discuss their preference reports before

submitting to the relevant authorities. Patients can also freely discuss their organ prefer-

ences prior submitting them to donor-patient matching systems. In such environments,

it is unreasonable to expect agents to be stuck at a Nash equilibrium that is vulnerable

4



to coalitional deviations.4 Our findings underline also the fragility and perhaps lack of

credibility of the failure of the outcome rectangular property.

The paper proceeds as follows. We introduce the model and some of the necessary

definitions in Section 2. In Section 3, we characterize both notions of resilience in the

form of well-known conditions from the mechanism design literature. We provide some

background on secure implementation in Section 3 and examples highlighting the intuition

conveyed in Bochet and Sakai (2010). Section 4 deals with the strategic foundations of

group resilience and its connection with group strategy-proofness. Section 5 provides a

discussion and extension of our results. We provide some concluding remarks in Section

6. Some of our proofs are relegated to the Appendix.

2 Setup

Let N = {1, . . . , n} be a set of agents. Let A = A1 × . . . × An be a set of alternatives.

For i ∈ N , we call Ai agent i’s individual set of alternatives. We assume that if Ai ⊆ Rm

and |Ai| = ∞, then Ai is convex. Let x = (x1, . . . , xn) ∈ A be an alternative and

1 ≡ (1, . . . , 1) ∈ Rn. If alternative x is such that for all i, j ∈ N , xi = xj = α, then we

denote x = α1. Next, let F ⊆ A be the set of feasible alternatives. If for all x ∈ F there

exists α such that x = α1, then the set of feasible alternatives F determines a public

goods economy. Otherwise, the set of feasible alternatives F determines an economy with

at least one private goods component. Hence, our model encompasses public and private

goods economies.

To fix ideas, let us give two examples. It will be clear from these examples that given

the set A of alternatives, the set F of feasible alternatives fully determines whether we are

working with a public or private goods model. Note that the Cartesian product notation

we use for the set of alternatives is for notational convenience only; none of our results

require it.

Example 2.1. Let A = {a1, . . . , an} × . . .× {a1, . . . , an}.
Public Goods Model: Suppose that the agents have to choose one candidate out of the set

{a1, . . . , an} of possible candidates. Then, F = {x ∈ A : for all i, j ∈ N, xi = xj}.
Private Goods Model: On the other hand, if agents have to allocate the set of indivisible

objects or tasks {a1, . . . , an} among themselves, then F = {x ∈ A : for all i, j ∈ N, xi 6=
xj}. �

Example 2.2. Let A = [0, 1]× . . .× [0, 1].

Public Goods Model: Suppose that the agents have to choose a single point in the interval

[0,1] that everyone will consume without rivalry, e.g., a public facility on a street (see

4Indeed, this fact is established in experimental studies such as Moreno and Wooders (1998).
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Moulin, 1980). Then, F = {x ∈ A : for all i, j ∈ N, xi = xj}.
Private Goods Model: On the other hand, if agents have to choose a division of one

unit of an infinitely divisible good among themselves (see Sprumont, 1991), then feasi-

bility is determined by the size of the resource and F = {x ∈ A : for all i ∈ N, xi ≥
0 and

∑
i∈N xi = 1}. �

For all i ∈ N , preferences are represented by a complete, reflexive, and transitive

binary relation Ri over Ai. As usual, for all a, b ∈ Ai, a Ri b is interpreted as “i weakly

prefers a to b”, a Pi b as “i strictly prefers a to b”, and a Ii b as “i is indifferent between a

and b”. Preferences Ri over Ai are strict if for all a, b ∈ Ai, aRi a implies a Pi b or a = b.

Given i ∈ N , and preference relation Ri, p(Ri) = {a ∈ Ai : aRib for all b ∈ Ai}. The set

p(Ri) is the set of elements of Ai that are top-ranked under Ri by agent i.

For public goods models, preferences Ri over the individual set of alternatives Ai can

easily be extended to preferences over the set of alternatives A (since each agent consumes

the same public alternative). Whenever our model captures a private goods component,

we assume that agents only care about their own consumption. Then, for both public

and private goods models, we can easily extend preferences Ri over the individual set

of alternatives Ai to preferences over the set of alternatives A (both preference relations

only depend on agent i’s consumption in Ai). Therefore, from now on, we use Ri to

describe agent i’s preferences over Ai as well as over A, i.e., we use both notations xRi y

and xi Ri yi. Note that for private goods models, strict preferences over Ai do not need

to be strict over A.

For all i ∈ N , we call a set of preferences over Ai, denoted by Ri, a preference

domain. Let RN ≡ Πi∈NRi be the domain of preference profiles. A typical preference

profile is R = (Ri)i∈N such that for all i ∈ N , Ri ∈ Ri. Profile R ∈ RN , is often written as

(Ri, R−i), where R−i = (R1, ..., Ri−1, Ri+1, ..., Rn). For a given preference profile R ∈ RN ,

we use the usual notations that RS ≡ (Ri)i∈S and R−S ≡ (Rj)j /∈S. Likewise, for each

S ⊂ N , we let RS be the domain of preference profiles for S. Similar notations are used

for R.We say that alternative x weakly dominates y via group S ⊂ N at profile R if

x Ri y for all i ∈ S and x Pjy for at least one j ∈ N . If everyone in S strictly prefers

x to y then x dominates y. The notations wdom[R, S] and dom[R, S] denote the weak

dominance and dominance at profile via group S.

We now define several preference domains that some of our results will cover.

Strict preference domain: Preferences Ri on Ai ⊆ R are strict if for all xi, yi ∈ Ai,

xi Ri yi implies xi Pi yi or xi = yi. We say that a domain of preference profiles RN is the

domain of strict preferences if for each i ∈ N , each Ri consists of all the possible strict

preferences over Ai.

Single-peaked preference domain: PreferencesRi on Ai ⊆ R are single-peaked if there

exists a point p(Ri) ∈ Ai such that for all xi, yi ∈ Ai satisfying either yi < xi ≤ p(Ri)
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or p(Ri) ≤ xi < yi, xi Pi yi. We say that a domain of preference profiles RN is the

domain of single-peaked preferences if for each i ∈ N , each Ri consists of all the possible

single-peaked preferences over Ai. For each R ∈ RN , we let p(R) = (p(R1), ..., p(Rn))

denote the profile of peaks at preference profile R.

Let the set of alternatives A, the set of feasible alternatives F and the domain of

preference profile RN be given. A decision rule f : RN → F is a function that assigns

an alternative f(R) ∈ F for each preference profile R ∈ RN . For each R ∈ RN , and each

i ∈ N , we let fi(R) be what is alloted to i at f(R). Obviously if the model is a public

good model, fi(R) = fj(R) for each i, j ∈ N .

A mechanism (or game form) is a pair Γ = ((Mi)i∈N , g) where Mi is agent i’s message

set, and g :
∏

i∈N Mi → F is the outcome function mapping each message profile to

a feasible alternative. For each R ∈ RN , the pair (Γ, R) is a game in which the set

of players is N , the set of strategy profiles is M =
∏
Mi, and each player i’s payoff

is g(m) where m = (mi)i∈N is a message profile. In the paper we deal only with a

special class of mechanisms, the direct revelation mechanisms. Given a decision rule f ,

the direct mechanism associated to f is Γ∗ = (RN , f). Whenever we make references

to mechanisms, we confine our attention to pure strategies. We now introduce several

important definitions which are used repeatedly throughout the paper.

Nash Equilibrium: Fix a decision rule f . A message profile R̃ is a Nash equilibrium of

Γ∗ = (RN , f) at profile R ∈ RN if for each i ∈ N , fi(R̃) Ri fi(R
′
i, R̃−i) for each R′i ∈ Ri.

For each R ∈ RN , let NE(Γ∗, R) be the set of Nash equilibria of (Γ∗, R).

Dominant strategies: Fix a decision rule f . A message profile R̃ is a (weakly) dominant

message of Γ∗ = (RN , f) at profile R ∈ RN , if for each i ∈ N , R′i ∈ Ri, and R̃−i,

fi(Ri, R̃−i) Ri fi(R
′
i, R̃−i). For each R ∈ RN , let DS(Γ∗, R) be the set of dominant

strategies of (Γ∗, R).

As we mentioned in the introduction, preplay communication among participating

agents is allowed in many practical mechanisms. Once pre-play communication is allowed,

agents will not get stuck at any Nash equilibrium which is susceptible to coalitional

deviations. In this paper, we assume that agents coordinate at a strong Nash equilibrium

– a strategy that is immune to coalitional deviations (Aumann, 1959).

Strong Nash Equilibrium: Fix a decision rule f . A message profile R̃ is a strong

Nash equilibrium of Γ∗ = (RN , f) at profile R ∈ RN , if there exists no R′S such that

f(R′S, R̃−S) wdom[R, S]f(R̃). For each R ∈ RN , let SNE(Γ∗, R) be the set of strong

Nash equilibria of (Γ∗, R).

Strategy-Proofness: A decision rule f satisfies strategy-proofness if for each R ∈ RN ,

i ∈ N and R′i ∈ Ri, fi(R) Ri fi(R
′
i, R−i).

We will introduce several additional definitions as we proceed. We do so to keep some
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of the less standard definitions close to where they are being discussed in the text. In

particular the two new properties of resilience of a decision rules are deferred to the next

section.

3 On the Prevalence of Truthtelling

In the mechanism design literature, the (dominant strategy) revelation principle asserts

that any decision rule that is implementable by some mechanism must be incentive com-

patible, i.e. truthtelling must be one of its direct revelation mechanism (dominant strat-

egy) equilibrium. In that sense there is no loss of generality to restrict attention to direct

mechanisms. A caveat with this approach is that such a direct revelation mechanism

typically admits many unwanted equilibria where some agents may coordinate on some

joint lie –preference misreports. What happens when agents lie? We call an unwanted

outcome, one that differs from the prescription of the rule at the true preference profile.

If a rule admits unwanted outcomes, one may be concerned about the applicability of

such a rule using its direct revelation mechanism. A way out is simply to impose full

implementation in dominant strategies. This typically adds additional requirements on

strategy-proof rules. In a direct mechanism, the full implementation requirement imposes

that all dominant strategy equilibria deliver the right outcome under the true preference

profile. There is a recent literature discussing how agents may fail to identify their dom-

inant strategies, a feature which questions the salience of truthtelling. Several avenues

have been emphasized. For instance, Saijo et al. (2007) argue that many strategy-proofs

are plagued with unwanted Nash equilibria that delivers the wrong outcome. This fea-

tures seems problematic as such rules typically perform poorly in practice, with agents

failing to identify their dominant strategies –see also the extensive literature following

Saijo et al. (2007). More recently, Li (2016) introduces the new robustness notion of obvi-

ous strategy-proofness. Li’s notion is a robustness notion motivated by agents’ cognitive

limitations, arguing that some strategy-proof mechanisms are easier to understand than

others.

We are not concerned here with complexity or limitations on agents’ part. However,

our approach is yet another try to add some robustness requirement to strategy-proof

rules. Let us go back to the full implementation requirement. Does the latter requirement

improve the salience of truthtelling? In this paper, we want to focus on the prevalence of

truthtelling and conditions which makes the truth salient in a direct mechanism. We say

that a rule exhibits the prevalence of truthtelling if (i) it is strategy-proof, and (ii) for

any misreports of preferences leading to a different outcome, there always exists a group

of agents (resp. an agent) that would benefit by reverting to truthtelling. Hence not only

should a rule be incentive compatible, but our robustness requirement is to impose one

unique type of profitable deviation: whenever agents are stuck at a joint lie, there exists
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a simple deviation in the form of reversion to truthtelling.

If a rule satisfies the latter requirement, we say that it is (group-) resilient. The notion

of resilience is new and it implies in general (group) strategy-proofness. As such, item (i)

in the prevalence of truthtelling is redundant once (ii) is imposed. When a rule satisfies

(group) resilience, truthtelling is prevalent. Not only agents have an incentive to tell the

truth no matter what the others are doing, but in addition any joint lie can be ”signaled”

by a simple reversion to truthtelling. From a practical point of view the prevalence of

truthtelling is paramount.

We now are ready to define the properties of individual and group-resilience –the main

focus of this paper. As in any mechanism design problem we do not want any outcome

not prescribed by the rule in question arise in the direct revelation game. This means

that someone or some group depending on whether the communication is allowed among

agents should deviate from a report that leads to a “bad” outcome. We believe that

among all possible deviations, the reversion to truthtelling is the easiest to coordinate

and least taxing mentally. In that sense, our motivation is also close to Li’s. With this

in mind, we state our notions of resilience below.

Definition 3.1. [Resilience] A decision rule f satisfies resilience if whenever f(R) 6=
f(R̃) for some R, R̃ ∈ RN , there must exist i ∈ N such that fi(Ri, R̃−i) Pi fi(R̃).

Definition 3.2. [Group-Resilience] A decision rule f satisfies group-resilience if

whenever f(R) 6= f(R̃) for some R, R̃ ∈ RN , there must exist S ⊆ N such that

f(RS, R̃−S) dom[R, S] f(R̃).

Resilience says that whenever a preference report delivers an unwanted outcome in

the direct revelation game, some agent must strictly benefit by reverting to truthtelling.

For this notion, only unilateral reversion to truthtelling by agents are considered, which

fits with the idea that agents are not allowed to communicate before they submit their

preferences. However, if communication is allowed among agents, some may be able

to coordinate away from an unwanted outcome in which case group-resilience is the

appropriate notion. Note that group-resilience is the weaker of the two resilience notions:

group resilience does not specify the size of deviating groups from a bad outcome while

resilience does.

We now establish the connection between the resilience concepts and strategy-proofness.

Specifically, each resilience concept implies strategy-proofness.

Lemma 3.3. If a decision rule f satisfies group-resilience, then f satisfies strategy-

proofness.
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Proof. In contrast to the lemma suppose that f is not strategy-proof. This means that

there must exist i ∈ N , R ∈ RN and R̃i ∈ Ri such that

f(R̃i, R−i) Pi f(R). (1)

Consequently, f(R̃i, R−i) 6= f(R). Then by group-resilience, there must exist S such that

f(RS, R−S) Pj f(R̃i, R−i) for all j ∈ S. Because the preferences for each j 6= i are the

same under both (RS, R−S) and (R̃i, R−i), it must be that i ∈ S. Hence, f(RS, R−S) =

f(R) Pi f(R̃i, R−i), a contradiction with (1).

Note that strategy-proofness implies neither resilience nor its group version. This fact

will become clear next when we show that the resilience concepts are equivalent to some

combinations of strategy-proofness and other widely used concepts in the literature. We

start with the characterization of the individual version of resilience. We also discuss

there the mechanism design foundations of resilience. Covering its group version takes

more time. While the characterization of group resilience is straightforward, a lot needs

to be discussed under the light of several prominent models used in the mechanism design

literature.

3.1 Resilience

We first close the gap between resilience and strategy-proofness. For this we introduce

below the rectangular property, a condition first introduced by Saijo et al. (2007).

Rectangular Property: A decision rule f satisfies the rectangular property if for each

R, R̃ ∈ RN with f(Ri, R̃−i) Ii f(R̃) for all i ∈ N , we have f(R) = f(R̃).

Theorem 3.4. A decision rule f satisfies resilience if and only if f satisfies both strategy-

proofness and the rectangular property.

Proof. We already know that resilience implies strategy-proofness. It is clear that re-

silience implies the rectangular property. For this, consider R and R̃ such that for each

i ∈ N , fi(Ri, R̃−i) Ii fi(R̃). If f(R) 6= f(R̃), then resilience contradicts the previous

indifferences. Hence f(R) = f(R̃).

Next we show that the combination of strategy-proofness and the rectangular property

implies resilience. Pick R and R̃. By the rectangular property if fi(Ri, R̃−i) Ii fi(R̃) for

each i ∈ N , then f(R) = f(R̃) so resilience holds. Suppose there exists i ∈ N for whom

the previous indifference does not hold. By strategy-proofness, fi(Ri, R̃−i) Ri fi(R̃).

Hence fi(Ri, R̃−i) Pi fi(R̃) and resilience holds.

As emphasized in Saijo et al. (2007), many strategy-proof rules of interest violate

the rectangular property. Consequently, resilience is a rather demanding condition. We
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present here cases where the failure of the rectangular property is salient. We focus on

three different examples. The first two show how the failure of resilience are not robust

once coalitional moves are possible. The last example nevertheless shows that for some

models even group resilience is out of reach.

Example 3.5. Structure and coalitional instability of bad Nash equilibria I

Let F = {x ∈ [0,Ω]n : for all i ∈ N, xi ≥ 0 and
∑

i∈N xi = Ω} where Ω ∈ R++.

The preference domain is the one of single-peaked preferences, Rsp, over [0,Ω]. Then

(Rsp, F ) determine the Sprumont Model (Sprumont, 1991) of division under single-peaked

preferences. A rule that is central in this model is the so-called Uniform rule fU , defined

for each R ∈ RN and each i ∈ N as,

fU(R) =


min{p(Ri), λ} if

∑
i∈N

P (Ri) ≥ Ω

max{p(Ri), λ} if
∑
i∈N

P (Ri) ≤ Ω

where λ solves
∑
i∈N

fU(R) = Ω.

It is well-known that the uniform rule is strategy-proof. However, it fails to be resilient

as shown below.

Let n = 3, Ω = 6 and pick R ∈ RN with peak profile p(R) = (1, 2, 4). Consider fU

on the domain Rsp and let us show that f is not resilient. For instance, consider R̃

with p(R̃) = (2, 2, 2). By reverting to truthtelling unilaterally, neither agent 1 nor 3

can change the outcome and fU is therefore not resilient. Notice that fU(R) = (1, 2, 3)

Pareto dominates fU(R̃) at R. Agents 1 and 3 have the joint profitable deviation of

simply reporting their true preferences so that the true uniform allocation is obtained.

One can verify that there are an infinity of joint misreports at which resilience fails –all

of these are in fact Nash equilibrium reports– which are described by the following sets,

{R̃ ∈ RN : 1 < p(R̃1) ≤ 2 = p(R̃2) ≤ p(R̃3) < 4,
∑

p(R̃i) = 6}

{R̃ ∈ RN : p(R̃1) = 2, p(R̃2) = 2, p(R̃3) ≤ 2}

{R̃ ∈ RN : p(R̃1) ≥ 2, p(R̃2) = 2, p(R̃3) = 2}.

Observe here that for each of these reports, agents 1 and 3 improve by jointly reverting

to truthtelling. We will later show that the uniform rule is group-resilient. �

Example 3.6. Structure and coalitional instability of bad Nash equilibria II

Let Ai = {h1, ..., hn} for each i ∈ N and F = {x = (x1, ..., xn) ∈ A : xi 6= xj for each i 6=
j}, i.e., F determines a private good economy with indivisible goods, as in example 2.1.

Let the preference domain RN be the set of strict preferences over {h1, ..., hn}. Pick fTTC

to be the top-trading cycle rule in which each agent i is endowed with object hi.
5

5fTTC(R) is determined according to the following process:
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Let N = {1, 2, 3} and A = {h1, h2, h3}3. Let the set of preferences be as follows:

R1 R2 R3 R̃1 R̃2

h2 h1 h2 h1 h3

h1 h3
...

...
...

h3 h2

Observe here that the TTC rule fTTC gives the following allocations:

fTTC(R1, R2, R3) = (h2, h1, h3)

fTTC(R̃1, R2, R3) = fTTC(R1, R̃2, R3) = fTTC(R̃1, R̃2, R3) = (h1, h3, h2)

When the state isR = (R1, R2, R3), the dominant strategy equilibrium is (R1, R2, R3), i.e.,

truthtelling. Consider now the joint misreport (R̃1, R̃2, R3) which results in (h1, h3, h2).

Clearly, agent 3 has no incentive to unilaterally deviate as she obtains her top choice

under this preference report. If either agent 1 or 2 unilaterally deviates from (R̃1, R̃2, R3)

to truthtelling, then the outcome remains (h1, h3, h2). Combining this with the result

that truthtelling is a weakly dominant strategy for each agent, none of agents 1 and 2

have an incentive to deviate unilaterally from (R̃1, R̃2, R3). Thus, resilience is violated at

(R̃1, R̃2, R3) –the latter is in fact a Nash equilibrium in the direct revelation mechanism of

fTTC . However, agents 1 and 2 jointly reverting from (R̃1, R̃2) to (R1, R2) (while agent 3

reports R3) leads to allocation (h2, h1, h3). This is a profitable deviation for both agents.

An important difference compared to the previous example is that the allocation under

(R̃1, R̃2, R3) is not Pareto comparable with the one obtained under the report (R1, R2, R3).

Hence following the coalitional deviation by agents 1 and 2, agent 3 is worse-off since he

was getting his top choice h2 under the report (R̃1, R̃2, R3). �

Our last example shows that some decision rules of interest are neither resilient nor

group-resilient. In particular our example shows that auction models will remain out of

reach even if one considers group resilience.

Example 3.7. Survival of bad Nash equilibria

Step m: Each agent who have not been allocated an object in the previous steps points to the agent who
owns her/his most preferred object among those which are not assigned to any agent yet. There
exist at least one cycle of agents {i1, ·, ik} such that each il where l < k points to il+1 while ik
points to i1. Under the TTC rule, each agent in a cycle is allocated the object of the agent to
whom she points.

The above process is terminated once every agent is allocated an object.
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Let F = {(x, t) ∈ {0, 1}n × Rn :
∑

i∈N xi = 1}. The feasible set F stands for a model in

which there is one object to be given to one out of the n agents, and monetary transfers

are possible. Let rule fV be the Vickrey rule, i.e., the second price auction. LetRN = R+.

For each i ∈ N , each preference relation Ri is indexed by a real number that stands for

the valuation agent i attaches to the object. With a slight abuse of notation, each Ri is

such that for (x, t), (x, t′) with t > t′, then (xi, ti)Pi(xi, t
′
i). Hence, preferences are said to

be quasi-linear. For each R ∈ RN , f(R) = (x, t) ∈ F with (i) xi = 1 if Ri = maxj∈N Rj,

and xi = 0 otherwise, (ii) ti = maxj 6=iRj if xi = 1, and ti = 0 otherwise. While the

Vickrey rule is strategy-proof, it fails to be resilient as shown below.

Let n = 2 and fix a preference profile R with R1 > R2. The joint report (R1, R2) is a

weakly dominant strategy: agent 1 receives the object and pays t2 = R2 while agent 2

pays nothing. However there is an infinity of joint misreports at which resilience fails –all

of these are in fact Nash equilibrium reports– which are described by the following set,

{(R̃1, R̃2) ∈ RN : 0 ≤ R̃1 ≤ R2 and R1 ≤ R̃2}

Because agent 2 gets a non-negative payoff at R when the report is (R̃1, R̃2), this

joint lie is a Nash equilibrium at R. Within the above set, reverting to truthtelling from

(R̃1, R̃2) = (0, R̃2) jointly is not profitable for both agents. �

Based on the series of examples, it is clear that resilience is a very demanding con-

dition. From Examples 3.5 and 3.6 two conclusions may however be drawn. The first

and most important one is that, for many models and rules of interest there may exist

a coalition of agents which can benefit by reverting to truthtelling even when resilience

is violated. Hence, in many models, the requirement imposed by resilience is too strong

if pre-play communication is allowed. Theorem 3.10 introduced in the next section will

show under which conditions the above conclusion is true. The second conclusion is that

the observation made in Example 3.5 that joint misreports are Pareto inefficient is not a

general observation.

Let us now tie resilience to implementation. Saijo et al. (2007) show that the rectan-

gular property is a necessary condition for secure implementation. The latter is motivated

by the lack of dominant strategy play for rules that admit unwanted Nash equilibria in

their direct revelation mechanisms. We provide a definition below.

Definition 3.8. [Secure Implementation] A decision rule f is secure implementable6

if for each R ∈ RN ,

(i) R ∈ DS(Γ∗, R).

6To be precise, the definition of secure implementation is the one by direct mechanism. We are using
this definition without loss of generality because Saijo et al. (2007)
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R2 R̃2

R1 f1(R1, R2), f2(R1, R2) f1(R1, R̃2), f2(R1, R̃2)

R̃1 f1(R̃1, R2), f2(R̃1, R2) f1(R̃1, R̃2), f2(R̃1, R̃2)

Table 1: The Rectangular Property

(ii) for each R̃ ∈ NE(Γ∗, R), f(R̃) = f(R).

In words, rule f is secure implementable if truthtelling is a dominant strategy in the

direct revelation mechanism associated to f , and for any Nash equilibrium report R̃ at

profile R, it must be that f(R̃) = f(R). Note that secure implementation is nothing

more than the requirement of double implementation in dominant strategies and Nash

equilibrium.

We first recall the intuition behind the necessity of the rectangular property for secure

implementation. Our discussion is based on table 1 for which we have fixed a rule f . At

the true preference profile (R1, R2), suppose that f1(R1, R̃2)I1f1(R̃1, R̃2). By strategy-

proofness, this implies that reporting R̃1 is a best-response for agent 1 when agent 2

reports R̃2. Assume next that f2(R̃1, R2)I2f2(R̃1, R̃2). By the same token, R̃2 is a best-

response when agent 1 reports R̃1. Hence (R̃1, R̃2) is a Nash equilibrium at (R1, R2) with

f(R̃1, R̃2) as a Nash equilibrium outcome. By resilience we must have that f(R1, R2) =

f(R̃1, R̃2).

It is not difficult to see that a rule f is secure implementable if and only if f is resilient.

For instance, if a preference report R̃ is a Nash equilibrium in the direct revelation game

associated with a resilient rule f at profile R then R̃ must deliver the desired outcome

f(R). In addition, because f is strategy-proof by Lemma 3.3, truthtelling is a dominant

strategy for the direct revelation game. Based on Theorem 3.4 and given Saijo et al.

(2007)’s characterization in terms of strategy-proofness and the rectangular property, we

obtain a new characterization of the class of secure implementable rules.

Theorem 3.9. Secure Implementation A decision rule f is secure implementable if

and only if f satisfies resilience.

An interesting by-product of the theorem is a direct characterization of secure im-

plementation in the form of a straightforward and intuitive condition. Indeed resilience

is much easier to check in practice than both strategy-proofness and the rectangular

property.

3.2 Group-Resilience

In this section, we identify the necessary and sufficient conditions for group-resilience and

compare these conditions to the ones we obtained for resilience. For this purpose, we find
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useful to invoke the result from Saijo et al. (2007) that shows the equivalence between

the rectangular property and the combination of the outcome rectangular property and

non-bossiness in welfare. We define these conditions below.

Non-bossiness in welfare: A decision rule f satisfies non-bossiness in welfare if when-

ever fi(R) Ii fi(R̃i, R−i) for some i ∈ N , R ∈ RN and R̃i ∈ Ri, then f(R) = f(R̃i, R−i).
7

Outcome rectangular property: A decision rule f satisfies the outcome rectangular

property if for each R,R′ ∈ RN , if fi(Ri, R
′
−i) = fi(R

′) for each i ∈ N , then f(R) = f(R′).

We now show that group resilience is equivalent to strategy-proofness and non-bossiness

in welfare.

Theorem 3.10. A decision rule f satisfies group-resilience if and only if f satisfies both

strategy-proofness and non-bossiness in welfare.

Proof. We start with the necessity part of our proof. We already know from Lemma 3.3

that any group-resilient rule is strategy-proof. We show that any group resilient rule f

satisfies non-bossiness in welfare. In contrast, suppose that this is not the case. Then

there must exist i ∈ N , R ∈ RN and R̃i ∈ Ri such that

f(R̃i, R−i) Ii f(R) and f(R̃i, R−i) 6= f(R). (2)

Then by group-resilience, there must exist S such that f(RS, R−S) Pj f(R̃i, R−i) for all

j ∈ S. Because the preferences for each j 6= i are the same under both (RS, R−S) and

(R̃i, R−i), it must be that i ∈ S. Consequently, f(RS, R−S) = f(R) Pi f(R̃i, R−i) which

is a contradiction with (2).

We now prove the sufficiency part. Let R, R̃ ∈ RN be such that f(R) 6= f(R̃).

Suppose that there exists some i ∈ N and R̄i ∈ Ri such that f(R̄i, R̃−i) Pi f(R̃). This

fact and strategy-proofness of f implies that f(Ri, R̃−i) Ri f(R̄i, R̃−i) Pi f(R̃). Next,

suppose that there does not exist such an agent i for whom f(R̄i, R̃−i) Pi f(R̃) for some

R̄i ∈ Ri –i.e. R̃ ∈ NE(Γ∗, R). Let T ⊂ N with |T | = t be the subset of agents who lie

at R̃, i.e. (R̃T , R−T ) = (R̃T , R̃−T ) = R̃. The following claim is crucial for our proof.

Claim: Fix any nonnegative integer s < t. If f(RS̄, R̃−S̄) = f(R̃) for all S̄ ⊂ T with

|S̄| ≤ s, then for all S ⊆ T with |S| = s+ 1, it must be either (i) f(RS, R̃−S) Pi f(R̃) for

all i ∈ S or (ii) f(RS, R̃−S) = f(R̃).

The claim above, which we prove below, immediately yields that either (a) there exists

some S ⊆ T with f(RS, R̃−S) Pi f(R̃) or (b) f(RT , R̃−T ) = f(R̃). In the latter case,

f(R) = f(R̃) (recall (RT , R̃−T ) = (RT , R−T )). This would contradict our assumption

that f(R) 6= f(R̃). Thus, the only possible case is (a) which concludes the proof of the

7Saijo et.al. (2007) labels this condition simply as non-bossiness.
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sufficiency part.

Proof of the Claim. Let us prove the claim when s = 0. Fix any S ⊂ T with |S| = 1.

By construction, S = {i} for some i ∈ T . By the Nash equilibrium assumption of

R̃ = (R̃S, R−S) at R, we have

fi(R̃) Ri fi(Ri, R̃−i) = fi(RS, R̃−S), (3)

And by strategy-proofness,

fi(Ri, R̃−i) Ri fi(R̃). (4)

By combining the two relations above, we obtain that

fi(Ri, R̃−i) Ii fi(R̃).

Because f satisfies non-bossiness in welfare, we have

fi(Ri, R̃−i) = f(RS, R̃−S) = fi(R̃). (5)

This means that (ii) in the claim is always satisfied if s = 0.

Now fix any s with 0 < s < t. Pick any S ⊆ T with |S| = s + 1. Because of the

strategy-proofness of f , we know that f(RS, R̃−S) Ri f(RS\i, R̃i, R̃−S) for all i ∈ S. By

construction, |S \ i| = s. By the assumption used in the claim, f(RS\i, R̃i, R̃−S) = f(R̃).

Consequently,

f(RS, R̃−S) Ri f(RS\i, R̃i, R̃−S) = f(R̃) for all i ∈ S. (6)

If the relation above holds for everyone with a strict one, then we are in (i) of the claim.

If not, there must be at least one agent i for whom f(RS, R̃−S) Ii f(RS\i, R̃i, R̃−S) = f(R̃).

Then because f satisfies non-bossiness in welfare, we obtain f(RS, R̃−S) = f(RS\i, R̃i, R̃−S) =

f(R̃) which is (ii) of the claim. This completes the proof.

While strategy-proofness is central in the mechanism design literature, non-bossiness

in welfare is typically used to achieve different objectives, in particular to provide struc-

ture and tractability to different classes of rules in characterization theorems.8 Here,

non-bossiness in welfare inherits a somewhat unexpected strategic interpretation. While

group resilience looks like a stringent requirement, it turns out to be no more demanding

than two properties that have been regularly invoked in the literature.

8For a thorough discussion of non-bossiness and its use in the literature, see for instance the excellent
survey by Thomson (2016).
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4 Strategic Foundations of Group-Resilience

Our goal in this section is to provide some mechanism design foundations for group

resilience. We first to connect group resilience with group strategy-proofness. Doing so

achieves two objectives. First it allows us to identify well-known classes of rules which

violate resilience but satisfy group resilience. Second, because group resilience requires

coalitions to coordinate on joint reports –possibly via pre-play communication– nothing

prevents coalitions from then coordinating on beneficial false reports. As such imposing

group strategy-proofness is warranted, while the property seems very close to group

resilience. Indeed, suppose that f is not group strategy-proof. Then there would exist a

group of agents S ⊆ N that gain by falsely reporting a subprofile R̃S when the true profile

is R. Note that by group resilience this misreport is inherently unstable. This observation

will lead us to the introduction of a new implementation notion that we call group secure

implementation, a direct extension of secure implementation via direct mechanisms which

requires double implementation in dominant strategies and in strong Nash equilibrium.

Group strategy-proofness is a necessary condition for group secure implementation.

4.1 From Group Resilience to Group Strategy-Proofness

We pointed out earlier that the necessary and sufficient conditions for resilience are

strategy-proofness, non-bossiness in welfare and the outcome rectangular property. On

the other hand, group-resilience only requires strategy-proofness and non-bossiness in

welfare. Due to this relaxation, some non-resilient rules that are prominent in the lit-

erature are group-resilient. This is already apparent in the previous series of examples,

to the exception of Example 3.7. We first study in turn two models (domains), the allo-

cation of private goods under strict preferences (e.g. Shapley-Scarf economies), and the

allocation of a stock of resource under single-peaked preferences (Sprumont, 1991). Next,

we provide a more general result under a notion of richness of the domain of preferences.

For this step, we find useful to introduce two new concepts. One is non-bossiness

which is a weaker version of non-bossiness in welfare and the second one is group strategy-

proofness, a strengthening of strategy-proofness once coalitions can form.

Group Strategy-Proofness: A decision rule f satisfies group strategy-proofness if

for each R ∈ RN and coalition S ⊆ N , there does not exist R′S ∈ RS such that

f(R′S, R−S) wdom[R, S]f(R).

Non-Bossiness: A decision rule f satisfies non-bossiness if whenever fi(R) = fi(R̃i, R−i)

for some i ∈ N , R ∈ RN and R̃i ∈ R, then f(R) = f(R̃i, R−i).

We now consider various models of interest and identify group-resilient rules.
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4.1.1 Strict Preference Domain

In this domain, non-bossiness in welfare and its weaker version, non-bossiness, are equiv-

alent. Thus, a rule is group-resilient if and only if it satisfies both strategy-proofness

and non-bossiness. Furthermore, in the private goods model considered in Example 3.6,

the combination of non-bossiness and strategy-proofness is equivalent to group strategy-

proofness (Pápai, 2000).

Corollary 4.1. Let RN be the strict preference domain and let F determine a private

good economy as defined in Example 3.6. A decision rule f satisfies group-resilience if

and only if f satisfies group strategy-proofness.

The above corollary implies that, in the direct revelation mechanism associated with

any group-resilient rule f , no coalition of agents can profitably deviate from truthtelling,

while there always exist some coalition that would gain by reverting to truthtelling from

any report that is not prescribed by f . Truthtelling is an unequivocally focal strategy,

i.e. truthtelling is very likely to arise in the direct revelation mechanism associated with

f when communication is allowed among agents.

Another interesting feature of group resilient rules in this setting is self-enforcement in

the spirit of coalition proof Nash equilibria (Bernheim et al., 1987). That is, any coalition

which benefits by reverting to truthtelling from a collective misreport does not have to

worry about further deflections by its members, thanks to group strategy-proofness.

Given that we have translated requirements for resilient and group-resilient rules in

terms of conditions regularly used in the literature, we can compare the sets of resilient

and group-resilient rules. Fujinaka and Wakayama (2011) show that the only secure

implementable efficient rules in the so-called housing model are the priority rules which

allocate objects based on a fixed ordering of the set of agents.9 Therefore, efficiency –

perhaps the most important criteria – along with resilience lead to an incredibly restrictive

set of priority rules. On the other hand, Pycia and Ünver (forthcoming) show that any

group-strategy proof and efficient rule is a trading cycle rule. The set of such rules

includes Gale’s top trading cycles rules – a prominent rule in the so-called house allocation

literature.10 Consequently, the set of group-resilient and efficient rules is the one of trading

cycles rules – a considerable enlargement over the set of priority rules.

Out of the three necessary conditions for secure implementation or resilience, our

results show that the outcome rectangular property can be completely dispensed with for

group resilience.

9Priority rules are also known as serial dictatorships.
10Top trading cycles rules are also used in important practical problems: For example, on April 16,

2012, it was announced that the New Orleans Recovery School District would utilize a version of the top
trading cycles allocation rule as the allocation rule for the centralized enrollment of children in public
schools (Vanacore, 2012).
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Before we go to our next preference domain, let us remark that non-bossiness is

vacuously satisfied in public goods models in strict preference domains. As a result,

group-resilience in such models is equivalent to strategy-proofness.

4.1.2 Single-Peaked Domain

Let us now turn our attention to the Sprumont model introduced in Examples 2.2 and

3.5. We first show that group-resilience implies group-strategy proofness in this setting.

Recall that Ω ∈ R++ is the stock of the resource. The feasible set of allocations is

F = {x ∈ A :
∑

i xi = Ω}.

Lemma 4.2. Let RN be the single-peaked preferences domain and let F determine the

feasible set of the Sprumont model. If a decision rule f satisfies group-resilience then it

satisfies group strategy-proofness.11

Proof. Because f is group-resilient, f satisfies strategy-proofness and non-bossiness in

welfare. In contradiction to the lemma, let f satisfy both strategy-proofness and non-

bossiness in welfare but not group strategy-proofness. Consequently, there exist R ∈ RN ,

S ⊂ N and R̃S ∈ RS such that f(R̃S, R−S) wdom[R, S] f(R). By Lemma 6.1 (see the

appendix), f is peak-only. Let R̂ ∈ RN be a preference profile such that p(R̂i) =

fi(R̃S, R−S). Pick any i ∈ S. We will now show that f(R̂i, R−i) = f(R). Suppose

otherwise. Non-bossiness12 would yield f(R̂i, R−i) = f(R) if fi(R̂i, R−i) = fi(R). Thus,

fi(R̂i, R−i) 6= fi(R). If p(R̂i) = p(Ri), then by peak-onliness, fi(R̂i, R−i) = fi(R). Hence,

we must have that p(R̂i) 6= p(Ri). The proofs for the p(R̂i) < p(Ri) and p(R̂i) > p(Ri)

cases are similar. Subsequently, let us only consider the p(R̂i) > p(Ri) case. By Lemma

6.2 (see the appendix), the only possibility in which fi(R̂i, R−i) 6= fi(R) occurs if p(Ri) ≤
fi(R) < fi(R̂i, R−i) ≤ p(R̂i). However, this implies that fi(R) Pi p(R̂i) = fi(R̃S, R−S)

because Ri is single-peaked. This contradicts that i ∈ S and f(R̃S, R−S) wdom[R, S]f(R).

Consequently, we have that f(R̂i, R−i) = f(R).

Now pick any j ∈ S and j 6= i. Because f(R̂i, R−i) = f(R), by following the same

steps as above, we obtain that f(R̂{i,j}, R−{i,j}) = f(R̂i, R−i) = f(R). By continuing with

the same logic, it must be that f(R̂S, R−S) = f(R).

We now move from (R̃S, R−S) to (R̂S, R−S) by changing the preferences of agents in

S, one at a time. We claim that at each step of this process, the allocation prescribed

by f remains unaffected. To see this select any i ∈ S and consider (R̂i, R̃S\{i}, R−S).

By the strategy-proofness of f , we must have that fi(R̂i, R̃S\{i}, R−S) = fi(R̃S, R−S)

because fi(R̃S, R−S) = p(R̂i). Thus, by non-bossiness we have that f(R̂i, R̃S\{i}, R−S) =

11The proof of the Lemma relies on two auxiliary lemmas that we prove in the appendix.
12The stronger version of non-bossiness – non-bossiness in welfare – is not needed here.
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f(R̃S, R−S). By employing similar arguments for the remaining steps of the process,

we find that f(R̂S, R−S) = f(R̃S, R−S). This contradicts the earlier conclusion that

f(R̂S, R−S) = f(R) because f(R̃S, R−S) 6= f(R).

The lemma above and Theorem 3.10 imply that truthtelling is again very likely to

arise in the direct revelation games associated with group-resilient rules when pre-play

communication is allowed. Not only no coalition can profitably deviate from truthtelling,

they also cannot coordinate on an outcome not prescribed by the rule because some coali-

tion will always find profitable to revert to truthtelling. In addition, if the rule satisfies

efficiency – arguably the most desirable criteria in any resource allocation problem– then

group strategy-proofness coincides with group-resilience.

Lemma 4.3. Let RN be the single-peaked preferences domain and let F determine the

feasible set of the Sprumont model. If an efficient decision rule f satisfies group-resilience,

then f satisfies group strategy-proofness.

Proof. Let f be a group strategy-proof rule. First, let us prove that f satisfies non-

bossiness. In contrast, let f violate the property. Then there must exist R, i and R̃i

such that fi(R) = fi(R̃i, R−i) and f(R) 6= f(R̃i, R−i). Then because f(R̃i, R−i) 6= f(R)

and
∑

j∈N fj(R) =
∑

j∈N fj(R̃i, R−i) = Ω, we must have two agents j′ 6= i and i′ 6= i

with fi′(R) > fi′(R̃i, R−i) and fj′(R) < fj′(R̃i, R−i). Efficiency requires that both fi′(R)

and fj′(R) to be on the same side of the respective peaks of these players. The same is

true for fi′(R̃i, R−i) and fj′(R̃i, R−i). Given that the peaks of these agents do not change

between profiles R and (R̃i, R−i), fi′(R) and fi′(R̃i, R−i) are on the same side of p(Ri′).

The same thing is true for agent j′. Consequently, by single-peakedness, one of i′ and j′

strictly prefers f(R̃i, R−i) to f(R). Thus, one of i′ and j′ along with i can weakly block

f(R). Thus, f is not group strategy-proof, a contradiction.

Finally, suppose that f violates non-bossiness in welfare. We have showed f satisfies

non-bossiness. Thus, there must exist i, R and R̃i such that f(R̃i, R−i) Ii f(R) and

fi(R̃i, R−i) 6= fi(R). By single peakedness, we find that fi(R̃i, R−i) and fi(R) are on

the different sides of p(Ri). Without loss of generality, we assume that fi(R) < p(Ri) <

fi(R̃i, R−i). Efficiency now implies that for all j, fj(R) ≤ p(Rj).

Strategy-proofness and single-peakedness imply that i cannot have any deviation

R′i with f(R′i, R−i) ∈ (fi(R), fi(R̃i, R−i)). Consider a report R̄i with p(R̄i) = p(Ri)

and fi(R̃i, R−i) P̄i fi(R). Then fi(R̃i, R−i) /∈ (fi(R), fi(R̃i, R−i)). Moreover, strategy-

proofness and single-peakedness yield that fi(R̄i, R−i) = fi(R̃i, R−i). If there exists any

agent j 6= i for whom f(R̃i, R−i) Pj f(R), then coalition S = {i, j} can profit by deviating

from RS to (R̃i, Rj). Because fi(R̄i, R−i) > fi(R) and
∑

j∈N fj(R) =
∑

j∈N fj(R̄i, R−i) =

Ω, there must exist an agent i′ with fi′(R) > fi′(R̄i, R−i). Recall that fi′(R) < p(Ri′).

Thus, p(Ri′) > fi′(R̄i, R−i). By construction, fi(R̄i, R−i) < p(R̄i). This contradicts effi-

ciency.

20



We here note that without imposing additional conditions, one cannot show that

group strategy-proofness implies group resilience even in the Sprumont setting.

Example 4.4. Group strategy-proofness does not imply group-resilience

Let N = {1, 2} and consider the following rule which yields two outcomes: x = (Ω, 0) or

y = (0,Ω). If x and y are Pareto comparable in the weak sense at any profile R then

f assigns the better outcome. If both agents are indifferent between x and y, then f

prescribes x. If none of these conditions are satisfied, f prescribes x or y depending on

which one agent 1 prefers.

Clearly, f is group strategy-proof but it violates non-bossiness in welfare. Thus, f is not

group-resilient. �

To assess how demanding the requirements for group-resilience is, we further inves-

tigate the condition of non-bossiness in welfare. In the following result, we show that

efficiency along with strategy proofness and non-bossiness imply non-bossiness in welfare.

Lemma 4.5. Let RN be the single-peaked preferences domain and let F determine the

feasible set of the Sprumont model. If a decision rule f satisfies efficiency, strategy-

proofness and non-bossiness, then it satisfies non-bossiness in welfare.

Proof. Suppose f does not satisfy non-bossiness in welfare. Therefore, there must exist

R ∈ RN , i ∈ N and R′i ∈ Ri such that f(R′i, R−i) 6= fi(R) and fi(R
′
i, R−i) Ii fi(R). In

fact, because f satisfies non-bossiness, fi(R
′
i, R−i) 6= fi(R). This means that fi(R

′
i, R−i)

and fi(R) are on the opposite sides of p(Ri). Without loss of generality assume that

fi(R) < p(Ri) < fi(R
′
i, R−i). Then by efficiency, fj(R) ≤ p(Rj) for all j 6= i. Indeed,

if fj(R) > p(Rj) for some j, we can improve i and j by taking tiny amount from j’s

allocation and by increasing i’s by the the same amount. This implies that
∑

j fj(R) =

Ω <
∑

j p(Rj).

Fix a preference R̂i ∈ Ri such that p(R̂i) = p(Ri) but fi(R) P̂i fi(R
′
i, R−i). By

strategy-proofness, fi(R̂i, R−i) = fi(R
′
i, R−i) > p(R̂i). Then by efficiency, Ω > p(R̂i) +∑

j 6=i p(Rj) =
∑

j p(Rj). This contradicts our earlier conclusion that Ω <
∑

j p(Rj).

Theorem 3.10 and Lemma 4.5 imply that any rule satisfying efficiency, strategy-

proofness and non-bossiness is group-resilient. This class contains the whole family of

fixed path rules by Moulin (1999), the sequential allotment rules Barbera et al. (1997),

and these two classes each contain the celebrated uniform rule. In contrast, Bochet and

Sakai (2010) show that the only secure implementable rules within the fixed path rules

are the priority rules, i.e., serial dictatorships.

Let us finally comment on the public goods model of Moulin (1980). Unlike its coun-

terpart in strict preferences domains, non-bossiness in welfare is not vacuously satisfied
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in this model. Thus, group-resilience is not equivalent to group strategy-proofness. How-

ever, group-resilience requires group strategy-proofness: the proof for this statement is

identical to the one of Lemma 4.2. In addition, group strategy-proofness is equivalent to

group-resilience for the class of efficient rules.13 It is well-known that generalized median

rules are group strategy-proof and efficient. Therefore, the set of group resilient rules

includes the whole class of generalized median voter rules.

4.1.3 Rich Domains

We have discussed the desirability of rules that are both group-resilient and group

strategy-proofness in some specific models. We explore now the relation between these

two properties in a general environment. In Example 4.4, we showed that group strategy-

proofness does not imply group resilience. At the same time, based on the previous sub-

sections, one may conclude that group-resilience is more demanding than group strategy-

proofness. We now show that this observation is not true in general environments. In

fact, even resilience does not imply group strategy-proofness in general settings.

Example 4.6. Narrow domain: strategy-proofness and non-bossiness in welfare

Let N = {1, 2} and F = {w, x, y, z}. Suppose that the set of preferences for each agent

is Ri ∪ R̃i where

c P1 d P1 a P1 b b P̃1 d P̃1 a P̃1 c

b P2 d P2 a P2 c c P̃2 d P̃2 a P̃2 b.

Now consider the following rule f :

R2 R̃2

R1 a c

R̃1 b d

Observe here that f satisfies strategy-proofness and non-bossiness in welfare. In fact, f

satisfies the rectangular property and is thus both resilient and group-resilient. However,

f is not group strategy-proof since f(R̃) = d Pi a = f(R) for both i = 1, 2. �

A key feature for the failure of group strategy-proofness in the above example is

the narrowness of the preference domain. When the preference domain is sufficiently

13In public good models, non-bossiness is vacuously satisfied. Thus, one needs to prove that group-
strategy proofness requires f be non-bossy in welfare. If f(R)Iif(R̃i, R−i) and f(R) 6= f(R̃i, R−i),
then f(R) and f(R̃i, R−i) are on different sides of p(Ri). Assume without loss of generality, f(R) <
p(Ri) < f(R̃i, R−i). Fix a report R̄i with p(R̄i) = p(Ri) and f(R̃i, R−i)P̄if(R). Strategy proofness and
single-peakedness imply that f(R̄i, Ri) /∈ (f(R), f(R̃i, R−i)). In fact, f(R̄i, Ri) = f(R̃i, R−i). Thus,
p(R̄i) < f(R̄i, Ri). At the same time, group strategy-proofness implies that p(Rj) < f(R̃i, R−i) for all

j 6= i; otherwise, such an agent j and i together weakly improves from truthtelling by reporting (R̃i, Rj)

at profile R. Subsequently, p(Rj) < f(R̃i, R−i) = f(R̄i, R−i) for all j 6= i. Recall that p(R̄i) < f(R̄i, Ri).
Thus, f is not efficient at (R̄i, R−i).
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“large”, the combination of strategy-proofness and non-bossiness in welfare implies group

strategy-proofness. We introduce below a richness condition on the preference domain

which guarantees that the two conditions imply group strategy-proofness.

Rich domain: Domain RN is rich if for each i ∈ N , xi 6= yi ∈ Ai, there exists Ri ∈ Ri

such that xi Pi yi Pi zi for all zi ∈ Ai with zi 6= xi and zi 6= yi.

If the domain RN is rich, then for any given agent i ∈ N and for any two alternatives

xi, yi ∈ Ai, there must exist preferences for agent i which place these alternatives as

the top two alternatives. For instance, in private good economies the strict preference

domain is rich. Clearly, any preference domain containing the strict preference domain

is also rich. Furthermore, some domains not containing the strict preference domain are

rich. For instance, suppose that the agents only care about their top two alternatives.

Such domains would be rich as long any two alternatives are the top two at some point.

However, some important domains of interest such as the single peaked domain in the

Sprumont setting are not rich.

Theorem 4.7. Let RN be a rich domain. If a decision rule f satisfies group-resilience

then it satisfies group strategy-proofness.

Proof. Pick R ∈ RN and suppose that f violates group strategy-proofness at R. Hence,

there exists S ⊆ N , R′S ∈ RS such that f(R′S, R−S) wdom[R, S] f(R). Let R̂S ∈ RS be

the preference for S such that

(i) for any i ∈ S for whom fi(R) = fi(R
′
S, R−S), fi(R

′
S, R−S) is the most preferred

alternative for agent i under R̂i

(ii) for any i ∈ S for whom fi(R) 6= fi(R
′
S, R−S), fi(R

′
S, R−S) P̂i fi(R) P̂i zi for zi 6=

fi(R
′
S, R−S) and zi 6= fi(R).

The existence of such a profile of preferences for S is guaranteed because our domain

is rich. We now change R to (R̂S, R−S), one agent’s preference at a time. We show

that the initial selection operated by f , f(R), does not change at any step of this pro-

cess. Pick any i ∈ S. If fi(R
′
S, R−S) = fi(R), then by strategy-proofness we must have

fi(R̂i, R−i) = fi(R). Otherwise, agent i would have a profitable deviation at (R̂i, R−i)

because fi(R) is the most preferred alternative for i at R̂i (by construction). Sup-

pose that fi(R
′
S, R−S) 6= fi(R). Then strategy-proofness of f implies that fi(R̂i, R−i)

is either fi(R
′
S, R−S) or fi(R). Otherwise, agent i would have a profitable deviation at

(R̂i, R−i) because by construction, fi(R
′
S, R−S) and fi(R) are the two most preferred al-

ternatives for i at R̂i. Because f(R′S, R−S) wdom[R, S] f(R) and i ∈ S, we must have

that fi(R
′
S, R−S) Ri fi(R). If fi(R

′
S, R−S) Pi fi(R), then strategy-proofness implies that

fi(R̂i, R−i) 6= fi(R
′
S, R−S). If fi(R

′
S, R−S) Ii fi(R), then non-bossiness in welfare implies
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that fi(R̂i, R−i) 6= fi(R
′
S, R−S). Thus, in all cases fi(R̂i, R−i) = fi(R). Then by non-

bossiness, we obtain that f(R̂i, R−i) = f(R). Now pick any j 6= i ∈ S. By applying

the same arguments as above we obtain that f(R̂{i,j}, R−{i,j}) = f(R̂i, R−i) = f(R).

The same reasoning applies for the remaining agents in S. Hence, we obtain that

f(R̂S, R−S) = f(R).

We now reach (R̂S, R−S) from (R′S, R−S) by sequentially changing preferences of

agents in S, one at a time. We claim that the initial selection operated by f , f(R′S, R−S),

does not change at any step of this process. Pick any i ∈ S. By construction of R̂S,

fi(R
′
S, R−S) is the most preferred alternative for agent i at R̂i. Then strategy-proofness

of f yields that fi(R̂i, R
′
S\{i}, R−S) = fi(R

′
S, R−S). Now because f satisfies non-bossiness

we get that f(R̂i, R
′
S\{i}, R−S) = f(R′S, R−S). Similar arguments apply for the remaining

agents in S. Consequently, we have that f(R̂S, R−S) = f(R′S, R−S). Recall that ear-

lier we showed that f(R̂S, R−S) = f(R). Thus, f(R) = f(R′S, R−S) which contradicts

f(R′S, R−S) wdom[R, S] f(R).

4.2 Group-Resilience vs. Group Secure Implementation

We showed that resilience is more demanding than strategy-proofness but equivalent

to secure implementation. Do the same relations hold for the group versions of these

notions? We study this question in this section and introduce the group counterpart of

secure implementation.

Definition 4.8. [Group Secure Implementation] A decision rule f is group secure

implementable if14 for each R ∈ RN ,

(i) R ∈ DS(Γ∗, R) ∩ SNE(Γ∗, R)

(ii) DS(Γ∗, R) = f(R)

(iii) SNE(Γ∗, R) = f(R)

Observe here that we require truthtelling to be both a dominant strategy and a strong

Nash equilibrium. At the same time both DS(Γ∗, R) and SNE(Γ∗, R) should coincide

with f(R). Hence no coalition can gain by deviating from truthtelling, and whenever

f(R̃) 6= f(R), some coalition S can deviate from R̃ and weakly improve when going from

R̃ to (RS, R̃−S). We need to introduce a weakening of non-bossiness in welfare that is

necessary for the full implementation in dominant strategies requirement in (ii). It is

14As in the definition of secure implementation used in this paper, we are stating group secure im-
plementation in terms of direct mechanisms. However, unlike in the case of secure implementation,
group secure implementation via general mechanisms is less demanding than its counterpart using direct
mechanisms. We can provide an example demonstrating this phenomenon upon request.
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obvious from the definition below that weak non-bossiness in welfare is weaker than non-

bossiness in welfare. We also define a notion of preference reversal, the group reversal

property.

Weak Non-Bossiness in Welfare: A decision rule f satisfies weak non-bossiness in

welfare if whenever fi(Ri, R̂−i) Ii fi(R̃i, R̂−i) for some i ∈ N , R ∈ RN , some Ri, R̃i ∈ Ri,

and for all R̂−i ∈ RN\i, then f(R̃i, R−i) = f(R).

Definition 4.9. [Group Reversal Property] A decision rule f satisfies the group

reversal property if for each R, R̃ ∈ RN with f(R) 6= f(R̃), there exist S ⊆ N and

R′S ∈ RS such that f(R′S, R̃−S) wdom[R, S] f(R̃).

We need one last definition, a weakening of non-bossiness in welfare that is necessary

for the full implementation in dominant strategies requirement in (ii).

The group reversal property says that whenever a “bad” outcome arises in the direct

revelation game associated with the rule in question some coalition can profitably deviate.

Group-resilience requires some coalition to profit by reverting to truthtelling from a bad

outcome. Thus, group-resilience is a more demanding condition that the group reversal

property.

Theorem 4.10. A rule f is group secure implementable if and only if

• f is group-strategy-proof

• f satisfies the group reversal property

• f satisfies weak non-bossiness in welfare

Proof. If f is not group-strategy proof, then there exist R ∈ RN , S ⊆ N and R̃S ∈
RS such that f(R̃S, R−S) wdom[R, S]f(R). Clearly, R /∈ SNE(Γ∗, R). Thus, group

strategy-proofness is a necessary condition for group secure implementation via the direct

mechanism of f .

If f does not satisfy the group reversal property, then there exist R, R̃ ∈ RN such that

(i) f(R) 6= f(R̃) and (ii) for no S ⊆ N and no R′S ∈ RS, f(R′S, R̃−S) wdom[R, S]f(R̃).

Thus, f(R̃) ∈ SNE(Γ∗, R), but f(R̃) 6= f(R) which is a contradiction. Thus, the group

reversal property is a necessary condition for group secure implementation via the direct

mechanism of f .

Let us show that f must also also satisfy weak non-bossiness in welfare. Pick i ∈
N , R ∈ RN , R′i ∈ Ri, and assume that f(R) 6= f(R′i, R−i). By the group secure

implementation requirement, we know that (R′i, R−i) /∈ DS(Γ∗, R). Hence R′i must be

dominated by Ri for agent i at preference Ri so that there exists R̂−i ∈ RN\−i such

that fi(Ri, R̂−i) Pi fi(R
′
i, R−i). For the sufficiency part, Consider Γ∗ the direct revelation
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mechanism of f , and let R ∈ RN be the true preference profile. By group strategy-

proofness, profile R is a both a dominant strategy and a strong Nash equilibrium of

(Γ∗, R). Suppose there is i ∈ N , and R′i ∈ Ri that is also a dominant strategy for i at Ri.

If f(R′i, R−i) 6= f(R), the group reversal property ensures that (R′i, R−i) is not a strong

Nash equilibrium at R. By weak non-bossiness in welfare, there exists R̂−i ∈ RN\−i

such that fi(Ri, R̂−i) Pi fi(R
′
i, R−i). Hence, R′i cannot in fact be dominant after all, a

contradiction, so f(R′i, R−i) = f(R). Finally if there is R̃ ∈ RN such that f(R) 6= f(R̃),

the group reversal property ensures that R̃ cannot be a strong Nash equilibrium. Hence

f is group secure implemented by Γ∗.

Now that we have identified the necessary and sufficient conditions for group secure

implementation, we can now compare group-resilience to group secure implementation.

The group reversal property is obviously less demanding than group resilience. How-

ever group-resilience is neither stronger nor weaker than group strategy-proofness as we

pointed out in the previous subsection. Therefore, it is perhaps expected that group

resilience and group secure implementation are not comparable in general domains and

models. In fact, the rule in Example 4.6 is group-resilient but not group secure imple-

mentable. We now present an example of rule that is group secure implementable but

not group resilient.

Example 4.11. Group resilience is not necessary

Let N = {1, 2} and F = {a, b, c, d, e, f}. Suppose that the set of preferences is R1 ∪ R̃1

for agent 1 and R2 ∪ R̃2 ∪ R̄2 for agent 2 where

b P1 c I1 f P1a P1d P1e d P̃1 e P̃1 f P̃1 · · ·

a P2 b P2 d I2 f P2e P2c b P̃2 e P̃2 h P̃2 · · · c P̄2 b P̄2 f · · ·

Consider the following rule f :

R2 R̃2 R̄2

R1 a b c

R̃1 d e f

One can easily see that f satisfies non-bossiness in welfare. For instance, at profile

(R1, R̄2), agent 1 is indifferent between f(R1, R̄2) = c and f(R̃1, R̄2) = f . Hence, f is

not group-resilient. On the other hand, it is easy to see that f is group-strategy proof.

In addition, f satisfies the group-reversal property. To see this, let us concentrate on

the Nash equilibria that yield a bad outcome at each profile. At profile R, the report

(R̃1, R̄2) is a bad Nash equilibrium. However, agents 1 and 2 gain by deviating to (R1, R̃2).

At profile (R1, R̄2), the report (R̃1, R̄2) is a bad Nash equilibrium. Again agents 1 and

2 profit by deviating to (R1, R̃2). At the remaining profiles, there are no bad Nash
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equilibria. Thus, any profile leading to a bad outcome is blocked by some group or an

individual. Consequently, we find that f satisfies the group reversal property. As a result,

f is group secure implementable but not group-resilient. �

Finally, we note that when a rule f satisfies group strategy-proofness and group-

resilience then f is group secure implementable. Our results from the previous sections

identify many such rules. This is in stark contrast to the negative results obtained with

secure implementation. Recall that if the domain of preferences is “large” enough, any

group-resilient rule is group secure implementable. We close with a recall of our results

under the light of group secure implementation.

Corollary 4.12. Let RN be the strict preference domain and let F determine a private

good economy. If a decision rule f satisfies group-resilience, then f is group secure

implementable.

Corollary 4.13. Let RN be the single-peaked domain and let F determine the feasible

set of the Sprumont model. If a decision rule f satisfies efficiency and group-resilience,

then f is group secure implementable.

Corollary 4.14. Let RN be a rich domain. If a decision rule f satisfies group-resilience,

then f is group secure implementable.

5 Discussion and Extensions

5.1 Weak Group-Resilience

In this subsection, we investigate the implications of amending the concept of group-

resilience in the sense that any truth-reverting group from a “bad” outcome improves

weakly.

Definition 5.1. A rule f is weak group-resilient if whenever f(R) 6= f(R̃), there exists

S such that

f(RS, R̃−S)Rjf(R)

for all j ∈ S and with a strict relation for at least one member of S.

Clearly, each group-resilient rule is weak group-resilient. Therefore, non-bossiness in

welfare and strategy-proofness are sufficient conditions for weak group-resilience. It turns

out that only one of these sufficient conditions, strategy-proofness, is necessary for weak

group-resilience.

Theorem 5.2. If a rule f satisfies weak group resilience, then f is strategy-proof.

27



Proof. In contrast to the lemma suppose that f is not strategy-proof. This means that

there must exist i ∈ N , R ∈ RN and R̃i ∈ Ri such that

f(R̃i, R−i) Pi f(R). (7)

Consequently, f(R̃i, R−i) 6= f(R). Then by weak group-resilience, there must exist S

such that f(RS, R−S) Rjf(R̃i, R−i) for all j ∈ S and with strict relation for at least one

j ∈ S. Because the preferences for each j 6= i are the same under both (RS, R−S) and

(R̃i, R−i), it must be that i ∈ S. Consequently, f(RS, R−S) = f(R) Rif(R̃i, R−i) which

is a contradiction with (7).

Example 5.3. Non-bossiness in welfare is not necessary

Consider a house allocation problem with three alternatives, a, b, and c. Let there be two

agents, 1 and 2. The set of preferences for agent 1 is unrestricted while the one for agent

2 consist of only one strict preference which ranks a ahead of c. The rule in this case is

as follows: f(R) = (a, c) if a P1b but f(R) = (b, a) if b R1a. It is easy to see that f is

strategy-proof. Next, fix a preference profile R in which aI1b. In this case f(R) = (b, a).

Consider another preference R̃1 of agent 1 in which aP̃1b. Now f(R̃1, R2) = (a, c) 6= f(R)

but f1(R) = b I1 a = f1(R̃1, R2). This shows that f violates non-bossiness in welfare.

However, f is weak group-resilient. To show this, let us consider any R with f(R) = (a, c).

By construction, it must be that a P1 b. For any R̃ with f(R̃) = (b, a), agent 1 can revert

to truthtelling, R1, and obtain a. Thus, agent 1 can improve by reverting to truthtelling

whenever f(R̃) 6= f(R) at profile R. Consider any R̄ with f(R̄) = (b, a). In addition,

we must have bR̄1a. If bP̄1a, then one can see easily that agent 1 will revert back to

truthtelling from any report R̃ with f(R̃) 6= f(R̄). If bĪ1a, agent 1 can revert back to

truthtelling from any report R̃ with f(R̃) 6= f(R̄) and weakly improve group {1, 2}. Thus,

f is group-resilient. �

6 Conclusion

We introduce two new robustness requirements on decision rules which are equivalent

to the notions of prevalence of truthtelling. While the resilience conditions seems to be,

from the outset, a very demanding condition, our results show that only the individual

version of resilience is hard to reach in general. Group-resilience, by not imposing any

size on the deviating coalitions, turns out to be much less demanding. Only strategy-

proofness and non-bossiness in welfare are required for its characterization. As such

making truthtelling salient in direct mechanisms is not more daunting than invoking two

well-known conditions from the mechanism design literature. While the combination

of strategy-proofness and non-bossiness in welfare may seem strong, our investigation

shows that there exist large classes of group-resilient rules in many models of interest.
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A disappointing observation however is that auction models, or in general any VCG

mechanisms violate group-resilience. From a practical perspective, we expect that group-

resilient rules should work well in practice if pre-play communication is possible. Indeed,

among all possible deviations, the reversion to truthtelling is the easiest to coordinate on,

and therefore the least taxing mentally. A thorough experimental investigation would be

called for to strengthen and validate this conjecture.

A by-product of our results is a significant step towards the understanding of the

limitations of secure implementation. As we emphasize, if pre-play communication is

possible, many of the observed failures of secure implementation just vanish.
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Appendix

We need the following two lemmas for the proof of Lemma 4.2.

Lemma 6.1. Let RN be the single-peaked preferences domain and let F determine the

feasible set of the Sprumont model. If a decision rule f satisfies strategy-proofness and

non-bossiness in welfare, then it satisfies peak-onliness, i.e., for any R, R̃ ∈ RN with

p(Ri) = p(R̃i), it must be that f(R) = f(R̃)

Proof. We first show that for all R ∈ RN , i ∈ N and R′i ∈ Ri with p(Ri) = p(R′i), we

have fi(R) = fi(R
′
i, R−i). Suppose otherwise. Let us denote p(R′i) = p(Ri) = p̄. Then

because f is strategy-proof and the preferences are single peaked we have fi(R) 6= p̄ and

fi(R
′
i, Ri) 6= p̄. Without loss of generality let us assume that fi(R) < p̄. If fi(R

′
i, Ri) < p̄,

then f cannot be strategy-proof because Ri and R′i are single-peaked and fi(R
′
i, Ri) 6=

fi(R) (by assumption). Thus, we have that fi(R
′
i, Ri) > p̄ > fi(R). Then we can

find a single peaked preference R̃i ∈ Ri such that p(R̃i) = p̄ and fi(R
′
i, Ri)Ĩifi(R). Again

strategy-proofness and the single-peakedness of preferences imply that either fi(R̃i, Ri) =

fi(R) or fi(R̃i, Ri) = fi(R
′
i, Ri). Without loss of generality assume that fi(R̃i, Ri) =

fi(R). As a result when agent i’s preference is R̃i, he can deviate to R′i and obtain
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fi(R
′
i, R−i). By construction, fi(R

′
i, Ri)Ĩifi(R) = fi(R̃i, Ri). Then non-bossiness in wel-

fare implies that f(R′i, Ri) = f(R̃i, R−i). This contradicts fi(R̃i, Ri) = fi(R) 6= fi(R
′
i, Ri).

Therefore, fi(R) = fi(R
′
i, R−i). The rest of the proof is a simple consequence of non-

bossiness in welfare.

Lemma 6.2. Let RN be the single-peaked preferences domain and let F determine the

feasible set of the Sprumont model. Let decision rule f satisfy strategy-proofness and

peak-onliness. For any R ∈ RN and R̃i ∈ Ri with p(Ri) < p(R̃i), one of the following

cases must occur:

(i) fi(R) = fi(R̃i, R−i) ≤ p(Ri) < p(R̃i).

(ii) p(Ri) ≤ fi(R) ≤ fi(R̃i, R−i) ≤ p(R̃i), p(Ri) < fi(R̃i, R−i) and fi(R) < p(R̃i).

(iii) p(Ri) < p(R̃i) ≤ fi(R) = fi(R̃i, R−i).

Proof. The lemma is a direct consequence of the following results which we prove next.

(a) fi(R) ≤ fi(R̃i, R−i).

(b) If either fi(R) < p(Ri) or fi(R̃i, R−i) > p(R̃i), then fi(R̃i, R−i) = fi(R).

(c) If either p(R̃i) ≤ fi(R) or p(Ri) ≥ fi(R̃i, R−i), then fi(R̃i, R−i) = fi(R).

(a) On the contrary, assume fi(R) > fi(R̃i, R−i). If fi(R̃i, R−i) ≥ p(Ri), then by the

single-peakedness of f , i gains by reporting R̃i at R, a contradiction with the strategy-

proofness of f . Hence, fi(R̃i, R−i) < p(Ri). A similar argument gives p(R̃i) < fi(R).

Consequently, fi(R̃i, R−i) < p(Ri) < p(R̃i) < fi(R). We next show that strategy-

proofness is violated if fi(R̃i, R−i) and fi(R) in on the opposite sides of p(Ri). Fix

any R̄i with p(R̄i) = p(Ri) such that i prefers fi(R̃i, R−i) to fi(R) under R̄i. By peak-

onliness, fi(R) = fi(R̄i, R−i). Thus, i prefers fi(R̃i, R−i) to fi(R̄i, R−i) under (R̄i, R−i),

a contradiction with the strategy-proofness of f . This completes the proof of (a).

(b) We concentrate on the fi(R) < p(Ri) case because the proof of the other case is a

mirror image of the current case. By (a), fi(R) ≤ fi(R̃i, R−i). Thus, in contradiction to

(b), let fi(R) < fi(R̃i, R−i). If fi(R̃i, R−i) ≤ p(Ri), then by the single-peakedness of f , i

manipulates f at (R̃i, R−i) by reporting Ri. Consequently, fi(R) < p(Ri) < fi(R̃i, R−i).

Because fi(R) and fi(R̃i, R−i) are on the opposite sides of p(Ri), as in the proof of (a),

we reach a contradiction with strategy-proofness. Therefore, fi(R) = fi(R̃i, R−i).

(c) As with case (b) we only concentrate on the p(R̃i) ≤ fi(R) case. By (a), fi(R) ≤
fi(R̃i, R−i). Hence, in contradiction to (c), let fi(R) < fi(R̃i, R−i). Then p(R̃i) ≤ fi(R) <

fi(R̃i, R−i). By the single-peakedness of f , i manipulates f at (R̃i, R−i) by reporting Ri,

a contradiction to the strategy-proofness of f .

We are now ready to prove Lemma 4.2.
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