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Abstract

We introduce a new theory of belief revision under ambiguity. It is recursive (random

variables are evaluated by backward induction) and consequentialist (the conditional ex-

pectation of any random variable depends only on the values the random variable attains

on the conditioning event). Agents experience no change in preferences but may not be

indifferent to the timing of resolution of uncertainty. We provide two characterization the-

orems: the first relates our rule to standard Bayesian updating; the second characterizes

the dynamic behavior of an agent who adopts our rule.



1. Introduction

Consider the following Ellsberg-type experiment: a ball is drawn from an urn consist-

ing of blue and green balls of unknown proportion. After the ball is revealed, the decision

maker flips a coin; if it comes up heads, he wins if the ball is blue; if it comes up tails,

he wins if the ball is green. In this situation, standard models of ambiguity (Gilboa and

Schmeidler (1989), Schmeidler (1989), Klibanoff, Marinacci and Mukherji (2005)) imply

that the coin flip hedges the uncertainty of the draw. By contrast, consider the situation

in which the order is reversed; the outcome of the coin flip is revealed before the ball is

drawn from the urn. Most ambiguity models interpret this as a situation in which the coin

flip does not hedge the uncertain draw from the urn. In particular, all axiomatic models

set in the Anscombe-Aumann framework implicitly assume that a coin flip after drawing

the ball hedges the ambiguity since this notion of hedging is built into Schmeidler’s defi-

nition of uncertainty aversion, while a coin toss prior to drawing the ball does not.1 Thus,

the standard notion of hedging developed in ambiguity models implicitly assumes that the

manner in which uncertainty resolves affects the value of prospects.

The main contribution of this paper is a model of belief updating consistent with the

description above; that is, we formulate an updating rule that ensures that rolling back

payoffs in a tree in which the coin toss occurs first yields values consistent with no hedging

while the corresponding calculation in a tree in which the ball is drawn first yields values

consistent with hedging.

Our theory is recursive and consequentialist. Recursivity means that random vari-

ables that resolve gradually are evaluated by backward induction. There is no “preference

change” and no preference for commitment (i.e., there is no dynamic inconsistency). Con-

sequentialism means that the conditional expectation of any random variable depends only

on the values the random variable attains on the conditioning event. However, our belief

revision rule does not, in general, satisfy the Law of Iterated Expectation; that is, decision

makers that adopt our updating rule will not be indifferent to the timing of resolution

of uncertainty. This sensitivity to the order in which uncertainty resolves is evident in

1 If it did, agents could eliminate ambiguity by randomizing over acts. However, some models (for
example, Ellis (2016)) do assume that the decision maker can hedge with a coin flip even if the coin flip is
revealed before the unambiguous state.
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the hedging discussion of the previous paragraph: consider the random variable, X, that

yields 1 if the ball is green and the coin comes up heads or if the ball is blue and the coin

comes up tails; in all other cases, the random variable takes the value 0. The coin flip

after the draw from the urn hedges and hence the “value” of the random variable is 1/2 if

uncertainty resolves in this order. If the coin toss is resolved first, it does not hedge the

ambiguity associated with the draw from the urn and hence the value of X is strictly less

than 1/2.

As in Kreps and Porteus (1978), our model posits an intrinsic preference for how

uncertainty resolves. Whether the coin toss occurs first or the ball is drawn first matters

despite the fact that no decisions are made in between these two events. In the Kreps-

Porteus model, the agent cares about the resolution of uncertainty because she values

knowing earlier or because she prefers to stay uninformed longer. Hence, the carriers of

utility are the beliefs that the agent has at a given moment in time. To put it differently,

in Kreps-Porteus how much time elapses between the coin toss and the draw from the

urn matters. In our model, the agent cares about the sequencing of the resolution of

uncertainty. Hence, she cares about whether the coin is tossed first or the ball is drawn

first but not about how much time elapses between these two events. For this reason,

our model is particularly amenable to a subjective interpretation. An agent who believes

randomization hedges ambiguity behaves as if the ball is drawn first while an agent who

does not believe randomization helps against ambiguity behaves as if the coin is tossed

first. Intermediate situations between these two extremes can be modelled with the general

information structures and the associated general models described below.2

Our primitive is an evaluation that associates a real number with random variables.

We write E(X) for the evaluation of the random variable X. Evaluations should be viewed

as expectation operators for ambiguity theory. To study updating, we define compound

evaluations: let P = {B1, . . . , Bk} be a partition of the state space. Assume that uncer-

tainty resolves in two-stages; the first stage reveals the partition element B ∈ P while the

second stage reveals the state s ∈ B. We let EP(X) denote the evaluation of the random

2 Saito (2015) develops a subjective hedging model with axioms on preferences over sets of Anscombe-
Aumann acts. His model identifies a preference parameter that measures the extent to which the decision
maker finds hedging through randomization feasible. In our model, the subjective sequencing of resolution
serves a role similar to Saito’s parameter.

2



variable X when uncertainty resolves in this fashion and call it a compound evaluation.

Let E(X | P) denote the random variable Y such that

Y (s) = E(X |B) for B such that s ∈ B ∈ P

Then, we can state the first part of our recursivity assumption as follow:

EP(X) = E(E(X | P)) (1)

that is, the compound evaluation is computed by backward induction; first for every state

s in Bi ∈ P, we set Y (s) equal to the conditional expectation E(X |B) of X and then, we

evaluate Y .

The main challenge is coming up with a definition of E(X |B), the conditional eval-

uation of X given B ∈ P. The following two examples illustrate the notion of conditional

evaluation under two commonly used updating rules and how we depart from those rules.

1.1 Learning from Ambiguous Information

In this example, nature draws, consecutively, two balls from separate urns. The agent

bets on the color of the first draw after observing the second draw. Nature draws the first

ball from urn O consisting of one white and one black ball. If nature picks the white ball,

it draws the second ball from urn W ; if nature chooses the black ball, it draws the second

ball from urn B. Urns W and B contain 12 balls, each either green or red. Urn W contains

at least 4 red and at least 2 green balls while urn B contains least 4 green and at least 2

red balls. The decision maker observes the draw from the second urn (red or green) and,

conditional on that draw, evaluates the random variable X that yields 1 in case nature’s

first draw was white, and 0 otherwise.

Assume the agent translates the description of urn W into the following set of priors:

the probability of a red draw from urn W is in the interval [1/3, 5/6] and the probability

of a red draw from urn R is in the interval [1/6, 2/3]; urn O translates to a unique prior of

.5 for a white or black ball. The agent is ambiguity averse and uses the maxmin criterion

to evaluate random variables. Thus, before observing nature’s second draw, the value of

X is 1/2.
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One commonly used updating rule is prior-by-prior updating. Pires (2002) provides

an axiomatization of this rule in the Anscombe-Aumann setting. With this rule, the agent

updates every prior according to Bayes’ rule and then applies the maxmin criterion to

the set of updated priors. If p, q are the probabilities of a red draw from urns W and R

respectively, then the posterior probability of W given a red draw is p
p+q and the probability

of W given a green draw is 1−p
2−p−q . Thus, the set of posteriors is

Pr(W |r) ∈ [1/3, 5/8]

Pr(W |g) ∈ [1/6, 2/3]

With the maxmin criterion applied to the set of updated beliefs, the bet is worth 1/3 after

observing red and 1/6 after observing green, both less the ex ante value. Thus, if a maxmin

agent updates prior-by-prior, then all news is bad news. Following a red draw, the agent

evaluates X as if urn W has 4 red balls and 8 green balls and urn R has of 2 red balls and

10 green balls. Following a green draw, the agent evaluates X as if urn W consisted of 2

green balls and 10 red balls while urn R consisted of 8 green balls and 4 red balls.3

Intuitively, one might expect that despite the ambiguity, a red draw constitutes good

news about X while a green draw is bad news. This is indeed what happens with our

updating rule. When updating, our agents create proxy urns R∗ and W ∗ that render the

information (red or green) unambiguous. In this example, the proxy urn W ∗ has 7 green

balls and 5 red balls while W ∗ has 7 green balls and 5 red balls. Conditional on observing

a red draw, the value of X is then 7/12 and conditional on a green draw the value of X is

5/12. In Theorem 1, below, we provide a characterization of this proxy rule.

A second commonly used rule is the Dempster-Shafer rule (Dempster 1967, Shafer

1978). To illustrate it, consider the following modified version of the example above. As

above, nature first draws a ball from urn O that consists of one white and one black ball.

If the ball is white, nature draws a second ball from urn W̄ ; if the ball is black, nature

draws a second ball from urn B̄. Urn W̄ contains 4 red or green balls, at least 1 is red,

at least 1 is green. Urn B̄ contains 2 red balls and 2 green balls. As above, the decision

3 In this example, the set of updated beliefs conditional on any cell in the information partition is
a superset of the set of priors. Seidenfeld and Wassermann (1993) observe this feature of prior-by-prior
updating and call it dilation. Their paper characterizes when it occurs.
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maker observes the draw from the second urn (red or green) and, conditional on that draw,

evaluates the random variable X that yields 1 in case nature’s first draw was white, and 0

otherwise.

Assume the agent translates the description of urn W̄ into the following set of priors:

the probability of a red draw from urn W̄ is in the interval [1/4, 3/4]; urns O and B̄ each

correspond to a unique prior of 1/2. As above, the ex ante value of the X is 1/2.

According to the Dempster-Shafer rule, the agent picks a “maximum likelihood” urn

consistent with the description of urn W̄ that generates a particular draw. Thus, upon

observing a red ball, the agent updates as if the urn W̄ consists of 3 red balls and 1 green

ball. Thus, p(W |r) = 3/5. Similarly, upon observing a green ball, the agent updates as

if urn W̄ consists of 3 red balls and 1 green ball. Thus, p(W |g) = 3/5. In this case,

irrespective of the draw, the agent’s value of the random variable X increases above its ex

ante value.

Intuitively, one might expect that observing a red or green draw provides no infor-

mation about X. While the two urns differ, the two colors play a symmetric role in both

and, as a result, it seems plausible that the agent leaves her valuation of X unchanged

after observing either color. Again, this is what happens with our updating rule. More

specifically, in the above example, an agent following our proposed rule would use the

proxy urn W̄ ∗ consisting of 2 red balls and 2 green balls. Urn B̄ would stay unchanged

and, therefore, the color draw provides no information about the value of X.

1.2 Evaluations and Proxy Updating

Our starting point is an evaluation that is characterized as a Choquet integral with

respect to a totally monotone capacity. Our updating formula can be described as fol-

lows: first, we associate a proxy evaluation, EP , with every evaluation E and information

partition P. The proxy evaluation EP is similar to E but has less ambiguity than E; in

particular, every element of the information partition is EP -unambiguous. In the examples

above, the proxy evaluation is the expectation of the random variable if the urns we called

proxy urns are substituted for the original urns.

Once a decision maker learns B ∈ P, B becomes unambiguous. Hence, we assume that

the conditional evaluations of E are the same as the corresponding conditional evaluations
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of EP . To put it another way, since every element of P is EP -unambiguous, we compute

the conditionals of EP easily by applying Bayes’ Law. Then, we define E(· |B) by setting

it equal to EP(· |B).

For every totally monotone capacity π, there is a probability µ on the set of all

nonempty subsets of S such that

π(A) =
∑
∅6=B⊂A

µ(B)

This function µ is called the Möbius transform of π. The proxy capacity πP of the original

capacity, π, is defined as follows:

µP(A) =
∑
B∈P

∑
{C:B∩C=A}

|A|
|C|
· µ(C)

πP(A) =
∑
C⊂A

µP(C)

π(A |B) =
πP(A ∩B)

πP(B)

(1)

The first equation defines how the agent forms her proxy. When she conditions on an

event B and this event is ambiguous, she modifies the capacity to ensure B becomes

unambiguous. To do so, she adjusts the weight of any set A = B ∩ C in the Möbius

transform of the proxy. In particular, she distributes the weight of C to A in proportion

to the number of elements A shares with C. In section 3, we offer a characterization of

our updating rule and proxy mapping and establish the validity of the updating formula

above.

As we show in Corollary 2 below, we can also describe the proxy rule as a modified

prior-by-prior update. The Choquet integral of a random variable with respect to a totally

monotone capacity can equivalently be written as the expected value of that random

variable with respect to the least favorable prior in the core of the capacity.4 The naive

prior-by-prior revision rule simply updates every prior in the core of the capacity and uses

the least favorable updated prior for the conditional evaluation. Our proxy rule selects a

4 The core of the capacity consists of all probabilities that assign to each event a value at least as large
as the capacity.
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subset of priors, updates each prior in the subset and then uses the least favorable prior.

The subset depends on the information structure in the following way: Let ρπ be the

Shapley value of the totally monotone capacity π. Hence, ρπ is an element of the core

of π. Then, the subset of priors used for updating are those that agree with ρπ on every

element of the information partition.

1.3 Preview of Results

Section 2 provides axioms that ensure that the simple evaluation is a Choquet integral

with a totally monotone capacity. In section 3, we derive our updating rule from a set of

requirements that facilitate a comparison to the standard Bayesian model. In particular,

we impose a weak version of the Law of Iterated Expectation which we call the “not all news

can be bad news” property: if E(X |B) ≤ E(X) for all E-nonnull B ∈ P, then EP(X) :=

E(E(X | P)) = E(X). The interpretation of this property is as follows: conditioning

reduces ambiguity and because of this reduction, all news can be good news. However,

reduction of uncertainty cannot be uniformly bad. Section 5 applies our updating rule to

a standard inference problem enriched by the presence of ambiguity. Section 4 establishes

properties of conditional and compound evaluations and compares proxy updating to other

rules.

In sections 3-5, we assume that the information that agents receive is a partition on the

“payoff relevant” state space; that is, on the domain of the random variables in question.

Hence, we have analyzed compound evaluations EP given some partition P. In section 6,

we allow for a more general information structures that may not be of a partition form.

Thus, agents receive signals that may affect the likelihood of states without necessarily

ruling them out. This more general informational set up yields generalized compound

evaluations which are better suited for situations in which information is subjective and

unobservable to the analyst.

In Theorem 2, we show that every generalized compound evaluation is as a maxmin

evaluation for some set of priors; in Theorem 3 we show that every maxmin evaluation can

be approximated arbitrary closely by some generalized compound evaluation. Hence, our

model provides an interpretation of maxmin expected utility as Choquet expected utility

with information aquisition.
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1.4 Related Literature

As is typical for ambiguity models, our theory does not satisfy the law of iterated ex-

pectations; that is, E(X) need not equal E(E(X|P)). Epstein and Schneider (2003) ensure

that the law of iterated expectations is satisfied by restricting to conditioning events.5 In

contrast to Epstein and Schneider (2003), we consider all conditioning events. Restricting

the possible conditioning events renders ambiguity theory incapable of analyzing problems

in which decision makers choose or affect their information as is the case in recent mod-

els of costly information processing, persuasion, and in many other traditional models in

information economics.

Siniscalchi (2011) interprets the difference between E(X) and E(E(X|P) as the result

of changing preferences; the former expression represents the ex ante evaluation while

E(X|B) represents the second period’s valuation if event B occurs. Siniscalchi’s agent

faces a problem analogous to Strotz’ (1955) sophisticated agent and, following Strotz,

solves it with consistent planning. As a result, Siniscalchi’s agents may seek commitment.

Hanany and Klibanoff (2009) posit a non-recursive updating rule. As in Siniscalchi (2011),

the way the random variable evolves does not affect its ex ante value but, in contrast to

Siniscalchi (2011), the conditional value E(X|B) changes according to the ex ante optimal

plan. Thus, Hanany and Klibanoff (2009) give up recursivity and enforce equality of

E(X) and E(E(X| P). By contrast, we follow Kreps and Porteus (1978) and attribute

the difference between E(X) and E(E(X|P)) to differences in the timing of resolution of

uncertainty.6 As a result, ambiguity does not generate a preference for commitment in our

model.

The two standard updating rules under ambiguity are prior-by-prior updating and

the Dempster-Shafer rule. The latter was introduced by Dempster (1967) and Shafer

(1976) and axiomatized by Gilboa and Schmeidler (1993). The former was analyzed by

Wasserman and Kadane (1990), Jaffray (1992) and axiomatized by Pires (2002).

5 Specifically, Epstein and Schneider (2003) restrict attention to event partitions that ensure that the
priors of for the maxmin expectation satisfy a rectangularity condition.

6 Note, however, that in our model the resolution of uncertainty only affects the agent’s evaluation if he
is not an expected value maximizer while Kreps and Porteus (1978) consider expected utility maximizers
who care about the manner in which uncertainty resolves.
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2. Evaluations

Let S = {1, 2, . . .} be the set of all states. Any (finite) subset of S is a (finite) event;

the letters A,B,C,D denote generic events; P,Q denote generic partitions of S. A random

variable is a function from S to the set of non-negative real numbers. We let X,Y and

Z denote generic random variables. For any A and random variable X, we write XA to

denote the random variable Y such that Y (s) = X(s) for s ∈ A and Y (s) = 0 otherwise.

We identify a constant random variable X with the corresponding constant x; thus 1A

describes the random variable with value 1 if s ∈ A and 0 otherwise. The restriction to

positive random variables is for convenience. Allowing for random variables that take on

negative values complicates the notation but creates no novel issues.

Our primitive is a function E that assigns a non-negative real number to each random

variable. A random variable Y is E-null if E(X + Y ) = E(X); Y is E-unambiguous if

E(X + Y ) = E(X) +E(Y ) for all X. An event A is E-null if XA is null for all X. We say

that A is a support for E if E(X) = E(XA) for all X. An event A is E-unambiguous if

E(XA) + E(XAc) = E(X) for all X.

Our random variables can be interpreted as the values of a cardinal utility index; the

evaluation of these random variables can be interpreted as the overall utility of the corre-

sponding act. By now, the axioms needed to derive the utility index for maxmin/Choquet

expected utility theory are well-understood. Once the utility index is at hand, translating

our assumptions on the evaluation operator to preference statements is straightforward.

We will impose three properties on E and call the functions that satisfy these properties

simple evaluations. Our first assumption is finiteness and normalization:

P1: E has a finite support and E(1) = 1.

The existence of a finite support facilitates a simpler treatment. The requirement

E(1) = 1 is a normalization. We call the next property the Lebesgue property since it is

related to the definition of the Lebesgue integral. This property plays the same role here as

does comonotonic independence in Choquet expected utility theory and is closely related

to a property called put-call parity in Cerreia-Vioglio, Maccheroni, Marinacci (2015).

P2: E(X) = E(min{X, γ}) + E(max{X − γ, 0}) for all γ ≥ 0.
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Property 3 is superhedging. It is stronger than of uncertainty aversion and ensures

that the capacity associated with the Choquet-integral representation of the evaluation is

a totally monotone capacity. Given any collection of random variable X = (X1, . . . , Xn),

α ≥ 0 and A ⊂ S, Kα(X , A) = |{i |Xi(s) ≥ α for all s ∈ A}|. We say that the collection

of random variables X = (X1, . . . , Xn) set-wise dominates the collection Y = (Y1, . . . , Yn)

if Kα(X , A) ≥ Kα(Y, A) for all α,A.

P3: (X1, . . . , Xn) set-wise dominates (Y1, . . . , Yn) implies
∑
iE(Xi) ≥

∑
iE(Yi).

We let E, Ẽ and Ê denote generic simple evaluations. A (simple) capacity is a function

π : 2S → [0, 1] such that (i) π(∅) = 0, (ii) there exist a finite D such that π(D) = 1 and

π(A) = π(A∩D) for all A. (iii) π(A) ≤ π(B) whenever A ⊂ B. Let Sπ denote the minimal

support of the capacity π. We say that µ : 2Sπ → IR is the Möbius transform if

π(A) =
∑
B⊂A

µ(B)

A simple, inductive argument establishes that every capacity has a unique Möbius trans-

form µπ. The capacity π is totally monotone if µπ(A) ≥ 0 for all A ⊂ Sπ. Totally

monotonicity implies supermodularity; that is,

π(A ∪B) + π(A ∩B) ≥ π(A) + π(B)

for all A ∈ 2S .

For any random variable X and capacity π, define the Choquet integral of X with

respect to the capacity π as follows: let α1 > · · · > αn be all of the nonzero values that X

takes and set αn+1 = 0. Then∫
fdπ :=

n∑
i=1

(αi − αi+1)π({s |X(s) ≥ αi})

Proposition 1 below establishes that every simple evaluation has a Choquet integral repre-

sentation with a totally monotone capacity. It is clear that the capacity π in the integral

representation of E is unique and hence, we call this π the capacity of E.

Proposition 1: E is a simple evaluation if and only if there is totally monotone simple

capacity π such that E(X) =
∫
Xdπ for all X.
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Proof: See Appendix

The set D is a support for π if π(D∩A) = π(A) for all B. Note that a set is a support

for E if and only if it is a support for E’s capacity. Every capacity and hence every simple

evaluation has a (unique) minimal support; that is, a support that is contained in every

other support. We let SE = Sπ denote this support. We call the set SX = {s |X(s) > 0},

the support of X. Let E denote the set of all simple evaluations and let Eo ⊂ E denote the

subset of simple evaluations that have a probability as their capacity. Hence, the elements

of Eo are expectations.

3. Updating

A two-stage random variable is a pair (X,P) such that X is a random variable and

P is a finite partition. Let EP(X) denote the evaluation of the two stage random variable

(X,P). The main object of interest for our analysis is the notion of an updating rule: for any

E and E-nonnull event B, let E(· |B) denote the conditional of E given B. This conditional

is itself a simple evaluation. Hence, an updating rule maps every simple evaluation E and

E-nonnull B to a simple evaluation with support contained in B. If B is E-null, we let

E(· |B) be unspecified. For every X and finite partition P of S, let E(X | P) denote the

random variable Y such that Y (s) = E(X |B) whenever s ∈ B and B is E-nonnull. The

agent evaluates the two stage random variable (X,P) by iterated expectation; that is,

EP(X) = E(E(X | P))

Note that we do not define Y at s ∈ B ∈ P if B is E-null. We are able to avoid specifying

E(· |B) for E-null B because E(· |B) is multiplied by 0 when computing E(E(X | P)).

We interpret our updating rule as a two-stage procedure. In the first stage, the

agent forms a proxy of the original capacity that renders information cells unambiguous.

Then, she updates the proxy according to Bayes’ rule. Let π be the capacity of a simple

evaluation E and let µπ be the corresponding Möbius transform. The proxy depends on

the information partition P; accordingly, we write πP and µPπ for π’s proxy capacity and
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its Möbius transform. Equation (6), below, defines the Möbius transform of the proxy: for

all events A,

µPπ (A) =
∑
B∈P

∑
{D:D∩B=A}

|A|
|D|
· µπ(D) (6)

The proxy capacity, πP , is then πP(A) =
∑
C⊂A µ

P
π (C). We refer to the evaluation

corresponding to πP as the proxy evaluation EP , that is, EP(X) =
∫
XdπP . If π is a

probability, then µ(A) = 0 for all non-singleton events, and therefore, the proxy coincides

with the original capacity. More generally, the proxy and the original capacity coincide

whenever every B ∈ P is E−unambiguous. This follows from the fact that there can be no

set C that intersects both B and its complement such that µπ(C) > 0 if B is unambiguous.

(For a proof of this assertion, see Fact 1 in the appendix.) Equation (6) then implies that

µPπ = µπ. Conversely, by equation (6), µPπ (A) > 0 implies A ⊂ B for some B ∈ P. Thus,

the Möbius transform of µPπ assigns zero weight to any event that intersects more than

one information set. Fact 1 in the appendix shows that this, in turn, implies that every

element of the information partition is EP -unambiguous.

Given the proxy capacity πP , the agent updates according to Bayes’ rule:

π(A |B) :=
πP(A ∩B)

πP(B)
(7)

Note that π(· |B) does not depend on the information partition P as long as B ∈ P. This

follows from the fact that πP(A) = πP
′
(A) for all A ⊂ B ∈ P ∩ P ′.

Let π be the capacity of E. We say that the conditional evaluation E(· |B) is the

proxy update of E if

E(X |B) =

∫
Xdπ(·|B)

where π(·|B) is as defined in equations (6) and (7).

To derive the proxy rule, we impose 4 conditions on the conditional evaluation. The

first condition considers the simple class of evaluations for which there is some finite set

D such that E(X) = mins∈DX(s) for all random variables X. We call those elementary

evaluations. Their capacity has the form

π(A) =
{

1 if D ⊂ A
0 otherwise.
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We write πD for an elementary capacity with set D and ED for the corresponding evalua-

tion. Our first property specifies the conditional elementary evaluations:

C1: If B is E-nonnull, then E(· |B) = E(· |B ∩ SE); in particular, ED(· |B) = ED∩B .

The first part asserts that only the part of the conditioning event contained in the

support of E matters. The second part states that the conditioning an elementary eval-

uation with support D yields an elementary evaluation with support D intersection the

conditioning event. Property C1 is uncontroversial: it is satisfied by all updating rules in-

cluding Bayesian updating of probabilities, prior-by-prior updating and Dempster-Shafer

updating.

Our second property, C2, asserts that if E0 is in a mixture of E1 and E2, then the

conditional of E0 must also be a mixture of the conditionals of E1 and E2. C2 ensures that

the support of the conditional of a mixture of two evaluations is the same as the union of

the supports of the conditionals of the two individual evaluations.

It is difficult to interpret C2 as a behavioral condition because it relates the condi-

tionals of two evaluations to the conditionals of a third one. Nevertheless, it is a simple

and easily interpretable condition that is satisfied by Bayesian Law (i.e., when calculation

conditional expectations), by prior-by-prior updating and by Dempster-Shafer updating.

C2: Let E0 = λE1 + (1− λ)E2 for λ ∈ (0, 1) and let B be E1-nonnull. Then, E0(·|B) =

αE1(·|B) + (1− α)E2(·|B) for some α ∈ (0, 1]; α < 1 if and only if B is E2-nonnull.

The third property, symmetry, says that the updating rule is neutral with respect to

labeling of the states. Let h : S → S be a bijection. We write X ◦ h for the random

variable Y such that Y (s) = X(h(s)) and h(A) for the event A′ = {h(s) : s ∈ A}. For any

evaluation E, let SE denote the support of the capacity π of E.

C3, like C1 and C2 is unobjectionable and satisfied by all known updating rules.

Nevertheless, providing a version of our updating rule that does not impose C3 is not

difficult.

C3: If E(X ◦ h) = E(X) for all X, then E(X ◦ h |h(B)) = E(X |B).

Our final property is weak dynamic consistency. This property is what enables us to

distinguish our model from prior-by-prior updating and Dempster-Shafer updating since
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the latter two models do not satisfy it. Weak dynamic consistency reflects the view that

gradual resolution of uncertainty reduces ambiguity and, therefore, cannot render the

compound evaluation uniformly worse. To put it differently, not all news can be bad news.

C4: If E(X|B) ≤ c for all E-nonnull B ∈ P, then E(X) ≤ c.

Theorem 1: The conditional evaluation satisfies C1-C4 if and only if it is the proxy

update.

Proof: See Appendix.

Proxy updating is related to the Shapley values. Specifically, it can be interpreted as

the ratio of Shapley values of appropriately defined games. For any capacity π, let ρπ(s)

denote the Shapley value of s in the “game” π.7 Without risk of confusion, we identify ρπ

with its additive extension to the power set of S; that is ρπ(A) = 0 whenever A ∩ Sπ = ∅,

ρπ(A) =
∑
s∈A∩Sπ ρ(s) otherwise.

Let ρDπ (s) denote the Shapley value of s in the game πD where πD(A) = π(A ∩ D)

for all A. Again, identify ρDπ with its additive extension to the set of all subsets of S.

Corollary 2 shows that the updated capacity is the ratio of Shapley values:

Corollary 1: For any nonnull B ∈ P and D := A ∪Bc,

π(A |B) =
ρDπ (A ∩B)

ρπ(B)

Next, we show that proxy updates can be interpreted as a modified prior-by-prior

rule. First, note that we can represent any simple evaluation E as a maxmin evaluation

7 Let Θ denote the set of all permutations of Sπ . Hence, Θ is the set of all bijections from Sπ to the set
{1, . . . , |Sπ |} where |A| denote the cardinality of any set A. Then, for any θ ∈ Θ, let θs = {ŝ ∈ Sπ | θ(ŝ) ≤
θ(s)}. The Shapley value of s is defined as follows:

ρπ(s) =
1

|Θ|

∑
θ∈Θ

[π(θs)− π(θs\{s})]
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for a particular set of priors. Let ∆(π) := {p | p(A) ≥ π(A) for all A} be the core of E’s

capacity π and define

Em(X) = min
p∈∆(π)

∫
Xdp

Since a totally monotone capacity is supermodular, it follows (Schmeidler (1989)) that

E(X) = Em(X) for all X. For example, consider the elementary evaluation ED with

D = {1, 2, 3}. In that case, the core of ED’s capacity is the set of all probabilities on D.

A frequently used rule updates every prior in the core of the capacity and uses the least

favorable updated prior for the conditional evaluation. As we noted in the introduction,

this rule may lead to implausible behavior, in particular, to instances in which all news

is bad news. Proxy updating resolves these issues by restricting the set of priors used

for updating. For the three state example, consider the following information partition:

{{1, 2}, {3}}. If the agent learns that the state is 1 or 2 she considers the subset of priors

that assign probability 2/3 to the event {1, 2} and updates each. She then evaluates random

variables conditional on {1, 2} with the least favorable among those updated priors.

More generally, recall that ρπ is the Shapley value of π and let

∆∗(π) = {p ∈ ∆(π) | p(B) = ρπ(B) for all B ∈ P}

The set of priors ∆∗(π) is the subset of ∆(π) such that each prior assigns ρπ(B) to every

cell B of the information partition. As we noted above, our model draws a distinction

between the agents ex ante and ex post perceptions of ambiguity. Once an information

cell is revealed, it is no longer deemed ambiguous and the agent uses the Shapley value ρπ

to judge its likelihood. For updating purposes, she restricts the set of priors to those that

agree with the Shapley value on elements of the information partition. Corollary 2 shows

that proxy updating is equivalent to this modified prior-by-prior rule:

Corollary 2: If E(·|B) is the proxy update of the simple evaluation E then

E(· |B) = min
p∈∆∗(π)

1

p(B)

∫
XBdp

for any nonnull B ∈ P.
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4. Properties of Proxy Updating

We consider four properties for compound evaluations and discuss three distinct mod-

els of updating within the context of these properties. The first property is sometimes

called consequentialism; it requires that the value of a random variable X conditional on

an event B depend only on the value X takes on B:

E(X |B) = E(XB |B) for all E-nonnull B and X (c)

Proxy updates satisfy consequentialism since π(· |B) has support contained in B. The

second property is recursivity:

EP(X) = E(E(X | P)) for all X (r)

Recursivity means that the compound evaluation is computed by rollback (i.e., backward

induction). Our compound evaluations satisfy recursivity by definition; that is, we defined

the compound evaluation EP recursively. The third property is indifference to timing:

EP(X) = E(X) for all X (it)

Under updating by proxy, compound evaluations, in general, do not satisfy indifference to

timing. This is the property that we have abandoned to avoid well-known impossibility

results on updating under ambiguity.

In the literature, the terms dynamic consistency and recursivity are used in conflicting

and overlapping ways. A complete catalogue of the various definitions of these terms and

the relationships among these definitions is not feasible. Much of the discussion of dynamic

consistency (or inconsistency) does not consider the possibility of relaxing indifference to

timing. We will refer to the conjunction of recursivity and indifference to timing as dynamic

consistency or, equivalently, the law of iterated expectation:

E(X) = EP(X) = E(E(X | P)) for all X,P (lie)

The notion of dynamic consistency above is stronger than the corresponding desirata in

Epstein and Schneider (2003) who only impose it for some fixed P. Siniscalchi (2011)
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abandons the law of iterative expectation and assumes that the difference between the

ex ante evaluation and the two-stage evaluation (i.e., E(X) 6= E(E(X | P))) leads to a

preference for commitment. In general, no model of updating under ambiguity satisfies

dynamic consistency.

Our compound evaluations satisfy consequentialism and recursivity; they do not sat-

isfy indifference to timing or the law of iterated expectation. Instead, we have imposed,

(C2), weak dynamic consistency a equivalently “not all news can be bad news” property:

E(X|B) ≤ α for all B ∈ P implies E(X) ≤ α (wdc)

While weak dynamic consistency rules out the possibility that all news is bad news, it

allows for the possibility that all news might be good news. The example below illustrates

why ambiguity can lead to situations in which every realization of a signal provides good

news about a random variable. Consider the following Ellsberg-type experiment: a ball is

drawn from an urn consisting of blue and green balls of unknown proportion and a fair coin

is flipped. The random variable X yields 1 if the coin comes up heads and the ball is blue;

or if the coin comes up tails and the ball is green. The state space is S = {hb, hg, tb, tg}.

Let B = {hb, tb}, G = {hg, tg}, T = {tb, tg}, H = {hb, hg}. The evaluation considers draws

from the urn to be ambiguous but flips of a coin to be unambiguous. For example, assume

that E(1B) = E(1G) = E(X) = 1/4 and E(1T ) = E(1H) = 1/2. Consider the information

partition P = {B,G}. In that case, conditional in each possible cell of the partition, the

random variable X presents the agent with a coin toss; heads wins if the signal is B, and

tails wins if the signal is G. Updating by proxy implies that the value of X conditional

on either realization is 1/2, greater than the original 1/4. Note that the “all news is good

news” feature in this example follows immediately from a standard assumption implicit in

the Anscombe-Aumann model: if an objective randomization occurs after the ambiguous

draw is realized, then it serves as a hedge. By contrast, no such hedging occurs if the

sequence is reversed or remains unspecified, as in the original situation.

The best-known updating rules for ambiguity models are prior-by-prior updating for

maxmin expected utility and the Dempster-Shafer (DS) for totally monotone capacities.

To facilitate comparisons between these two alternatives and the current theory, first we
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will define the simple evaluation rules associated with these models and then specify the

compound evaluations implied by the corresponding updating rules.

For any set of prior ∆ and non-null event B, let ∆B = {p(· |B) | p ∈ ∆ and p(B) > 0}

be the set of updated priors conditional on B where p(· |B) is the conditional of p given

B. Given a simple evaluation E and E-nonnull set B, the prior-by-prior updating rule is

yields the conditional evaluation Em(· |B) such that

Em(X |B) = min
p∈[∆(π)]B

∫
Xdp

A simple evaluation, E, together with the prior-by-prior updating rule yields the following

compound evaluation

EmP (X) = E(Em(X | P))

where Em(X | P) is the random variable that yields Em(X |B) at any state s ∈ B.

Dempster-Shafer theory provides an alternative updating rule for totally monotone

capacities. The DS-updating formula is as follows: for any E with capacity π and E-

nonnull B, define the conditional capacity πds(· |B) as follows:

πds(A |B) =
π(A ∪Bc)− π(Bc)

1− π(Bc)
(8)

Then, Eds(X |B) =
∫
Xdπds(· |B) is the conditional evaluation for the Dempster-Shafer

rule. The corresponding compound evaluation is

EdsP (X) = E(Eds(X |P))

As the example in the introduction shows, prior-by-prior updating does not satisfy

weak dynamic consistency. The same is true for the Dempster-Shafer rule. As an example,

consider the state space S = {1, 2, 3, 4} and assume that {1}, {4} are unambiguous with

π({1} = π({4}) = 1/4. By contrast, 2 and 3 are ambiguous with π({2}) = π({3}) = 0

and π({2, 3}) = 1/2.8 Let P = {{1, 2}, {3, 4}} and consider the random variable X yields

8 Additivity holds for all other sets, that is, π({1, 2}) = 1/4 = π({3, 4}) and π({1, 2, 4}) = 1/2 =
π({1, 3, 4}).
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1 if s ∈ {1, 4} and 0 otherwise: then E(X) = 1/2 > Eds(X|B) = 1/3 for both cells in the

information partition.

Epstein and Schneider (2003) identify a necessary and sufficient condition (rectan-

gularity) on P that ensures that the law of iterated expectation is satisfied for maxmin

compound evaluations with prior-by-prior updating. The proposition below shows that

the same condition, applied to our setting, is also necessary and sufficient for compound

evaluations with updating by proxy and for the Dempster-Shafer rule. We replace Epstein

and Schneider’s rectangularity condition with a new condition that is easier to interpret

in our setting. We say that the partition P = {B1, . . . , Bn} is π-extreme if, for all i,

either (i) Bi is unambiguous or (ii) µπ(A) · µπ(C) > 0 and A ∩ Bi 6= ∅ 6= C ∩ Bi imply

A = C. Thus, a partition is π-extreme if each of its elements, Bi, is either unambiguous

or totally ambiguous in the sense that there is a unique positive probability element of

the Möbius transform of π that intersects Bi and this element contains all nonnull states

of Bi. Proposition 4, below, shows that π−extremeness is necessary and sufficient for the

law of iterated expectation under any of the three updating rules.

Proposition 4: Let π be the capacity of the simple evaluation E and let P be a partition.

Then, the following statements are equivalent: (i) EP(X) = E(X) for all X, (ii) EmP (X) =

E(X) for all X, (iii) EdsP (X) = E(X) for all X, (iv) P is π-extreme.

As Proposition 4 shows, when conditioning on ambiguous information, only the most

trivial form of ambiguity is consistent with the law of iterated expectation. In particular,

there must either be no ambiguity or complete ambiguity within each cell of the information

partition. Moreover, all three rules are equivalent when it comes to their adherence to the

law of iterated expectation.

Our setting is less general than the setting of Epstein and Schneider (2003) because

we restrict the sets of probabilities to be the core of a totally monotone capacity. Thus, the

recursive prior-by-prior model and Epstein and Schneider’s (2003) rectangularity condition

apply to a broader class of models than the other two rules and π-extremeness.
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5. Proxy Updating and Inference: An Example

In this section, we apply proxy updating to a standard inference problem. Let T :=

{0, 1}n be sequences of possible signal realizations and let Θ = {θ1, θ2}, 0 < θ1 < 1/2 <

θ2 < 1 be the possible values of the parameter. The state space is Sn = Θ× T .

The decision maker observes a sequence of signals y = (y1, . . . , yn) ∈ T and draws

inferences about the parameter θ ∈ Θ. Specifically, the decision maker’s goal is to evaluate

the random variable X such that X(s) = 1 if s ∈ {θ1}×T and 0 otherwise. The information

partition P is induces by the signal; that is, P = {Θ× {y} | y ∈ T}. Let #y =
∑n
i=1 yi.

The decision maker’s simple evaluation has capacity π. For this capacity, the param-

eters are unambiguous: π({θi} × T ) = pi and p1 + p2 = 1; if A ⊂ {θ1} × T , B ⊂ {θ2} × T ,

then π(A ∪ B) = π(A) + π(B). However, there is ambiguity about the signal: if A is a

strict subset of {θ1} × T , A 6= {θ1} × T , then

π(A) = (1− ε)pi
∑

(θi,y)∈A

θ#y
i (1− θi)n−#y

If ε = 0, then this capacity corresponds to the standard setting in which the yi’s follow

a Bernoulli distribution with parameter θi. If ε > 0, then the signal is ambiguous. This

example describes an agent who believes that with probability 1 − ε a familiar Bernoulli

source generates the signals and with probability ε the signal is maximally ambiguous.

Let E(X|y) be the conditional evaluation of X given y ∈ {0, 1}n. It is straightforward

to verify that E(X|y) = E(X|y′) when #y = #y′. Consider a sequence of the above

inference problems indexed by the number of signals n. Let ri := ln(1/2)−ln θi
ln(1−θi)−ln θi

. The

following proposition characterizes the limit of this evaluation as n→∞.

Proposition 5: Assume 0 < ε < 1 and α := limn→∞#y/n. Then,

limE(X | y) =

{
0 if α1 < r1

p1 if r1 < α < r2

1 otherwise.

To illustrate the result in Proposition 5, assume that θ1 = 1/3, θ2 = 2/3. If ε = 0,

then, limE(X | y) = 0 for α < 1/2 and limE(X | y) = 1 for α > 1/2. By contrast, if ε > 0,

then

limE(X | y) =

{
0 if α < .42
p1 if .42 < α < .58
1 otherwise.
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Thus, the effect of ambiguity is to create a region (between .42 and .58 in the example)

where the signal is deemed uninformative.

We can compare Proposition 5 to the corresponding results for prior-by-prior updating

and the Dempster-Shafer rule. Let Em(X|y) and Eds(X|y), respectively be the conditional

evaluations with prior-by-prior and Dempster-Shafer updating. As for the proxy rule, it is

straightforward to verify that Em(X|y) and Eds(X|y) depend on y only through #y.

Proposition 6: If lim #y/n exists, then limEm(X|y) = 0 and limEds(X|y) = pi.

For large n, the Dempster-Shafer rule predicts that the agent deems the signal un-

informative irrespective of its realization. The understand the reason for this result, first

note that we can interpret the Dempster-Shafer rule as basing the conditional value of X

on the “maximum likelihood prior” among the set of priors in the core of the capacity. For

large n, the maximum likelihood prior is the one that, conditional on either value of the

parameter, places an ε mass on the realized sequence. It is easy to see that - for that prior

- the signal is uninformative when n is large.

The prior-by-prior rule chooses the worst prior among all the updated priors in the core

of the capacity. One such prior assumes that, conditional on θ2, the realized signal sequence

has probability ε while, conditional on θ1, the realized sequence has the corresponding

Bernoulli probability times 1− ε. It is straightforward to verify that - for that prior - the

updated value of X converges to zero.

In the example above, there is no prior ambiguity regarding the parameter θ; that

is, π(A ∪ B) = π(A) + π(B) for A ⊂ {θ1} × T,B ⊂ {θ2} × T . In such situations, the

proxy rule (like the Dempster-Shafer rule) yields no ambiguity regarding θ conditional on

observing the signal sequence. By contrast, with prior-by-prior updating, the posterior over

θ “inherits” ambiguity from the ambiguous signal. In the limit, the posterior ambiguity is

extreme as the set of posterior probabilities of θ1 converges to the whole interval [0, 1] for

all signal sequences.

It is straightforward to generalize the example above so that the parameter is ambigu-

ous. In that case, the conditional (proxy-)evaluation about the parameter will also exhibit

ambiguity.
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6. Revealed Preference Implications

Our agent’s evaluation of a compound random variable depends on how uncertainty

resolves. In this section, we analyze the dynamic behavior consistent with our model. The

agent evaluates random variables according to the function EP such that

EP(X) = E(E(X|P))

where E is a simple evaluation and E(·|P) is the conditional valuation defined in section

3. The goal of this section is to relate EP to standard models of choice under ambiguity.

Example: Assume S = {1, 2, 3}, state 1 is unambiguous (π({1}) = 1/3 = 1− π({2, 3})).

States 2 and 3 are ambiguous and π({2}) = π({3}) = 0. The information partition is

P = {{1, 2}, {3}}. The recursive value EP = E(E(·|P)) for this example has the following

maxmin representation: let ∆S be the set of probabilities on S and let ∆ = {p ∈ ∆S :

p1 = p2, 0 ≤ p3 ≤ 2/3}. Then, it is easy to verify that the recursive value has the following

form:

EP(X) = min
p∈∆

∫
Xdp

Note that the right-hand side of the above equation does not have a Choquet integral

representation. Thus, recursive evaluations encompass behavior that is more general than

simple evaluations. As we show in this section, the features of this example generalize:

recursive values always have a maxmin representation and, conversely, for every maxmin

evaluation there is a recursive value that approximates it.

So far, we have only considered signals that form a partition of the payoff relevant

states. This information structure is rich enough for our results on updating but it is too

sparse to capture the range of possible recursive values. Therefore, we extend information

structures to include signals that do not correspond to a partition of the payoff relevant

states.

Let the set Ω represent the possible signals. Let E be a simple evaluation on S, the

payoff relevant states, and let π be its capacity. Then, the simple evaluation Ee on S ×Ω

is an extension of E if its capacity, πe, satisfies πe(A× Ω) = π(A) for all A ⊂ S. For any
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random variable X on S, define the extended random variable Xe on S × Ω as follows:

Xe(s, ω) = X(s) for all (s, ω) ∈ S × Ω.

Note that Ω defines a partition PΩ of S × Ω:

PΩ := {S × {ω)} |ω ∈ Ω}

Let I = {S×Ω, Ee} be the information space. Then, the corresponding general compound

evaluation is defined as follows:

EI(X) := EePΩ
(Xe) = Ee(Ee(Xe | PΩ))

where Ee(Xe | PΩ) is the proxy update of the simple evaluation Ee defined above. Hence,

a general compound evaluation assigns to every random variable, X, the compound eval-

uation of its extension, Xe, to some information space I.

Theorem 2 characterizes all generalized compound evaluations:

Theorem 2: If I = {S × Ω, πe} is an information space for E, then there exists a

compact, convex set of simple probabilities ∆, each with support contained in Sπ, such

that

EI(X) = min
p∈∆

∫
Xdp

Theorem 2 shows that any generalized compound evaluation can be represented as

a maxmin evaluation on the payoff relevant states. Theorem 3 provides a converse. Any

maxmin evaluation can be approximated by a generalized compound evaluation. Let V =

{X |X(s) ≤ 1}.9

Theorem 3: For any nonempty finite Ŝ ⊂ S, compact, convex set of probabilities ∆ ⊂

∆Ŝ , and ε > 0, there is a general compound evaluation EI such that, for all X ∈ V,∣∣∣∣EI(X)−min
p∈∆

∫
Xdp

∣∣∣∣ < ε

9 The approximation result holds for any uniformly bounded set of random variables. Setting the
bound to 1, as we have done here, is without loss of generality.
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Theorems 2 and 3 provide a tight connection between our theory of updating and

maxmin evaluations. Note that simple evaluations constitute a subset of maxmin evalua-

tions - those for which the set of probabilities forms the core of a totally monotone capacity.

The behavior consistent with compound evaluations is more permissive and corresponds

to the set of all maxmin evaluations.

Alternatively, we may interpret the information structure as subjective rather than

an observable feature of the environment. In other words, the information structure may

reflect the sequence in which the agent envisages the uncertainty resolving. Under this

interpretation, two agents facing the same random variable may perceive different infor-

mation structures. Theorems 2 and 3 then characterize the observable implications of that

model.

7. Appendix

7.1 Proof of Proposition 1

Verifying that E defined by E(X) =
∫
Xdπ for some finite-support capacity satisfies

P1 and P2 straightforward is straightforward. Next, we will show that if this capacity is

totally monotone, then P3 is also satisfied.

Since π, the capacity of E, is totally monotone, it has a non-negative Möbius transform

µπ. Note that

E(Z) =
∑
B 6=∅

µπ(B) ·min
s∈B

Z(s)

for all Z. The display equation above is easy to verify using the definition of the Choquet

integral and the definition of the Möbius transform; it is also well-known (see for example

Gilboa (1994)). Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), let 0 = α0, and let α1 <

. . . < αk be values of X and Y in increasing order. Then, the display equation above yields∑
E(Xi) =

∑
i

∑
A6=∅

µπ(A) ·min
s∈A

Xi(s) =
∑
A6=∅

µπ(A)
∑
i

·min
s∈A

Xi(s)

=
∑
A6=∅

µπ(A)
k∑
j=1

Kαj (X , A) · (αj − αj−1)

≤
∑
A6=∅

µπ(A)

k∑
j=1

Kαj (Y, A) · (αj − αj−1) =
∑

E(Yi)
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as desired.

Next, we will prove that P1-P3 yield the Choquet integral representation and that the

corresponding capacity is totally monotone. First, note that E must be monotone; that

is, X(s) ≥ Y (s) for all s ∈ S implies E(X) ≥ E(Y ). This follows immediately from P3.

Define π such that π(A) = E(1A). Next, we will show that E(γA) = γπ(A). First, by P2,

E(0) = E(0) + E(0) and hence E(0) = 0 and therefore, the desired result holds if γ = 0.

Next, assume that γ > 0 is a rational number. Then γ = k
n for integers k, n > 0. Arguing

as above, by invoking P2 repeatedly, we get E(γA) = kE( 1
n · 1A) = k

nE(1A) = γE(1A).

Suppose E(γA) > γµ(A) for some irrational γ. If π(A) = 0, choose a rational δ > γ

and invoke the monotonicity and the result established for the rational case to get 0 =

E(δA) ≥ E(γA) > 0, a contradiction. Otherwise, choose δ ∈ (γ,E(γA)/π(A)) and again,

invoke the previous argument and monotonicity to get E(γA) > δπ(A) = E(δA) ≥ E(γ),

a contradiction. A symmetric argument for the E(γA) < γ cases completes the yields

another contradiction. Hence, E(γA) = γµ(A).

Then by applying the fact established in the previous paragraph and P2 and repeat-

edly, we get

E(X) =

n∑
i=1

(αi − αi+1)π({s |X(s) ≥ αi})

where αi, . . . , αn be all of the nonzero values that X and αn+1 = 0.

To conclude the proof, we will show that π is totally monotone. Let n be the cardinality

of a non-empty subset of the support of π. Without loss of generality, we identify {1, . . . , n}

with this set and let N be the set of all subsets of {1, . . . , n}. Let No (Ne) be the set of

all subsets of {1, . . . , n} that have an odd (even) number of elements.

First, consider the case where n is an even number. Let X = (1B)B∈Ne and Y =

(1B)B∈No . It is easy to verify that the cardinality of the sets X and Y are the same: 2n−1.

We will show that Kα(X , A) ≥ Kα(Y, A). Choose A ⊂ N such that k = |A| < n. Then, it

is easy to verify that for α ∈ (0, 1],

|Kα(X , A)−Kα(Y, A)| =

∣∣∣∣∣
n∑

m=k

(−1)m
(
n− k
m− k

)∣∣∣∣∣ = (1− 1)n−k = 0
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For |A| = n and α ∈ (0, 1], Kα(X , A) − Kα(Y, A) = 1 − 0 = 1. Verifying Kα(X , A) −

Kα(Y, A) = 0 in all other cases is obvious. By P3,
∑
B∈Ne E(1B) −

∑
B∈No E(1B) ≥ 0.

Recall that
∑
E(X) =

∑
A 6=∅ µπ(A) ·mins∈AX(s) for all X. Hence,

0 ≤
∑
B∈Ne

E(1B)−
∑
B∈No

E(1B) =
∑
B∈Ne

∑
A⊂B

µπ(A)−
∑
B∈No

∑
A⊂B

µπ(A)

= µπ({1, . . . , n})

Next, consider the case where n is an odd number. Let X = (1B)B∈No , Y = (1B)B∈Ne

and repeat the arguments above to establish µπ({1, . . . , n}) ≥ 0 for all odd n.

7.2 Proofs of Theorem 1, Fact 1, and Corollaries

Define Aπ = {A ⊂ S |µπ(A) 6= 0}.

Fact 1: The following conditions are equivalent: (i) B is unambiguous. (ii) Aπ(s) ⊂ B

for all s ∈ B. (iii) π(B) + π(Bc) = 1.

Proof: To prove (iii) implies (ii), let s ∈ B be such that Aπ(s)∩Bc 6= ∅. Then, there exists

A ∈ Aπ such that A∩B 6= ∅ 6= A∩Bc. It follows that π(B)+π(Bc) ≤ 1−µπ(A) < 1 as de-

sired. Next, assume (ii) holds. It is well-known that
∫
Xdπ =

∑
C∈Aπ mins∈C X(s)µπ(C).

Hence, E(X) = E(XB) + E(XBc) for all X, proving (i). Finally, if (i) holds, then

1 = E(1B) + E(1Bc) = π(B) + π(Bc) and hence (iii) follows.

In the following Lemmas, we assume that E(· | ·) satisfies C1-C4. Let πB be the

capacity of E(· |B). To prove the uniqueness part of Theorem 1, we will show that πB =

π(·|B) where π(· |B) is as defined by (6) and (7) above.

Lemma 1: Let E ∈ Eo and π be the probability of E. Then πB(A) = π(A ∩ B)/π(B)

for all A.

Proof: Let δs be the probability such that δs({s}) = 1. By the hypothesis of the lemma,

π =
∑
s∈D αsδs for some finite set D and some αs ∈ (0, 1] such that

∑
D αs = 1. If D is

a singleton, then the result follows from property C1. Thus, assume the result holds for

all D′ with cardinality k ≥ 1 and let D have cardinality k + 1. If B ∩D = D, then write

E as a convex combination of some E′ with capacity π′ =
∑k
i=1 α

′
sδs and Ê with capacity

δŝ. Then, property C2 and the inductive hypothesis imply that πB =
∑
s∈D γsδs for some
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γs ∈ (0, 1] such that
∑
s∈D γs = 1. By C4, γs ≥ αs for all s and, therefore, γs = αs as

desired. If ∅ 6= B ∩D 6= D, then again write E as a convex combination of some E′ with

capacity π′ =
∑k
s∈B∩D α

′
sδs and Ê with capacity π̂ =

∑
s∈D\B α

′
sδs. Then, the result

follows from property C2 and the inductive hypothesis.

For Lemma 2, we consider evaluations E,E1 and ED be such that E = 1
2E1 + 1

2ED.

Let π, π1 and πD respectively, be the capacities of E, E1 and ED respectively. Clearly,

π = 1
2π1 + 1

2π2. Finally, for any E-nonnull B, let πB denote the capacity of E(· |B).

Lemma 2: Let C = {s1, . . . , sk}, let π1 = 1
k

∑
s∈C δs, C ∩ D = ∅ and |D| = k. Let

P = {B1, . . . , Bk} be such that Bi ∩ C = {si} for all i ≥ 1. Then,

πBi =
|Bi ∩D|πBi∩D + δi
|Bi ∩D|+ 1

Proof: Lemma 1, C1 and C2 imply that there is ai ≥ 0 such that ai > 0 if and only if

Bi ∩D 6= ∅ and

πBi =
ai

1 + ai
πB∩D +

1

1 + ai
δi (A1)

Next, we show that
∑k
i=1 ai = k. First, assume

∑k
i=1 ai > k. Let X be the following

random variable:

X(s) =
{

1 + ai if s = si ∈ C
0 otherwise

Then, equation (A1) above implies E(X|Bi) = 1 for all i. Also, E(X) =
∑k
i=1

1+ai
2

1
k =

1
2 + 1

2k

∑k
s=1 ai > 1. Since this violates condition C4, we conclude that

∑k
i=1 ai ≤ k. Next,

assume
∑k
i=1 ai < k. Choose r > max{1 + ai | i ∈ C}. Let Y be the following random

variable:

Y (s) =
{
r − 1− ai if s = si ∈ C
r otherwise

Then, equation (A1) above implies E(Y |Bi) = r − 1 for all i. Furthermore, E(Y ) =

r −
∑k
i=1

1+ai
2

1
k = r − 1

2 −
1
2k

∑k
i=1 ai > r − 1. Again, this violates C4, and therefore, the

assertion follows.

First, consider the case in which Bi ∩ D is a singleton and each Bi has the same

cardinality. Then, C3 and equation (A1) imply πBi = a
1+aπB∩D + 1

1+aδi. Since
∑k
i=1 ai =
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k, we have a = 1. By C1, πB = πB
′

if B∩Sπ = B′∩Sπ, and, therefore, πB
′

= 1
2πB′∩D+ 1

2δi

for all B′ such that B′ ∩ Sπ = {si, s′i} for si ∈ C and s′i ∈ D.

Next, consider B1 such that |B1 ∩ D| = m and choose Bi for i = 2, . . . , k such that

Bi ∩D is either a singleton or empty. Then, by the argument above, ai = 1 if Bi ∩D is

a singleton. Moreover, by C2, ai = 0 if Bi ∩ D = ∅. Since
∑k
i=1 ai = k, it follows that

a1 = m, as desired.

Lemma 3: Let π2 = πD and let s ∈ B, s 6∈ D. If π = απ2 + (1− α)δs, then

πB =
α |B∩D||D| πB∩D + (1− α)δs

α |B∩D||D| + 1− α

Proof: Let C ⊂ S satisfy C ∩D = ∅, |C| = |D| = k, s 6∈ C and B ∩ C = ∅. Since D is a

finite set and S is countable a set C with these properties exists. Let π1 = 1
k

∑
s∈C δs. Let

π12 =
1

2
π1 +

1

2
π2

π13 = απ1 + (1− α)δs

π23 = απ2 + (1− α)δs

π0 =
α

1 + α
π1 +

α

1 + α
π2 +

1− α
1 + α

δs

Let B′ = B ∪ {s̄} for s̄ ∈ C. Lemmas 1 and 2 imply that

πB
′

12 =
|B ∩D|πB∩D + δs̄
|B ∩D|+ 1

π13(·|B) =
αkδs + δs̄
αk + 1

By C2

πB
′

0 = α1π12(·|B′) + (1− α1)δs

= α2π13(·|B′) + (1− α2)πD∩B

= γ1δs + γ2δs̄ + γ3πD∩B

for some α1, α2 ∈ (0, 1) and γi ∈ (0, 1) such that
∑
γi = 1.
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Note that {s} 6= D ∩B and let r = |D ∩B|. The first two equations then imply that

γ1 = (1−α)k/((1−α)r+α(k+1)) and γ3 = αr/(αr+α(k+1)). By C2, there is α3 ∈ (0, 1)

such that

πB
′

0 = α3π23(·|B′) + (1− α3)δs̄

= α3 (βπD∩B + (1− β)δs) + (1− α3)δs̄

which, in turn, implies that β = αr/((1− α)k + αr). Thus,

πB
′

23 = πB =
αrmD∩B + (1− α)kδs

αr + (1− α)k

as desired.

Lemma 4: Let πi = πDi for i = 1, . . . , n and let π =
∑n
i=1 αiπi, for αi ∈ (0, 1) such

that
∑n
i=1 αi = 1. Let Ai = Di ∩B and let ki = |Ai|/|Di| if |A| > 0 and ki = 0 otherwise.

If B is π−nonnull, then πB =
∑n
i=1 αikimAi/

∑n
i=1 αiki.

Proof: Let B′ = B∪{s} for some s ∈ Bc. Let π∗ = 1
2

∑n
i=1 αiπi+

1
2δs Iterative application

of C2 implies that there are wi, i = 1, . . . , n with
∑
wi > 0 such that

π∗B
′

= β0δs + (1− β0)

n∑
i=1

wi∑n
j=1 wj

mAi

= βi
αi
|Ai|
|Di|mAi + δs

αi
|Ai|
|D| + 1

+ (1− βi)
∑
j 6=i

γijmAj

for some (γij) such that
∑
j 6=i γ

i
j = 1. The second equality follows from Lemma 3 and C2.

First assume that for all i, j such that Ai 6= ∅, Ai 6= Aj . Then, straightforward algebra

implies that for j such that |Aj | > 0 (and therefore wj > 0)

wi/wj = αi
|Ai|
|Di|

/
αj
|Aj |
|Dj |

= αiki/αjkj

as desired. If Ai = Aj for some non null Ai, let I = {t : At = Ai}. Let Ak 6= Ai. Then,

for J = {t : At = Ak}, the display equation above implies that

∑
i∈I

wi/
∑
j∈J

wi =
∑
i∈I

αi
|Ai|
|Di|

/∑
j∈J

αj
|Aj |
|Dj |

which completes the proof of the lemma.
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Proof of Theorem 1: To prove the uniqueness part of the Theorem, let π be the capacity

of E , µπ be π’s Möbius transform. Since π is totally monotone, µπ(A) ≥ 0 for all A. Define

Aπ = {D ⊂ S |µπ(D) 6= 0} and note that Aπ is a finite set, that is, Aπ = {D1, . . . , Dn}.

Let αi = µ(Di). Then, π =
∑n
i=1 αiπDi . If B is π-nonull, then, by Lemma 4, for all

C ⊂ B,

πB(C) =

∑n
i=1 αi

|B∩Di|
|Di| πDi∩B∑n

i=1 αi
|B∩Di|
|Di|

=

∑n
i=1

∑
A⊂C∩B

∑
{i:Di∩B=A}

|A|
|Di|µ(Di)∑n

i=1

∑
A⊂B

∑
{i:Di∩B=A}

|A|
|Di|µ(Di)

=
πP(C ∩B)

πP(B)

= π(C |B)

where the last equality holds for any P such that B ∈ P.

To see that the proxy updating rule satisfies C1-C4, first note that C1, C2 and C3

are immediate. It remains to prove property C4. Define EP to be the evaluation with

capacity πP . Let ED be an elementary evaluation and let πD be its capacity. It is easy to

verify that ED(X) = mins∈DX(s) ≤ EPD(X). Next, consider any simple evaluation E and

let π be its capacity. As we noted above, π =
∑n
i=1 αimDi for some finite collection {Di}

and coefficients αi ≥ 0 such that
∑n
i=1 αi = 1. It is straightforward to verify that EP =∑

αiE
P
Di

. It follows that EP(X) ≥ E(X) for all X. Now EP(X) =
∑
B∈P π

P(B)E(X|B)

implies E(X|B) ≥ E(X) for some B ∈ P.

The Shapley value of i is defined as follows:

ρπ(i) =
1

|Θ|
∑
θ∈Θ

[π(θi)− π(θi\{i})]

Without risk of confusion, we identify ρπ with its additive extension to the power set of

S, that is ρπ(∅) = 0, ρπ(A) =
∑
i∈A∩Sπ ρ(i) whenever A 6= ∅. Let πP be defined as in

equation (6).

Lemma 5: (i) ρπ(B) = 0 if and only if πP(B) = 0. (ii) πP(A ∩B) · ρπ(B) = ρDπ (A ∩B) ·

πP(B) for all partitions P, B ∈ P and D = (A ∩B) ∪Bc.
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Proof: To see why (i) is true, note that the Shapley value if any s ∈ S can be expressed

in terms of the Möbius transform as follows:

ρπ(s) =
∑
A3s

µπ(A)

|A|
(A21)

Equation (A21) follows easily from the definition of the Shapley value and the definition

of the Möbius transform. Part (i) follows from equation (A21).

Each B ∈ P is EP -unambiguous and hence, by Fact 1 and equation (A21), ρπ(B) =

πP(B) for all B ∈ P. To conclude the proof of part (ii), we need to show that πP(A) =

ρDπ (A) for all A ⊂ B ∈ P. That
∑
C⊂A µ

P(C) = ρD(A) follows from the definition of the

Möbius transform and equation (A21) applied to the game πD for A ⊂ B and D = A∪Bc.

Hence, ρDπ (A ∩B) = πP(A ∩B) for all B ∈ P and all A, proving part (ii).

Proof of Corollary 2: We first prove the result for an elementary evaluation ED. Let

πD be the corresponding capacity and let ρD such that

ρD(s) =
{

1/|D| if s ∈ D
0 otherwise

be the Shapley value of πD. Recall that ∆D is the set of probabilities with support D. It is

easy to verify that ∆(πD) = ∆D and, using the definition of (πD)P , for P = {B1, . . . , Bk},

we have

∆(πPD) =

k∑
i=1

|Bi ∩D|
|D|

∆D∩Bi

= {p ∈ ∆(πD) | p(Bi) = ρD(Bi) for all i = 1, . . . , k}

Thus, the corollary follows for all elementary evaluations. Let E = αi
∑n
i=1Ei where each

Ei = EDi is an elementary evaluation and let P = {B1, . . . , Bk} and let π be the capacity

for E. Then, by the linearity of the Shapley value,

∆(π) =
n∑
j=1

αj

k∑
i=1

|Bi ∩Dj |
|Dj |

∆Dj∩Bi

= {p ∈ ∆(π) | p(Bi) =
n∑
j=1

αjρDj (Bi) = ρπ(Bi) for all i = 1, . . . , k}

and, therefore, the corollary follows.
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7.3 Proof of Propositions 3-5

Proof of Proposition 3: First, let ED be an elementary evaluation and let πD be its

capacity. It is easy to verify that ED(X) = mins∈DX(s) ≤ EPD(X). Next, consider any

simple evaluation E and let π be its capacity. As we noted above, π =
∑n
i=1 αimDi

for some finite collection {Di} and coefficients αi ≥ 0 such that
∑n
i=1 αi = 1. Since

E =
∑
αiEDi and EP =

∑
αiE

P
Di

it follows that EP(X) ≥ E(X) for all X. Now

EP(X) =
∑
B∈P π(B)E(X|B) implies E(X|B) ≥ E(X) for some B ∈ P.

Let ∆ be a nonempty, compact and convex set of probabilities with supports contained

in S. For a given information partition P = {B1, . . . , Bn}, let ∆i = {q(· |Bi) | p ∈ ∆, Bi ∈

P}. For any p ∈ ∆ and qi ∈ ∆i for i = 1, . . . , n, let p[q1, . . . , qn] =
∑
i p(Bi) · qi. Finally,

let

∆2 = {p[q1, . . . , qn] | p ∈ ∆, qi ∈ ∆Bi for all i = 1, . . . , n}

The pair (∆,P) is rectangular if ∆2 = ∆. Epstein and Schneider (2003) introduce rect-

angularity and show that E maxmin compound evaluations with prior-by-prior updating

satisfies Law of Iterated Expectation if and only if (∆,P) is rectangular. In our setting,

the formal statement of this result is as follows:

Lemma 6: (i) EmP (X) ≤ E(X) for all X. (ii) EmP (X) = E(X) for all X if and only

(∆,P) is rectangular.

Proof: Let ∆ := ∆(π). Then, it is easy the verify that EmP (X) = minp∈∆2 Xdp. Thus,

∆ = ∆2 implies EmP (X) = E(X) and, observing that ∆ ⊂ ∆2 proves (i); to prove that

EmP (X) = minp∈∆2 Xdp implies that ∆ = ∆2 let p ∈ ∆2, p 6∈ ∆. Then, there is A ⊂ S

such that p(A) < min∆ q(A) and, therefore, E(1A) > EmP (1A).

Proof of Proposition 4: We say that the partition P = {B1, . . . , Bn} is π-extreme

if for all i, either (i) Bi is unambiguous or (ii) µπ(A) · µπ(C) > 0 and A ∩ Bi 6= ∅ 6=

C ∩ Bi imply A = C. Thus, a partition is π-extreme if each of its elements, Bi, is either

unambiguous or totally ambiguous in the sense that there is a unique positive probability

element of the Möbius transform of π that intersects Bi and this element contains all

nonnull states of Bi. To prove that the Law of Iterated Expectation holds for updating
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by proxy whenever it holds for prior-by-prior updating, we will show that Law of Iterated

Expectation holds for prior-by-prior updating implies that P is π-extreme. Showing that

the latter condition implies the Law of Iterated Expectation for any of the three updating

rules is straightforward and omitted. Below, we prove the “only if” part.

Assume P is not π-extreme. Then, there exists i, A,C such that µπ(A) · µπ(C) > 0,

(A\C) ∩Bi 6= ∅, and (A ∪C) ∩Bci 6= ∅. Assume i = 1 and let Xz be such that Xz(s) = 1

for s ∈ Bc1, Xz(s) = z for s ∈ (C ∩B1) and Xz(s) = 0 otherwise.

E(Xz) =

{
[π(C ∪Bc1)− π(Bc1)]z + π(Bc1) if z < 1
π(C ∩B1)(z − 1) + π(C ∪Bc1) if z ≥ 1

(∗)

Note that π(C ∪Bc1)− π(Bc1) > 0 since µπ(C) > 0. Observe that under all three updating

rules the value of 1C conditional on B1 is less than 1. That is, E(1C |B1) < 1, Eds(1C |B1) <

1 and Em(1C |B1) < 1. This is easy to verify using the fact that (A\C) ∩ B1 6= ∅ and

µ(A) > 0. Moreover, it is straightforward to verify that E(1C |B1) > 0 and Eds(1C |B1) > 0.

If Em(1C |B1) = 0, then, for 0 ≤ z < 1, EmP (Xz) does not depend on z and, therefore, (*)

implies that EmP (Xz) 6= E(Xz) for some z ∈ (0, 1). Thus, assume that Em(1C |B1) > 0.

Let δ ∈ (0, 1) be the conditional value of 1C given B1 under one of the updating rules.

Then, the recursive value of Xz under that updating rule is{
[1− π(Bc1)](δz) + π(Bc1) if δz < 1
π(B1)(δz) + (1− π(B1)) if δz ≥ 1

Note that π(B1) + π(Bc1) < 1 since (A ∪ B) ∩ BC1 6= ∅. As a result, 1 − π(Bc1) > π(B1).

Expression (*) and the fact that δ < 1 imply that the law of iterated expectation must fail

for some z > 1.

Proof of Proposition 5: Applying the definition of πP we obtain,

πP(θi, y) = pi

(
ε

(
1

2

)n
+ (1− ε)θ#y

i (1− θi)n−#y

)
and, therefore,

E(X|y) =
εp1

(
1
2

)n
+ (1− ε)p1θ

#y
1 (1− θ1)n−#y

ε
(

1
2

)n
+ (1− ε)

(
p1θ

#y
1 (1− θ1)n−#y + p2θ

#y
2 (1− θ2)n−#y

)
=

εp1

(
1
2

)n
+ (1− ε)p1Rα(θ1)n

ε
(

1
2

)n
+ (1− ε) (p1Rα(θ1)n + p2Rα(θ2)n)
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where α = #y/n and Rα(θ) = θα(1 − θ)(1−α). Recall that θ1 < 1/2 < θ2 and consider

α ≤ 1/2. Then, Rα(θ2) < 1
2 and Rα(θ1) > (<) 1

2 if and only if α < (>) ln(1/2)−ln(θ1)
ln(1−θ1)−ln(θ1) = r1.

Similarly, if α ≥ 1/2 then Rα(θ1) < 1
2 and Rα(θ2) > (<) 1

2 if and only if α > (<)r2.

Substituting these facts and taking n→∞ then proves Proposition 5.

7.4 Proof of Theorems 2 and 3

Proof of Theorem 2: Assume that every ω ∈ Ω is nonnull; that is, πe([S × {ω}] ∪A) >

πe(A) for some A ⊂ S × Ω. This assumption is without loss of generality since we can

eliminate all null ω to obtain Ω̂ ⊂ Ω, construct the set of priors on S×Ω̂ as described below

and then extend those priors to S × Ω̂ by setting every πe(s, ω) to zero for all ω ∈ Ω\Ω̂.

For each ω ∈ Ω, let E(· |ω) be the conditional evaluation of EePΩ
conditional on {ω}.

By definition, these evaluation are totally monotone and hence supermodular. Then, there

is a convex, compact set of probabilities ∆ω on S × {ω} such that

E(Z |ω) = min
p̃ω∈∆ω

∫
Zdp

for all random variables Z on S × Ω. Identify each p̃ω ∈ ∆ω with a probability pω on S

such that pω(A) = p(A× {ω}).

Next, let π̂ be the capacity on Ω such that π̂(C) = πe(S × C). Again, since πe is

totally monotone, so is π̂ and therefore, there is a convex, compact set of probabilities ∆∗

on Ω such that

E(W ) = min
q∈∆∗

∫
Wdq

for all random variables W on Ω.

Define a convex, compact set of probability measures, ∆ on S as follows:

∆ =

{
p =

∑
ω∈Ω

q(ω) · pω

∣∣∣∣∣ q ∈ ∆∗, pω ∈ ∆ω for all ω ∈ Ω

}

Clearly, for any Ω-measurable Z on S × Ω, we have

Ee(Z) = min
q∈∆

∫
Zdq
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Hence, the first and the last display equations above yield, for any random variable X on

S,

Ee(Ee(Xe |Ω)) = min
q∈∆∗

∑
ω∈Ω

q(ω) min
pω∈∆ω

∑
s∈S

Xe(s, ω)p̃ω(s, ω)

= min
q∈∆∗

∑
ω∈Ω

q(ω) min
pω∈∆ω

∑
s∈S

X(s)pω(s)

= min
p∈∆

∑
X(s)p(s)

Hence, EI(X) = minp∈∆

∫
Xdp as desired.

Proof of Theorem 3: We will show that for any finite nonempty Ŝ and collection

of probabilities, ∆0 = {p1, . . . , pm} ⊂ ∆Ŝ such that (i) no pi is in the convex hull of the

remaining elements {p1, . . . , pi−1, pi+1, . . . , pm} and (ii) pi(s) is a rational number for every

i and s, there exists a general compound evaluation EI such that

EI(X) = min
pi∈∆0

∑
s∈Ŝ

X(s)pi(s)

This result will establish the Theorem for every polytope ∆ ⊂ ∆Ŝ with rational extreme

points. Then, continuity of the mapping (∆, X) → minp∈∆

∑
s∈Ŝ X(s)p(s) (when the set

of all closed, convex subsets of ∆Ŝ is endowed with the Hausdorff metric, V is endowed with

the Euclidian metric and the product of the two sets is endowed with the corresponding

product metric) together with the compactness of the set V and the denseness of polytopes

with rational extreme points in the set of all compact, convex subsets of ∆Ŝ will yield the

desired result.

Let ∆0 = {p1, . . . , pm} ⊂ ∆Ŝ be a set with the properties described above. Then,

there is some integer n such that pj(s) =
kj(s)
n for all i, s. We will define Ee by defining

the Möbius transform µπe of its capacity πe on S × Ω.

For all j = {1, . . . ,m}, let Fj : {1, . . . , n} → Ŝ be a function such that |F−1
j (s)| =

kj(s). Then, set Ω = ∆0 and define Aei ⊂ Ŝ × Ω as follows:

Aei = {(Fj(i), pj) | j = 1, . . . ,m}

Then, let

µπe(A
e) =

|{i |Ae = Aei}|
n
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and let Ee be the evaluation that has πe as its capacity. Next, we will define a capacity π

with support Ŝ by defining its Möbius transform µπ: let

Ai = {s | (s, ωj) ∈ Aei for some j}

Then, let µπ(A) = |{i |A=Ai}|
n . Let E be the evaluation that has π as its capacity. Clearly,

I = (S × Ω, Ee) is an information space for E.

By construction, πe(· | pj) = pj for all pj . Note also that πe(Ae) = 0 unless A contains

some Aej , which means the marginal πeΩ of πe on Ω satisfies πeΩ(C) = 0 unless C = Ω.

Hence,

EI(X) = min
pi∈∆0

∫
Xdpi

The equation above still holds when ∆0 is replaced with ∆, its convex hull.

36



References

Dempster, A. P. (1967) “Upper and Lower Probabilities Induced by a Multivalued Map-
ping.” The Annals of Mathematical Statistics, 38, 325–339.

Cerreia-Vioglio, S, F. Maccheroni and M. Marinacci, (2015) “Put-Call Parity and Market
Frictions,” Journal of Economic Theory, 157, 730-762.

Ellis, A., (2016) “Condorcet Meets Ellsberg,” Theoretical Economics, 11(3): 865–895

Ellsberg, D. (1961): “Risk, Ambiguity and the Savage Axioms,” Quarterly Journal of Eco-
nomics, 75, 643–669.

Epstein L. G. and Schneider M. 2003. “Recursive multiple-priors,” J. Econ. Theory 113:
1–31

Epstein L. G. and Schneider M. 2007. “Learning under ambiguity,” Review of Economic
Studies 74: 1275–1303

Ghirardato, P., F. Maccheroni and M. Marinacci (2004) “Differentiating Ambiguity and
Ambiguity Attitude’s Journal of Economic Theory, 118, pp. 133–173.

Gilboa, I, and D. Schmeidler (1989), “Maxmin Expected Utility with a Non-Unique Prior,”
Journal of Mathematical Economics, 18, 141–153.

Gilboa, I, and D. Schmeidler (1993), “Updating Ambiguous Beliefs,” Journal of Economic
Theory, 59, 33–49, 1993.

Gilboa, I. and D. Schmeidler (1994) “Additive representations of non-additive measures
and the Choquet integral, Annals of Operations Research, 52, 43–65.

Jaffray, J.Y. (1992), Bayesian updating and belief Functions, IEEE Transactions on Sys-
tems, Man and Cybernetics, 22, 11441152.

Klibanoff and Hanay Updating Ambiguity Averse Preferences, The B.E. Journal of Theo-
retical Economics Vol. 9, 1 (Advances), Article 37 (2009).

Kreps, D. and E. Porteus, (1978), “Temporal Resolution of Uncertainty and Dynamic
Choice Theory,” Econometrica 46, 185–200.

Pires, C. P., (2002) “A Rule for Updating Ambiguous Beliefs,”Theory and Decision 53:
137152.

Saito, K., (2015) “Preferences for Flexibility and Randomization under Uncertainty,”
American Economic Review, 105, 1246-1271.

Seidenfeld T., and L. Wasserman, (1993) “Dilations for Sets of Probabilities,” Annals of
Statistics, 21,3,1139–54.

37



Savage, L. J. (1954) The Foundations of Statistics, Wiley, New York.

Schmeidler, D. (1989) “Subjective Probability and Expected Utility without Additivity,”
Econometrica, 57, 571–587.

Shafer, G. A Mathematical Theory of Evidence, Princeton University Press, 1976.

Siniscalchi, Dynamic Choice under Ambiguity, Theoretical Economics, vol. 6 n.3, Septem-
ber 2011

Wasserman, L.A. and Kadane J. (1990), Bayes theorem for Choquet capacities, Annals of
Statistics, 18, 13281339.

38


