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Abstract

This paper develops a nonparametric model that represents how sequences of outcomes
and treatment choices are influenced by each other in a dynamic manner. In this setting,
we are interested in identifying the average outcome of individuals in each period had a
particular treatment sequence been assigned. The identification of this quantity allows us
to identify the average treatment effects (ATE’s) as well as the optimal treatment regime,
namely, the regime that maximizes the (weighted) sum of the average potential outcomes,
possibly less the cost of treatments. The main contribution of this paper is to relax
the sequential randomization assumption widely used in the biostatistics literature by
introducing a flexible choice-theoretic framework for a sequence of endogenous treatments.
We show that the parameters of interest are identified under two-way exclusion restrictions
in each period, i.e., with instruments excluded from the outcome-determining process and
other exogenous variables excluded from the treatment selection process. We also consider
partial identification in the case where the latter variables are not available.

JEL Numbers: C14, C35, C57
Keywords: Dynamic treatment effects, optimal treatment regimes, endogenous treat-
ments, binary dependent variables, average treatment effects, instrumental variables.

1 Introduction

This paper develops a nonparametric model that represents how sequences of outcomes and
treatment choices are influenced by each other in a dynamic manner. Often times, treatments
are repeatedly chosen multiple times over a horizon. Examples of sequential treatments affect-
ing outcomes are medical interventions affecting health outcomes, educational interventions
affecting academic achievements, job training programs affecting employment, or online ad-
vertisements affecting consumers’ preferences and purchase decisions. The relationship of

∗The author is very grateful to Dan Ackerberg, Xiaohong Chen and Ed Vytlacil for thoughtful comments
and discussions.
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interest is dynamic in the sense that the current outcome is determined as a function of the
past outcomes as well as the current and past treatments, and the current treatment as a
function of the past outcomes as well as the past treatments. Such dynamic relationships are
clearly present in the examples mentioned. A static model misrepresents the nature of the
problem (e.g., state dependence, learning) and fails to capture important policy questions
(e.g., optimal sequences of interventions).

In this setting, we are interested in identifying the causal effect of a sequence of endogenous
treatments on a sequence of outcomes, or on a terminal outcome, e.g., the survival of a
patient at a given period, college attendance, employment status, or a sale of a product, in
the respective examples above. Specifically, we are interested in learning about the average
of an outcome in each period had a particular treatment sequence been assigned up to that
period, which defines the potential outcome in the dynamic setting. We are also interested
in the average treatment effects (ATE’s) defined based on the average potential outcome.
For example, one may be interested in whether the success rate of a particular outcome is
larger with a sequence of treatments assigned in relatively later periods rather than earlier, or
with a sequence of alternating treatments rather than consistent treatments. Lastly, we are
interested in an optimal treatment regime, namely, a sequence of treatments that maximizes
the (weighted) sum of the average potential outcomes, possibly less the cost of treatments.
For example, a firm may be interested in the optimal timing of advertisements that maximizes
the aggregate sales probabilities over time, or a sequence of educational programs may be
aimed to maximize the college attendance rate.

Dynamic treatment effects have been extensively studied in the biostatistics literature
for decades (Robins (1986, 1987), Murphy et al. (2001), Murphy (2003), among others). In
this literature, the crucial condition for identification of the average potential outcome is a
dynamic version of a random assignment assumption, called the sequential randomization.
It assumes that the treatment is randomized in every period within those individuals who
have the same history of outcomes and treatments.1 This assumption is suitable in experi-
mental studies with perfect compliance of subjects, but hard to justify in studies with partial
compliance or observational studies as in the examples above. Another common feature in
this literature is the use of a counterfactual framework with a sequence of treatments. Un-
der this framework, however, it is hard to disentangle the dynamic mechanism and it is not
straightforward to understand the definition of potential outcomes.

The main contribution of this paper is to relax the assumption of sequential randomiza-
tion widely used in the literature by introducing a flexible choice-theoretic framework for a
sequence of endogenous treatments. Towards this end, we consider a simple nonparametric
structural model for a dynamic endogenous selection process and dynamic outcome forma-
tion. In this model, individuals are allowed not to fully comply with each period’s assignment
in experimental settings (e.g., clinical trials, field experiments) or allowed to make an endoge-
nous choice in each period in observational settings. The joint distribution of the full history
of unobservable variables in the outcome and treatment equations is left unspecified, allowing
for abitrary forms of treatment endogeneity and serial correlation. Unlike in the counterfac-
tual framework, the dynamic mechanism is clearly formulated in this structural model, which

1In the econometrics literature, Vikström et al. (2016) consider treatment effects on a process of transition
to a destination state, and carefully analyze what the sequential randomization assumption can identify under
the presence of dynamic selection.
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in turn facilitates our identification analysis.
We show that the average potential outcome, or equivalently the average structural func-

tion (ASF) given the structural model we introduce, is identified under two-way exclusion
restrictions (Vytlacil and Yildiz (2007), Shaikh and Vytlacil (2011)), i.e., with instruments
excluded from the outcome-determining process and other exogenous variables excluded from
the treatment selection process. Examples of the former would be randomized treatments or
a sequence of policy shocks, examples of the latter would be factors that agents cannot antic-
ipate when making treatment decisions but that determine the outcome. The identification
of each period’s ASF allows us to identify the ATE’s as well as the optimal treatment regime.
We show that the optimal regime is a natural extension of a static object commonly sought
for in the literature, namely the sign of the ATE in a static environment. Analogous to a
static setting, the knowledge about the optimal treatment regime may have important policy
implications. For example, a social planner can at least hope to rule out specific sequences
of treatments that are on average harmful.

In this paper, we also consider the cases where the two-way exclusion restriction are
violated in the sense that only a standard exclusion restriction holds or where the variation
of the exogenous variables are limited. In these cases, we can calculate the bounds on the
ASF and the ATE.

Despite its importance, studies on the effects of dynamic endogenous treatments are
limited in the literature. To best of our knowledge, Heckman and Navarro (2007), Cunha
et al. (2010) and Heckman et al. (2016) are the only existing econometric research on the
topic.2 Building on Cunha et al. (2010) and Heckman and Navarro (2007), Heckman et al.
(2016) consider dynamic treatment effects with a sequence of up-or-out treatment choices
and a sequence of associated outcomes, and extends the literature on the marginal treatment
effects. An interesting feature of the results in the paper is that, in ordered and unordered
choice models, dynamic treatment effects are decomposed into direct effects and continuation
values. The present paper complements to these paper in that it considers a different form
of dynamics for the treatment choices and outcomes, different identifying assumptions, and
it focuses on the identification of the ATE’s and related parameters.

This paper’s structural approach is only relative to the counterfactual framework of
Robins. A fully structural model of dynamic programming is considered in seminal work
by Rust (1987) and more recently by, e.g., Blevins (2014) and Buchholz et al. (2016). This
literature typically considers a single rational agent’s optimal decision, whereas this paper
considers multiple heterogenous agents with no assumptions on agents’ rationality nor strong
parametric assumptions. Most importantly, this paper’s focus is on the identification of the
effects of treatments formed as agents’ decisions. The robust approach we take in this paper
is similar to Heckman and Navarro (2007) and Heckman et al. (2016). But unlike these pa-
pers, we do not necessarily invoke infinite variation of exogenous variables while remaining
flexible for economic and non-economic components of the model. Lastly, Torgovitsky (2016)
extends the literature on dynamic discrete choice models (with no treatment) by considering
a counterfactual framework without imposing parametric assumptions. In his framework,
Yt−1 takes the role of a treatment for Yt and the “treatment effect” captures the state depen-
dence. In the present paper, we consider the effects of the treatment Dt on Yt, and introduce

2As related work, Angrist and Imbens (1995)’s model for multiple treatments effects in can be applied to
a dynamic setting.
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a selection equation for Dt as an important component of the model.
In terms of notation, for a r.v. Wt, we write W t ≡ (W1, ..,Wt) with its realization

wt. We sometimes write W ≡ W T for convenience. For a vector W without the t-th
element, we write W−t ≡ (W1, ...,Wt−1,Wt+1, ...,WT ) with realization w−t. All the boldface
letters represent vectors in this paper. Lastly for r.v.’s Y and W , we sometimes abbreviate
Pr[Y = y|W = w] to Pr[Y = y|w] or P [y|w].

2 Robins’s Framework

We first introduce Robins’s counterfactual framework and state the assumption of sequential
randomization commonly used in the biostatistics literature (Robins (1986, 1987), Murphy
et al. (2001), Murphy (2003)). For a finite horizon t = 1, ..., T with fixed T , Yt is the outcome
at t with realization yt and Dt is a binary treatment at t with realization dt. The underlying
data structure is panel data (cross-sectional index i suppressed throughout, unless necessary).
We may be interested in the terminal outcome YT ; e.g., the survival of a patient at a given
period, college attendance, employment status, or online product sales. We call Yt for t < T
a transition outcome; e.g., intermediate health status, test scores, intermediate employment
status, or surveyed preferences (or click behaviors).

Consider a treatment regime d ≡ (d1, ..., dT ) ∈ D ⊆ {0, 1}T , which is defined as a prede-
termined hypothetical sequence of interventions over time, i.e., a sequence of each period’s
assignment decisions of whether to treat or not, or whether to assign treatment A or treat-
ment B.3 Then a potential outcome at t can be written as Yt,d. It can be understood as
an outcome of an individual had a particular treatment sequence been assigned. Although
the genesis of Yt,d can be very general under this counterfactual framework, the mechanism
under which the sequence of treatments interacts with the sequence of outcomes is opaque.
The definition of Yt,d becomes more transparent later with a structural model introduced in
this paper.

Given these definitions, we state the assumption of sequential randomization by Robins:
For each d ∈ D,

(Y0,d, ..., YT,d) ⊥ Dt|Y t−1 = yt−1,Dt−1 = dt−1 (2.1)

for t = 1, ..., T and all yt−1. This assumption asserts that, holding the history of outcomes
and treatments fixed, the current treatment is fully randomized. In the next section, we relax
this assumption and specify dynamic selection equations for a sequence of treatments that
are allowed to be endogenous.

3 A Structural Model and Objects of Interest

We introduce the main framework of this paper. We consider a structural model and iden-
tifying assumptions that are plausible in observational studies and are economically inter-
pretable, relative to the counterfactual framework in the previous section. The structural

3This is called a static regime in the biostatistics literature. A dynamic regime is a sequence of treatment
assignments, each of which is a predetermined function of past outcomes; see e.g., Murphy et al. (2001). A
static regime can be seen as being its special case where this function is constant.
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model includes a sequence of selection processes for endogenous treatment choices.
Consider a dynamic structural function for the outcome Yt: For t = 1, ..., T ,

Yt = µt(Yt−1, Dt, Xt, Ut),

where µt(·) is an unknown scalar-valued function, Xt is a set of exogenous variables, which
we discuss the details later, Ut is the unobservable variable that may contain permanent
and transitory components, i.e., Uit = ht(αi, εit), and Y0 = 0 for convenience. Given this
structural equation, we can express the potential outcome Yt,d using a recursive structure:

Yt,d = µt(Yt−1,d, dt, Xt, Ut),

...

Y2,d = µ2(Y1,d, d2, X2, U2),

Y1,d = µ1(Y0,d, d1, X1, U1),

where Y0,d = 0 for convenience.4 This recursive structure provides a useful interpretation
of the potential outcome Yt,d in a dynamic setting, and thus facilitates our identification
analysis. Note that, conditional on Xt ≡ (X1, ..., Xt), the remaining randomness in Yt,d
comes from U t ≡ (U1, ..., Ut). By an iterative argument, one can show that the potential
outcome equals the observed outcome when the observed treatments are consistent with the
regime: Yt,d = Yt. Or equivalently,

Yt =
∑
d∈D

1{D = d}Yt,d.

Given the structural model for Yt, the following implies the sequential randomization assump-
tion (2.1):

UT ⊥ Dt|Y t−1 = yt−1,Dt−1 = dt−1

for t = 1, ..., T and all yt−1 and dt−1, which help understand the assumption.
In this paper, we consider the average potential terminal outcome (equivalently, the ASF

in the terminal period) conditional on X ≡ (X1, ..., XT ) as a fundamental parameter of
interest:

E[YT,d|X = x]. (3.1)

In general, we can consider the average potential outcome of any time period, i.e., E[Yt,d|Xt =
xt] for any t, but we focus on E[YT,d|X = x] just for concreteness. The knowledge on the
ASF is useful to recover other related parameters. First, we are interested in the conditional
ATE:

E[YT,d − YT,d̃|X = x] (3.2)

4To be more precise in terms of notation, we should write Yt,d = Yt,dt , but we maintain the notation Yt,d

for simplicity.
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for two different regimes d and d̃. For example, one may be interested in comparing more
versus less consistent treatment sequences, or earlier versus later treatments.

As an additional parameter of interest, we consider an optimal treatment regime:

d∗(x) = arg max
d∈D

E[YT,d|X = x] (3.3)

with |D| = 2T . That is, we are interested in a treatment regime that delivers the maximum
expected outcome conditional on X = x.5 Note that in a static model, the identification
of d∗ is equivalent to the identification of the sign of the static ATE, which is information
typically sought for from a policy point of view. One can view d∗ as a natural extension of
this information to a dynamic setting, which is identified by establishing the signs of all the
possible ATE’s defined as (3.2). The optimal regime may serve as a guideline in developing
future policies. Moreover, it may be too costly to find a customized treatment scheme for
each individual and it may be a realistic goal from a social planner’s point of view to find
a scheme that maximizes the average benefit. Yet, the optimal regime is customized up to
observed characteristics, as it is a function of covariates values x. More ambitious than the
identification of d∗(x) may be an optimal regime based on an objective function that delivers
a cost-benefit analysis, granting than each dt can be costly:

d†(x) = arg max
d∈D

Π(d;x),

where

Π(d;x) ≡ w1E[YT,d|X = x]− w0

T∑
t=1

dt

or

Π(d;x) ≡
T∑
t=1

wtE[Yt,d|X = x]− w0

T∑
t=1

dt

with (w0, w1) and (w0,w) being predetermined weights. The latter objective function con-
cerns the weighted sum of the average potential outcomes throughout the entire period less
the cost for treatments. Note that establishing the signs of ATE’s will not identify d†, and
a stronger identification result, i.e., the point identification of E[YT,d|X = x]’s for all d, is
required.

In order to identify the parameters of interest without assuming sequential randomization,
we introduce a sequence of selection equations for binary endogenous treatments Dt’s: For
t = 1, ..., T

Dt = 1{πt(Yt−1, Dt−1, Zt) ≥ Vt},

where πt(·) is an unknown scalar-valued function, Zt is the period-specific instruments, Vt
is the unobservable variable that may contain permanent and transitory components, and
Y0 = 0 and D0 = 0 for convenience. This dynamic selection process represents the agent’s

5A dynamic version of an optimal treatment regime is considered in, e.g., Murphy (2003).
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endogenous choices over time, e.g., due to learning or other optimal behaviors. The non-
parametric threshold-crossing structure, however, posits a minimal notion of optimality for
the agent. We take an agnostic and robust approach by avoiding strong assumptions of the
standard dynamic economic models, e.g., forward looking behaviors and being able to com-
pute a present value discounted flow of utilities, conditional independence assumptions which
rule out persistence, and other parametric functional forms. When we are to maintain these
assumptions, the selection model can be seen as a reduced-form approximation of a solution
to a dynamic programming problem.

To summarize, the full model we consider in this paper is

Yt = µt(Yt−1, Dt, Xt, Ut), (3.4)

Dt = 1{πt(Yt−1, Dt−1, Zt) ≥ Vt}. (3.5)

All other covariates common to (3.4) and (3.5) are suppressed for simplicity of exposition.
Importantly in this model, the joint distribution of U ≡ (U1, ..., UT ) and V ≡ (V1, ..., VT )
is not specified, that is, Ut and Vt′ for any t, t′ are allowed to be arbitrarily correlated to
each other (allowing endogeneity) as well as within themselves across time (allowing serial
correlation, e.g., via individual effects). Note that becasue of this, Yt and Dt are not Markov
processes unless conditional on both the observables and unobservables.

4 Identification Analysis

We first identify the ASF’s, i.e., E[Yt,d|Xt] for each d and t, which will then identify the
ATE’s and the optimal regimes d∗ and d†. We impose assumptions on (U ,V ) as well as on
Z ≡ (Z1, ..., ZT ) and X ≡ (X1, ..., XT ).

Assumption C. The distribution of (U ,V ) has strictly positive density with respect to
Lebesgue measure on R2T .

Assumption SX. (U ,V ) and (Z,X) are independent.

Assumption C is a regularity condition to ensure smoothness of relevant conditional prob-
abilities. Assumption SX imposes strict exogeneity. The variable Zt is standard excluded
instruments. Examples are sequential randomized treatments or a sequence of policy shocks.
In addition to Zt, we introduce exogenous variables Xt in the outcome equation (3.4), that
is excluded from the selection equation (3.5). We assume that, at a given period t, there
are outcome-determining factors that the agent cannot anticipate when making a treatment
decision.

Assuming binary Yt, consider the following model with weak separability imposed in the
outcome equation as in the treatment equation:

Yt = 1{µt(Yt−1, Dt, Xt) ≥ Ut}, (4.1)

Dt = 1{πt(Yt−1, Dt−1, Zt) ≥ Vt}. (4.2)

Binary Yt and weak separability may not be necessary (Vytlacil and Yildiz (2007), Han
(2018)) for the results of this paper, but they simplify the exposition. Define the following
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period-specific quantity readily identified from the data:

ht(zt, z̃t, xt, x̃t; z
t−1,xt−1,dt−1, yt−1)

≡Pr[Yt = 1, Dt = 1|zt,xt,dt−1, yt−1] + Pr[Yt = 1, Dt = 0|zt, x̃t,x
t−1,dt−1, yt−1]

− Pr[Yt = 1, Dt = 1|z̃t, zt−1,xt,dt−1, yt−1]− Pr[Yt = 1, Dt = 0|z̃t, zt−1, x̃t,x
t−1,dt−1, yt−1].

Lemma 4.1. Suppose Assumptions C and SX hold. For each t and (xt−1, zt−1,dt−1, yt−1),
suppose zt and z̃t satisfy

Pr[Dt = 1|xt−1, zt,dt−1, yt−1]− Pr[Dt = 1|xt−1, z̃t, z
t−1,dt−1, yt−1] > 0. (4.3)

Then for given (xt, x̃t), the sign of ht(zt, z̃t, xt, x̃t; z
t−1,xt−1,dt−1, yt−1) equals the sign of

µt(yt−1, 1, xt)− µt(yt−1, 0, x̃t).

The sign of µt(yt−1, 1, xt)− µt(yt−1, 0, x̃t) with xt = x̃t immediately identifies the sign of
the period-specific ATE E[Yt,1 − Yt,0|Yt−1 = yt−1, Xt = xt] where Yt,dt = µt(Yt−1, dt, Xt, Ut)
is the period-specific potential outcome at time t. The sign of µt(yt−1, 1, xt) − µt(yt−1, 0, x̃t)
itself is already useful for calculating bounds on the ASF’s and thus on the ATE’s defined in
(3.2); we discuss the partial identification in Section 5.

Proof of Lemma 4.1: For the analysis of this paper which deals with a dynamic model,
it is convenient to define the U -set and V -set, namely the sets of the histories of the un-
observable variables that determine the current outcome and current treatment given the
dynamic nature. To focus our attention on this dependence of the potential outcomes on the
unobservables, let Yt,d,x ≡ Yt,dt,xt ≡ µt(Yt−1,d,x, dt, xt, Ut) be the potential outcome given
(d,x) and let yt,d,x = µt(yt−1,d,x, dt, xt, ut) be its realization. For t = 1, ..., T , define a set of
U t as

Udt(xt; yt) ≡ {ut : yt = 1{µt(yt−1,dt−1,xt−1 , dt, xt) ≥ ut}}

with y0 = 0. Also, for t = 2, ..., T , define a set of V t as

V∗dt(ut−1,xt−1, zt) ≡ {vt : ds = 1{vs ≤ π∗s(us−1,xs−1,ds−1, zs)} for s = 2, ..., t},

where π∗s(us−1,xs−1,ds−1, zs) ≡ πs(ys−1,ds−1,xs−1 , ds−1, zs), and define

V∗d1(z1) ≡ {v1 : d1 = 1{v1 ≤ π1(0, 0, z1)}}.

Consider

Pr[Dt = 1|xt−1, zt,dt−1, yt−1]

= Pr[Vt ≤ πt(yt−1, dt−1, zt)|xt−1, zt,V t−1 ∈ V∗dt−1(U t−2),U t−1 ∈ Udt−1 ]

= Pr[Vt ≤ πt(yt−1, dt−1, zt)|V t−1 ∈ V∗dt−1(U t−2),U t−1 ∈ Udt−1 ],

where the last equality is by Assumption SX, and V∗dt−1(U t−2) ≡ V∗dt−1(U t−2,xt−2, zt−1) and
Udt−1 ≡ Udt−1(xt−1; yt−1) as abbreviation. Note that the sets V∗dt−1(U t−2) and Udt−1 do not
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change at the change in zt. Then, under Assumption C,

0 <Pr[Dt = 1|xt−1, zt,dt−1, yt−1]− Pr[Dt = 1|xt−1, z̃t, z
t−1,dt−1, yt−1]

= Pr[Vt ≤ πt(yt−1, dt−1, zt)|V t−1 ∈ V∗dt−1(U t−2),U t−1 ∈ Udt−1 ]

− Pr[Vt ≤ πt(yt−1, dt−1, z̃t)|V t−1 ∈ V∗dt−1(U t−2),U t−1 ∈ Udt−1 ]

implies πt(yt−1, dt−1, zt) > πt(yt−1, dt−1, zt). Next, consider

Pr[Yt = 1, Dt = 1|zt,xt,dt−1, yt−1]

= Pr[Ut ≤ µt(yt−1, 1, xt), Vt ≤ πt(yt−1, dt−1, zt)|V t−1 ∈ V∗dt−1(U t−2),U t−1 ∈ Udt−1 ]

by Assumption SX. Again, note that V∗dt−1(U t−2) and Udt−1 do not change at the change in
(zt, xt), which is key. Then, we have

ht(zt, z̃t, xt, x̃t; z
t−1,xt−1,dt−1, yt−1)

= Pr[Ut ≤ µt(yt−1, 1, xt), πt(yt−1, dt−1, z̃t) ≤ Vt ≤ πt(yt−1, dt−1, zt)|V∗dt−1 ,Udt−1 ]

− Pr[Ut ≤ µt(yt−1, 0, x̃t), πt(yt−1, dt−1, z̃t) ≤ Vt ≤ πt(yt−1, dt−1, zt)|V∗dt−1 ,Udt−1 ],

of which sign identifies the sign of µt(yt−1, 1, xt) − µt(yt−1, 0, x̃t). For example, when this
quantity is zero then µt(yt−1, 1, xt)− µt(yt−1, 0, x̃t) = 0. �

We make a further assumption on the variation of the exogenous variables (Z,X) for
point identification of the ASF’s. Define the following sets:

St(yt−1, dt) ≡
{

(xt, x̃t) : µt(yt−1, dt, xt) = µt(yt−1, d̃t, x̃t) for d̃t 6= dt

}
,

Tt ≡ {(xt, x̃t) : ∃(zt, z̃t) with (xt, zt), (x̃t, zt), (xt, z̃t), (x̃t, z̃t) ∈ Supp(Xt, Zt)} ,
Xt(yt−1, dt) ≡ {xt : ∃x̃t with (xt, x̃t) ∈ St(yt−1, dt) ∩ Tt} ,

Xt(dt) ≡ Xt(0, dt) ∩ Xt(1, dt).

Assumption SP. For each t and dt, Pr[Xt ∈ Xt(dt)] > 0.

This assumption requires that Xt varies enough to achieve µt(yt−1, dt, xt) = µt(yt−1, d̃t, x̃t)
while holding Zt to be zt and z̃t, respectively.6 It is a dynamic version of the support
assumption found in Vytlacil and Yildiz (2007). Note that even though this assumption
seems to be written in terms of the unknown object µt(·), it is testable because the sets
above have an empirical analog as shown in Lemma 4.1. Now we are ready to state the main
identification result of this paper.

Theorem 4.1. Under Assumptions C, SX and SP, E[YT,d|x] is identified for d ∈ D and
xt ∈ Xt(dt) for all t.

Based on Theorem 4.1, we can identify the ATE’s and the optimal treatment regimes
d∗(x) and d†(x):

6Although Assumption SP requires sufficient rectangular variation in (Xt, Zt), it clearly differs from the
large variation assumptions in Heckman and Navarro (2007) and Heckman et al. (2016), which are employed
for identification at infinity arguments to identify different objects of interest than ours.
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Corollary 4.1. Under Assumptions C, SX and SP, E[YT,d − YT,d̃|x] for d, d̃ ∈ D and xt ∈
Xt(dt)∩Xt(d̃t) for all t is identified, and d∗(x) and d†(x) are identified for xt ∈ Xt(0)∩Xt(1)
for all t.

Proof of Theorem 4.1: To begin with, note that E[YT,d|x] = E[YT,d|x, z] by Assumption
SX. As the first step of identifying E[YT,d|x, z] for given d = (d1, ..., dT ), x = (x1, ..., xT )
and z = (z1, ..., zT ), we apply the result of Lemma 4.1. Fix t = 2, ..., T and yt−1 ∈ {0, 1}.
Suppose x′t is such that µt(yt−1, dt, xt) = µt(yt−1, d

′
t, x
′
t) with d′t 6= dt by applying Lemma

4.1. The existence of x′t is guaranteed by Assumption SP. Then, by the definition of the
U -set, U ∈ Ud(x; yT ) is equivalent of U ∈ Ud′t,d−t

(x′t,x−t; yT ) conditional on Yt−1,dt−1,xt−1 =

yt−1 for all x−t and d−t.
7 Based on this result, we can equate the unobserved quantity

E[YT,d|x, z,dt−1, d′t, yt−1] with an observed quantity by matching the element dt of the as-
signed treatments to be consistent with the element d′t of the observed treatments:

E[YT,d|x, z,dt−1, d′t, yt−1]

= Pr[U ∈ Ud(x; 1)|x, z,V t ∈ V∗dt−1,d′t
(U t−1),U t−1 ∈ Udt−1 ]

= Pr[U ∈ Ud(x; 1)|V t ∈ V∗dt−1,d′t
(U t−1),U t−1 ∈ Udt−1 ]

= Pr[U ∈ Ud′t,d−t
(x′t,x−t; 1)|V t ∈ V∗dt−1,d′t

(U t−1),U t−1 ∈ Udt−1 ]

= Pr[U ∈ Ud′t,d−t
(x′t,x−t; 1)|x′t,x−t, z,V t ∈ V∗dt−1,d′t

(U t−1),U t−1 ∈ Udt−1 ]

=E[YT,(d′t,d−t)|x
′
t,x−t, z,d

t−1, d′t, yt−1], (4.4)

where the second and fourth equalities are by Assumption SX, and V∗dt−1,d′t
(U t−1) ≡ V∗dt−1,d′t

(U t−1,xt−1, zt)

and Udt−1 ≡ Udt−1(xt−1; yt−1) as abbreviation. We use this result in the next step.
First, note that E[YT,d|x, z,dT ] = E[YT |x, z,dT ] is trivially identified for any generic

values (d,x, z). We prove by means of mathematical induction. For given t = 2, ..., T − 1,
suppose E[YT,d|x, z,dt] is identified for any generic values (d,x, z), and consider identifica-
tion of

E[YT,d|x, z,dt−1] = Pr[Dt = dt|x, z,dt−1]E[YT,d|x, z,dt−1, dt]

+ Pr[Dt = d′t|x, z,dt−1]E[YT,d|x, z,dt−1, d′t].

The only unobserved term on the r.h.s. can be shown to satisfy

E[YT,d|x, z,dt−1, d′t] = Pr[Yt−1 = 1|x, z,dt−1, d′t]E[YT,d|x, z,dt−1, d′t, Yt−1 = 1]

+ Pr[Yt−1 = 0|x, z,dt−1, d′t]E[YT,d|x, z,dt−1, d′t, Yt−1 = 0]. (4.5)

But note that

E[YT,d|x, z,dt−1, d′t, yt−1] = E[YT,(d′t,d−t)|x
′
t,x−t, z,d

t−1, d′t, yt−1] (4.6)

by (4.4), which is assumed to be identified from the previous step. Therefore E[YT,d|x, z,dt−1]

7The following analysis is significantly simplified when µt(yt−1, dt, xt) = µt(yt−1, d
′
t, x
′
t) satisfies for all

yt−1. This situation, however, is hard to occur.
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is identified. Lastly when t = 1,

E[YT,d|x, z] = Pr[D1 = d1|x, z]E[YT,d|x, z, d1] + Pr[D1 = d′1|x, z]E[YT,d|x, z, d′1].

Noting that y0 = 0, suppose x′1 is such that µ1(0, d1, x1) = µ1(0, d
′
1, x
′
1) with d′1 6= d1 by

applying Lemma 4.1. Then

E[YT,d|x, z, d′1] = Pr[U ∈ Ud(x; 1)|x, z, V1 ∈ V∗d′1(z1)]

= Pr[U ∈ Ud(x; 1)|V1 ∈ V∗d′1(z1)]

= Pr[U ∈ Ud′1,d−1
(x′1,x−1; 1)|V1 ∈ V∗d′1(z1)]

= Pr[U ∈ Ud′1,d−1
(x′1,x−1; 1)|x′1,x−1, z, V1 ∈ V∗d′1(z1)]

= E[YT,(d′1,d−1)|x
′
1,x−1, z, d

′
1],

which is identified from the previous step for t = 2. Therefore E[YT,d|x, z] is identified, which
completes the proof of Theorem 4.1. 2

Note that this proof provides a closed form expression for E[YT,d|x] in an iterative manner,
which can be immediately used for estimation. For concreteness, we provide an expression
for E[YT,d|x] when T = 2:

E[Y2,d|x] =P [d|x, z, d1]E[YT |x, z, d] + P [d1, d
′
2|x, z]µYT ,d1,d′2

+ P [d′1, d2|x, z]E[YT |x′1, x2, z, d′1, d2] + P [d′1, d
′
2|x, z]µYT ,d′1,d

′
2
, (4.7)

where

µYT ,d1,d′2
≡P [y1|x, z, d1, d′2]E[YT |x1, x′2, z, d1, d′2, y1]

+ P [y′1|x, z, d1, d′2]E[YT |x1, x′′2, z, d1, d′2, y′1],
µYT ,d′1,d

′
2
≡P [y1|x′1, x2, z, d′1, d′2]E[YT |x′1, x′2, z, d′1, d′2, y1]

+ P [y′1|x′1, x2, z, d′1, d′2]E[YT |x′1, x′′2, z, d′1, d′2, y′1]

for (x′1, x
′
2, x
′′
2) such that µ1(0, d1, x1) = µ1(0, d

′
1, x
′
1), µ2(y1, d2, x2) = µ2(y1, d

′
2, x
′
2), and

µ2(y
′
1, d2, x2) = µ2(y

′
1, d
′
2, x
′′
2). Before closing this section, it is worth mentioning that, in

estimating the identified parameters, one can improve efficiency by aggregating the condi-
tional expectations (4.6) with respect to x′t over the following set:

λt(xt; z
t−1,xt−1,dt−1, yt−1) ≡ {x̃t : ht(zt, z̃t, xt, x̃t; z

t−1,xt−1,dt−1, yt−1) = 0 for some (zt, z̃t)}.

5 Partial Identification

Suppose Assumption SP does not hold in that Xt does not exhibit rectangular variation,
or there is no Xt that is excluded from the selection equation at time t. In this case, we
partially identify the ASF’s and ATE’s. The partial identification of d∗(x) (or d†(x)) may
not yield informative bounds unless there are a sufficient number of ATE’s whose bounds are
informative about their signs.
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We briefly illustrate the calculation of bounds on the ASF when the sufficient rectangu-
lar variation is not guaranteed.8 For each unknown term E[YT,d|x, z,dt−1, d′t] in the proof
of Theorem 4.1, we can calculate its upper and lower bounds depending on the sign of
µt(yt−1, 1, xt)− µt(yt−1, 0, x̃t), which is identified in Lemma 4.1. Under the situation consid-
ered in this section, x̃t does not necessarily differ from xt. To begin with a simple example, for
given t = 2, ..., T , suppose µt(yt−1, dt, xt)−µt(yt−1, d′t, x′t) ≥ 0 for all yt−1 where x′t is allowed
to equal xt. Then, by the definition of the U -set, it satisfies that Ud(x; 1) ⊇ Ud′t,d−t

(x′t,x−t; 1)
regardless of the value of yt−1, which yields a lower bound as

E[YT,d|x, z,dt−1, d′t] = Pr[U ∈ Ud(x; 1)|x, z,V t ∈ V∗dt−1,d′t
(U t−1)]

= Pr[U ∈ Ud(x; 1)|V t ∈ V∗dt−1,d′t
(U t−1)]

≥ Pr[U ∈ Ud′t,d−t
(x′t,x−t; 1)|V t ∈ V∗dt−1,d′t

(U t−1)]

= Pr[U ∈ Ud′t,d−t
(x′t,x−t; 1)|x′t,x−t, z,V t ∈ V∗dt−1,d′t

(U t−1)]

= E[YT,(d′t,d−t)|x
′
t,x−t, z,d

t−1, d′t].

As a more realistic example, when the sign of µt(yt−1, dt, xt) − µt(yt−1, d′t, x′t) is identified
for each yt−1, it is possible to calculate the bounds by (4.5). For instance, if µt(1, dt, xt) ≥
µt(1, d

′
t, x
′
t), then

E[YT,d|x, z,dt−1, d′t, Yt−1 = 1] ≥ E[YT |x′t,x−t, z,dt−1, d′t, Yt−1 = 1]

since

E[YT,d|x, z,dt−1, d′t, Yt−1 = 1]

= Pr[U ∈ Ud(x; 1)|x, z,V t ∈ V∗dt−1,d′t
(U t−1), Ut−1 ∈ Udt−1(xt−1; 1)]

= Pr[U ∈ Ud(x; 1)|V t ∈ V∗dt−1,d′t
(U t−1), Ut−1 ∈ Udt−1(xt−1; 1)]

and Ud(x; 1) ⊇ Ud′t,d−t
(x′t,x−t; 1) given Yt−1,dt−1,xt−1 = 1. Once the bounds on E[YT,d|x, z,dt−1, d′t]

are established, the bounds on E[YT,d|x] = E[YT,d|x, z] can be calculated using the iterative
scheme introduced in the proof of Theorem 4.1. Lastly, depending on how much we learn
about the signs of the ATE’s, we may be able to construct informative bounds on d∗(x),
which will be expressed as strict subsets of D.
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