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Abstract

How far should an industry be allowed to consolidate when competition and inno-

vation are endogenous? We develop a stochastically alternating-move game of dynamic

oligopoly, and estimate it using data from the hard disk drive industry, in which a dozen

global players consolidated into only three in the last 20 years. We �nd plateau-shaped

equilibrium relationships between competition and innovation, with systematic hetero-

geneity across time and productivity. Our counterfactual simulations suggest the cur-

rent rule-of-thumb policy, which stops mergers when three or fewer �rms exist, strikes

approximately the right balance between pro-competitive e¤ects and value-destruction

side e¤ects in this dynamic welfare tradeo¤.
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1 Introduction

How far should an industry be allowed to consolidate? This question has been foundational

for antitrust policy since its inception in 1890 as a countermeasure to merger waves (c.f.,

Lamoreaux 1985). Conventional merger analysis takes a proposed merger as given and fo-

cuses on its immediate e¤ects on competition, which is expected to decrease after a target

�rm exits, and e¢ ciency, which might increase if su¢ cient �synergies�materialize.1 Such a

static analysis would be appropriate if mergers were completely random events in isolation

from competition and innovation, and if market structure and �rms�productivity evolved

exogenously over time. However, Demsetz (1973) cautioned that monopolies are often en-

dogenous outcomes of competition and innovation. Berry and Pakes (1993) conjectured such

dynamic factors could dominate static factors. Indeed, in 100% of high-tech merger cases,

the antitrust authority has tried to assess potential impacts on innovation but found little

guidance in the economics literature.2 This paper proposes a tractable dynamic oligopoly

model in which mergers, innovation, and entry-exit are endogenous, estimates it using data

from the process of industry consolidation among the manufacturers of hard disk drives

(HDDs) between 1996 and 2016, and quanti�es a dynamic welfare tradeo¤ by simulating

hypothetical merger policies.

Mergers in innovative industries represent an opportunity to kill competition and acquire

talents, which make them strategic and forward-looking choices of �rms.3 Besides the static

tradeo¤ between market power and e¢ ciency, merger policy needs to consider both ex-

post and ex-ante impact. Ex post, a merger reduces the number of competitors and alters

their productivity pro�le, which will change the remaining �rms�incentives for subsequent

mergers and innovation. Theory predicts mergers are strategic complements in a dynamic

setting; hence, a given merger increases the likelihood of subsequent mergers.4 Its impact on

subsequent innovation is more complicated because the competition-innovation relationship

crucially hinges on demand, supply, and investment.5 These ex-post changes in competition

1See Williamson (1968), Werden and Froeb (1994), and Nevo (2000), for example.
2See survey by Gilbert and Greene (2015).
3According to Reggie Murray, the founder of Ministor, �Most mergers were to kill competitors, because

it�s cheaper to buy them than to compete with them. Maxtor�s Mike Kennan said, �We�d rather buy them
than have them take us out,�referring to Maxtor�s acquisition of Quantum in 2001�(January 22, 2015, in
Sunnyvale, CA). See Appendix A for a full list of interviews with industry veterans.

4Qiu and Zhou (2007) study a dynamic game with Cournot competition in every period, and �nd the
incremental value from a merger increases as the number of �rms decreases as a result of previous mergers.

5For example, Marshall and Parra (2018) show that competition increases innovation when the leader-
follower pro�t gap is weakly increasing in the number of �rms, which holds under some parameterizations of
Bertrand and Cournot games with homogeneous goods. They also show that the necessary (but not su¢ cient)
condition for competition to decrease innovation is that the gap decreases with the number of �rms, which
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and innovation will have ex-ante impacts as well, because a tougher antitrust regime will

lower �rms�expected pro�ts and option values of staying in the market, which may in turn

reduce their ex-ante investments in productivity, survival, and market entry. Thus, merger

policy faces a tradeo¤ between the ex-post pro-competitive e¤ects and the ex-ante value-

destruction side e¤ects. Their exact balance depends on the parameters of demand, cost,

and investment functions; hence, the quest for optimal merger policy is a theoretical as well

as empirical endeavor.

Three challenges haunt the empirical analysis of merger dynamics in the high-tech con-

text. First, mergers in a concentrated industry are rare events by de�nition, and the nature

of the subject precludes the use of experimental methods; hence, a model has to complement

sparse data. Second, an innovative industry operates in a nonstationary environment and

tends to feature a globally concentrated market structure,6 which creates a methodological

problem for the application of two-step estimation approaches, because (at most) only one

data point exists in each state of the world, which is too few for nonparametric estimation

of conditional choice probabilities (CCPs).7 Third, workhorse models of dynamic oligopoly

games such as Ericson and Pakes (1995) entail multiple equilibria, which makes the appli-

cation of full-solution estimation methods such as Rust (1987) challenging, because point

identi�cation will be di¢ cult when a single vector of parameter values predicts multiple

strategies and outcomes. We solve these problems by developing a tractable model with

unique equilibrium, incorporating the nonstationary environment of the HDD industry, and

extending Rust�s framework to a dynamic game with stochastically alternating moves.

The paper is organized as follows. In section 2, we introduce a simple model of a dy-

namic oligopoly with endogenous mergers, innovation, and entry-exit. We depart from the

simultaneous-move tradition of the literature and adopt sequential or alternating moves.

An unsatisfactory feature of a sequential-move game is that the assumption on the order

of moves will generate an arti�cial early-mover advantage if the order is deterministic (e.g.,

Gowrisankaran 1995, 1999; Igami 2017, 2018). Instead, we propose a random-mover dynamic

game in which the turn-to-move arrives stochastically. Dynamic games with stochastically

holds under (some other parameterizations of) a homogeneous-good Cournot game and a di¤erentiated-
product Bertrand game. The key parameters of their theoretical model includes the step size of innovation,
the �xed cost of innovation, and the convexity of (the variable part of) the cost of innovation. Certain
combinations of the parameter values could lead to nonmonotonic relationships as well.

6Sutton (1998) explains this feature by low transport costs (per value of product) and high sunk costs.
7CCP-based methods are proposed by Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith

(1994) to alleviate the computational burden for estimating dynamic structural models. Their �rst step
estimates policy functions as CCPs by using data on actions and states. Their second step estimates the
underlying structural parameters by calculating value functions that are implied by the empirical CCPs.
These methods require the �rst step to be nonparametric.

3



alternating moves have been used as a theoretical tool since Baron and Ferejohn (1989) and

Okada (1996). Iskhakov, Rust, and Schjerning (2014, 2016) used it to numerically analyze

competition and innovation. We �nd it useful as an empirical model as well. We combine

this random-mover modeling with the HDD market�s fundamental feature that the indus-

try is now mature and declining: a �nite horizon. With a �nite horizon and stochastically

alternating moves, we can solve the game for a unique equilibrium by backward induction

from the �nal period, in which pro�ts and values become zero. At most only one �rm moves

within a period and makes a discrete choice between exit, investment in productivity, or

merger proposal to one of the rivals. Thus, the dynamic game becomes a �nite repetition

of an e¤ectively single-agent discrete-choice problem. We estimate the sunk costs associated

with these discrete alternatives by using Rust�s (1987) maximum-likelihood method with the

nested �xed-point (NFXP) algorithm.

In section 3, we describe key features of the HDD industry and the outline of data.

This high-tech industry has experienced massive waves of entry, shakeout, and consolidation,

providing a suitable context for studying the dynamics of mergers and innovation. We explain

several product characteristics and institutional backgrounds that inform our subsequent

analysis, such as �erce competition among undi¤erentiated �brands�and an industry-wide

technological trend called Kryder�s Law (i.e., technological improvements in areal density).8

Our dataset consists of three elements (Panels A, B, and C). Panel A contains aggregate

HDD shipments, HDD price, disk price, and PC shipments, which we use to estimate demand

in section 4.1. Panel B is �rm-level market shares, which we use to estimate variable costs

and period pro�ts in section 4.2. Panel C records �rms�dynamic choices between merger,

innovation, and entry-exit, which we use to estimate sunk costs in section 4.3.

In section 4, we take three steps to estimate (i) demand, (ii) variable costs, and (iii) sunk

costs, respectively, each of which pairs a model element and a data element as follows. In

section 4.1, we estimate a log-linear demand model from the aggregate sales data in Panel

A, treating each gigabyte (GB) as a unit of homogeneous data-storage services. We use two

cost shifters as instruments for prices: the price of disks (key components of HDDs) and

a major supply disruption due to �ood in Thailand in 2011. To control for demand-side

dynamics that could arise from the repurchasing cycle of personal computers (PCs), we also

include PC shipments as a demand shifter.

In section 4.2, we infer the implied marginal cost of each �rm in each period from the

8Kryder�s Law is an engineering regularity that says the recording density (and therefore storage capacity)
of HDDs doubles approximately every 12 months, just like Moore�s Law, which says the circuit density (and
therefore processing speeds) of semiconductor chips doubles every 18-24 months. We endogenize it as well.
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observed market shares in Panel B, based on the demand estimates in section 4.1 and a

Cournot model (with heterogeneous costs across �rms) as a mode of spot-market competition.

The �rm�s �rst-order condition (FOC) provides a one-to-one mapping from its observed

market share to its marginal cost (productivity). Our preferred interpretation of Cournot

competition is Kreps and Scheinkman�s (1983) model of quantity pre-commitment followed

by price competition, given all �rms� cost functions (i.e., productivity levels). E¤ective

production capacities are highly �perishable� in our high-tech context, because Kryder�s

Law makes old manufacturing equipment obsolete within a few quarters. Hence, our notion

of �quantity pre-commitment� is the amount of re-tooling e¤orts each �rm makes in each

quarter, which determines its e¤ective output capacity for that period. Likewise, the real-

world counterpart to our notion of cost (productivity) is intangible assets, such as the state

of tacit knowledge embodied by teams of engineers, rather than durable physical capacities.

Our pro�t-margin estimates strongly correlate with accounting pro�t margins in the �rms�

income statements.

In section 4.3, we estimate the sunk costs of merger, innovation, and entry, based on

the observed choice patterns in Panel C and the bene�ts of these actions (i.e., streams of

period pro�ts) from section 4.2. Our dynamic discrete-choice model in section 2 provides a

clear mapping from the observed choices and their associated bene�ts to the implied costs

of these choices, which is analogous to the way Cournot FOC mapped output data and

demand elasticity into implied costs. For example, if we observe many mergers despite

small incremental pro�ts, the model will reconcile these observations by inferring a low cost

of merger: revealed preference.9 Our �rm-value estimates match closely with the actual

acquisition prices in the historical merger deals.

In section 4.4, we investigate the equilibrium relationships between innovation, merger,

and market structure, based on our estimates of optimal strategies (i.e., CCPs of innova-

tion and merger) from section 4.3. Three patterns emerge. First, the incentive to innovate

increases steeply as the number of �rms increases from 1 to 3, re�ecting the dynamic pre-

emption motives as in Gilbert and Newbery (1982) and Reinganum (1983). Second, this

competition-innovation relationship becomes heterogeneous and nonmonotonic with more

than three �rms. Thus, our structural competition-innovation curve exhibits a �plateau�

9Computationally, the calculation of the likelihood function is the heaviest part because, for each candi-
date vector of parameter values, we use backward induction to solve a nonstationary dynamic game with 5
di¤erent types of �rms and 76,160 industry states in each of the 360 periods. We perform this subroutine
in C++, and the estimation procedure takes less than a week on a regular desktop PC with a quad-core
3.60GHz CPU, 32GB RAM, and a 64-bit operating system.
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shape instead of the famous �inverted U.�10 Third, mergers become more attractive as the

industry matures, and all kinds of pairs can merge.

In section 5, we conduct counterfactual policy simulations to answer our main question:

How far should the industry be allowed to consolidate? We �nd the current rule-of-thumb

policy (which blocks mergers if three or fewer �rms exist) is reasonably close to maximizing

the discounted present value of social welfare. We clarify the underlying mechanism by

showing the e¤ects of various policy regimes on the number of �rms and technological frontier,

as well as the �rms�endogenous choices between mergers, innovation, and entry-exit that

determine the paths of competition and innovation. These results highlight the dynamic

welfare tradeo¤ between the pro-competitive bene�ts of blocking mergers and the value-

destruction side e¤ects. We conclude in section 6 by discussing other policy implications

and limitations.

Literature

Dynamic welfare tradeo¤ is a classical theme in the literature on market structure and

innovation (c.f., Scotchmer 2004). Tirole (1988, p. 390) summarizes Schumpeter�s (1942)

basic argument that �if one wants to induce �rms to undertake R&D one must accept the

creation of monopolies as a necessary evil.�He then proceeds to discuss this �dilemma of

the patent system�but concludes that �the welfare analysis is relatively complex, and more

work is necessary before clear and applicable conclusions will be within reach� (p. 399),

which is exactly the purpose of this paper.

Traditional oligopoly theory suggests the main purpose of mergers is to kill competition

and increase market power. Stigler (1950) added a twist to this thesis by conjecturing that,

because a merger increases concentration at the industry level and non-merging parties can

free-ride on merging parties�e¤orts, no �rms would want to take initiatives to merge. Salant,

Switzer, and Reynolds (1983) proved this idea in a symmetric Cournot model, although Perry

and Porter (1985) and Deneckere and Davidson (1985) revealed the fragility of the free-riding

result, which crucially relied on symmetry across �rms. Farrell and Shapiro (1990) used a

Cournot model with cost heterogeneity across �rms, and formalized the notion of �synergy�

as an improvement in the marginal cost of merging �rms (above and beyond the convergence

of the two parties� pre-merger productivity levels). We follow their modeling approach

and de�nition of synergy. The latest reincarnations of this strand is Mermelstein, Nocke,

Satterthwaite, and Whinston�s (2018, henceforth MNSW) numerical theory of duopoly with

10Marshall and Parra (2018) thoroughly investigate these shapes in their theoretical work.
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mergers and investments, which Marshall and Parra (2018) extend to more general market

structures. We provide a structural empirical companion to this literature.

Rust (1987) pioneered the empirical methods for dynamic structural models by combining

dynamic programming and discrete-choice modeling, and proposed a full-solution estimation

approach.11 Much of the empirical dynamic games literature has evolved within Ericson and

Pakes�s (1995) framework, and two-step methods have been developed to estimate this class

of models.12 However, typical empirical contexts of innovative industries (i.e., nonstationarity

and global concentration) pose practical challenges to these methods, which led us to propose

the pairing of a random-mover dynamic game (in a nonstationary environment and a �nite

horizon, as in Pakes 1986) with Rust�s estimation approach.13

Applications of dynamic games to mergers include Gowrisankaran�s (1995, 1999) pio-

neering computational work, Stahl (2011), and Jeziorski (2014). Applications to innova-

tion include Benkard (2004), Goettler and Gordon (2011), Kim (2015), and Igami (2017,

2018).14 Applications to entry and exit are the largest literature, including Ryan (2012),

Collard-Wexler (2013), Takahashi (2015), Arcidiacono, Bayer, Blevins, and Ellickson (2015),

and Igami and Yang (2016). Stochastically alternating moves have been applied to bar-

gaining games, including Diermeier, Eraslan, and Merlo (2003) and Merlo and Tang (2012).

Iskhakov, Rust, and Schjerning (2014, 2016) numerically study Bertrand duopoly with �leap-

frogging�process innovations with a random-mover setup.

Igami (2017, 2018) studied the HDD industry as well, but the similarities end there. Our

paper di¤ers from his in three major ways: questions, data, and models. The two existing

papers studied (i) the introduction of new products and o¤shoring, respectively, (ii) using old

data from 1976 to 1998, (iii) in a model without mergers or stochastically alternating moves.

By contrast, we study merger policy, use a completely new data source on the latest process

of consolidation (1996�2016), and endogenize mergers without imposing any deterministic

order of moves. We also endogenize the advances of the technological frontier (i.e., Kryder�s

Law), which were assumed exogenous in the previous papers.

11Other canonical references include Wolpin (1984, 1987) and Pakes (1986).
12Aguirregabiria and Mira (2007); Bajari, Benkard, and Levin (2007); Pakes, Ostrovsky, and Berry (2007);

Pesendorfer and Schmidt-Dengler (2008).
13Much of the dynamic-programming discrete-choice models in labor economics are nonstationary and

�nite-horizon as well (e.g., Wolpin 1984, 1987). Egesdal, Lai, and Su (2015) propose MPEC algorithm for
the estimation of dynamic games. MPEC is conceptually feasible but currently impractical for nonstationary,
sequential-move games, due to extensive use of memory. See Iskhakov, Lee, Rust, Schjerning, and Seo (2016)
for a recent tune-up to NFXP.
14Ozcan (2015) and Entezarkheir and Moshiri (2015) analyze panel data on patents and mergers.
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2 Model

This section describes our empirical model. Our goal is to incorporate a dynamic oligopoly

game of mergers and innovation within a standard dynamic discrete-choice model.

2.1 Setup

Time is discrete with a �nite horizon, t = 0; 1; 2; : : : ; T , where the �nal period T is the

time at which the demand for HDDs becomes zero. Each of the �nite number of incumbent

�rms, i = 1; 2; : : : nt, has its own productivity on a discretized grid with unit interval,

!it 2 f!1; !2; :::g, which represents the level of tacit knowledge embodied by its team of

R&D engineers and manufacturing engineers. Given the productivity pro�le, !t � f!itgnti=1,
which contains the information on nt as well, these incumbents participate in the HDD

spot market and earn period pro�ts, �it (!t). Thus, !t constitutes the payo¤-relevant state

variable along with the time period t, which subsumes the time-varying demand situation.

We specify and estimate �it (!t) in section 4.

We assume a potential entrant (denoted by i = 0 and state !0) exists in every period

and chooses whether to enter or wait when its turn-to-move arrives.15 Upon entry, it be-

comes active at the lowest productivity level, !i;t+1 = !1.16 If it stays out, !i;t+1 = !0.

Each of the two actions entails a sunk cost, �a
0
+ " (a0it), where a

0 2 A0 = fenter; outg,
�a

0
is deterministic, and " (a0it) is stochastic. An incumbent chooses between exit, inno-

vation, merger, innovation-and-merger, and staying alone without taking any major action

(which we call �idling�), when its turn arrives. Each of these dynamic actions, a 2 A =n
exit; innovate; fpropose merger to jgj 6=i ; finnovate & propose jgj 6=i ; idle

o
, entails a sunk

cost, �a + " (ait), where �a is deterministic and " (ait) is stochastic. We assume " (a0it) and

" (ait) are independently and identically distributed (i.i.d.) type-1 extreme value with CDF

exp (� exp (�"=�)), where � is the scale parameter.17

The three actions by incumbents induce the following transitions of !it. First, all exits

15In our data, entry had all but ceased by January 1996 (i.e., the beginning of our sample period) and
our main focus is on the process of consolidation, but we incorporate entry to keep our model su¢ ciently
general, so that it can be applied to the entire life cycle of an industry in principle. Another reason is that
at least one episode of entry actually existed. Finis Conner founded Conner Technology in the late 1990s.
16To be precise, our computational implementation uses ~!i;t+1 = ~!1, where ~!�s re�ect a rede�ned grid

relative to the current frontier level, ~!L (see Appendix D.1 for details). This speci�cation re�ects the actual
data pattern in which an actual entrant would start operations from the lowest level within the industry�s
current technological standards, which advance endogenously when the frontier �rms innovate, and not the
all-time lowest level in the absolute sense.
17Note we assume the same distribution of "�s across di¤erent actions, which restricts the ways in which

their equilibrium choice probabilities respond to changes in payo¤s.
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are �nal and imply liquidation, after which the exiter reaches an absorbing state, !i;t+1 = !00

(�dead�). Second, innovation in the HDD context involves the costly implementation of re-

tooling or upgrading of manufacturing equipment to improve productivity, !i;t+1 = !it + 1.

Third, an incumbent may propose merger to one of the other incumbents by making a

take-it-or-leave-it (�TIOLI�) o¤er.18

Horizontal mergers in the HDD context are not so much about the reallocation of tangi-

ble assets (e.g., physical production capacities), which are �perishable�and tend to become

obsolete within a few quarters, as about (i) simply eliminating rivals to soften competition

and/or (ii) combining teams of engineers who embody tacit knowledge.19 Thus, a natural

way to model the evolution of post-merger productivity is to follow Farrell and Shapiro

(1990) and specify !i;t+1 = max f!it; !jtg + �i;t+1, where i and j are the identities of the

acquirer and the target, respectively, and �i;t+1 is the realization of stochastic improvement

in productivity. The �rst term on the right-hand side re�ects the convergence of the merging

parties�productivity levels, which they called �rationalization,�and the second term repre-

sents what they called �synergies.�Given the discrete grid of !it�s (and the fact that mergers

in a concentrated industry are rare events by de�nition), a simple discrete probability dis-

tribution is desirable; hence, we specify �i;t+1 � Poisson (�) i.i.d., where � is the expected
value of synergy.

We model the antitrust authority by making mergers infeasible when the number of �rms,

nt, reaches a policy threshold, N . Hence, the option to propose merger (and its associated

cost) is relevant to �rms�decision-making only when nt > N . We set N = 3 in our baseline

speci�cation, because retrospective surveys by the Federal Trade Commission (2013) and

Gilbert and Greene (2015) show this threshold was the de-facto rule of thumb for high-

tech industries, and the HDD industry participants seemed to share this view. Section 5.1

provides further details and counterfactual policy simulations.20

18We also consider Nash bargaining with equal bargaining powers between the acquirer and the target
(�NB�) as an alternative bargaining protocol for sensitivity analysis.
19Industry experts explain two reasons for mergers. First, Reggie Murray�s narrative (quoted in the in-

troduction) epitomizes a dominant view in the HDD market that most mergers were to kill competitors.
Second, according to Currie Munce of HGST, a big rationale for consolidation is that �As further improve-
ment becomes technically more challenging, the industry has to pool people and talents, which would lead
to further break-through� (February 27, 2015). Many interviewees reiterated these views, which are not
mutually exclusive. Appendix B.1 explains why (our interviewees believed) poaching top engineers from
another �rm was not su¢ cient or cost-e¤ective for the second purpose.
20Appendix E.2 reports additional results based on alternative speci�cations with price-based merger

policies.
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2.2 Timing

Standard empirical models of strategic industry dynamics such as Ericson and Pakes (1995)

assume simultaneous moves in each period. However, if any of the n �rms can propose

merger to any other �rm in the same period, every proposal becomes a function of the

other n (n� 1)� 1 proposals, which will lead to multiple equilibria. Instead, we consider an
alternating-move game in which the time interval is relatively short and only (up to) one �rm

has an opportunity to make a dynamic discrete choice within a period. Gowrisankaran (1995,

1999) and Igami (2017, 2018) are examples of such formulation with deterministic orders of

moves, but researchers usually do not have theoretical or empirical reason to favor one

speci�c order over the others. A deterministic order is particularly undesirable for analyzing

endogenous mergers, because early-mover advantages will translate into stronger bargaining

powers, tilting the playing �eld and equilibrium outcomes in favor of certain �rms.

For these reasons, we use stochastically alternating moves and model the timeline within

each period as follows.

1. Nature chooses at most one �rm (say i) with �recognition�probability, �, at the be-

ginning of each period. We set � = 1
nmax

= 1
14
in our baseline model (where nmax is the

maximum number of active players) to accommodate 13 incumbents in the data at the

beginning of our sample period and a potential entrant.

2. Mover i observes the current industry state, !t, forms rational expectations about its

future evolution, f!�gT�=t+1, and draws i.i.d. shocks, " (ait), which represent random
components of sunk costs associated with the dynamic actions. If i is an incumbent,

" (ait) includes "xit, "
c
it, "

i
it,
�
"mijt
	
j
, and

�
"i&mijt

	
j
, for exit, idling, innovation, merger

proposal to rival incumbent j, and innovation-and-merger, respectively. These target-

speci�c "mijt�s and "
i&m
ijt �s represent transient and idiosyncratic factors, are also sunk,

and do not enter merger negotiation.21

3. Based on these pieces of information and their implications, mover i makes the discrete

choice ait 2 Ait, immediately incurring the associated sunk costs, �a + " (ait). If i is
an incumbent and chooses to negotiate a potential merger with incumbent j, the two

parties bargain over the acquisition price, pij, which is a dollar amount to be transferred

21For example, consider senior manager M, who goes to one of the numerous Irish pubs in Silicon Valley,
bumps into a rival �rm�s manager, has a good time, and comes up with an idea of merger, after which he
goes back to the headquarters and recommends the idea. The board agrees and sends out another manager,
K, as their delegate. Manager K bargains with his counterpart, but neither of them knows or cares about
Manager M�s happy-hour experience that triggered the negotiation, that is, "mijt.
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from i to j upon agreement. Our baseline speci�cation of the bargaining protocol is

TIOLI.22 If the negotiation breaks down, no transfer takes place, i�s turn ends without

any other action or other merger negotiation, and j will remain independent.

4. All incumbent �rms (regardless of the stochastic turn to move) participate in the spot-

market competition, earn period pro�ts, �it (!t), and pay the �xed cost of operation,

�t = �0 + �t (!it).

5. Mover i implements its dynamic action, and its state evolves accordingly. If i is merg-

ing, it draws stochastic synergy, �i;t+1, which determines the merged entity�s produc-

tivity in the next period, !i;t+1.

These steps are repeated T times until the industry comes to an end. Empirical models

of a dynamic game typically assume that only �rm i observes the stochastic components of

sunk costs, " (ait), because such private shocks are necessary to guarantee the existence of

Markov perfect equilibria (c.f., Doraszelski and Satterthwaite 2010) in a simultaneous-move

game with an in�nite horizon. By contrast, we use a sequential-move formulation with a

�nite horizon and do not need to assume private information. Regardless of whether �rm

j 6= i (non-mover) observes " (ait), there is nothing j can do about it, because i is the only
mover at t. Moreover, these shocks are transient and sunk, and do not enter neither the

joint surplus from i�s merger with j nor their disagreement payo¤s (see below). Thus we

may assume " (ait) to be either public or private in our baseline speci�cation with TIOLI

o¤ers.23

2.3 Dynamic Optimization and Equilibrium

Whenever its turn to move arrives, a �rm makes a discrete choice to maximize its expected

net present value. Its strategy, �i (not to be confused with the logit scaling parameter �),

consists of a mapping from its e¤ective state (a vector of the productivity pro�le !t, time t,

and the draws of "it = f" (ait)ga2A) to a choice ait 2 Ait� a complete set of such mappings
across all t, to be precise. We may integrate out "it and consider �i as a collection of the

ex-ante optimal choice probabilities conditional on (!it; !�it; t).

22No systematic record exists on the actual merger negotiations, and the details are likely to be highly
idiosyncratic. In the absence of solid evidence, we prefer keeping the speci�cation as simple as possible.
23By contrast, our alternative speci�cation with Nash bargaining implicitly assumes " (ait) to be public

information. Binmore, Rubinstein, and Wolinsky (1986) provide a non-cooperative foundation of Nash
bargaining by showing that its solution coincides with Rubinstein�s (1982) alternating bargaining protocol,
which is a complete information game. We thank Allan Collard-Wexler and Aureo de Paula for this advice.
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The following Bellman equations characterize an incumbent �rm�s dynamic optimization

problem.24 Mover i�s value after drawing "it is

Vit (!t; "it) = �it (!t)� �t (!it) + max
(

�V xit (!t; "
x
it) ; �V

c
it (!t; "

c
it) ; �V

i
i (!t; "

i
it) ;�

�V mijt
�
!t; "

m
ijt

�	
j
;
�
�V i&mijt

�
!t; "

i&m
ijt

�	
j

)
; (1)

where �V ait s represent conditional (or �alternative-speci�c�) values of exiting, idling, innovat-

ing, proposing merger to rival j, and both of the latter two, respectively,

�V xit (!t; "
x
it) = ��x + "xit + �E [�i;t+1 (!t+1) j!t; ait = exit] ; (2)

�V cit (!t; "
c
it) = "cit + �E [�i;t+1 (!t+1) j!t; ait = idle] ; (3)

�V iit
�
!t; "

i
it

�
= ��i + "iit + �E [�i;t+1 (!t+1) j!t; ait = innovate] ; (4)

�V mijt
�
!t; "

m
ijt

�
= ��m + "mijt � pij (!t)

+�E [�i;t+1 (!t+1) j!t; ait = merge j] ; and (5)

�V i&mijt

�
!t; "

i&m
ijt

�
= ��i � �m + "i&mijt � pij (!t)

+�E [�i;t+1 (!t+1) j!t; ait = innovate & merge j] : (6)

Mover i�s value before drawing "it is

EVit (!t) = E" [Vit (!t; "it)]

= �i (!t)� �t (!it)

+�

8<: + ln
24 exp

�
~V xit
�

�
+ exp

�
~V cit
�

�
+ exp

�
~V iit
�

�
+
P

j 6=i exp
� ~Vmijt

�

�
+
P

j 6=i exp
� ~V i&mijt

�

� 35
9=; ; (7)

where  is Euler�s constant, � is the logit scaling parameter, and ~V ait is the deterministic part

of �V ait (!t; "
a
it), that is, ~V

a
it � �V ait (!t; "

a
it)� "ait. In equations 2 through 6, �i;t+1 represents i�s

expected value at t+ 1 before nature picks a mover at t+ 1,

�i;t+1 (!t+1) = �EVi;t+1 (!t+1) +
X
j 6=i

�W j
i;t+1 (!t+1) . (8)

This �umbrella�value is a recognition probability-weighted average of mover�s value (EVit)

and non-mover�s value
�
W j
it

�
. Nobody knows exactly who will become the mover before

nature picks one. When nature picks j 6= i, non-mover i�s value (before j draws "jt and takes
24Appendix B.2 features the corresponding expressions for the potential entrant.
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an action) is

W j
it (!t) = �it (!t)� �t (!it) + Eit [Pr (ajt = exit)]� �E [�i;t+1 (!t+1) j!t; ajt = exit]

+Eit [Pr (ajt = idle)]� �E [�i;t+1 (!t+1) j!t; ajt = idle]

+Eit [Pr (ajt = innovate)]� �E [�i;t+1 (!t+1) j!t; ajt = innovate]

+ fEit [Pr (ajt = merge i)] + Eit [Pr (ajt = innovate & merge i)]g

� pji (!t)

+
X
k 6=i;j

Eit [Pr (ajt = merge k)]

� �E [�i;t+1 (!t+1) j!t; ajt = merge k]

+
X
k 6=i;j

Eit [Pr (ajt = innovate & merge k)]

� �E [�i;t+1 (!t+1) j!t; ajt = innovate & merge k] ; (9)

where Eit [Pr (ajt = action)] is non-mover i�s belief over mover j�s choice. These value func-

tions entail the following ex-ante optimal choice probabilities:

Pr (ait = action) =
exp

�
~V actionit

�

�
exp

�
~V xit
�

�
+ exp

�
~V cit
�

�
+ exp

�
~V iit
�

�
+
P

j 6=i exp
� ~Vmijt

�

�
+
P

j 6=i exp
� ~V i&mijt

�

� :
(10)

In equilibrium, these probabilities constitute the non-movers�beliefs over the mover�s choice.

We use these optimal choice probabilities to construct a likelihood function for estimation in

section 4.3. The TIOLI bargaining protocol implies the equilibrium acquisition price equals
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the target �rm�s outside option (i.e., staying independent),25

pij (!t) = ��j;t+1 (!t+1 = !t) : (11)

We solve this dynamic game for a unique sequential equilibrium in pure strategies that

are type-symmetric.26 Note that "it�s are i.i.d. shocks whose realizations do not a¤ect

anyone�s future payo¤ except through the actual choice ait; hence, we may solve this game

by backward induction from the �nal period, T . At T , all �rms�pro�ts and continuation

values are zero, so no decision problem exists. At T�1, a single mover (denoted by i = T�1)
draws "T�1 and takes whichever action aT�1 maximizes its expected net present value. At

T � 2, another mover (i = T � 2) draws "T�2 and makes its discrete choice, in anticipation
of (i) the evolution of !t from T � 2 to T � 1, (ii) the recognition probabilities and other
common factors, and (iii) the optimal CCPs of all types of potential movers at T � 1, which
imply the transition probabilities of !t from T � 1 to T . This iterative process repeats itself
until the initial period t = 0.

An equilibrium exists and is unique. First, each of the (at most) T discrete-choice prob-

lems has a unique solution given the i.i.d. draws from a continuous distribution. Second, in

each period t, only (up to) one �rm solves this problem in our alternating-move formulation.

Third, mover t�s choice completely determines the transition probability of !t to !t+1, but

it cannot a¤ect future movers�optimal CCPs at t+1 and beyond in any other way. In other

words, this game is e¤ectively a sequence of T single-agent problems. By the principle of

optimality, we can solve it by backward induction for a unique equilibrium.27

25Under NB, the two parties jointly maximize the following expression:

f�E [�i;t+1 (!t+1) j!t;merge j]� pij � ��i;t+1 (!t+1 = !t)g�

�fpij � ��j;t+1 (!t+1 = !t)g1�� ;

where � 2 [0; 1] represents the bargaining power of the acquirer (i here), which equals :5 with 50-50 split
(1 under TIOLI). The last term in each bracket is the disagreement payo¤. Note that the target-speci�c
"mijt or "

i&m
ijt represent transient/sunk factors that have led to the beginning of the negotiation and does not

enter the above. Only up to one deal (between i and j here) can be negotiated within a period. This setting
is not as restrictive as it might seem at a �rst glance, because the time interval is relatively short and all
other potential deals in the future are embedded in the disagreement payo¤ (i.e., each �rm�s stand-alone
continuation value). The speci�cation shares the spirit of Crawford and Yurukoglu (2012) and Ho (2009),
among others.
26By �type-symmetric� in this context, we mean the �rms of the same type (productivity level) use the

same mapping from the draws of the "s to the actions, and that we do not treat such �rms di¤erently based
on their identities or other characteristics.
27See Appendix B.3 for further explanations on the key assumptions that guarantee uniqueness and whether

our approach is akin to some form of equilibrium selection.
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2.4 Other Modeling Considerations

To clarify our modeling choices, we discuss �ve alternative modeling possibilities that we

have considered: (i) an in�nite horizon, (ii) continuous time, (iii) heterogeneous recognition

probabilities, (iv) alternative bargaining protocols, and (v) private information on synergies.

In�nite Horizon First, we have chosen a �nite horizon over an in�nite one primarily

because we study the process of industry consolidation in an innovative, nonstationary in-

dustry. Another reason is multiple equilibria. Iskhakov, Rust, and Schjerning (2016) �nd

numerous equilibria in a stochastically alternating-move duopoly game of innovation with

an in�nite horizon. Multiple equilibria in dynamic games would often entail loss of point

identi�cation.

Continuous Time Second, continuous time modeling is an attractive alternative, but

Arcidiacono, Bayer, Blevins, and Ellickson (2015) acknowledge that the feasibility of its

application to a nonstationary environment is unknown. Another problem with a shorter

time interval in our context is its potential con�ict with the i.i.d. idiosyncratic shocks and

timing assumptions. For major and infrequent decisions such as mergers, the actual decision

making and implementation take at least a month or a quarter. Shorter intervals would imply

�rms draw i.i.d. random shocks every day or week. Incorporating a persistent unobserved

state could alleviate this problem but create another technical challenge.

Recognition Probabilities Third, some �rms might be more active in M&A than oth-

ers, and recognition probabilities can accommodate such heterogeneity. For example, making

� depend on !it would be conceptually straightforward, albeit computationally costly. One

problem with this idea is that we have no theory. Another problem is identi�cation. Be-

cause we have no theoretical or empirical foundation for a priori speci�cation of asymmetric

��s, we prefer keeping it symmetric and instead focus on the extent of heterogeneity in the

equilibrium CCP estimates.

Bargaining Powers Fourth, regarding the speci�cations TIOLI and NB, we may leave

the bargaining powers, �, as free parameter and try to estimate them. However, mergers

in a concentrated industry are rare events by de�nition, which leads to a data environment

with only a handful of actual acquisition deals to estimate �. Thus, we pre-specify TIOLI

and NB as alternative models, and implement both as a sensitivity analysis.

Synergy Fifth, regarding the nature of synergies, we assume �rms do not know their

realizations before mergers, for three reasons. First, such non-trivial private information

will constitute unobserved state variables and generate a selection problem, which is an

interesting problem but beyond the scope of this paper. Second, no systematic record exists
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on �rms� subjective assessments of �chemistry;� hence, the identi�cation of such factors

would be infeasible without strong additional assumptions. Third, our simple model of �i;t+1

as a completely random draw actually seems the most consistent with our personal interview

with Finis Conner, the co-founder of Seagate Technology, the founder of Conner Peripherals,

and the founder of Conner Technology. Having founded two Fortune-500 companies in the

HDD industry and engaged in some of the historical mergers, he could be regarded as a rich

source of such private information. Nevertheless, he stated, �You have to dive into the water

to see where the skeletons are,�which means even an industry veteran would not know the

internal functioning of the other �rms su¢ ciently to predict the synergy realizations with

much precision, until after the actual mergers take place.28 Thus, ours is an empirical model

of Finis Conner. We keep our synergy function simple, and conduct sensitivity analysis with

respect to � in section 4.3.

For these reasons, we see no obvious alternatives to our speci�cation amid many concep-

tual and practical challenges, and propose it as a baseline model.

3 Data

3.1 Institutional Background and Product Characteristics

Computers are archetypical high-tech goods that store, process, and transmit data. HDDs,

semiconductor chips, and network equipment perform these tasks, respectively. HDDs o¤er

the most relevant empirical context to study mergers and innovation in the process of industry

consolidation. The industry has experienced massive waves of entry and exit, followed by

mergers among a dozen survivors (Figure 1).

The manufacturing of HDDs requires engineering virtuosity in assembling heads, disks,

and motors into an air-tight black box, managing volume production in a reliable and eco-

nomical manner, and keeping up with the technological trend of increasing areal density that

constantly improves both quality and e¢ ciency (Kryder�s Law).

Despite such complexity, HDDs are also one of the simplest products in terms of eco-

nomics because they are �completely undi¤erentiated product�according to Peter Knight,

former vice president of Conner Peripherals and Seagate Technology, and former president

of Conner Technology.29 Consumers typically do not observe or distinguish �brands.�More-

over, HDDs are physically durable but do not drive the repurchasing cycle of PCs. Microsoft

28From authors�personal interview on April 20, 2015, in Corona del Mar, CA.
29From authors�personal interview on June 30, 2015, in Cupertino, CA. See also section 4.1.
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Figure 1: Evolution of the World�s HDD Industry

Note: The number of �rms counts only the major �rms with market shares exceeding 1% at some point of
time. See Igami (2017, 2018) on product and process innovations during the 1980s and 1990s.

and Intel (�Wintel�) do, as is evident from the fact that PC users tend to be aware of the

technological generations of operating systems (OS) and central processing units (CPU) but

not HDDs, which means the demand for HDDs can be usefully modeled within a static

framework as long as we control for the PC shipments as a demand shifter.30 These product

characteristics inform our demand analysis in section 4.1.

Two institutional features inform our analysis of the supply side in section 4.2. First, the

manufacturers of PCs and HDDs do not engage in long-term contracts or relationships in a

strict sense. The architecture of a PC is highly modular, and standardized interfaces con-

nect its components, which makes di¤erent �brands�of HDDs technologically substitutable.

30PC makers typically do not stockpile HDDs either, because HDDs become cheaper and better over time.
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Furthermore, �second sourcing�has long been a standard practice in the computer industry,

by which a downstream �rm keeps close contact with multiple suppliers of a key component

so that a backup supplier or two will always exist in cases of accidental supply shortage

at the primary one. According to Peter Knight, �Compaq, HP, nobody cared who makes

their disk drives. They bought the lowest-price product that had reasonable quality. There

was no reason for single-sourcing.�Second, PC makers might appear to have consolidated

as much as HDD makers, but the actual market structure of the global PC industry is more

fragmented. The average combined market share of the top four vendors (i.e., CR4) between

2006 and 2015 is 52.5%, which is considered between �low�and �medium�concentration.

By contrast, the HDD industry�s average CR4 is 91.6% during the same period.31

Finally, our data include some kind of solid-state drives (SSDs), but we do not explicitly

model them, because (i) pure SSDs comprised less than 10% of industry sales even in the last

�ve years of our sample period, (ii) they are made of NAND �ash memory (a type of semi-

conductor devices), whose underlying technology is totally di¤erent from HDD�s magnetic

recording technology, and (iii) NAND �ash memories are supplied by a di¤erent set of �rms

(i.e., semiconductor chip makers specialized in �ash memories). Modeling SSDs means mod-

eling the semiconductor industry. However, most SSDs for desktop PCs are actually hybrid

HDDs which combine a small NAND part with HDDs. These hybrids are part of our HDD

data, and their increasing presence is captured as a secular trend of quality improvement in

our data analysis.32

3.2 Three Data Elements

Our empirical analysis will focus on the period between 1996 and 2016 for three reasons.

First, most of the exits prior to the mid-1990s were shakeouts of fringe �rms that occurred

through plain liquidation, whereas our main interest concerns mergers in the �nal phase of

industry consolidation. Second, the de-facto standardization of both product design and

manufacturing processes had mostly �nished by 1996. Speci�cally, the 3.5-inch form factor

had come to dominate the desktop market (see Igami 2017), and manufacturing operations

in Southeast Asia had achieved the most competitive cost-quality balance (see Igami 2018).

Third, our main data source, TRENDFOCUS, an industry publication series, started most

31Modeling the entire supply chain of PCs and HDDs as bilateral oligopoly would be an interesting exercise,
but it is beyond the scope of this paper, whose main focus is horizontal mergers and long-run dynamics.
32Pure SSDs have become common for note PCs, but we focus on HDDs (including hybrids) for desktop

PCs, which is still the mainstream market for HDDs.
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Table 1: Summary Statistics

Variable Unit of Number of Mean Standard Minimum Maximum
measurement observations deviation

Panel A
HDD shipments, Qt Exabytes� 83 16.91 17.34 0.02 53.20
HDD price, Pt $/Gigabytes� 83 14.09 36.33 0.03 178.62
Disk price, Zt $/Gigabytes� 83 1.83 5.11 0.002 23.51
PC shipments, Xt Million units 83 29.12 7.01 14.47 40.31
Panel B
Market share, msit % 605 13.68 11.43 0.00 45.75
Panel C
Indicatorfait = mergeg 0 or 1 248 0.0242 0.1540 0 1
Indicatorfait = innovateg 0 or 1 248 0.2460 0.4315 0 1
Indicatorfait = exitg 0 or 1 248 0.0202 0.1408 0 1
Indicatorfait = enterg 0 or 1 248 0.0040 0.0635 0 1
Variable pro�t, �it Million $ (see note) 40.80 119.67 0.00 12,040.82

Note : 1 exabytes (EB) = 1 billion gigabytes (GB), and 1 GB = 1 billion bytes. Panel A is recorded

in quarterly frequency at the aggregate level, Panel B is quarterly at the �rm level (unbalanced panel),

and Panel C is a single time series from January 1996 to August 2016 (which summarizes the observable

actions of all �rms according to the timing convention of our model). msit = 0:00 is recorded for negligible

output levels (e.g., the initial periods of a new entrant and the �nal periods of exiting incumbents). �it is

our period-pro�t estimate and contains 25,285,120 values across 128 productivity levels, 83 quarters, and

76,160 industry states. See sections 4.1 and 4.2.

Source : TRENDFOCUS Reports (1996�2016).

of its systematic data collection at the quarterly frequency in 1996.33

Table 1 summarizes our main dataset, which consists of three elements corresponding

to three steps of our empirical analysis in the next section. Panel A is the aggregate quar-

terly data on HDD shipments, HDD price, disk price, and PC shipments,34 which we use

to estimate HDD demand in section 4.1. Panel B is the �rm-level market shares at the

quarterly frequency, a graphic version of which is displayed in Figure 1 (top right). We use

demand estimates and Panel B to infer the variable cost of each �rm in each period in section

4.2. Panel C is a systematic record of �rms�dynamic choices between merger, R&D invest-

ment, and entry/exit, at the monthly frequency. We observe entry, exit, and mergers in the

TRENDFOCUS reports.35 Panel C also includes some elements that are derived from the

other two panels, such as the indicator of innovation and the equilibrium variable pro�ts.36

33By contrast, Igami (2017, 2018) used Disk/Trend Reports (1977�1999), an annual publication series.
Other studies of the HDD industry, such as Christensen (1993) and Gans (2016), also focus on this period.
34Appendix C.1 features more details on Panel A, including visual plots of these variables.
35The antitrust authority has approved all HDD mergers during the sample period. We do not observe

merger proposals that were rejected in private negotiations. We use a model in which all proposals are
accepted in equilibrium.
36Appendix D.1 explains the details of this data construction.
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We use these dynamic choice data and stage-game payo¤s to estimate the implied sunk costs

associated with these actions in section 4.3.

4 Empirical Analysis

We �esh out our model (section 2) with the actual data (section 3), which contain three

elements: (A) aggregate sales, (B) �rm-level market shares, and (C) dynamic discrete choice.

Each of these data elements is paired with a model element and an empirical method to

estimate demand, variable costs, and sunk costs. Table 2 provides an overview of such

model-data-method pairing as well as section 4�s roadmap.

Table 2: Overview of Empirical Analysis

Section Step Model Data Method
4.1 Demand Log-linear demand Panel A IV regression
4.2 Variable cost Cournot competition Panel B First-order condition
4.3 Sunk cost Dynamic discrete choice Panel C Maximum likelihood

Note : See section 2 for the dynamic game model, and section 3 for the three data elements.

4.1 Demand Estimation

We follow Peter Knight�s characterization of HDDs as �completely undi¤erentiated prod-

ucts�(see section 3.1). To be precise, HDDs come in a few di¤erent data-storage capacities

(e.g., 1 terabytes per drive), but all �rms are selling these products with �the same capaci-

ties, the same speed, and similar reliability�at any given moment, so that cost becomes the

only dimension of competition.37 Most consumers, including the authors, do not even know

which �brand�of HDDs are installed inside their desktop PCs, and PC manufacturers typi-

cally do not let consumers choose a brand. Thus, homogeneous-good demand and Cournot

competition are useful characterizations of the spot-market transactions.

To ensure our data format is consistent with our notion of product homogeneity, we

consider units of data storage (measured in bytes) as undi¤erentiated goods. We specify a

log-linear demand for raw data-storage functionality of HDDs,

logQt = �0 + �1 logPt + �2 logXt + "t; (12)

37From authors�personal interview on June 30, 2015, in Cupertino, CA.
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where Qt is the world�s total HDD shipments in exabytes (EB = 1 billion GB), Pt is the

average HDD price per gigabytes ($/GB), Xt is the PC shipments (in million units) as a

demand shifter, and "t represents unobserved i.i.d. demand shocks.

Because the equilibrium prices in the data may correlate with "t, we instrument Pt by

Zt, the average disk price per gigabyte ($/GB). Disks are one of the main components of

HDDs, and hence their price is an important cost shifter for HDDs. Disks are made from

substrates of either aluminum or glass. The manufacturers of these key inputs are primarily

in the business of processing materials, and only a small fraction of their revenues come from

the HDD-related products. Thus, we regard Zt as exogenous to the developments within

the HDD market. We also use as another IV a dummy variable indicating a major supply

disruption caused by �ood in Thailand in the fourth quarter of 2011.

In Table 3, columns 1 and 2 show OLS estimates, whereas columns 3 and 4 show IV esti-

mates. The estimates for price elasticity, �1, are similar across speci�cations and suggest the

demand is close to unit-elastic. We use the IV estimates of the full model (4) in the subse-

quent analysis. Because the data on quantities and prices clearly indicate serial correlations

and time trends (see Appendix C.1), we use detrended time series of these variables.

Table 3: Demand Estimates

(1) (2) (3) (4)
OLS OLS IV IV

Log HDD price per GB (�1) �1:112 �1:046 �1:054 �1:043
(0:035) (0:046) (0:032) (0:038)

Log PC shipment (�2) � 0:271 � 0:276
(�) (0:095) (�) (0:086)

Number of observations 83 83 83 83
Adjusted R2 0:942 0:948 � �
First-stage regression
Log disk price per GB � � 0:813 0:567

(�) (�) (0:026) (0:032)
Thai �ood dummy � � 0:263 0:548

(�) (�) (0:079) (0:070)
F-value � � 585:49 732:12
Adjusted R2 � � 0:874 0:946

Note : Dependent variable is log total HDD (in EB) shipped. We use detrended quantities and prices of HDD to
address nonstationarity in the original time series of these variables. Huber-White heteroskedasticity-robust standard
errors are in parentheses.

Other concerns and modeling considerations include (i) demand-side dynamics, such as

durability of HDDs and the repurchasing cycle of PCs, (ii) supply-side dynamics, such as

long-term contracts with PC makers, and (iii) non-HDD technological dynamics, including

SSDs and the semiconductor industry. Our summary views are as follows: (i) the physical
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durability of HDDs does not determine the dynamics of PC demand; (ii) the actual inter-

action between HDD makers and PC makers is more adequately described as spot-market

transactions rather than a long-term relationship; and (iii) our analysis incorporates the non-

HDD technological trend and the growing presence of hybrid HDDs as part of time trend

and by analyzing sales at the byte level. Section 3.1 provides further details.

4.2 Variable Costs and Spot-Market Competition

The second data element is the panel of �rm-level market shares (Figure 1, top right), which

we will interpret through the analytical lens of Cournot competition, for two reasons. Despite

selling undi¤erentiated high-tech commodities, HDD makers� �nancial statements report

positive pro�t margins (see dotted lines in Figure 2), which suggests the Cournot model

as a reasonable metaphor for analyzing their spot-market interactions. Another appeal is

that the classical oligopoly theory of mergers has mostly focused on the Cournot model (see

section 1), which brings conceptual clarity and preserves simple economic intuition.

Figure 2: Comparison of Pro�t Margins (%) in the Model and Financial Statements

Note: The model predicts economic variable pro�ts, whereas the �nancial statements report accounting
pro�ts (gross pro�ts), and hence they are conceptually not comparable. The correlation coe¢ cient between
the model and the accounting data is 0.75 for Western Digital, and 0.51 for Seagate Technology. With a
management buy-out in 2000, Seagate Technology was a private company until 2002, when it re-entered the
public market. These events caused discontinuity in the �nancial record.

Each of the nt �rms observes the pro�le of marginal costs fmcitgnti=1 as well as the concur-
rent HDD demand, and chooses the amount of re-tooling e¤orts to maintain e¤ective output
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level, qit, to maximize its variable pro�t,

�it = (Pt �mcit) qit; (13)

where Pt is the price per GB of a representative HDD at t andmcit is the marginal cost, which

is predetermined at t� 1 and constant with respect to qit.38 Firm i�s �rst-order condition is

Pt +
dP

dQ
qit = mcit; (14)

which provides one-to-one mapping between qit (observed) and mcit (implied) given Pt in

the data and dP=dQ from the demand estimates. Intuitively, the higher the �rm�s observed

market share, the lower its implied marginal cost.

The interpretation of mcit requires special attention in the high-tech context. As we

discussed in section 2 regarding synergies, �productivity� in HDD manufacturing is not

so much about tangible assets as about tacit knowledge embodied by teams of engineers.

Thus, our preferred interpretation of Cournot spot-market competition follows Kreps and

Scheinkman�s (1983) model of quantity pre-commitment followed by price competition, given

the cost pro�le (i.e., all active �rms�productivity levels).39

Figure 2 compares the model�s predictions with accounting data, in terms of pro�t mar-

gins at Western Digital (left) and Seagate Technology (right), respectively. Our model takes

as inputs the demand estimates and the marginal-cost estimates, and predicts equilibrium

outputs, prices, and hence each �rm�s variable pro�t margin in each year,

mit (!t) =
Pt (!t)�mcit

Pt (!t)
; (15)

under any industry state, !t (i.e., the number of �rms and their productivity levels). The

solid lines represent such predictions of economic pro�t margins along the actual history,

whereas the dotted lines represent gross pro�t margins (i.e., revenue minus cost of revenues)

in the �rms��nancial statements.
38In principle, we may replace this constant marginal-cost speci�cation with other functional forms. In the

high-tech context, however, marginal costs are falling every period across the industry, and the geographical
market is global. Thus, one cannot rely on either inter-temporal or cross-sectional variation in data to
identify marginal-cost curves nonparametrically.
39One might wonder whether such �pre-committed quantities� are hard-wired to physical production

capacities. In the context of high-tech manufacturing, e¤ective physical capacities are highly �perishable�
because of the constant improvement in the industry�s basic technology, which makes previously installed
manufacturing equipment obsolete. Thus, we prefer a rather abstract phrase �quantity pre-commitment,�
to �capacity�because the latter could mislead the reader to imagine �durable�physical facilities.
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Economic pro�ts and accounting pro�ts are di¤erent concepts, which explains the ex-

istence of systematic gaps in their levels. On average, (economic) variable pro�t margins

are higher than (accounting) gross pro�t margins by 4.6 and 3.5 percentage points at these

�rms, respectively, because the former excludes �xed costs of operation and sunk costs of

investment, whereas the latter includes some elements of �xed and sunk costs.40 Thus, corre-

lation is more important than levels, which is 0.75 for Western Digital, and 0.51 for Seagate

Technology. If we accept accountants as conveyors of truth, this comparison should con�rm

the relevance of our spot-market model.

These static analyses are interesting by themselves, but merger policy will a¤ect not

only �rms�spot-market behaviors but also their incentives for mergers and investments, and

hence the entire history of competition and innovation. Thus, a complete welfare analysis

of industry consolidation requires endogenous mergers, innovation, and entry-exit dynamics,

which are the focus of the subsequent sections.

We convert these marginal-cost estimates into productivity levels, !it, for the subsequent

dynamic analysis. First, we discretize marginal costs on a 0.1 log-US$ grid. Second, we

reverse their rank order, so that higher productivity levels represent lower mcit�s. Third,

we keep track of each �rm�s !it by looking at its �frontier�(i.e., the highest !it reached in

the industry to date) and how many bins below it a �rm is. Appendix D.1 explains further

details.

4.3 Sunk Costs and Dynamic Discrete Choice

The third data element is the panel of �rms�discrete choices between mergers, innovation,

entry, and exit, which we will interpret through the dynamic model. We have already

estimated pro�t function, that is, period pro�ts of all types of �rms, in each period, in each

industry state, �it (!t). In other words, we observe the actual choices and the �bene�t�side

of the equation; hence, the �cost�side of the equation is the only unknown now.

Table 4 lists all the parameters and key speci�cations of our model. Before engaging in

the MLE of the core parameters, � � (�0; �i; �m; �e; �), we determine the values of the other
40For example, manufacturing operations in East Asia accounted for 41; 304, or 80:8%, of Seagate�s 50; 988

employees on average between 2003 and 2015, whose wage bills constitute the labor component of the �cost
of revenues� in terms of accounting. However, some of these employees spent time and e¤ort on techno-
logical improvements, such as the re-tooling of manufacturing equipment for new products (i.e., product
innovation), as well as the diagnosis and solution of a multitude of engineering challenges to improve the
cost e¤ectiveness of manufacturing processes (i.e., process innovation), which are sunk costs of investment
in terms of economics.
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parameters either as by-products of the previous two steps or directly from auxiliary data.41

Table 4: List of Parameters and Key Speci�cations

Parameter Notation Empirical approach
1. Static estimates
Demand �0; �1; �2 See section 4.1
Variable costs mcit See section 4.2
Period pro�ts �it (!t) See section 4.2
2. Dynamics (sunk costs)
Innovation, mergers, and entry �i; �m; �e MLE (section 4.3)
Logit scaling parameter � MLE (section 4.3)
Base �xed cost of operation �0 MLE (section 4.3)
Time-varying �xed cost of operation �t (!it) Accounting data (see Appendix D.2)
Liquidation value �x = 0 Industry background
3. Dynamics (transitions)
Annual discount factor � = 0:9 Calibrated
Prob. stochastic depreciation � = 0:04 Implied by mcit
Average synergy � = 1 Implied by mcit (sensitivity analysis with 0 and 2)
4. Other key speci�cations
Terminal period T = Dec-2025 Sensitivity analysis with Dec-2020
Bargaining power TIOLI: � = 1 Sensitivity analysis with NB: � 2 f0:5; 0:6; 0:7; 0:8; 0:9g
Recognition probability � = 1

nmax
= 1

14
Sensitivity analysis with nmax 2 f21; 28g

First, we pin down the other two costs as follows. The time-varying (and productivity-

dependent) component of the �xed cost of operation, �t (!it), comes directly from the ac-

counting data on sales, general, and administrative (SGA) expenses, and are allowed to vary

over time and across a �rm�s productivity level.42 We set liquidation value, �x, to zero be-

cause tangible assets quickly become obsolete and have no productive use outside the HDD

industry.

Second, three parameters govern transitions. The discount factor is calibrated to � = 0:9

at an annualized rate. We introduce the possibility of exogenous and stochastic depreciation

of !it at the end of every period, because our estimates of mcit (or equivalently, !it) exhibit

occasional deterioration with probability � = 0:04.43 Likewise, our mcit estimates suggest

the extent of synergy. The average post-merger improvement is a 10% decrease in marginal
41Recall we use �it (!t), dollar-valued period pro�ts, as data. They help us identify the scale parameter

for the "�s, �. Larger � would make the model less responsive to these pro�ts, whereas smaller � would make
the predicted CCPs highly sensitive to their changes. The numerical search for the likelihood-maximizing
� tends to be volatile. Hence, we use a grid search with an interval of 0.01, conditional on which we use
MATLAB�s simplex- and derivative-based search algorithm for the other parameters.
42See Appendix D.2 for details.
43The �occasional deterioration�in �rm productivity is the opposite of the innovate action and is recog-

nized in the data as upward changes in the marginal-cost estimates. Such changes occur in 4% of the
observations or �time at risk.� Because these changes are not desirable for the �rms, we model them as
exogenous negative shocks to their productivity (i.e., stochastic depreciation that is not controlled by the
�rms) rather than their active choice.
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cost (or a one-level increase in the discretized productivity grid),44 which constitutes our

�estimates�of the Poisson synergy parameter,

�̂MLE =
1

#m

#mX
m=1

�m; (16)

where #m is the number of mergers in the data, and �m is the productivity improvement

from merger m.45 However, mergers in a concentrated industry are rare events (#m = 6 in

our main sample), and antitrust agencies tend to hear merging parties�claim about synergy

with skepticism. Consequently, we consider � = 1 as our baseline calibration and conduct

sensitivity analysis with � = 0 (no synergy) and � = 2 (strong synergy) instead of arguing

over what its �right�value should be.

Third, two aspects of our dynamic model require �ne-tuning. The �rst such aspect is

the terminal condition. Our sample period ends in 2016Q3, but the HDD industry does

not; hence, we need to assume something about the post-sample end game. Our baseline

speci�cation assumes the HDD demand continues to exist until the end of year 2025, with

linear interpolation of pro�t-function estimates between September 2016 and December 2025.

Our sensitivity analyses employ a more pessimistic scenario, with T = Dec-2020. The second

aspect is bargaining protocols. Our baseline speci�cation is TIOLI, � = 1, but we also

estimate the NB version with � 2 f0:5; 0:6; 0:7; 0:8; 0:9g.

Incorporating a Random-Mover Dynamic Game

Having determined the baseline con�guration, we proceed to estimate � = (�0; �
i; �m; �e; �).

The outline of our MLE procedure follows Rust�s (1987) NFXP approach, but our model

diverges from his in three respects: (i) the HDD makers�optimal choice problem takes place

within a dynamic game, rather than being a single-agent problem; (ii) their turns-to-move ar-

rive stochastically rather than deterministically; and (iii) the underlying payo¤s change over

time and eventually disappear. Feature (i) fundamentally complicates the estimation prob-

lem because games generally entail multiple equilibria, which would make point-identi�cation

di¢ cult because one cannot use model-generated CCPs to pin down parameter values if a

single parameter value predicts multiple CCPs. Our solution is three-fold. First, we use

an alternating-move formulation to streamline the decision problems, so that only (up to)

one player makes a choice in each period. Second, we avoid tilting the playing �eld (i.e.,

44See Appendix D.1 for the details of discretization.
45The variance of �m in the data is 1 as well. Hence, the Poisson distribution �ts our (limited) data well.
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assuming a deterministic sequence would embed early-mover advantage a priori) by making

the turn-to-move stochastic, which led us to feature (ii) in the above. Third, we exploit the

high-tech context of feature (iii) to set a �nite time horizon, which enables us to solve the

game for a unique equilibrium by backward induction. In other words, we address method-

ological challenges stemming from feature (i) by crafting (ii) and exploiting (iii), so that the

overall scheme of estimation can proceed within the NFXP framework.

The optimal choice probabilities of entry, exit, innovation, and mergers in equation 10

constitute the likelihood function. The contribution of action pro�le at � (ait)i in month t
is

lt (atj!t; �) =
X
i

��it
Y

action2Ait(!t)

Pr (ait = action)
1fait=actiong ; (17)

where ��it is the realization of turn-to-move in data (see equation 19 below), Ait (!t) is i�s

choice set in state !t, and 1 f�g is an indicator function. The MLE is

�̂MLE = argmax
�

1

T

X
t

ln [lt (atj!t; �)] ; (18)

where T is the number of sample periods.

The realizations of turns-to-move are not always evident in the data; hence, the im-

plementation of MLE needs to distinguish �active� periods in which some �rm took an

observable action (such as exit, innovation, merger, or entry) and altered !t, and �quiet�

periods in which no �rm made any such proactive moves. Speci�cally, we incorporate the

random turns to move by setting

��it =

(
1 if ait 2 fexit;merge=innovate; enterg , and
1

nmax
if ait 2 fidle; outg for all i at t:

(19)

That is, when exit, merger, innovation, or entry is recorded in the data, we interpret that

nature picked the �rm that took the action (and set ��jt = 0 for all non-mover �rms j 6= i),
whereas in a �quiet�period, nature may have picked any one of the �rms that subsequently

decided to idle (or stay out) and did not alter !t.46

46To be precise, when we say we set ��it = 1 for some �rm i at some t, we are merely registering par-
ticular realizations of the random variable (i.e., nature�s choice) in the data. This empirical ��it should be
distinguished from the generic (ex-ante) recognition probability, � = 1

nmax
< 1, because �rms do not know

in advance who will be chosen. We �x nmax = 14, the highest number of �rms in the data (= 13) plus
a potential entrant. Note we use monthly frequency in our empirical model to avoid multiple movers in a
period.
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Results

In Table 5, column 1 shows our baseline estimates with (i) TIOLI, � = 1, (ii) mean synergy

from the data, � = 1, and (iii) the terminal period, T = Dec-2025. As a sensitivity analysis,

column 2 alters �, columns 3 and 4 alter �, and column 5 alters T . All the speci�cations lead

to similar estimates that are mostly within the 95% con�dence interval of each other. Note

we distinguish the innovation costs at frontier �rms (!it = 4) and other �rms (!it = 1; 2; 3),

because advancing the industry�s technological frontier is fundamentally more di¢ cult and

observed less frequently in the data.

Table 5: MLE of Dynamic Parameters and Sensitivity Analysis

Speci�cation (1) (2) (3) (4) (5)
Bargaining (�): 1 (TIOLI) 0:5 (NB) 1 1 1
Synergy (�): 1 1 0 2 1
Terminal period (T ): 2025 2025 2025 2025 2020

�0 0:011 0:011 0:012 0:011 0:011
[0:001; 0:020] [0:000; 0:021] [0:001; 0:022] [0:001; 0:019] [0:001; 0:020]

�i (!it = 1; 2; 3) 0:48 0:51 0:52 0:47 0:48
[0:26; 0:69] [0:28; 0:75] [0:27; 0:77] [0:26; 0:68] [0:26; 0:70]

�i (!it = 4) 0:85 0:91 0:97 0:84 0:85
[0:39; 1:42] [0:42; 1:54] [0:45; 1:63] [0:26; 0:68] [0:39; 1:43]

�m 1:27 1:21 1:34 1:31 1:27
[0:81; 1:86] [0:72; 1:84] [0:81; 2:00] [0:86; 1:88] [0:81; 1:85]

�e 0:17 0:16 0:15 0:18 0:17
[�] [�] [�] [�] [�]

� 0:55 0:60 0:63 0:54 0:55
[0:41; 0:80] [0:45; 0:87] [0:47; 0:91] [0:40; 0:78] [0:41; 0:80]

Log likelihood �156:93 �157:23 �157:56 �156:60 �156:96

Note : The 95% con�dence intervals are constructed from the likelihood-ratio tests. See Table 14 in
Appendix D.5 for additional sensitivity analysis.

Besides these sunk costs, the NFXP estimation provides the equilibrium value and policy

functions as by-products. Hence, as an external validity check, we may compare these model-

generated enterprise values with the actual acquisition prices in the six merger cases.47 The

comparison reveals that at least three out of the six historical transaction values closely

match the target �rms�predicted values. See Appendix D.4 for further details.

Another way of assessing �t is to compare the actual and predicted trajectories of mar-

ket structure and technological frontier (Figure 3). Its top panels show the estimated model

generates a smooth version of the industry consolidation process in the data, with approx-

imately three �rms remaining at the end of the sample period. The model also replicates

47In principle, we may use these six observed acquisition prices to �estimate�the bargaining parameter,
�. However, we prefer calibrating � because six cases are too few for precise estimation.
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Figure 3: Fit of the Estimated Model

Note: The model outcome is the average of 10,000 simulations based on the estimated model. See Appendix
D.1 for the details of discretized productivity levels.

some aspects of their productivity composition (e.g., the survival of a few low-level �rms).

The bottom panels show the model�s average path of the frontier slightly undershoots the

data path between 2005 and 2015, but their eventual levels seem reasonably close to each

other. Hence, we believe the estimated model provides a reasonable benchmark with which

we can compare welfare performances of hypothetical antitrust policies in section 5.

4.4 Competition, Innovation, and Merger

Whereas the value-function estimates and the simulations of industry dynamics were useful

for assessing �t, the policy functions are interesting by themselves because they represent

structural relationships between competition, innovation, and merger. Figure 4 shows the

equilibrium R&D and M&A strategies by year, type, and market structure.
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Figure 4: Heterogeneous Plateaus of Equilibrium Strategies

Note: Each graph summarizes the equilibrium strategies for R&D and M&A, by averaging the structural
CCP estimates across !it, nt, or t. For expositional purposes, the horizontal axis represents the concurrent
number of active �rms (nt) as a summary statistic of the underlying state (!t, which subsumes both nt and
the productivity pro�le of all �rms) in Panels A, B, and C. In Panel C, the horizontal axis is truncated at
3, because the antitrust authorities do not allow mergers below this point, and our model incorporates this
actual policy regime (see section 5 for further details).

The top panels feature a plateau-shaped relationship between the optimal R&D invest-

ment (vertical axis) and the number of �rms (horizontal axis). Regardless of how we slice

the equilibrium strategy, the incentive to innovate sharply increases between one, two, and

three �rms, because a monopolist has little reason to replace itself (Arrow 1962), whereas

duopolists and triopolists have to race and preempt rivals (Gilbert and Newbery 1982, Rein-

ganum 1983). After four or �ve �rms, however, the slopes become �at. These plateaus

exhibit heterogeneity both across time (panel A) and productivity (panel B). Innovation
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rates are high and increasing with nt in the peak years of HDD demand (i.e., 2006�2010)

and at relatively more productive �rms (i.e., levels 2 and 3), because continuation values

(and hence the incremental value of investment) are high. By contrast, the incentives are

low and often decreases with nt in later years (i.e., 2011�2015) and at low-productivity �rms

(i.e., level 1), because the possibility of exit becomes more realistic in such cases. Note the

frontier (level 4) �rms face a fundamentally more challenging task of advancing the fron-

tier technology; hence their seemingly low CCPs of innovation is not necessarily a sign of

reluctance.

These �heterogeneous plateaus�are our structural-empirical �nding about the competition-

innovation relationship, which have often been theorized or described as an �inverted-U�

curve (e.g., Scherer 1965, Aghion et al. 2005). These relationships between competition and

innovation are neither accidental �ndings from particular simulation draws nor mechanical

re�ections of our modeling choices. In their computational theory paper, Marshall and Parra

(2018) show (i) the plateau shapes could arise under fairly general and standard model set-

tings, but (ii) di¤erent parameter values could generate either increasing, decreasing, inverse

U-shaped, or plateau-shaped patterns.

The incentive for merger is equally intriguing. Panel C plots the inverted-U shaped

optimal M&A strategy as a function of time and competition. Mergers are not particularly

attractive when a dozen competitors exist, some of which are likely to exit anyway. Incurring

the sunk cost of negotiation is not worthwhile when weaker rivals are expected to disappear

soon. By contrast, the CCP of merger is the highest when nt = 6 � 10. This is the

phase of industry consolidation in which many potential merger targets still exist and killing

rivals become more pro�table (i.e., the incremental pro�t from reducing nt increases as nt
decreases). Finally, the CCPs of merger seem to decrease again when market structure

becomes more concentrated, but this decline mostly re�ects the reduced opportunities (i.e.,

number of merger targets) and do not necessarily indicate reduced incentives to merge. Once

we divide the CCPs by nt, the merger-competition relationships (per active target) exhibit

downward-sloping curves in this region (nt = 4 � 8) as well.
Who merges with whom? Panel D plots the CCP of merger (sliced by the acquiring

�rm�s level) against the target �rm�s level. In general, all combinations are possible, as is

the case in our data.48 Three underlying forces shape the nonmonotonic patterns. First,

�rms generally want to merge with higher types than themselves because rationalization

48The six mergers between 1996 and 2016 involve the following acquirer-target pairs (with their estimated
productivity levels in parentheses): Maxtor (3)-Quantum (3), Hitachi (1)-IBM (2), Seagate (4)-Maxtor (1),
Toshiba (1)-Fujitsu (1), Seagate (4)-Samsung (1), and Western Digital (1)-Hitachi (1).
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(i.e., the deterministic part of productivity improvement after merger) guarantees that the

merged entities are at least as productive as the higher of the merging �rms�types. This

factor explains, for example, why level-1 �rms prefer level-2 or level-3 targets to level-1

targets, as well as why level-2 �rms prefer merging with level-3 �rms. The second factor

is synergy (i.e., the stochastic part of productivity improvement after merger), which we

model as purely random because we have neither generally accepted theory nor data on this

phenomenon. Level 4 �rms may not bene�t from rationalization but can expect synergy to

help them push the technological frontier. The third factor is the acquisition price, which

re�ects the continuation value of the target �rm and hence is increasing in its productivity

level. The balance between the latter two forces explains why some �rms prefer lower-level

targets to higher-level targets. By contrast, level-4 �rms are too expensive to acquire despite

(and because of) their high return. Our results incorporate all of these economic forces in

equilibrium, and broadly agree with the data pattern in which lower-level �rms are acquired

relatively more frequently.

5 Optimal Policy and Dynamic Welfare Tradeo¤

5.1 Welfare under Counterfactual Policy Regimes

How far should an industry be allowed to consolidate? We are now ready to simulate welfare

outcomes under hypothetical merger policies. Table 6 compares welfare outcomes under

di¤erent policy regimes in which antitrust authorities block mergers if nt is at or below certain

thresholds. Each column reports the discounted sums of consumer surplus (CS), producer

surplus (PS), and social welfare (SW) under a hypothetical regime with N 2 f1; 2; :::; 6g and
their percentage changes from the baseline model (N = 3).

We set N = 3 in the baseline (estimated) model based on the following evidence. The

FTC reports that in merger enforcement concerning high-tech markets between 1996 and

2011, no merger was blocked until the number of �signi�cant competitors� reached three.

Speci�cally, (i) none of the 5-to-4 mergers were blocked; (ii) 33% of the 4-to-3 merger pro-

posals were blocked; and (iii) 100% of the 3-to-2 and 2-to-1 proposals were blocked.49 Thus,

N = 3 is a reasonable description of the actual policy during our sample period. This de

facto rule of the game is a shared perception among antitrust practitioners and �rms in Sili-

49See Federal Trade Commission (2013), Table 4.7 entitled �Number of Signi�cant Competitors in
Electronically-Controlled Devices and Systems Markets.�Our model can incorporate similar policy regimes
based on price changes or HHI instead of N , but we found no clear price/HHI threshold in the report.
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Table 6: Welfare Performance of Counterfactual Policies

Threshold number of �rms (N) 1 2 3 4 5 6
(Baseline)

(A) All periods: 1996�2025
Consumer surplus 721:93 762:32 765:05 766:01 766:64 767:20

(�5:64%) (�0:36%) (�0%) (+0:13%) (+0:21%) (+0:28%)
Producer surplus 21:94 18:88 18:29 18:01 17:80 17:61

(+19:94%) (+3:17%) (�0%) (�1:58%) (�2:71%) (�3:73%)
Social Welfare 743:88 781:20 783:35 784:02 784:44 784:81

(�5:04%) (�0:27%) (�0%) (+0:09%) (+0:14%) (+0:19%)

(B) First half: 1996�2010
Consumer surplus 530:75 535:50 535:70 535:77 535:88 535:96

(�0:92%) (�0:04%) (�0%) (+0:01%) (+0:03%) (+0:05%)
Producer surplus 13:64 13:23 13:15 13:09 13:03 12:96

(+3:73%) (+0:60%) (�0%) (�0:47%) (�0:95%) (�1:45%)
Social welfare 544:39 548:73 548:85 548:86 548:90 548:92

(�0:81%) (�0:02%) (�0%) (+0:00%) (+0:01%) (+0:01%)

(C) Second half: 2011�2025
Consumer surplus 191:18 226:82 229:35 230:24 230:77 231:24

(�16:64%) (�1:10%) (�0%) (+0:39%) (+0:62%) (+0:82%)
Producer surplus 8:30 5:65 5:14 4:92 4:77 4:65

(+61:38%) (+9:75%) (�0%) (�4:40%) (�7:22%) (�9:54%)
Social welfare 199:48 232:47 234:49 235:16 235:54 235:89

(�14:93%) (�0:86%) (�0%) (+0:28%) (+0:45%) (+0:60%)

Note : All welfare numbers are present values as of January 1996 in billion US dollars and are the averages of
10,000 simulations under each policy regime. Their percentage changes from the baseline outcomes under N = 3
are in parentheses. Note the welfare numbers in Panel (C) are considerably smaller than those in Panels (A) and
(B), because the annual discount factor of � = 0:9 means they are discounted at �15 = 0:2059. See Appendix
E.1 for the same analysis under the 50-50 Nash bargaining setup.

con Valley, according to our conversations with former chief economists at the FTC and the

Antitrust Division of the DOJ, antitrust economic consultants, as well as senior managers

at the HDD manufacturers.

Computational implementation is straightforward. We estimated the baseline model by

searching over the parameter space of � to maximize the likelihood of observing the ac-

tual choice patterns in the data (in the outer loop), and by solving the dynamic game by

backward induction to calculate the predicted choice patterns based on the model (in the

inner loop) in which the sunk cost of merger is �m when nt > 3 but 1 when nt 6 3.50

Simulating welfare outcomes under an alternative regime is simpler than estimation. First,

solve the counterfactual game with the same parameter estimates �̂ but in a di¤erent policy

environment (N 6= 3) just once, and obtain the optimal choice probabilities in the coun-

50The latter, extremely high �cost� of mergers is merely a computational implementation of �making
mergers infeasible�when the antitrust regulation is binding, and should not be interpreted as part of the
economic sunk cost represented by �m. In other words, �m is the cost of decision-making and entering
negotiations conditional on mergers being feasible (and therefore relevant from the �rms�perspectives).
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terfactual equilibrium. Second, use these CCPs to simulate 10,000 counterfactual industry

histories, fstgTt=0. Third, calculate f(CSt; PSt; SWt)gTt=0 along each simulated history, take
their average across the 10,000 simulations, and summarize its time pro�le in terms of time-0

discounted present value as of January 1996.

Table 7: Competition and Innovation Outcomes of Counterfactual Policies

Threshold number of �rms (N) 1 2 3 4 5 6
(Baseline)

(A) Number of active �rms
1996�2025 average 5:80 6:12 6:24 6:32 6:39 6:46
As of December 2010 4:70 4:91 4:98 5:09 5:21 5:36
As of December 2025 0:80 1:12 1:23 1:28 1:31 1:33

(B) Frontier technology level
1996�2025 average 13:62 13:71 13:73 13:74 13:74 13:75
As of December 2010 14:86 14:87 14:87 14:87 14:87 14:86
As of December 2025 18:36 18:69 18:76 18:79 18:79 18:81

(C) Number of mergers
1996�2025 total 6:08 4:87 4:15 3:60 3:12 2:66
Of which 1996�2010 3:62 3:33 3:21 3:04 2:79 2:48
Of which 2011�2025 2:47 1:54 0:94 0:56 0:33 0:18

(D) Number of innovations
1996�2025 total 45:45 47:84 48:79 49:41 49:94 50:48
Of which 1996�2010 37:39 37:44 37:49 37:54 37:63 37:75
Of which 2011�2025 8:06 10:40 11:30 11:87 12:31 12:73

(E) Number of entries
1996�2025 total 0:0999 0:0547 0:0328 0:0236 0:0224 0:0217
Of which 1996�2010 0:0028 0:0022 0:0014 0:0010 0:0010 0:0002
Of which 2011�2025 0:0971 0:0525 0:0314 0:0226 0:0214 0:0215

(F) Number of exits
1996�2025 total 6:22 7:06 7:65 8:14 8:60 9:03
Of which 1996�2010 4:73 4:80 4:84 4:91 5:03 5:19
Of which 2011�2025 1:49 2:26 2:81 3:24 3:57 3:84

Note : All numbers are the averages of 10,000 simulations under each policy regime.

The �rst column shows the most permissive policy (N = 1) is unambiguously bad for

both CS and SW, reducing them by more than 5% relative to the N = 3 baseline. The

magnitude of these changes might appear small at �rst glance, but the all-period sum in

Panel A masks the policy�s true impact. Panel C shows CS and SW in the second half

(2011�2025) decrease by almost 15%, because this is the time period in which the �nal

mergers take place (or are blocked). Likewise, another permissive policy (N = 2) leads to

net welfare losses. Thus, allowing mergers to monopoly or duopoly seems a bad idea, even if

we account for potentially positive �side e¤ects�on ex-ante incentives to enter and innovate.

By contrast, stricter policies (N = 4; 5; 6) lead to better outcomes than in the baseline

case. However, their rates of improvement for both CS and SW are limited to less than
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1% even in the second half (Panel C). The same analysis under the Nash bargaining setup

shows similar patterns, with N = 5 achieving the highest discounted SW (see Table 15 in

Appendix E.1).

This result is surprising, because our policy-function estimates in section 4 (Figure 4) sug-

gested positive relationships between the number of �rms and the optimal choice probability

of innovation (in-house R&D).51 One would expect the combination of �more competition�

and �more innovation�would lead to substantial improvements in CS and SW.

We investigate the mechanism behind these curious �ndings in Table 7, which summarizes

the main drivers of welfare: the number of �rms (Panel A), the frontier technology level

(Panel B), and the aggregate count of �rms�main actions (Panels C, D, E, and F). These

key objects relate to each other as follows.

� Market structure (including, but not limited to, nt) and the level of technological fron-
tier (as well as each �rm�s distance from it) collectively determine the �rms�markups

and costs, respectively, and hence the market price of HDDs as well.52

� The state of competition and innovation in each period is the consequence of the �rms�
mergers, in-house R&D, and entry-exit decisions in the past. More speci�cally, mergers

directly change both the number of �rms and their productivity pro�le; in-house R&D

changes only the latter; and entry-exit changes only the former.

Panel A shows permissive policies (N = 1; 2) reduce the number of �rms substantially,

whereas stricter policies (N = 4; 5; 6) do not necessarily lead to comparable changes in the

opposite direction. The reason becomes clear in Panels C, E, and F, which suggest stricter

policies reduce mergers but increase exits. The pro-competitive e¤ect of blocking mergers is

mostly o¤set by this increase in exits. The change in new entry hardly matters, because it

is a rare event in this mature industry with high technological barriers, but its direction of

change suggests entry becomes more pro�table under permissive policies.53 The mechanism

underlying this increase in (net) exits is the value-destruction side e¤ects of stricter policies.

Table 6 shows stricter policies reduce PS (i.e., the industry-wide pro�ts), thereby making

�rms more likely to exit.
51Strictly speaking, Figure 4 showed the equilibrium strategies underN = 3, which are not policy-invariant,

but their counterparts under N 6= 3 show the same qualitative pattern.
52Note the HDD price (Pt) summarizes the welfare-relevant outcomes of each state (st), because we analyze

HDDs at the level of e¢ ciency unit (i.e., GB of information storage capacity).
53Entry is more pro�table under permissive policies, because market structure tends to be more concen-

trated (see Panel A) and the entrants may expect to be acquired by the incumbents. The latter mechanism
resonates with MNSW�s (2018) theoretical results, which emphasize the role of entrants� incentive to be
acquired.
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Panel B of Table 7 shows permissive policies (N = 1; 2) do not help advance the technolog-

ical frontier despite frequent claims by casual proponents of the �Schumpeterian�hypotheses

that monopoly is conducive to innovation. Note our model allows synergies from mergers

and fully internalizes the positive e¤ects of future monopoly pro�ts on the ex-ante incentive

to innovate. However, synergies and the positive incentive e¤ects of higher expected pro�ts

are dominated by the countervailing negative e¤ect of reduced competitive pressure. Recall

from Figure 4 that the optimal choice probabilities of in-house R&D decrease precipitously

as nt falls below three. Arrow�s (1962) replacement e¤ect dominates, and preemptive motives

of Gilbert and Newbery (1982) and Reinganum (1983) evaporate under monopoly when the

prospect of new entry is remote (as in our industry context). Thus, even if policy-makers

exclusively focus on �promoting innovation,�allowing mergers to duopoly or monopoly turns

out to be counter-productive.

At the same time, Panel B shows stricter policies are not particularly helpful in promoting

innovation either. The slightly higher count of in-house R&D (in Panel D) does not translate

into corresponding advances of the frontier, because only R&D by frontier �rms (!it = 4)

can press it forward. Blocking mergers does not necessarily help create frontier �rms or

encourage their investments.

5.2 Merger Policy toward Declining Industries

In a mature industry such as HDDs, regulators often have to deal with �failing �rms,�that

is, �rms that (i) are in imminent danger of failure (in a more severe condition than insolvency

and close to ceasing operations), (ii) cannot be reorganized in Chapter 11 bankruptcy, and

(iii) cannot �nd an alternative purchaser (or other less anti-competitive uses) of their assets.54

To our knowledge, no formal economic analysis exists on this subject, because a systematic

evaluation of failing �rms requires a framework like ours. Exits (through liquidation) in our

model meet all of the three criteria for �failing �rms;� hence, our model can handle such

cases, in principle. However, the equilibrium CCPs of exit are less than 10% in many states

and periods in our baseline estimate. Consequently, we have chosen not to study failing

�rms per se but to ask a broader question regarding the optimal policy toward declining

industries, in which exits become more likely.55

Should the authority relax its merger policy in declining industries? We will answer this

54See McFarland and Nelson (2008) for legal details.
55�Declining industries� do not constitute a valid defense in the US legal context (except under a brief

period during the Great Depression), and the permission of �recession cartels� in Japan was repealed in
1999. We are not using this phrase in a strictly legal sense.
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Table 8: If the HDD Industry Were Disappearing Faster

Threshold number of �rms (N) 1 2 3 4 5 6
(Baseline)

(A) If T = December 2016
Consumer surplus 670:01 695:06 696:89 697:79 697:98 697:88

(�3:86%) (�0:26%) (�0%) (+0:13%) (+0:16%) (+0:14%)
Producer surplus 19:02 17:06 16:67 16:45 16:28 16:13

(+14:11%) (+2:36%) (�0%) (�1:30%) (�2:34%) (�3:73%)
Social Welfare 696:89 712:12 713:55 714:24 714:26 714:02

(�3:44%) (�0:20%) (�0%) (+0:10%) (+0:10%) (+0:06%)

(B) If T = December 2020
Consumer surplus 698:38 730:66 733:02 733:69 733:95 733:74

(�4:73%) (�0:32%) (�0%) (+0:09%) (+0:13%) (+0:10%)
Producer surplus 20:45 17:95 17:46 17:21 17:01 16:86

(+17:12%) (+2:78%) (�0%) (�1:45%) (�2:57%) (�3:45%)
Social welfare 718:84 748:61 750:49 750:90 750:97 750:60

(�4:22%) (�0:25%) (�0%) (+0:05%) (+0:06%) (+0:02%)

Note : All welfare numbers are present values as of January 1996 in billion US dollars and are the averages of
10,000 simulations under each policy regime. Their percentage changes from the baseline outcomes under N = 3
are in parentheses.

question as follows. We capture the notion of �declining industry�(and hence higher exit

rates in equilibrium or �failing �rms�) by hypothetically eliminating much of the HDD de-

mand in the post-sample period (i.e., after September 2016). Our baseline model assumes

the demand will linearly decline to zero between September 2016 and December 2025, re�ect-

ing what we presume to be a consensus forecast among industry participants. By contrast,

this subsection simulates alternative industry dynamics in which the demand converges to

zero in December 2016 or December 2020 (i.e., T = Dec-2016 or Dec-2020), years earlier

than our baseline scenario. We solve these new games for equilibrium CCPs, simulate 10,000

histories, and calculate their average welfare performances.

Table 8 shows the welfare performances of di¤erent policy regimes under hypothetical

scenarios in which the HDD industry disappears earlier than in the baseline model. The

terminal period, T , is December 2016 and December 2020 in Panels A and B, respectively.

The overall patterns are similar to the baseline model, that is, N = 1 or 2 reduces CS and

SW, whereas N > 3 marginally increase them. A subtle but important change is that N = 5

(instead of N > 6) maximizes CS and SW in both scenarios. Thus, our results suggest the

optimal merger policy becomes (slightly) less stringent in industries that are disappearing

faster.56

56Note N = 5 is still more stringent than the current de-facto threshold, N = 3.
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5.3 Optimal Ex-Post (�Surprise�) Policy

Thus far, we have considered only a static (or time-invariant) policy design that commits the

authority to a particular merger threshold. We have intentionally kept our discussions within

such static thresholds because of their simplicity and direct connection to the practitioners�

rule of thumb. Detailed analysis of dynamic welfare tradeo¤ is quite complicated even

under such a simple policy design. Nevertheless, a sophisticated reader might wonder if the

authority could craft a smarter policy than simply committing to constant N . Our short

answer is �yes�in the short run and �no�in the long run.

Table 9 considers �smart� policies in which the authority acts opportunistically and

alters the merger threshold ex post.57 The optimal surprise policy is to initially promise no

antitrust scrutiny at all (i.e., declare Npre = 1). An elusive quest for monopoly pro�ts should

attract innovation and reduce exits early on (i.e., no value-destruction side e¤ects). However,

when the industry reaches the true threshold Npost > Npre, the planner should start blocking

mergers, so that �rms have to compete to death. This surprise ban on mergers will ensure

su¢ cient pro-competitive outcomes ex post.58

Table 9: Performance of Opportunistic Policies

Promised threshold (Npre) 1 1 1 1 1 1
Actual threshold

�
Npost

�
1 2 3 4 5 6

Consumer surplus 721:93 761:33 765:90 767:49 767:98 768:86
(�5:64%) (�0:49%) (+0:11%) (+0:32%) (+0:38%) (+0:50%)

Producer surplus 21:94 19:25 18:36 17:99 17:76 17:56
(+19:94%) (+5:23%) (+0:12%) (�1:66%) (�2:93%) (�4:02%)

Social welfare 743:88 780:58 784:26 785:48 785:74 786:42
(�5:04%) (�0:35%) (+0:12%) (+0:27%) (+0:31%) (+0:39%)

Note : All welfare numbers are present values as of January 1996 in billion US dollars and are the averages of 10,000
simulations under each policy regime. Their percentage changes from the baseline outcomes under N = 3 (both
promised and actual) in Table 6 are in parentheses. The most permissive policy, Npre = Npost = 1, is the same as
N = 1 in Table 6.

To some readers, this simulation experiment might appear too complicated and unrealistic

57We refrain from simulating more complicated policies (and their possible strategic interactions with the
�rms) because intuitive understanding of the results will become increasingly more di¢ cult, the actual policy
implementation will become impractical, and we could not �nd anecdotal or quantitative evidence. We refer
the reader to MNSW (2018) and Jeziorski (2014) for such investigations.
58Computationally, we implement these opportunistic policies as follows. First, we start simulating the

industry�s history by using the equilibrium CCPs under N = Npre = 1, which corresponds to the N = 1
counterfactual in section 5.1. Second, whenever the simulated nt reaches the true (unannounced) threshold,
Npost > 1, our algorithm switches to the equilibrium CCPs underN = Npost and keeps simulating the history
until t = T . Third, collect 10,000 simulated histories and calculate their average welfare performance. This
average is the outcome we attribute to each pair

�
Npre; Npost

�
that represents a particular ex-post policy.
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at a �rst glance, but negative surprises are facts of life. In the American political context, for

example, consider a long spell of the Republican �pro-business�regime, followed by stronger

regulatory oversight under the Democratic regime. Another example is the inception of the

Chinese antitrust policy in 2008. Its Ministry of Commerce (MOFCOM) almost stopped the

latest HDD merger between Western Digital and HGST in 2012, which the authorities in

the United States, Japan, South Korea, and Europe had already cleared. Thus, we believe

the academic literature should clarify the pros and cons of surprise changes, so that policy

makers can at least understand the true meaning of such actions.

In the long run, such a �smart� policy is not going to be wise, because governments

cannot fool �nancial markets forever. One industry might be tricked, but the subsequent

cohorts of high-tech industries may not. The authority can surprise only once.

6 Conclusion

This paper proposed an empirical model of mergers and innovation to study the process of

industry consolidation, with HDDs as a working example. We used quantitative methods

to clarify the dynamic welfare tradeo¤ inherent in antitrust policy, and found the current

de-facto merger threshold (N = 3) is reasonably close to maximizing social welfare, although

it could be tightened for small improvements (e.g., N = 4; 5; 6). By contrast, permitting

mergers to duopoly or monopoly (N = 1; 2) would lead to negative welfare impacts that are

larger by an order of magnitude.

This �nding is speci�c to the parameters of consumers�preferences, production technol-

ogy, and investment technology in our data; hence, each high-tech industry requires careful

modeling and measurement, just like the actual enforcement of antitrust policy proceeds case

by case. Nevertheless, our basic �ndings seem robust to many di¤erent parameterizations

that we have tried in the course of writing and revising this paper. We may also investigate

the implications of our model in di¤erent industry environments by performing simulations

under di¤erent parameter values.

Our model focuses on the direct or �unilateral�e¤ect of mergers on prices through market

structure and productivity, and does not incorporate the �coordinated�e¤ect with respect

to collusive conducts, such as those studied by Selten (1973), Miller and Weinberg (2017),

or Igami and Sugaya (2018). Hence, the negative e¤ect on consumer surplus in our study

represents a lower bound, and the actual harm of monopoly and duopoly could be greater.
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Appendices: Table of Contents

Appendix A lists our interviews. Appendices B, C, D, and E supplement the details of

sections 2 (Model), 3 (Data), 4 (Empirical Analysis), and 5 (Policy and Welfare) respectively.

Appendix A List of Interviews

For con�dentiality reasons, we do not quote from our personal interviews with the industry

sources. The only exceptions are historical overviews and remarks on events in the distant

past (by the standard of Silicon Valley). Nevertheless, almost every modeling choice, pa-

rameterization, and estimation result has tight connections to the actual data-generating

process, which we learned through these interviews.

Table 10: Interviews with Industry Sources

# Date Location Name A¢ liation (position)
1 Various TRENDFOCUS o¢ ce Mark Geenen TRENDFOCUS (president & VPs)

(Cupertino, CA) John Kim Microscience International
John Chen Komag
Don Jeanette Toshiba, Fujitsu

2 1/22/2015 Fibbar MaGees Irish pub Reggie Murray Ministor (founder)
(Sunnyvale, CA) Maxtor (thin-�lm head)

Memorex
3 2/27/2015 HGST/IBM o¢ ce Currie Munce HGST/IBM (SSD)

(San Jose, CA)
4 3/5/2015 SIEPR Lawrence Wu NERA Consulting (president)

(Stanford, CA)
5 3/11/2015 SIEPR Orie Shelef Former merger consultant

(Stanford, CA)
6 3/23/2015 Residence Tu Chen Komag (founder)

(Monte Sereno, CA)
7 4/17/2015 Seagate headquarters Je¤ Burke Seagate (VP of strategic

(Cupertino, CA) marketing & research)
8 4/20/2015 Residence Finis Conner Conner Technology (founder)

(Corona del Mar, CA) Conner Peripherals (founder)
Seagate (co-founder)
International Memories Inc.
Shugart Associates (co-founder)

9 6/30/2015 BJ�s restaurant & brewery Peter Knight Conner Technology (president)
(Cupertino, CA) Conner Peripherals (senior VP)

IBM
10 7/1/2015 Gaboja restaurant MyungChan Jeong HGST/IBM (R&D engineer)

(Santa Clara, CA) Seagate, Maxtor
Samsung Electronics

Note : A¢ liations are listed from new to old. VP stands for vice president. SIEPR stands for the Stanford
Institute for Economic Policy Research, where Igami spent his 2014�2015 sabbatical.
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Appendix B Supplementary Materials for Section 2

B.1 Why Poaching Top Engineers Might Not Be Su¢ cient

Section 2.1 explained two motivations for mergers in the HDD industry: (i) killing rival �rms

to soften competition and (ii) pooling teams of engineers for the next technological break-

through. Regarding the second motivation, one might wonder why hiring top engineers from

another �rm is not su¢ cient. Our interviews and the industry context suggest three reasons.

First, the nature of innovation in the HDD engineering seems to rely not so much on

�bright new concepts� that come to the minds of few star scientists. Most of the �new�

ideas have been around for decades, but typically no �rms could implement them with suf-

�cient precision or reliability until recently. For example, a paradigm called �perpendicular

recording�has existed as a concept since 1976 but became commercially viable only in 2005.

Second, the implementation of �new�ideas seems to involve a long tatonnement process

to con�gure the product design, its pilot production line, and its volume production lines

(the preparation of which requires careful re-tooling of specialized manufacturing equipment,

which are precision instruments themselves). Moreover, the HDD technology spans many

di¤erent �elds, including aero/�uid dynamics, materials science, semiconductor (for read-

write heads), signal processing, and other electronic and mechanical engineering expertise.

The complex nature of HDD engineering seems to suggest the tacit knowledge is embodied

in large teams of engineers rather than a few key individuals.

Third, even if a �rm successfully persuaded an entire team of engineers from another �rm

to move, intellectual property (IP) rights would not automatically follow, because patents

are usually �assigned�to their previous employer and not individual inventors. Several of

our interviewees told us that there had been occasional lawsuits between major HDD �rms

concerning the poaching of speci�c engineers and related IP-rights violations. They said the

�rms learned that such lawsuits would only make IP lawyers richer and subsequently became

less aggressive in pursuing IP-sensitive employee-poaching.

B.2 Potential Entrant�s Problem

Section 2.3 focused on the exposition of incumbent �rms�problem. This section explains the

detail of potential entrant�s problem.

If nature picks a potential entrant i as a proposer, i draws "0it = ("
e
it; "

o
it) and chooses to
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enter or stay out, which entail the following alternative-speci�c values:

�V eit (!t; "
e
it) = ��e + "eit + �E [�i;t+1 (!t+1) j!t; ait = enter] ; and (20)

�V oit (!t; "
o
it) = "oit + �E [�i;t+1 (!t+1) j!t; ait = out] ; (21)

respectively. Thus, the potential entrant�s value after drawing "0it is

V 0it
�
!t; "

0
it

�
= max

�
�V eit (!t; "

e
it) ;

�V oit (!t; "
o
it)
	
; (22)

and its expected value before drawing "0it is

EV 0it (!t) = E"
�
V 0it
�
!t; "

0
it

��
= �

(
 + ln

"
exp

 
~V eit
�

!
+ exp

 
~V oit
�

!#)
: (23)

These expressions correspond to equations 1 through 7 in the main text.

When the potential entrant is a non-mover, its expected value is simpler than the incum-

bent�s version in equation 9,

W 0j
it (!t) = �it (ajt = exit)� �E [�i;t+1 (!t+1) j!t; ajt = exit] (24)

+�it (ajt = stay)� �E [�i;t+1 (!t+1) j!t; ajt = idle]

+�it (ajt = innovate)� �E [�i;t+1 (!t+1) j!t; ajt = innovate]

+
X
k 6=i;j

�it (ajt = merge k)

� �E [�i;t+1 (!t+1) j!t; ajt = merge k]

+
X
k 6=i;j

�it (ajt = innovate & merge k)

� �E [�i;t+1 (!t+1) j!t; ajt = innovate & merge k] ;

because it does not earn a pro�t, pay a �xed cost, or become a merger target.

When nature picks a potential entrant j as a mover, equations 9 and 24 become

W j
it (!t) = �it (!t)� �t (25)

+�it
�
a0jt = enter

�
� �E

�
�i;t+1 (!t+1) j!t; a0jt = enter

�
+�it

�
a0jt = out

�
� �E

�
�i;t+1 (!t+1) j!t; a0jt = out

�
; and

W 0j
it (!t) = �it

�
a0jt = enter

�
� �E

�
�i;t+1 (!t+1) j!t; a0jt = enter

�
(26)

+�it
�
a0jt = out

�
� �E

�
�i;t+1 (!t+1) j!t; a0jt = out

�
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for an incumbent non-mover and a potential entrant non-mover, respectively.

These value functions entail the following optimal choice probabilities before potential-

entrant mover i draws "0it,

Pr
�
a0it = action

�
=

exp
�
~V actionit

�

�
exp

�
~V eit
�

�
+ exp

�
~V oit
�

� ; (27)

which corresponds to equation 10.

B.3 Uniqueness of Equilibrium

Section 2.3 explained why the equilibrium of our model is unique. This section provides

further discussions regarding (i) which of the assumptions are crucial for uniqueness and (ii)

whether our modeling approach is akin to some form of equilibrium selection.

First, the distinction between random and deterministic orders of move is not crucial.

The combination of sequential (or alternating) moves and a �nite horizon is crucial, as well

as the use of a discrete-choice model at each move (or any other speci�cation that leads to

a unique optimal choice at each move).

Second, because the equilibrium of our model is unique, there is no �selection�among

multiple equilibria in a formal sense. More informally, the question as to whether our model

imposes �something akin to equilibrium selection�would be closely related to the choice of

T = December 2025 in our baseline speci�cation. This choice is based on the seemingly

common view among our interviewees that the HDD industry would remain �relevant� to

the broader IT economy for the next 10 years (we conducted our interviews in 2014�2015).

Our sensitivity analysis with respect to T = December 2020 (column 5 of Table 5) shows

the parameter estimates and the �t change only negligibly from the baseline, which seems

to suggest that assumptions about the distant future have limited impacts on our empirical

results.
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Appendix C Supplementary Materials for Section 3

C.1 Data Patterns Underlying Demand Estimation (Panel A)

Figure 5 summarizes data patterns of Panel A, that is, the four variables for demand esti-

mation (Qt; Pt; Xt; Zt). The HDD shipment volume in EB (Qt) has grown steadily on the

back of PC shipments (Xt) as the upper- and lower-left panels show. The HDD price per

GB (Pt) has been decreasing as a result of Kryder�s Law. With this secular trend in storage

density, the disk price per GB (Zt) has fallen dramatically, because more data can be stored

on the disk surface of the same size. The upper- and lower-right panels capture these trends.

Thus, the downward trends in Pt and Zt re�ect both process innovation (i.e., lower marginal

costs) and product innovation (i.e., higher �quality�or data-storage capacity per HDD unit)

in this industry.

Figure 5: Data for Demand Estimation at the Level of Gigabytes (GB)

Note: See Sections 3.2 and 4.1 for summary statistics and demand estimation, respectively.
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C.2 Market Shares before and after Mergers (Panel B)

In section 3, we visualized and summarized the data patterns of �rm-level market shares

(Panel B) in Figure 1 and Table 1. In this section, we supplement these exhibits with the

list of 14 merger cases and the Her�ndahl-Hirschman Index (HHI).

The two right-most columns of Table 11 shows the combined market share of the acquiring

�rm and the target �rm declined after merger in each of the 14 cases, which suggests the

theoretical prediction of free-riding by the non-merging parties could be a real phenomenon.

That is, the Cournot model predicts the combined market share of the merging parties should

decrease, whereas those of non-merging �rms would increase.

Table 11: Market Shares before and after Mergers (%)

Year Target Acquiror msT msA msT +msA

name name Before Before Before After
1982 Memorex Burroughs 7:83 1:85 9:68 2:73
1983 ISS/Univac/Unisys Control Data 0:75 27:08 27:83 19:85
1984 Vertex Priam 0:93 2:52 3:45 2:78
1988 Plus Dev. Quantum 0:89 1:41 2:30 4:64
1988 Imprimis Seagate 13:92 18:16 32:08 29:23
1989 MiniScribe Maxtor 5:68 4:99 10:68 8:53
1994 DEC Quantum 1:65 18:60 20:25 20:68
1995 Conner Seagate 11:94 27:65 39:58 35:41
2001 Quantum Maxtor 13:87 13:87 27:73 26:84
2002 IBM Hitachi 13:86 3:64 17:50 17:37
2006 Maxtor Seagate 8:19 29:49 37:67 35:27
2009 Fujitsu Toshiba 4:41 10:32 14:72 11:26
2011 Samsung Seagate 6:89 39:00 45:89 42:82
2012 Hitachi Western Digital 20:32 24:14 44:46 44:27

Note : msT and msA denote the target and the acquiring �rms�market shares, respectively. For

each merger case, �before�refers to the last calendar quarter in which msT was recorded separately

from msA, and �after�is four quarters after �before.�Alternative time windows including 1, 8, and

12 quarters lead to similar patterns.

Source : DISK/TREND Reports (1977�99), TRENDFOCUS Reports (1996�2014), and interviews.

At the same time, the comparison of the right-most column and the column labeled

�msA Before�suggests the acquiring �rms managed to achieve expansions relative to their

individual pre-merger market shares. This pattern is consistent with our interviews with

the industry participants, in which they explained gaining market shares as the primary

motivation for mergers. Figure 6 plots the realized productivity paths of the merging parties

for the entire sample period, which are calculated based on our marginal-cost estimates and

discretization procedures.

Figure 7 overlays the historical HHI on the number of �rms, nt. The HHI correlates
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Figure 6: Realized Productivity Paths of the Merging Parties

Note: See sections 4.2 and 4.3 and Appendix D.1 for the details of marginal-cost estimates, productivity,
and discretization.

negatively with nt by construction. It started at around 2; 000 in the late 1970s, decreased

to 1; 000 in the mid 1980s due to massive entry, and was mostly una¤ected by the shakeouts
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because fringe �rms�liquidation-exit did not really change the surviving �rms�market shares.

Once nt reached 10 around year 2000, the consolidation process through mergers increased

the HHI from 1; 500 to 2; 500 during the �rst decade of the 21st century, and then to almost

4; 000 on the back of the 5-to-4 and 4-to-3 mergers.

Figure 7: Her�ndahl-Hirschman Index (HHI) of the Global HDD Market
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Note: The HHI is the sum of the squares of the �rm�s market shares.

C.3 Additional Details on Product Characteristics

Section 3 stated all �rms carry all capacities at all times, but one might wonder whether �fron-

tier��rms introduce higher-capacity products early and held commercial advantage in terms

of quality di¤erentiation. Figure 8 shows four histograms of HDD sales distribution across

storage capacities in the �rst calendar quarter of 2001, 2006, 2011, and 2016, respectively. A

few �mainstream�categories of the time tend to account for over 70%�80% of the aggregate

sales. The highest capacities (e.g., over 5TB in 2016Q1) typically record only negligible sales.

Hence, even though frontier �rms of the time tend to lead the product-innovation race, the

introduction of highest-capacity HDDs does not necessarily confer competitive advantage in

terms of vertical di¤erentiation.

Figure 9 shows the average price of HDDs per quality unit (i.e., per GB of storage

capacity) at four di¤erent points in time. Within each graph, higher-capacity HDDs tend to

sell at lower prices per GB, because magnetic disks are not the only component of HDDs. The

price of each HDD also re�ects ��xed cost�components, such as electronic and mechanical

parts. However, these di¤erences within each graph are dwarfed by the di¤erences across
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Figure 8: Distribution of HDD Sales across Storage Capacities

Note: Each panel shows a histogram of sales volume of HDDs for desktop PCs in that calendar quarter.
Source: TRENDFOCUS Reports.

graphs. Note the scale of the vertical axes and how they decrease over time. Therefore,

the scale economy in capacity within period seems relatively unimportant given the speed

of cost reduction.

Finally, Figure 10 shows the pictures of HDDs and the exterior of a desktop PC. Most

users do not pay attention to the speci�c �brands�of HDDs that their PCs are using. The

demand-side dynamics of PCs might be a¤ected by the generational shifts in OS and CPU

but not as much by HDDs.
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Figure 9: HDD Price per Gigabytes by Storage Capacity

Note: Each panel shows the average price of desktop HDDs divided by storage capacity in GB. Note the
scale di¤erences across the graphs dwarf the within-graph variability.
Source: TRENDFOCUS Reports.

Figure 10: Product Characteristics of HDDs

Note: Left panel shows 3.5-inch HDDs of Hitachi GST, Western Digital, and Seagate Technology. Right panel
shows evidence of successful marketing e¤orts by Microsoft and Intel (and lack thereof by HDD makers).
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Appendix D Supplementary Materials for Section 4

D.1 Discretization of Productivity Levels

We de�ne the state space for computational implementation by discretizing the levels of

�rm-speci�c productivity based on the marginal cost estimates in section 4.2. Figure 11

(left) plots the trajectory of marginal costs at the frontier �rms; Figure 11 (right) shows

individual �rms�positions relative to the frontier.

Figure 11: Marginal Cost Estimates and Their Discretization

Note: The left panel plots the �frontier�marginal cost. The right panel plots each �rm�s discretized marginal
cost on a 0.1 log-dollar grid relative to the frontier. We construct productivity levels by reversing the rank
order of discretized marginal costs and keeping track of the frontier as well as each �rm�s distance to it.

This discretization scheme eliminates small wiggles of productivity evolution but pre-

serves the overall patterns of these �rms�relative performances, including their major shifts

as well as leader-follower di¤erences. Finer grids resulted in too many zig-zag patterns,

frequently amplifying small wiggles that happened to cross the discretization thresholds.

Coarser grids tended to eliminate such noises, but the transitions between levels became too

infrequent and each of these productivity changes became too impactful in terms of its pro�t

implications via Cournot competition. After experimenting with these alternative grids, we

have come to prefer the 0.1 log-dollar grid because it appears to strike the right balance

between noise reduction and smooth transitions.

These discretized marginal cost estimates (say, mcits) span the state space of �rm-speci�c

productivity levels, which is denoted by !it 2 f!1; !2; :::g. Note the ranking convention
reverses as we employ marginal costs as productivity levels. That is, a lower marginal cost
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will be referred to as a high-productivity level. We construct the variable indicating innovate

(one of the dynamic discrete-choice actions) from these discretized productivity estimates.

Our computational implementation allows 128 di¤erent absolute levels of !it. Most of

the levels in the top half are never reached in the data. We de�ne such a large state space

to avoid imposing a numerical boundary on the realization of simulated industry history.

Literally allowing 128 absolute levels for each �rm in each period will exhaust computer

memory. We alleviate this burden by exploiting the sparsity of the full state space. As Figure

11 shows, the �rms in the data stay close to each other (i.e., within four levels) because of the

industry-wide technological spillovers. Denote the highest productivity level ever achieved

up to time t by ft � maxi;��t f!i�g (i.e., the �frontier�), and de�ne individual �rms�relative
productivity levels as,

~!it � !it � ft + L;

where L is a constant denoting the frontier �rms�relative level. For expositional purposes,

we set L = 4, so that the frontier �rms belong to level 4 and the bottom ones to level 1.

When a frontier �rm innovates at t, its productivity increases at t+1 by one in absolute

levels. At the same time, the relative productivity grid for all �rms shifts up at t+1 by one

in absolute levels as well. Level-1 �rms at t continue belonging to level 1 at t+ 1 instead of

dropping out of the grid, thanks to the spillovers from the frontier �rm�s innovation, which

advances the state of knowledge for the entire industry as well as the scienti�c community

surrounding the magnetic information-storage technologies. Keeping track of (ft; f~!itgi)
instead of the original f!itgi facilitates computation. This reformulation is similar to Goettler
and Gordon (2011) and other �quality ladder�models with moving technological frontiers.

The economic signi�cance of the (quality-adjusted) cost-reducing innovations and �syner-

gies�in our empirical model is as follows. Between 1996 and 2016, the frontier marginal cost

(per GB) decreased from +5 log US$ (approximately $149) to �4 log US$ (approximately
$0.02). The step size of the frontier marginal cost is 0.5 log US$, and the step size of each

�rm�s distance to frontier is 0.1 log US$. Therefore, both an innovation (due to in-house

R&D) and the expected e¢ ciency gain (due to synergy) would reduce marginal cost by 10%

in the case of a non-frontier (level-1, 2, or 3) �rm and by 50% in the case of a frontier (level-4)

�rm.

In terms of competitive implications, a 10% reduction of marginal cost could increase the

�rm�s market share by 5% � 10% in 1996, for example. In terms of antitrust implications,

this level of expected synergy could make mergers decrease the equilibrium spot-market
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prices in some cases (depending on the time period and market structure) but more often

lead to price increases.

D.2 Fixed Costs and Accounting Data

We determine the �xed cost of operations and technological catch-up, �t, directly from ac-

counting data rather than estimating it along with the three sunk-cost parameters (�i; �m; �e)

in section 4.3, for the following reasons. Our previous experience with the estimation of

dynamic games (i.e., Igami 2017, 2018; Igami and Yang 2016) suggests the �xed cost of

operations is an order of magnitude smaller than the sunk costs of entry and other major

investments (e.g., product and process innovations). Moreover, the �xed-cost estimates tend

to be statistically indistinguishable from zero when sparse data are used, and play a relatively

minor role in the overall performance of the dynamic models. Thus, rather than adding �t as

another parameter to the main estimation procedure, we prefer pinning it down separately

from auxiliary data, such as the �rms��nancial statements.

Accounting data are not always conceptually equivalent to the objects in economic mod-

els, as our discussion of pro�ts in section 4.2 clari�es. But they are nevertheless useful for

some purposes, such as �xing the values of a relatively unimportant parameter that cannot

be precisely estimated anyway. Our notion of �t is something stable over time, and the

accounting data on SGA and R&D expenses share this property.

Table 12: Summary Statistics of Accounting Data on Fixed Costs

Variable Unit of Number of Mean Standard Minimum Maximum
measurement observations deviation

Fixed cost, �t Million $ 35 1; 078 686:7 230:9 2; 422
Year, t Fiscal year 35 2; 007 5:419 1; 996 2; 015
Productivity level, !it Levels 1�4 35 3:521 0:610 2 4
Indicatorfi = Seagateg 0 or 1 35 0:428 0:502 0 1
Indicatorf(i; t) 2 Specialg 0 or 1 35 0:114 0:323 0 1

We estimate �t from the �nancial statements of Seagate Technology and Western Digital

between 1996 and 2015. We rely on these �rms simply because they are the only publicly

traded companies for which systematic records exist. Moreover, they specialize in the man-

ufacturing of HDDs, whereas other survivors such as Hitachi and Toshiba are conglomerates

and disclose limited information on HDD-speci�c activities. The two �rms clearly represent

a highly selective sample but not a terrible source of information when our only purpose is

to capture a ballpark trend in operating costs over two decades.
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Table 13: Fixed-Cost Estimates from Accounting Data

Dependent variable: (1) (2) (3) (4)
Fixed cost, � OLS OLS OLS OLS
Year (t) 89:80��� � 75:75��� 47:68���

(11:16) (�) (11:34) (8:47)
Productivity level (!it) � 788:48��� 510:04��� 215:55��

(�) (139:63) (100:66) (90:17)
I fi = Seagateg � � � 568:54���

(�) (�) (�) (117:40)
I f(i; t) 2 Specialg � � � 1; 067���

(�) (�) (�) (158:3)

Number of observations 35 35 35 35
Adjusted R2 0:633 0:476 0:774 0:906

Table 12 shows summary statistics. Sample size is smaller than 40 (i.e., two �rms times

20 years) because Seagate became privately owned for �nancial restructuring in 2000 and its

�nancial statements lost consistency after it went public again. Our main variable is fixed

cost, which is the sum of SGA and R&D expenses. The right-hand-side variables include

year, productivity level (based on the discretized version of our marginal-cost estimates),

Seagate dummy (the omitted category is Western Digital), and a special-occasion dummy

(to distinguish abnormal periods for Western Digital when its facilities were hit by a natural

disaster).

Table 13 shows the results of OLS regressions. The time trend is positive and statistically

signi�cant, whereas the productivity level (i.e., control for concurrent �rm sizes) is positive

but imprecisely estimated presumably because of multi-collinearity. Historically, Seagate

spent more than Western Digital, but the latter had to spend large sums to recover from

a �ood in Thailand in October 2011. We use predicted �xed costs based on the last (full)

speci�cation as �t (!it) in our main estimation task in section 4.3.

D.3 Fit of Pro�t Margins

In Figure 2 in section 4.2, we showed our estimates of pro�t margins based on variable-cost

estimates. We explained the di¤erence between model and accounting pro�ts is due to �xed

costs. Figure 12 shows a di¤erent version that incorporates our estimate of the base �xed

cost (�̂0) as well. The inclusion of �̂0 (divided by each �rm�s concurrent revenue) improves

the �t in two respects. First, the di¤erences between economic and accounting margins

decrease from 4:6 to �1:6 percentage points for Western Digital (i.e., now our estimate is
slightly lower than the accounting gross-pro�t margin) and from 3:6 to 0:2 percentage points
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for Seagate, respectively. Second, the correlation coe¢ cients increase from 0:75 to 0:79 for

Western Digital, and from 0:51 to 0:83 for Seagate, respectively.

Figure 12: Comparison of Pro�t Margins (%) in the Model and Financial Statements

D.4 Implied vs. Actual Acquisition Prices

We conduct a sanity check of �t by comparing estimated enterprise values and the actual

acquisition prices. Figure 13 plots our �rm-value estimates along the historical path of

market structure in the data, and overlays the actual transaction prices in the six merger

cases from Thomson�s �nancial data (marked by red crosses). Because target �rms�stand-

alone values underpin their equilibrium acquisition prices in our model, comparison of the

estimated values and the actual acquisition prices provides a ballpark assessment of the �t

in terms of dollar values. In at least half the cases, each of the acquisition prices is located

close to the estimated value of �rms with the corresponding productivity level (1, 2, 3, or 4).

The di¤erence between the two graphs may not be highly visible, but the average �rm

value under the 50-50 Nash bargaining speci�cation ($2:194 billion) is slightly higher than

under the TIOLI speci�cation ($2:029 billion).

D.5 Sensitivity Analysis

Table 14 shows additional ML estimates of dynamic parameters. Columns 1 through 4

set the acquirer�s bargaining power � 2 f0:6; 0:7; 0:8; 0:9g, respectively, to investigate the
intermediate cases between the two protocols in section 4.3 (� = 0:5 and 1 in Table 5).

The parameter values change only negligibly across these speci�cations, but their directions
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Figure 13: Firm-Value Estimates and Actual Acquisition Prices

Note: Red crosses represent the actual acquisition prices in the six merger cases from Thomson database.
The other four markers represent our estimates of equilibrium �rm values along the historical path of market
structure in the data.

Table 14: MLE of Dynamic Parameters (Additional Sensitivity Analysis)

Speci�cation (1) (2) (3) (4) (5) (6)
Bargaining (�): 0:6 (NB) 0:7 (NB) 0:8 (NB) 0:9 (NB) 1 (TIOLI) 1
Recog. prob. (�): 1

14
1
14

1
14

1
14

1
21

1
28

�c 0:010 0:011 0:011 0:011 �0:017 �0:016
[0:000:0:020] [0:001; 0:020] [0:001; 0:020] [0:001; 0:020] [�0:040; 0:006] [�0:040; 0:008]

�i (!it = 1; 2; 3) 0:50 0:50 0:49 0:48 0:39 0:18
[0:28; 0:74] [0:27; 0:73] [0:27; 0:73] [0:27; 0:71] [0:00; 0:78] [�0:26; 0:62]

�i (!it = 4) 0:90 0:89 0:87 0:86 1:08 0:88
[0:41; 1:52] [0:41; 1:49] [0:41; 1:49] [0:40; 1:45] [0:26; 2:08] [�0:05; 1:99]

�m 1:22 1:23 1:25 1:26 1:78 2:06
[0:74; 1:84] [0:76; 1:84] [0:78; 1:87] [0:79; 1:85] [0:99; 2:76] [1:19; 3:14]

�e 0:17 0:16 0:17 0:17 0:29 0:22
[�] [�] [�] [�] [�] [�]

� 0:59 0:58 0:57 0:56 0:93 1:01
[0:44; 0:85] [0:43; 0:84] [0:43; 0:82] [0:42; 0:81] [0:66; 1:41] [0:72; 1:54]

Log likelihood �157:15 �157:08 �157:02 �156:97 �138:10 �127:73

Note : The synergy parameter � = 1 and the terminal period T = December 2025 in all speci�cations. The 95%
con�dence intervals are constructed from the likelihood-ratio tests.

are intriguing. The estimated sunk cost of merger negotiation (�m) becomes larger with �,

because: (i) greater bargaining power lowers acquisition prices (pij) and increases the values

of mergers for the acquirers (�V mij ); (ii) but the count of actual mergers in the data do not

change with our calibration of �; (iii) hence, the only way for the model to reconcile the
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model with the data is to increase �m, so that the model-generated CCPs of merger goes

down to match the CCPs in the data. The estimated costs of in-house R&D (�is) seem to

move in the opposite direction to balance the choice between innovation and merger.

The scaling parameter of logit errors (�) also changes systematically across columns 1

through 4. This parameter governs the importance of (logit shocks relative to) the underlying

payo¤s of di¤erent states (recall we estimated � (!it) outside the dynamic framework). If �

were extremely large, period pro�ts and other economic fundamentals would hardly matter

to the dynamic discrete choice. By contrast, if � were extremely small, these underlying

payo¤s and their di¤erences would have to explain all the patterns of dynamic discrete

choice in the data. Thus, the (slightly) lower �s at higher �s suggest our model of static

demand supply plays a (slightly) more important role in explaining mergers, innovation, and

entry-exit dynamics when we assume greater bene�ts for acquirers.

The last two columns of Table 14 investigate the role of recognition probability (�). Our

baseline model sets � = 1
nmax

= 1
14
= 0:071, because the data start with 13 incumbents

(and we endogenize entry by assuming one potential entrant in each month). Column 5

increases the maximum number of players (nmax) by 50% and sets � = 1
21
= 0:048; column

6 does so by 100% and sets � = 1
28
= 0:036. These lower �s mean a given �rm can expect

to move only once every two to three years, which seems extreme even for relatively rare

events such as mergers. Nevertheless, this sensitivity analysis helps us understand the inner

working of the model and certain features of the data. First, the logit scaling parameter (�)

becomes larger, because the model has to rationalize the actual mergers and innovations in

the data despite assuming that �rms could hardly move. Second, however, the likelihood

improves substantially, because lower �s mechanically �t some part of the data better (i.e.,

there are many months in which nothing happens). Third, the base �xed cost of operation

(�0) becomes negative, which suggests the model has to rationalize the existence of active

�rms (i.e., why these �rms do not exit despite the unattractive environment in which they

can hardly make payo¤-maximizing moves) by subsidizing their continued operations.

D.6 Heterogeneous Synergies

We set the mean synergy parameter � = 1 in the baseline model, because this is the average

improvement in productivity level (above and beyond the bene�ts of rationalization) that is

implied by our marginal-cost estimates before and after the six mergers in the data. Given

the limited number of observations, we did not attempt to model or estimate � as a function

of pre-merger productivity, !it.
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Nevertheless, we may investigate how the equilibrium strategies change in response to

di¤erent parameterizations. We consider two cases. First, one might suspect the acquirer�s

current productivity is positively correlated with the chance of further improvements due to

synergy (i.e., d�(!)
d�

> 0). Second, playing catch-up could be easier than pushing the frontier

not only in terms of R&D (i.e., as suggested by our estimates of �i (!)) but also in terms of

synergies: d�(!)
d�

< 0.

We implement these ideas by parameterizing:

� (!it) =
!it
c

(28)

and

� (!it) =
5� !it
c

; (29)

where the scalar c = 2:5 ensures that the average � across the acquirer�s types !it 2 f1; 2; 3; 4g
remains the same as the baseline model�s � = 1. We recomputed equilibrium under each of

the two alternative speci�cations.

Figure 14 plots the equilibrium CCPs of merger by year and type. Panels A and B show

the �progressive�synergy case (equation 28), whereas C and D show the �regressive�synergy

case (equation 29). The left panels are almost exactly the same as in the baseline result (Pan-

els C and D in Figure 4). The right panels also share the mostly downward-sloping shapes

with the baseline CCPs, but the ordering of types in terms of levels is di¤erent. Speci�cally,

the �progressive� speci�cation makes level-4 (the highest productivity) �rms the most ac-

quisitive. By contrast, the �regressive�speci�cation makes level-1 �rms�CCPs the highest

with respect to most target types. These patterns re�ect the underlying con�gurations of

� (!it).

Thus, this sensitivity analysis suggests the equilibrium CCPs are responsive to the way

we model heterogeneity of � (!it) in an intuitive manner. The rank order of likely acquirers

mostly follow that of expected synergies. At the same time, the overall level of CCPs

(0:55% � 0:75%) remains similar across speci�cations as long as the average � remains the
same.
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Figure 14: Equilibrium Merger Strategies under Heterogeneous Synergies

Note: Each graph summarizes the equilibrium strategies for M&A, by averaging the structural CCP estimates
across !it, nt, or t. For expositional purposes, the horizontal axis represents the concurrent number of active
�rms (nt) as a summary statistic of the underlying state (!t, which subsumes both nt and the productivity
pro�le of all �rms).
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Appendix E Supplementary Materials for Section 5

E.1 Counterfactual Policies under the 50-50 Nash Bargaining Setup

Section 5.1 showed counterfactual policy simulations under the baseline speci�cation of the

bargaining protocol (TIOLI). Table 15 shows an alternative version under the 50-50 Nash

bargaining setup. The results are qualitatively similar. An interesting di¤erence is that

N = 5 leads to the highest discounted SW instead of N = 6 in Table 6. Taken together,

these results seem to suggest the limit of welfare improvement by tougher antitrust regimes

even when the equilibrium relationship between competition and innovation is positive (c.f.,

Panel A of Figure 4).

Table 15: Welfare Performance of Counterfactual Policies under 50-50 Nash Bargaining

Threshold number of �rms (N) 1 2 3 4 5 6
(Baseline)

(A) All periods: 1996�2025
Consumer surplus 755:56 763:49 764:95 765:82 766:11 766:13

(�1:23%) (�0:19%) (�0%) (+0:11%) (+0:15%) (+0:15%)
Producer surplus 19:25 18:68 18:42 18:20 18:00 17:81

(+4:48%) (+1:40%) (�0%) (�1:22%) (�2:29%) (�3:33%)
Social Welfare 774:81 782:17 783:38 784:02 784:11 783:94

(�1:09%) (�0:15%) (�0%) (+0:08%) (+0:09%) (+0:07%)

(B) First half: 1996�2010
Consumer surplus 535:83 536:37 536:50 536:63 536:59 536:51

(�0:13%) (�0:03%) (�0%) (+0:02%) (+0:02%) (+0:00%)
Producer surplus 13:32 13:28 13:25 13:20 13:14 13:07

(+0:53%) (+0:22%) (�0%) (�0:38%) (�0:83%) (�1:36%)
Social welfare 549:15 549:65 549:75 549:83 549:73 549:58

(�0:11%) (�0:02%) (�0%) (+0:01%) (�0:00%) (�0:03%)
(C) Second half: 2011�2025
Consumer surplus 219:73 227:12 228:45 229:20 229:52 229:61

(�3:81%) (�0:58%) (�0%) (+0:33%) (+0:47%) (+0:51%)
Producer surplus 5:93 5:40 5:18 5:00 4:86 4:74

(+14:58%) (+4:42%) (�0%) (�3:36%) (�6:03%) (�8:35%)
Social welfare 225:66 232:53 233:62 234:20 234:38 234:36

(�3:41%) (�0:47%) (�0%) (+0:25%) (+0:33%) (+0:31%)

Note : All welfare numbers are present values as of January 1996 in billion US dollars and are the averages of
10,000 simulations under each policy regime. Their percentage changes from the baseline outcomes under N = 3
are in parentheses. Note the welfare numbers in Panel (C) are considerably smaller than those in Panels (A)
and (B), because the annual discount factor of � = 0:9 means they are discounted at �15 = 0:2059.
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E.2 Estimates and Counterfactuals under Price-based Merger Policies

We modeled antitrust policy as a threshold number of �rms (N = 3 in the baseline case).

This rule of thumb seemed commonly shared by the HDD industry participants that we

interviewed. Several former chief economists at the DOJ and the FTC also informed us

that the �burden of proof�tends to shift at this number, at least informally. However, this

rule of thumb is not always supported by theory. Even in a simple static model such as a

homogeneous-good Cournot game, a merger�s impact on welfare depends the cost pro�le of

�rms as well as the identity of the merging parties. Hence, even though a rule of thumb

might provide a useful reference point, the antitrust agencies would try to evaluate whether

particular mergers would raise prices or not.59

For these reasons, we designed an alternative model with a di¤erent antitrust policy rule

that blocks mergers that would raise prices by more than X% in the comparative statics

of the Cournot model. Theoretically, this threshold X should be set to zero, so that only

welfare-enhancing mergers (in expectations) would be approved. Empirically, however, all

of the six approved mergers in the data are expected to increase prices by 0:21% � 7:68%

ceteris paribus, which suggests X > 7:68% in our context of the global HDD industry.

Table 16: MLE of Dynamic Parameters under Price-based Policy (10% Threshold)

Speci�cation (1) (2)
Merger policy: Block if N � 3 Block if �P > 10%

(Baseline)
�0 0:011 0:011

[0:001; 0:020] [0:004; 0:016]
�i (!it = 1; 2; 3) 0:48 0:47

[0:26; 0:69] [0:33; 0:63]
�i (!it = 4) 0:85 0:85

[0:39; 1:42] [0:51; 1:26]
�m 1:27 1:24

[0:81; 1:86] [1:00; 1:74]
�e 0:17 0:17

[�] [�]
� 0:55 0:55

[0:41; 0:80] [0:44; 0:68]
Log likelihood �156:93 �156:68

Note : For comparison, column 1 shows the baseline estimates (same as column 1 of Table 5). The two speci�ca-
tions are the same except for the modeling of merger policy. The 95% con�dence intervals are constructed from
the likelihood-ratio tests.

We also reviewed retrospective studies of past mergers and learned �the mean price change

59Farrell and Shapiro�s (1990) Proposition 1 clari�es a necessary and su¢ cient condition for prices to fall
after two �rms merge in the static Cournot model with constant marginal costs.
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for the forty-two true mergers is an increase of 7.22 percent,�according to a meta-survey of

American cases by Kwoka (2015, p. 110). Moreover, he �nds �the outcomes all lie between

a price increase of 30 percent and a decrease of 10 percent�except for a few outliers (p. 95),

which suggests a de-facto threshold policy with X = 30. This policy seems extremely lenient

as a general guideline and might re�ect occasional forecasting errors by the agencies, because

the measured price e¤ects exceeding 5% or 10% are �generally interpreted, and viewed in the

Merger Guidelines, as indicating signi�cant competitive problems with a merger�(p. 95).

Consequently, we setX = 10 in our alternative model and re-estimate the key parameters.

Table 16 compares our baseline model (column 1) with the alternative model (column 2).

The parameter estimates are almost identical. The only visible di¤erences are that �̂i (when

!it = 1; 2; 3) and �̂m are slightly lower in the new model, which suggests innovation and

mergers are slightly less attractive under the new speci�cation. But these di¤erences are

negligible and well within the 95% con�dence intervals.

Table 17: Welfare Performance of Price-based Counterfactual Policies

Threshold price increase (%) 30 20 10 5 1 0
(Baseline)

(A) All periods: 1996�2025
Consumer surplus 765:33 766:41 767:72 772:59 783:13 786:48

(�0:31%) (�0:17%) (�0%) (+0:64%) (+2:01%) (+2:44%)
Producer surplus 18:56 18:31 18:08 17:64 16:48 16:24

(+2:63%) (+1:27%) (�0%) (�2:47%) (�8:89%) (�10:20%)
Social Welfare 783:89 784:73 785:80 790:23 799:60 802:72

(�0:24%) (�0:14%) (�0%) (+0:56%) (+1:76%) (+2:15%)

(B) First half: 1996�2010
Consumer surplus 536:23 536:38 536:68 538:71 542:91 544:29

(�0:08%) (�0:06%) (�0%) (+0:38%) (+1:16%) (+1:42%)
Producer surplus 13:18 13:15 13:09 12:88 12:24 12:13

(+0:70%) (+0:46%) (�0%) (�1:61%) (�6:48%) (�7:34%)
Social welfare 549:41 549:53 549:77 551:58 555:14 556:42

(�0:07%) (�0:04%) (�0%) (+0:33%) (+0:98%) (+1:21%)

(C) Second half: 2011�2025
Consumer surplus 229:10 230:03 231:04 233:88 240:22 242:19

(�0:84%) (�0:43%) (�0%) (+1:23%) (+3:98%) (+4:83%)
Producer surplus 5:38 5:17 5:00 4:76 4:24 4:11

(+7:70%) (+3:39%) (�0%) (�4:74%) (�15:18%) (�17:69%)
Social welfare 234:48 235:20 236:03 238:65 244:46 246:30

(�0:66%) (�0:35%) (�0%) (+1:11%) (+3:57%) (+4:35%)

Note : All welfare numbers are present values as of January 1996 in billion US dollars and are the averages
of 10,000 simulations under each policy regime. Their percentage changes from the baseline outcomes under
the 10% threshold policy are in parentheses. Note the welfare numbers in Panel (C) are considerably smaller
than those in Panels (A) and (B), because the annual discount factor of � = 0:9 means they are discounted at
�15 = 0:2059.

Table 17 shows the results of counterfactual simulations with X 2 f0; 1; 5; 20; 30g, where
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higher X means more lenient merger enforcement. The overall patterns look similar to the

results in Table 6, with higher CS (and lower PS) under more stringent enforcement. The

dollar values are also similar, although Table 17 tends to feature slightly higher numbers

than Table 6. In terms of percentage change, the biggest di¤erence seems to occur between

X = 5 and X = 1 in Table 17, whereas the largest change in Table 6 is between N = 1 and

N = 2.
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